Dual 16-bit DAC: 10 Gbps JESD204B interface:

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet Revision 2.41

1. GENERAL DESCRIPTION

DAC1653D and DAC1658D are high-speed, high-performance 16-bit dual channel Digital-to-Analog Converters (DACs). The devices provide sample rates up to 2 Gsps with selectable $\times 2$, $\times 4$ and $\times 8$ interpolation filters optimized for multi-carrier and broadband wireless transmitters.

When both devices are referred to in this data sheet, the following convention will be used: DAC165xD.

The DAC165xD integrates a JEDEC JESD204B compatible high-speed serial input data interface running up to 10 Gbps allowing dual channel input sampling at up to 1 Gsps over four differential lanes. It offers numerous advantages over traditional parallel digital interfaces:

- Easier Printed-Circuit Board (PCB) layout
- Lower radiated noise
- Lower pin count
- Self-synchronous link
- Skew compensation
- Deterministic latency
- Multiple Device Synchronization (MDS); JESD204B subclass 1 compatible
- Harmonic clocking support
- Assured FPGA interoperability

There are two versions of the DAC165xD:

- Low common-mode output voltage (part identification DAC1653D)
- High common-mode output voltage (part identification DAC1658D)

An optional on-chip digital modulator converts the complex I/Q pattern from baseband to IF. The mixer frequency is set by writing to the Serial Peripheral Interface (SPI) control registers associated with the on-chip 40-bit Numerically Controlled Oscillator (NCO). This accurately places the IF carrier in the frequency domain. The 13-bit phase adjustment feature, the 12-bit digital gain and the 16-bit digital offset enable full control of the analog output signals.

The DAC165xD is fully compatible with device subclass 1 of the JEDEC JESD204B standard, guaranteeing deterministic and repeatable interface latency using the differential SYSREF signal. The device also supports harmonic clocking to reduce system-level clock synthesis and distribution challenges.

Multiple Device Synchronization (MDS) enables multiple DAC channels to be sample synchronous and phase coherent to within one DAC clock period. MDS is ideal for LTE and LTE-A MIMO transceiver applications.

The DAC165xD includes a $\times 2$, $\times 4$ or $\times 8$ divider to achieve the best possible noise performance at the analog outputs, allowing harmonic clocking through the system. The internal regulator adjusts the full-scale output current between 10 mA and 30 mA.

The device is available in a VFQFP-N 56 package (8 mm \times 8 mm).

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

2. **FEATURES AND BENEFITS**

- Dual channel 16-bit resolution
- 2.0 GSps maximum output update rate
- JEDEC JESD204B device subclass I compatible: SYSREF based deterministic and repeatable interface latency
- Multiple device synchronization enables multiple DAC channels to be sample synchronous and phase coherent to within one DAC clock period
- 1, 2 or 4 configurable JESD204B serial input lanes running up to 10 Gbps with embedded termination and programmable equalization gain (CTLE)
- 1 Gsps maximum baseband input data rate
- SPI interface (3-wire or 4-wire mode) for control setting and status monitoring
- Differential scalable output current from 10 mA to 30 mA
- Embedded NCO with 40-bit programmable frequency and 16-bit phase adjustment
- Embedded complex (IQ) digital modulator
- 1.2 V and 3.3 V power supplies (for DAC1653D series, the 3.3V supply voltage can be lowered to 2.7V for lower power consumption)
- Flexible SPI power supply (1.8 V or 1.2 V) ensuring compatibility with on-board SPI bus
- Flexible differential SYNC signals power supply (1.8 V or VFQFP-N 56 package (8 mm × 8 mm) 1.2 V) ensuring compatibility with on-board devices
- Embedded Temperature Sensor
- Configurable IOs pins for monitoring, interrupt
- XBERT features (PRBS31, 23, 15, 7, JTSPAT, STLTP)

- SFDR_{RBW} = 88 dBc typical (f_s = 1.50 Gsps; interpolation $\times 2$; bandwidth = 250 MHz; f_{out} = 150 MHz)
- NSD = $-167 \text{ dBc/Hz typical } (f_0 = 70 \text{ MHz})$
- IMD3 = 85 dBc typical (f_s = 1.50 Gsps; interpolation \times 2; f_{o1} = 152 MHz; f_{o2} = 155.1 MHz)
- Four carriers ACLR = 76 dB typical ($f_s = 1.50$ Gsps; $f_{NCO} = 350 \text{ MHz}$
- RF enable/disable pin and RF automatic mute
- Clock divider by 2, 4, 6 and 8 available at the input of the clock path
- Group delay compensation
- Analog offset control (10-bit auxiliary DACs)
- Power-down mode controls
- On-chip 0.7 V reference
- Industrial temperature range -40 °C to +85 °C
- Low (DAC1653D) or high (DAC1658D) common-mode output voltage
- Embedded Power On Reset
- Lane swapping and polarity swapping
- Signal Power Detector, IQ-Range detector, Level detectors with Auto-Mute feature

3. **APPLICATIONS**

- Wireless infrastructure radio base station transceivers, including: LTE-A, LTE, MC-GSM, W-CDMA, TD-SCDMA
- LMDS/MMDS, point-to-point microwave backhaul
- Direct Digital Synthesis (DDS) instruments
- High-definition video broadcast production equipment
- Automated Test Equipment (ATE)

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

4. ORDERING INFORMATION

Table 1.Ordering information

Type number	Package			
	Name	Description	Shipping Packaging	Version
DAC1653D2G0NLGA8	VFQFP-N 56	VFQFP-N $8.0 \times 8.0 \times 0.85$ mm; no lead	Tape & Reel	PSC-4110
DAC1653D1G5NLGA8	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tape & Reel	PSC-4110
DAC1653D1G0NLGA8	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tape & Reel	PSC-4110
DAC1658D2G0NLGA8	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tape & Reel	PSC-4110
DAC1658D1G5NLGA8	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tape & Reel	PSC-4110
DAC1658D1G0NLGA8	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tape & Reel	PSC-4110
DAC1653D2G0NLGA	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tray	PSC-4110
DAC1653D1G5NLGA	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tray	PSC-4110
DAC1653D1G0NLGA	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tray	PSC-4110
DAC1658D2G0NLGA	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tray	PSC-4110
DAC1658D1G5NLGA	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tray	PSC-4110
DAC1658D1G0NLGA	VFQFP-N 56	VFQFP-N 8.0 \times 8.0 \times 0.85 mm; no lead	Tray	PSC-4110

Fig 1. Block diagram

Datasheet

rated Device Technology

4

Datasheet

Rev. 2.41 — 28 April 2014

-

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

6. **PINNING INFORMATION**

6.1 Pinning

6.2 Pin description

Table 2.	Pin description		n	
Symbol		Pin	Type ^[1]	Description
AUXA_N		1	0	complementary auxiliary DAC A output current
AUXA_P		2	0	auxiliary DAC A output current
CLKIN_P		3	I	DAC clock positive input
CLKIN_N		4	I	DAC clock negative input
SYSREF_W	V_P	5	I/O	multiple device synchronization positive signal, west side (if not used, keep it floating)
SYSREF_W	V_N	6	I/O	multiple device synchronization negative signal, west side (if not used, keep it floating)
V _{DDD(1V2)}		7	Р	1.2 V digital power supply
IO0		8	I/O	IO port bit 0
RF_ENABL	E/IO1	9	I/O	IO port bit 1 or RF enable pin (see Section automute)
V _{DDD(1V2)}		10	Р	1.2 V digital power supply
V _{DDD(sync)}		11	Р	flexible power supply for SYNC differential signals (1.2 V to 1.8 V; see Section 11.2.1.1)
JRES		12	I/O	calibration resistor (6.98 k Ω 1%) for serial lanes termination
SYNC_OUT	Г_N	13	0	synchronization request to transmitter, complementary output

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 2. Pin description ...continued

Symbol	Pin	Type ^[1]	Description
SYNC_OUT_P	14	0	synchronization request to transmitter
V _{DDD(1V2)}	15	Р	1.2 V digital power supply for JESD204B interface
V _{DDD(1V2)}	16	Р	1.2 V digital power supply for JESD204B Lane 0
VIN_P0	17	[2]	serial interface lane 0 positive input (AC coupling recommended)
VIN_N0	18	[2]	serial interface lane 0 negative input (AC coupling recommended)
V _{DDD(1V2)}	19	Р	1.2 V digital power supply for JESD204B Lane 0 and Lane 1
VIN_P1	20	[2]	lane 1 serial interface positive input (AC coupling recommended)
VIN_N1	21	[2]	serial interface lane 1 negative input (AC coupling recommended)
V _{DDD(1V2)}	22	Р	1.2 V digital power supply for JESD204B Lane 1 and Lane 2
VIN_P2	23	[2]	serial interface lane 2 positive input (AC coupling recommended)
VIN_N2	24	[2]	serial interface lane 2 negative input (AC coupling recommended)
V _{DDD(1V2)}	25	Р	1.2 V digital power supply for JESD204B Lane 2 and Lane 3
VIN_P3	26	[2]	serial interface lane 3 positive input (AC coupling recommended)
VIN_N3	27	[2]	serial interface lane 3 negative input (AC coupling recommended)
V _{DDD(1V2)}	28	Р	1.2 V digital power supply for JESD204B Lane 3
V _{DDD(IO)}	29	Р	flexible power supply for SPI IOs and IO0/IO1 signals (1.2 V to 1.8 V; see Section 11.2.1)
GND	30	G	connect to ground
SDO	31	0	SPI data output
SDIO	32	I/O	SPI data input/output
V _{DDD(1V2)}	33	Р	1.2 V digital power supply
SCLK	34	I	SPI clock
SCS_N	35	I	SPI chip select (active LOW)
V _{DDD(1V2)}	36	Р	1.2 V digital power supply
SYSREF_E_N	37	I/O	multiple device synchronization negative signal, east side (if unused, leave it floating)
SYSREF_E_P	38	I/O	multiple device synchronization positive signal, east side (if unused, leave it floating)
RESET_N	39	I	general reset (active LOW)
JTAG	40	G	JTAG connection (connect to ground)
AUXB_P	41	0	auxiliary DAC B output current
AUXB_N	42	0	complementary auxiliary DAC B output current
V _{DDA(1V2)}	43	Р	1.2 V analog power supply
IOUTB_N	44	0	complementary DAC B output current
IOUTB_P	45	0	DAC B output current
V _{DDA(1V2)}	46	Р	1.2 V analog power supply
V _{DDA(3V3)}	47	Р	DAC1658D: 3.3 V analog power supply
			DAC1653D: 2.5 V to 3.3 V analog power supply
V _{DDA(1V2)}	48	Р	1.2 V analog power supply
VIRES	49	I/O	DAC biasing resistor (562 Ω 1%)
GAPOUT	50	I/O	band gap input/output voltage
V _{DDA(1V2)}	51	Р	1.2 V analog power supply
V _{DDA(3V3)}	52	Р	DAC1658D: 3.3 V analog power supply
			DAC1653D: 2.5 V to 3.3 V analog power supply

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 2. Pin description ...continued

Symbol	Pin	Type ^[1]	Description
V _{DDA(1V2)}	53	Р	1.2 V analog power supply
IOUTA_P	54	0	DAC A output current
IOUTA_N	55	0	complementary DAC A output current
V _{DDA(1V2)}	56	Р	1.2 V analog power supply

[1] P: power supply; G: ground; I: input; O: output.

[2] JESD204B input lanes can be swapped between P and N using dedicated registers. The order of lanes can be updated logically (see Section 11.8.5.3).

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

7. LIMITING VALUES

Table 3. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{DDA(3V3)}	analog supply voltage		-0.5	+4.6	V
V _{DDD(1V2)}	digital supply voltage		-0.5	+1.5	V
V _{DDA(1V2)}	analog supply voltage		-0.5	+1.5	V
VI	input voltage	pins VIN_Px; VIN_Nx, VIRES, GAPOUT; referenced to 1V2	-0.5	+1.5	V
	input voltage for clocks and SYSREF pins	pins CLK_P,CLK_N, SYSREF_W_P; SYSREF_W_N, SYSREF_E_P;SYSREF_E_N;	-0.5	1.95	V
Vo	output voltage	pins IOUTA_P; IOUTA_N; IOUTB_P; IOUTB_N; AUXA_P; AUXA_N; AUXB_P and AUXB_N; referenced to GND	-0.5	+4.6	V
V _{DDD(IO)}	I/O digital supply voltage	pins SDO; SDIO; SCLK; SCS_N; RESET_N; JTAG; IO0; RF_ENABLE/IO1	-0.5	2.1	V
$V_{DDD(\text{sync})}$	digital supply voltage for differential output buffers	pins SYNC_OUT_P; SYNC_OUT_N,	-0.5	2.1	V
T _{stg}	storage temperature		-55	+150	°C
T _{amb}	ambient temperature		-40	+85	°C
Т _ј	junction temperature		-40	+125	°C

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

8. THERMAL CHARACTERISTICS

Table 4. Thermal characteristics

Symbol	Parameter Conditions				
JEDEC 4L	board				
R _{th(j-a)}	thermal resistance from junction to ambient		[1]	23.6	K/W
R _{th(j-c)}	thermal resistance from junction to case		[1]	13.7	K/W
R _{th(j-b)}	thermal resistance from junction to bottom case		[1]	0.9	K/W
JEDEC co	mpliance board with additional layers count				
R _{th(j-a)}	thermal resistance from junction to ambient	6 layers	[2]	17.5	K/W
		8 layers	[2]	17.4	K/W
		12 layers	[2]	15.5	K/W

[1] In compliance with JEDEC test board; in free air with 64 thermal vias, class 5

[2] In free air with 64 thermal vias, class 5

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

9. STATIC CHARACTERISTICS

9.1 Common characteristics

The DAC165xD requires supplies of both 3.3 V and 1.2 V or 1.3 V for DAC sample rate above 1.8 Gsps. The 1.2 V supply has separate digital and analog power supply pins. The SPI power supply is flexible. It can be set from 1.2 V to 1.8 V (see Section 11.2.1.1).

Table 5. Common characteristics

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1.5 \text{ Gsps sample rate used};$ no auxiliary DAC used; no inverse sin(x)/x; no output correction; output signal = 1 $V_{pp,diff}$; unless otherwise specified.

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Мах	Unit
Voltages							
V _{DDA(3V3)}	analog supply voltage	DAC1658D: high common mode output	С	3.15	3.3	3.45	V
		DAC1653D: low common mode output	С	2.7[2]	3.3	3.45	V
V _{DDD(1V2)}	digital supply voltage		С	1.14 ^[3]	1.2	1.26	V
V _{DDA(1V2)}	analog supply voltage		С	1.14	1.2	1.26	V
V _{DDD(IO)}	I/O digital supply voltage		С	1.14	1.2	1.9	V
V _{DDD(sync)}	digital supply voltage for differential SYNC output buffers		С	1.14	1.2	1.9	V
Clock inputs	(pins CLKIN_P, CLKIN_N)						
V _{i(cm)}	common-mode input voltage. Internal self-biased. AC-coupling recommended		D	-	800	-	mV
V _{i(diff)}	differential Peak-to-Peak voltage		D	400	1000	2000	mV
f _{in}	Input frequency	direct clocking	D			2000	MHz
	compliance range	harmonic clocking (using clock divider)	D			3000	MHz
R _{i(diff)}	differential input resistor		D	-	100	-	Ω
Ci	input capacitance		D	-	2	-	pF
Digital input	s/outputs (SYSREF_W_P/S)	SREF_W_N, SYSREF_E_P	SYSREF_	_E_N)			
V _{i(cm)}	common-mode input	V _{DDD(IO)} =1.8V	D	800	1200	1400	mV
	voltage	V _{DDD(IO)} =1.2V	D	800	950	1100	mV
V _{i(diff)}	differential Peak-to-Peak voltage		D	400	800	1000	mV
R _{i(diff)}	differential input resistor (could be disconnected see <u>Table 102</u>)		D	-	100	-	Ω
Ci	input capacitance		D	-	0.7	-	pF
Digital input	s (pins SDO, SDIO, SCLK, S	CS_N, RESET_N)					
V _{IL}	LOW-level input voltage		С	GND	-	0.3V _{DDD(IO)}	V
V _{IH}	HIGH-level input voltage		С	$0.7V_{DDD(IO)}$	-	V _{DDD(IO)}	V
DAC1653D; DAC1658D						© IDT 2014. All	rights reserved.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 5. Common characteristics ...continued

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1.5 \text{ Gsps sample rate used};$ no auxiliary DAC used; no inverse $\sin(x)/x$; no output correction; output signal = 1 $V_{pp,diff}$; unless otherwise specified.

Symbol	Parameter	Conditions	Test [1]	Min	Тур	Мах	Unit
Digital inputs	s (VIN_Px/VIN_Nx) complian	nt with the LV-OIF-11G-SR; (CML format	:			
V _{cm}	common-mode voltage	AC coupling is mandatory	D	0.580	-	1.126	V
V _{pp-diff}	differential peak-to-peak	below 8 Gbps	D	80	-	-	mV
	voltage	above 8 Gbps	D	110	-	-	mV
Z _{diff}	differential impedance	controlled by SPI register	D	71	100	190	Ω
Hi-Z _{diff}	tri-state observed impendance		D	-	64	-	kΩ
DR	data rate		D	2	-	10	Gbps
Digital outpu	ts (pins SYNC_OUT_P and	SYNC_OUT_N)					
V _{cm}	common-mode voltage	controlled by SPI register			-		
		V _{DDD(sync)} = 1.8 V	D	1.0	-	1.7	V
		$V_{DDD(sync)}$ = 1.2 V	I	0.4	-	1.1	V
$V_{O(\text{diff})(\text{swing})}$	swing differential output voltage		Ι	100	-	1200	mV
Digital outpu	ts (pins SDO, SDIO)						
V _{OL}	LOW-level output voltage		I	-	-	0.3V _{DDD(IO)}	V
V _{OH}	HIGH-level output voltage		I	$0.7V_{DDD(IO)}$	-	-	V
Reference vo	oltage output (pin GAPOUT)						
V _{O(ref)}	reference output voltage	T _{amb} = 25 °C	I	-	0.70	-	V
Analog auxili	ary outputs (pins AUXA_P,	AUXA_N, AUXB_P and AUX	(B_N)				
I _{O(fs)}	full-scale output current	normal resolution	I	-	2.3	-	mA
		high resolution	D	-	40	-	μΑ
N _{DAC(aux)mono}	auxiliary DAC monotonicity	guaranteed	D	-	10	-	bits
DAC output t	iming						
f _s	sampling rate	DAC165xD2G0	С	_[4]	-	2000	Msps
		DAC165xD1G5	С	_ <u>[4]</u>	-	1500	Msps
		DAC165xD1G0	С	- <u>[4]</u>	-	1000	Msps
ts	settling time	$t_o = \pm 0.5 LSB$	D	-	20	-	ns

[1] D = guaranteed by design; C = guaranteed by characterization; I = industrially tested.

[2] Lower power supply value could be used but the overall DAC performances will be degraded.

[3] For frequencies higher than 1.7Gsps and when using all digital features (NCO, inv sin(x)/x, phase correction, ..) the minimum value is 1.165V

[4] Minimum value is linked to the JESD204B link configuration and lane rate

9.2 Specific characteristics

Table 6. Currents characteristics

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1.5 \text{ Gsps sample rate used};$ no auxiliary DAC used; no inverse sin(x)/x; no output correction; output signal = 1 V(p-p), diff; unless otherwise specified.

Symbol	Parameter	Conditions	Test [1]	est DAC165xD			Unit
				Min	Тур	Max	_
Currents							
I _{DDA(3V3)} [2]	I _{DDA(3V3)} [2] analog supply	DAC1658D High Common Mode: all use cases	I	-	64	68	mA
current		DAC1653D Low Common Mode: all use cases	I	-	114	122	mA
I _{DDD(IO)} [2]	digital supply current for IO pins	depends on SPI IO0/IO1 activity	l	-	0.5	1	mA
I _{DDD(sync)} [2]	digital supply current for SYNC pins	all use cases	I	-	5	7	mA
I _{DDD(1V2)}	digital supply current	NCO off;×2 interpolation; MDS off; invsinc off, phase correction off					
		f _s = 983.04 Msps	С	-	250	285	mA
		f _s = 1474.56 Msps	С	-	330	365	mA
		f _s = 1966.80 Msps	С	-	400	445	mA
I _{DDA(1V2)} [2]	analog supply current	V _{DDA(1V2)} = 1.2 V	I	-	203	220	mA

[1] D = guaranteed by design; C = guaranteed by characterization; I = industrially tested.

[2] Power supply independent of the DAC sampling frequency.

1658L

Datasheet

ted Device Technology

Table 7. Specific characteristics

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V}; Typical values measured at T_{amb} = +25 \circ C; I_{O(fs)} = 20 \text{ mA}; 1.5 \text{ Gsps sample rate used; no auxiliary DAC used; no inverse sin(x)/x; no output correction; output signal = 1 V(p-p), diff; unless otherwise specified.$

Symbol	Parameter	Conditions	Test	High	DAC1658 common	D: -mode	Lov	Unit		
				Min	Тур	Max	Min	Тур	Max	
Power										
P _{tot}	total power dissipation	NCO off;×2 interpolation; MDS off; invsinc off, phase correction off								
		V_{DDA} = 3.3 V; all V_{DDD} = 1.2 V								
	f _s = 983.04 Msps; four JESD204B lanes at 4.9152 Gbps	С	-	761	873	-	932	1059	mW	
	f _s = 1474.56 Msps; four JESD204B lanes at 7.3728 Gbps	С	-	857	974	-	1028	1160	mW	
	f _s = 1966.80 Msps; four JESD204B lanes at 9.8304 Gbps	С	-	941	1075	-	1112	1261	mW	
		NCO on;×2 interpolation; MDS off; invsinc off, phase correction off								
		f _s = 983.04 Msps; four JESD204B lanes at 4.9152 Gbps	С		833	955	-	1004	1141	mW
		f _s = 1474.56 Msps; four JESD204B lanes at 7.3728 Gbps	С		953	1088	-	1124	1273	mW
		f _s = 1966.80 Msps; four JESD204B lanes at 9.8304 Gbps	С		1085	1233	-	1256	1418	mW
		full power-down ^[2]	С	-	-	5	-	-	5	mW
Analog out	puts (pins IOUTA	_P, IOUTA_N, IOUTB_P, IOUTB_N)								
I _{O(fs)}	full-scale output current		D	10	20	30	10	20	30	mA
I _{O(cm_offset)}	additional common current	this additional common current is to be taken into account into filter design and component connection	D	-	1.6	-	-	1.6	-	mA
V _{O_comp}	output voltage compliance	V _{DDA(3V3)} =3.3 V	D	V _{DDA(3V3)} -1.0	-	V _{DDA(3V3)}	0	-	1.0	V
	range	V _{DDA(3V3)} =2.5 V	D	n.a.	n.a.	n.a.	0	-	0.6	V
Ro	internal output resistance		D	-	250	-	-	250	-	kΩ

DAC1653D/DAC1658D

13 of 168

DAC1653D; DAC

Table 7. Specific characteristics ... continued

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \degree C$; $I_{O(fs)} = 20 \text{ mA}$; 1.5 Gsps sample rate used; no auxiliary DAC used; no inverse $\sin(x)/x$; no output correction; output signal = 1 V(p-p), diff; unless otherwise specified.

Symbol	Parameter	Conditions	Test	DAC1658D: High common-mode			Lov	Unit		
				Min	Тур	Max	Min	Тур	Max	-
C _{PN}	differential output capacitance		D	-	0.5	-	-	0.5	-	pF
CP	positive output capacitance		D	-	5.5	-	-	5.5	-	pF
C _N	negative output capacitance		D	-	5.5	-	-	5.5	-	pF

[1] D = guaranteed by design; C = guaranteed by characterization; I = industrially tested.

[2] Full power-down mode is done by setting the following registers: x0043=x01; x0040=xF3 and x0020=x00.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

AC1653D/DAC1658D

ted Device Technology

DAC1653D; DAC

10. DYNAMIC CHARACTERISTICS

Table 8. Dynamic characteristics DAC165xD

 $V_{DDA(3V3)} = 3.3$ V; $V_{DDA(1V2)} = 1.2$ V; $V_{DDD(1V2)} = 1.2$ V; Typical values measured at $T_{amb} = +25$ °C; $I_{O(fs)} = 20$ mA; no auxiliary DAC used; no inverse sin(x)/x; no output correction; output signal = 1 V(p-p), diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

ted Device Technology

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

AC1653D/DAC1658D

Symbol	Parameter	Conditions		DAC1658D High common-mode			Lov	Unit		
			f _s	1 Gsps	1.5 Gsps	2 Gsps	1 Gsps	1.5 Gsps	2 Gsps	
SFDR	spurious-free	interpolation x2								
	dynamic range	$BW = f_s / 2$								
		V_{DDA} = 3.3 V; f _o = 20 MHz								
		at –1 dBFS	С	92	91	90	92	91	90	dBc
		at –7 dBFS	С	86	86	87	86	85	85	dBc
		at –14 dBFS	С	80	80	79	80	80	79	dBc
		V _{DDA} = 3.3 V; f _o = 150 MHz								
		at –1 dBFS	Ι	85	84	83	82	83	81	dBc
		at –7 dBFS	С	83	81	79	80	79	77	dBc
		at –14 dBFS	С	77	76	72	77	75	73	dBc
		V _{DDA} = 3.3 V; f _o = 350 MHz								
		at –1 dBFS	С	67	76	75	66	76	73	dBc
		at –7 dBFS	С	70	76	75	68	75	73	dBc
		at –14 dBFS	С	70	72	70	70	72	70	dBc
IMD3	third-order intermodulation	V _{DDA} = 3.3 V; f _{o1} = 20 MHz; f _{o2} = 21 MHz; –7 dBFS per tone	С	92	92	95	92	92	95	dBc
	distortion	V _{DDA} = 3.3 V; f _{o1} = 230 MHz; f _{o2} = 231 MHz; –7 dBFS per tone	С	80	83	87	80	83	87	dBc
ACPR	adjacent	f _o = 40 MHz								
	channel power	1 WCDMA carrier; BW = 5 MHz	С	80	80	80	80	80	80	dBc
	Tallo	4 WCDMA carriers; BW = 20 MHz	С	77	78	77	77	78	77	dBc
		f _o = 350 MHz								
		1 WCDMA carrier; BW = 5 MHz	С	80	80	80	78	79	79	dBc
		4 WCDMA carriers; BW = 20 MHz	С	75	76	75.5	75	76	75	dBc
NSD	noise spectral density	f_o = 70 MHz at -1 dBFS	С		-167			-165		dBc/Hz

[1] D = guaranteed by design; C = guaranteed by characterization; I = industrially tested.

Datasheet

DAC1653D

2014. All rights reserved. 15 of 168

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1.5 \text{ Gsps sample rate}$ used; no auxiliary DAC used; no inverse sin(x)/x; no output correction; input level = -1/-7/-14 dBFS; output signal = 1 V(p-p), diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

Fig 7. HD3 (dBm) over Nyquist depending of fout (MHz) and input level (dBFS)

Datasheet

Datasheet

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1.5 \text{ Gsps sample rate}$ used; no auxiliary DAC used; no inverse sin(x)/x; no output correction; input level = -7/ -14 / -19 dBFS per tone, 1 MHz spacing; output signal = 1 V(p-p),diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

Fig 10. IMD3 (dBc) for two tones (spacing 10 MHz) centered at 184.32 MHz

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Fig 11. IMD3 (dBc) for two tones (spacing 1 MHz) centered at 350 MHz

Fig 12. IMD3 (dBc) for two tones (spacing 10 MHz) centered at 350 MHz

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1 \text{ Gsps}, 1.5 \text{ Gsps}$ and 2 Gsps sample rates used; no auxiliary DAC used; no inverse $\sin(x)/x$; no output correction; input level = -1 dBFS; output signal = 1 V(p-p),diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 $V_{DDA(3V3)} = 3.3 \text{ V}; V_{DDA(1V2)} = 1.2 \text{ V}; V_{DDD(1V2)} = 1.2 \text{ V};$ Typical values measured at $T_{amb} = +25 \text{ °C}; I_{O(fs)} = 20 \text{ mA}; 1 \text{ Gsps}, 1.5 \text{ Gsps}$ and 2 Gsps sample rates used; no auxiliary DAC used; no inverse $\sin(x)/x$; no output correction; input level = -1 dBFS; output signal = 1 V(p-p),diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 $V_{DDA(3V3)}$ = 3.3 V; $V_{DDA(1V2)}$ = 1.2 V; $V_{DDD(1V2)}$ = 1.2 V; Typical values measured at T_{amb} = +25 °C; I_{O(fs)} = 20 mA; 1.5 Gsps sample rate used; no auxiliary DAC used; no inverse sin(x)/x; no output correction; output signal = 1 V(p-p), diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

Fig 20. ACLR of 2 carriers LTE (BW=2 x 20 MHz) centered at 184.32 MHz

350 MHz

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Other parameters are specified as follow: $V_{DDA(1V2)} = 1.2 \text{ V}$; $V_{DDD(1V2)} = 1.2 \text{ V}$; Typical values measured at $T_{amb} = +25 \text{ °C}$; $I_{O(fs)} = 20 \text{ mA}$; 1.5 Gsps sample rate used; no auxiliary DAC used; no inverse $\sin(x)/x$; no output correction; output signal = 1 V(p-p),diff, output signal frequency = 100 MHz; unless otherwise specified.

Reducing the $V_{DDA(3V3)}$ power supply allows to decrease the total power consumption for the DAC1653D. However, specific correctives factors needs to be apply to the dynamic performances for DAC1653D. These correctives factors depend of the value of analog power supply $V_{DDA(3V3)}$ and the value of the output common mode voltage $V_{cm.}$

Second harmonic distortion HD2 is only dependent of the $V_{\text{DDA}(3V3)}$ power supply value.

Third harmonic distortion HD3 and Intermodulation product IMD3 are dependents of the difference voltage between $V_{DDA(3V3)}$ power supply and V_{cm} common mode output voltage.

DAC1653D; DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

2.25

V_{DDA(3V3)} = 3.3 V; V_{DDA(1V2)} = 1.2 V; V_{DDD(1V2)} = 1.2 V; Typical values measured at T_{amb} = +25 °C; I_{O(fs)} = 20 mA; 1.5 Gsps sample rate used; no auxiliary DAC used; no inverse sin(x)/x; no output correction; input level = -1 dBFS; output signal = 1 V(p-p),diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

2.25

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Typical values measured at T_{amb} = +25 °C; $I_{O(fs)}$ = 20 mA; ; no auxiliary DAC used; no inverse sin(x)/x; no output correction; output signal = 1 V(p-p),diff; output common mode voltage = 2.7 V (DAC1658D) or 0.5 V (DAC1653D); unless otherwise specified.

Power supplies consumption for $V_{DDA(3V3)} = 3.3$ V and $V_{DDA(1V2)} = 1.2$ V are not dependents of the DAC sampling rate or the interpolation factor.

Fig 31. Additional digital supply current for IDDD(1v2) depending of the DAC sampling frequency and digital features

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11. APPLICATION INFORMATION

11.1 General description

The DAC165xD is a dual 16-bit DAC operating up to 2.0 Gsps. A maximum input data rate up to 1000 Msps is supported to enable more capability for wideband and multicarrier systems. The incorporated quadrature modulator and 40-bit Numerically Controlled Oscillator (NCO) simplifies the frequency selection of the system. This is also possible because of the ×2, ×4 or ×8 interpolation filters which remove undesired images.

The DAC165xD supports the following JESD204B key features:

- 10-bit/8-bit decoding
- Code group synchronization
- Initial Lane Alignment (ILA)
- 1 + x¹⁴ + x¹⁵ scrambling polynomial
- Character replacement
- TX/RX synchronization management via SYNC synchronization signals
- Multiple Converter Device Alignment-Multiple Lanes (MCDA-ML) device (subclass 1 compatible)
- Independent Link Synchronization support
- Deterministic latency
- Multiple Device Synchronization (MDS); JESD204B subclass 1 compatible
- Harmonic clocking support
- Number L of serial lanes: 1, 2, 4 (see LMF-S configuration)
- Number M of data converters: 1 or 2 (see LMF-S configuration)
- Number F of octets per frame: 1, 2, 4 (see LMF-S configuration)
- Number S of samples per frame: 1, 2 (see LMF-S configuration)
- Embedded test pattern (PRBS31, PRBS23, PRBS15, PRBS7, JTSPAT, STLTP)

The DAC165xD can be interfaced with any logic device that features high-speed SERializer/DESerializer (SERDES) functionality. This macro is now widely available in Field-Programmable Gate Array (FPGA) of different vendors. Standalone SERDES ICs can also be used.

The DAC165xD includes polarity swapping for each of the lanes and additionally offers lane swapping to enhance the intrinsic board layout simplification of the JESD204B standard. Each physical lane can be configured logically as lane 0, lane 1, lane 2 or lane 3.

This device is MCDA-ML compatible, offering inter lane alignment between several devices. An IDT proprietary mechanism in combination with the JESD204B subclass I clause enables maintenance of sample alignment between devices up to the final analog output stage. Output samples are automatically aligned to the SYSREF signal generated by a dedicated IC or by the FPGA itself. A system with several DAC165xDs can produce data with a guaranteed alignment of less than +/-1 DAC output clock period. The DAC165xD incorporates two differential SYSREF ports (located on opposite sides of the IC) to simplify the PCB layout design. The device also enables independent link reinitialization.

The DAC165xD generates two complementary current outputs on pins IOUTA_P/IOUTA_N and IOUTB_P/IOUTB_N, corresponding to channel 'A' and 'B', respectively, providing a nominal full-scale output current of 20 mA. An internal reference is available for the reference current which is externally adjustable using pin VIRES.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

The DAC165xD requires configuration before operating. It features an SPI slave interface to access the internal registers. Some of these registers also provide information about the JESD204B interface status. Optionally, an interrupt capability can be programmed using those registers to ensure ease of use of the device.

Because of the JESD204B standardization, the DAC165xD does not require any adjustment from the Transmit Logic Device (TLD) to capture the input data streams. Some autolock features can be monitored using the SPI registers.

The DAC165xD supports the following LMF configuration as described in the JESD204B standard (register LMF_CTRL; see <u>Table 124</u>):

Table 9.	LMF configuration		
	L-M-F	S[1]	HD[2]
	1-2-4	1	0
	2-2-2	1	0
	4-2-2	2	0
	4-2-1	1	1

[1] S is the number of samples per frame.

[2] HD is the high-density bit as described in the JESD204B specification.

A new IDT auto-mute feature enables switching off of the RF output signal as a result of various internal events occurring.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.2 Device operation

The DAC165xD provides a lot of flexibility in its way of working through its SPI registers. The SPI registers are divided in blocks of registers. Each block is associated with some global functions which are described below. <u>Section 11.12</u> shows an overview of all register blocks, including the register descriptions.

11.2.1 SPI configuration block

This block of registers specifies how the SPI controller and the identification of the chip work.

11.2.1.1 Protocol description

The DAC165xD serial interface is a synchronous serial communication port allowing easy interfacing with many industry microprocessors. It provides access to the registers that define the operating modes of the chip in both Write mode and Read mode. The reference voltage of the interface is $V_{DDD(IO)}$. Depending on the power supply level of the SPI master device, it can be set from 1.2 V to 1.8 V.

This interface can be configured as a 3-wire type (SDIO as bidirectional pin) or a 4-wire type (SDIO and SDO as unidirectional pins, input and output ports, respectively). In both configurations, SCLK acts as the serial clock and SCS_N acts as the serial chip select.

The DAC165xD SPI-interface is a slave-device. Multiple slave-device can be attached to the same master interface as long as each device has its own serial chip select signal (SCS_N).

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 10.	Read mode or write mode access description		
R/W	Description		
0	Write mode operation		
1	Read mode operation		

A[14:0] indicates which register is being addressed. If a multiple transfer occurs, this address points to the first register to be accessed.

11.2.1.2 SPI controller configuration

The 3-wire or 4-wire mode is set by bit SPI_4W of register SPI_CFG_A (see Table 48). The default mode is 3-wire mode.

A software SPI reset can be called via bit SPI_RST of register SPI_CFG_A (see <u>Table 48</u>). This reset reinitializes all SPI registers, except register SPI_CFG_A and SPI_CFG_B, to their default settings. Only a hardware reset on pin RESET_N can reset to their default values. Reset the device to its default value at start-up time to avoid any uncontrolled states.

The SPI streaming mode is enabled by default. In this mode, the Read or Write process carries on as long as the SCS_N signal is low. The streaming mode requires a first address 'n' to be set at the beginning of the SPI sequence. The following data are associated from this address in an ascending (auto-increment) or descending (auto-decrement) mode. This ascending/descending mode is specified by bit SPI_ASC of register SPI_CFG_A. Figures below represent the readback of 2 bytes data in a 3 wires mode for the ascendant and descendant mode.

The streaming mode can be disabled by setting bit SPI_SNGL of register SPI_CFG_B (see <u>Table 48</u>). In this single-byte mode, only 1 byte of data can be written or read, whatever the state of the SCS_N signal.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

11.2.1.3 Double buffering and Transfer mode

Some register functions (like the NCO frequency value) are split over multiple registers. If this is the case, the first address consists of the LSB byte and the highest address in the MSB byte. When programming these registers sequentially, some unexpected behavior can occur at the DAC output. It is preferable to program this set of registers simultaneously. A double buffering feature is available on some registers allowing sequential programming of the first buffers and transferring the values to the final register simultaneously.

The transfer request is done by setting the TRANSFER_BIT bit of register SPI_CFG_C register (see <u>Table 53</u>). The device clears this bit (autoclear) indicating to the SPI master device that the transfer is complete.

The SPI_RBACK_BUFF bit of register SPI_CFG_B (see <u>Table 48</u>) allows the reading back of the first stage of buffers (in case the register is double buffered).

The following registers are double buffered:

Table 11. Double buffered registers See Table 71	
Address	Register
0062h	NCO_PH_OFFSET_LSB
0063h	NCO_PH_OFFSET_MSB
0064h	NCO_FREQ_B0
0065h	NCO_FREQ_B1
0066h	NCO_FREQ_B2
0067h	NCO_FREQ_B3
0068h	NCO_FREQ_B4
0069h	PH_CORR_CTRL_0
006Ah	PH_CORR_CTRL_1
006Bh	DAC_A_DGAIN_LSB
006Ch	DAC_A_DGAIN_MSB
006Dh	DAC_B_DGAIN_LSB
006Eh	DAC_B_DGAIN_MSB
006Fh	DAC_OUT_CTRL
0070h	DAC_LVL_DET
0071h	DAC_A_OFFSET_LSB
0072h	DAC_A_OFFSET_MSB
0073h	DAC_B_OFFSET_LSB
0074h	DAC_B_OFFSET_MSB
0075h	IQ_LVL_CTRL
0076h	I_DC_LVL_LSB
0077h	I_DC_LVL_MSB
0078h	Q_DC_LVL_LSB
0079h	Q_DC_LVL_MSB
007Ah	SPD_CTL
007Bh	SPD_THRESHOLD_LSB
007Ch	SPD_THRESHOLD_MSB

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.2.1.4 Device description

Registers CHIP_TYPE, CHIP_ID_0, CHIP_ID_1 and CHIP_VS (see Table 51) represent the ID card of the device.

Registers VEND ID LSB and VEND ID MSB (see Table 52) represent the IDT manufacturer identifier.

11.2.1.5 SPI RESET N wait duration requirement

After a Power On Reset or a RESET N request, a wait duration is needed before sending the first SPI command. Please refer to the following table to apply the expected wait duration.

Table 12. Wait duration after hard reset

FDAC	wait duration before first SPI command
1.0 Gsps	40 µs
1.5 GSps	30 µs
2.0 Gsps	20 µs

11.2.1.6 SPI timing description - 4 wires mode

The SPI interface can operate at a frequency of up to 25 MHz. Figure 37 and Figure 38 show the SPI timing in 4 wires mode.

DAC1653D; DAC1658D

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

The SPI timing characteristics are given in Table 13.

Table 13. SPI timing characteristics - 4 wires

Symbol	Parameter		Min	Тур	Max	Unit
f _{SCLK}	SCLK frequency					
	V _{DDD(IO)} =1.8V		-	-	25	MHz
	V _{DDD(IO)} =1.2V		-	-	20	MHz
t _{w(SCLK)}	SCLK pulse width (high)		20	-	-	ns
	SCLK pulse width (low)	depends of propagation time and master timing requirements				e and
t _{su(SCS_N)}	SCS_N set-up time		5	-	-	ns
t _{h(SCS_N)}	SCS_N hold time		20	-	-	ns
t _{su(SDIO)}	SDIO set-up time		5	-	-	ns
t _{h(SDIO)}	SDIO hold time		5	-	-	ns
t _{su(SDO)}	SDO set-up time		5	-	-	ns
t _{h(SDO)}	SDO hold time		5	-	-	ns
$t_{w(RESET_N)}$	RESET_N pulse width	[1]	30	-	-	ns

[1] The RESET_N signal is asynchronous to the SPI interface, but enables the reset of the registers to the default values.

11.2.1.7 SPI timing description - 3 wires mode

The SPI interface can operate at a frequency of up to 15 MHz. Figure 39 and Figure 40 show the SPI timing in 3 wires mode.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

The SPI timing characteristics are given in Table 14.

Table 14.	SPI timing characteristics - 3 wires					
Symbol	Parameter		Min	Тур	Max	Unit
f _{SCLK}	SCLK frequency		-	-	15	MHz
t _{w(SCLK)}	SCLK pulse width (high)		30	-	-	ns
	SCLK pulse width (low)		depends of propagation time and master timing requirements			
t _{su(SCS_N)}	SCS_N set-up time		5	-	-	ns
t _{h(SCS_N)}	SCS_N hold time		20	-	-	ns
t _{su_w(SDIO)}	SDIO set-up time		5	-	-	ns
t _{h_w(SDIO)}	SDIO hold time		5	-	-	ns
t _{sw(SDIO)}	SDIO switch time (write to read mode)					
	V _{DDD(IO)} =1.8V		9	-	20	ns
	V _{DDD(IO)} =1.2V		9	-	25	ns
t _{h_r(SDIO)}	SDO hold time (read mode)					
	V _{DDD(IO)} =1.8V		6	-	20	ns
	V _{DDD(IO)} =1.2V		6	-	25	ns
t _{w(RESET_N)}	RESET_N pulse width	<u>[1]</u>	30	-	-	ns

[1] The RESET N signal is asynchronous to the SPI interface, but enables the reset of the registers to the default values.

11.2.1.8 SPI IOs strength

The SPI interface can operate at a voltage V_{DDD(IO)} in the 1.2V to 1.8V range. The current strength of the IOs could also been programmed regarding the amount of switching noise and minimum working frequency of the serial bus. Refer to Table 67 to program the appropriate bits.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Programmable current drive strength.				
xx_EHS				
Value	Output mode	Comment		
00	very low noise / low speed			
01	medium noise / fast speed	recommended mode		
10	low noise / medium speed	default mode		
11	high noise / high speed			

Table 15. EHS modes

11.2.2	Main device	configuration	and	Start-up	Sequence

The registers of block MAIN are used for the main configuration of the DAC165xD.

Once power supplies are established (no specific requirement neither on slope nor on sequence), reset the device by asserting the RESET N pin and provide the clock on the DAC CLK P/N pins. After this reset, a wait time is needed before sending the first SPI command. Refer to the SPI section to specify the duration (ex: 40µs at 1GHz).

At start-up, the two clocks WCLK and DCLK are forced to reset states to avoid that the DAC outputs any dummy signal through bits FORCE RST DCLK and FORCE RST WCLK of the MAIN CTRL register (see Table 64). The device configuration has to be done before releasing these two clocks.

Here are some guidelines to ensure basic correct SPI programming. As DCLK and WCLK are kept to reset, the programming sequence of the registers is not important after the reset:

- 1. Proceed to a software reset of all SPI registers (see Section 11.2.1.2)
- 2. Disable the Power Down mode
- 3. Specify the Interpolation mode (see Table 16) and/or SSBM mode (see Table 18)
- 4. Specify the Clocks configuration (see Section 11.2.6.1):
 - a. Divider bypass or Divider mode
 - b. WCLK division ratio

DAC1653D: DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

- 5. Specify the Clock Domain Interface (CDI) mode (Section 11.2.6.1 and Table 25)
- 6. Specify the JESD204B LMF configuration (see Section 11.8.5.11)
- 7. Specify the JESD204B logical lanes order (see Section 11.8.5.3) and polarity
- Specify which JESD204B physical lanes have to be turned off using the POFF_RX bits of register MAIN_CTRL (see <u>Table 64</u>)
- 9. Set the SYNCB output common mode level and swing (see <u>Section 11.8.5.5</u>)
- 10. Provide the K28.5 (Code Group Synchronization) to all used JESD204B lanes.
- 11. Release the WCLK and DCLK reset by de-asserting the bits FORCE_RST_DCLK and FORCE_RST_WCLK of the MAIN_CTRL register (see <u>Table 64</u>)

Other SPI configurations can be added using these basic settings.

SPI configuration example:

- 1. Register x0000 write x99 : Mandatory: configure SPI in 3 or 4 wires and proceed to soft reset
- 2. Register x0043 write x00 : Mandatory: disable the power down mode
- 3. Register x0060 write x02 : Mandatory: specify NCO usage and Interpolation mode
- 4. Specify internal clocks for RX-PHY
- a. Register x0022 write x22 : Mandatory: specify and reset internal clocks for RX-PHY
 - b. Register x0022 write x44 : Mandatory: specify and reset internal clocks for RX-PHY
- 5. Register x004B write x01 : Mandatory: specify the CDI mode
- 6. Register x00DE write x92 : Mandatory: specify the JESD204B LMF configuration
- 7. Register x00CE write x1B : Optional: specify the JESD204B logical lanes order
- 8. Register x00CD write x0F : Optional: specify the JESD204B physical lanes polarity
- 9. Register x00C7 write x63 : Optional: specify the scrambler option
- 10. Register x0075 write x85 : Optional: specify that the DAC will output DC value when RX-PHY is not synchronized
- 11. Register x0080 write x90 : Optional: specify the MUTE options
- 12. Register x017D write xC4 : Recommended: Set the SYNCB output common mode level and swing
- 13. Provide the K28.5 (Code Group Synchronization) to all used JESD204B lanes.
- 14. Register x0040 write x00 :Mandatory: Specify which JESD204B physical lanes have to be turned off using the POFF_RX bits and release the WCLK and DCLK resets

Remark: All the Double Buffering registers programmed before the DCLK reset release are transfered automatically after the DCLK reset release. After this reset release, these registers need the TRANSFER_BIT to be active.

11.2.2.1 Power Down mode

The latest version of DAC165xD starts in Power Down mode at startup time. By default it uses the level on the multi purpose RF_ENABLE pin to wake up the device. This feature can be disabled by writing value x00 in register PD_ANA_CTRL (see <u>Table 66</u>).

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.2.3 Interface DAC DSP block

This module is the interface between the data processing in the high-speed serial receiver and the dual DAC core. The controls of the Digital Signal Processing (DSP) of the DAC are specified to set up the interpolation filter, and enable or disable the various gains and offsets of the data digital path. The data signals have already been processed by the Digital Lane Processing (DLP, see Section 11.12.7). They are provided to this module through the Clock Domain Interface (Section 11.2.6.1). This module is clocked by the digital clock DCLK.

11.2.3.1 Input data format

After decoding in the high-speed serial receiver, the data representation can be specified as binary offset coding or as two's complement coding using register CODING_IQ (see Table 80).

11.2.3.2 Finite Impulse Response (FIR) filters

The DAC165xD provides three interpolation filters described by their coefficients in <u>Table 17</u>. The three interpolation FIR filters have a stop band attenuation of at least 80 dBc and a pass band ripple of less than 0.0005 dB.

The interpolation ratio can be set through register TX_CFG (see Table 72).

Table 16. Interpolation			
Symbol	Access	Value	Description
INTERPOLATION[1:0]	R/W		interpolation
		00	no interpolation/~×1 interpolation
		01	×2 interpolation
		10	×4 interpolation
		11	×8 interpolation

The 'no interpolation' or ' $\sim \times 1$ ' (quasi $\times 1$) mode is in fact a degenerated $\times 2$ interpolation mode where the samples are repeated twice.

Remark: The INTERPOLATION setting must be coupled with the DCLK and WCLK clock configurations and with CDI mode (see <u>Section 11.2.6.1</u>).

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Fig 43. First stage half-band filter response (used in $\times 2, \times 4,$ and $\times 8$ interpolation)

Fig 46. ×4 interpolation cumulated filter response
Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

First interpolation filter			Second interpolation filter Third interpolation filter					
Lower	Upper	Value	Lower	Upper	Value	Lower	Upper	Value
-	H(27)	+65536	H(11)	-	+32768	H(7)	-	+1024
H(26)	H(28)	+41501	H(10)	H(12)	+20272	H(6)	H(8)	+615
H(25)	H(29)	0	H(9)	H(13)	0	H(5)	H(9)	0
H(24)	H(30)	-13258	H(8)	H(14)	-5358	H(4)	H(10)	-127
H(23)	H(31)	0	H(7)	H(15)	0	H(3)	H(11)	0
H(22)	H(32)	+7302	H(6)	H(16)	+1986	H(2)	H(12)	+27
H(21)	H(33)	0	H(5)	H(17)	0	H(1)	H(13)	0
H(20)	H(34)	-4580	H(4)	H(18)	-654	H(0)	H(14)	-3
H(19)	H(35)	0	H(3)	H(19)	0	-	-	-
H(18)	H(36)	+2987	H(2)	H(20)	+159	-	-	-
H(17)	H(37)	0	H(1)	H(21)	0	-	-	-
H(16)	H(38)	-1951	H(0)	H(22)	-21	-	-	-
H(15)	H(39)	0	-	-	-	-	-	-
H(14)	H(40)	+1250	-	-	-	-	-	-
H(13)	H(41)	0	-	-	-	-	-	-
H(12)	H(42)	-773	-	-	-	-	-	-
H(11)	H(43)	0	-	-	-	-	-	-
H(10)	H(44)	+456	-	-	-	-	-	-
H(9)	H(45)	0	-	-	-	-	-	-
H(8)	H(46)	-252	-	-	-	-	-	-
H(7)	H(47)	0	-	-	-	-	-	-
H(6)	H(48)	+128	-	-	-	-	-	-
H(5)	H(49)	0	-	-	-	-	-	-
H(4)	H(50)	-58	-	-	-	-	-	-
H(3)	H(51)	0	-	-	-	-	-	-
H(2)	H(52)	+22	-	-	-	-	-	-
H(1)	H(53)	0	-	-	-	-	-	-
H(0)	H(54)	-6	-	-	-	-	-	-

DAC1653D; DAC1658D

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.2.3.3 Single Side Band Modulator (SSBM)

The single side band modulator is a quadrature modulator that enables the mixing of the I data and Q data with the sine and cosine signals generated by the NCO to generate path A and B as described in Figure 48.

Table 18 shows the various possibilities set by register MODULATION (see Table 72).

MODULATION[2:0]	Mode	Path A	Path B
000	bypass	I(t)	Q(t)
001	positive upper sideband	$I(t) \times cos(\omega_{NCO} \times t) - Q(t) \times sin(\omega_{NCO} \times t)$	$I(t) \times sin(\omega_{NCO} \times t) + Q(t) \times cos(\omega_{NCO} \times t)$
010	positive lower sideband	$I(t) \times cos(\omega_{NCO} \times t) + Q(t) \times sin(\omega_{NCO} \times t)$	$I(t) \times \sin(\omega_{NCO} \times t) - Q(t) \times \cos(\omega_{NCO} \times t)$
011	negative upper sideband	$I(t) \times cos(\omega_{NCO} \times t) - Q(t) \times sin(\omega_{NCO} \times t)$	$-I(t) \times sin(\omega_{NCO} \times t) - Q(t) \times cos(\omega_{NCO} \times t)$
100	negative lower sideband	$I(t) \times cos(\omega_{NCO} \times t) + Q(t) \times sin(\omega_{NCO} \times t)$	$-I(t) \times sin(\omega_{NCO} \times t) + Q(t) \times cos(\omega_{NCO} \times t)$
others	not defined	-	-

Table 18. Complex modulator operation mode

The effect of the MODULATION parameter is better viewed after mixing the A and B signal with a LO frequency through an IQ modulator.

DAC1653D/DAC1658D

Datasheet

11.2.3.4 40-bit NCO

The SSBM used the complex signals coming from the NCO (Numerically Controlled Oscillator) to mix the I and Q signals. The 5 registers NCO_FREQ_B0 to NCO_FREQ_B4 over 40 bits (see Table 74) can set the frequency.

The frequency is calculated with Equation 1:

$$f_{NCO} = \frac{NCO_FREQ \times f_s}{2^{40}} \tag{1}$$

Where:

- NCO_FREQ is the value set in the bits NCO_FREQ[39:0] of the NCO frequency registers (see Table 74).
- fs is the final DAC output clock sampling frequency

The registers NCO_PH_OFFSET_LSB and NCO_PH_OFFSET_MSB over 16 bits from 0° to 360° (see <u>Table 73</u>) can set the phase of the NCO.

11.2.3.5 NCO low power

When using NCO low power (bit NCO_LP_SEL; see <u>Table 72</u>), the five most significant bits of register NCO_FREQ_B4 (bits NCO_FREQ[39:32]; bits [31:0] are masked by zero; see <u>Table 74</u>) can set the frequency.

The frequency is calculated with Equation 2:

$$f_{NCO} = \frac{NCO_FREQ \times f_s}{2^{40}}$$
(2)

Where:

- NCO_FREQ is the value set in the masked bits NCO_FREQ[39:0] of the NCO frequency registers (see Table 74).
- f_s is the DAC output clock sampling frequency

11.2.3.6 Minus 3dB

During normal operation, a full-scale pattern is also full-scale at the DAC output. When the I data and the Q data approach full-scale simultaneously, saturation can occur. The Minus 3dB function (bit MINUS_3DB of register DAC_OUT_CTRL; see <u>Table 77</u>) can be used to reduce the 3 dB gain in the modulator. It retains a full-scale range at the DAC output without added interferers.

11.2.3.7 Phase correction

The IQ modulator which follows the DACs can have a phase imbalance resulting in undesired sidebands. By adjusting the phase between the I and Q channels, the unwanted sidebands can be reduced.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Without compensation the I and Q channels have a phase difference of π / 2 (90°). The registers PH_CORR_CTRL_0 and PH_CORR_CTRL_1(see <u>Table 75</u>) ensure a phase variation from 75.7° to 104.3° by steps 0.0035°. The two registers define a signed value that ranges from –4096 to +4095. The equation: PH_CORR[12:0] / 16384 gives the resulting phase compensation (in radians). The phase correction can be enabled by register PH_CORR_EN (see Table 75).

11.2.3.8 Inverse sin(x) / x

A selectable FIR filter is incorporated to compensate the sin(x) / x effect caused by the roll-off effect of the DAC. The coefficients are represented in <u>Table 19</u>. This feature is controlled by register INV_SINC_SEL (see <u>Table 72</u>).

Table 19.	Table 19. Inversion filter coefficients					
Inversion filter						
Lower	Upper	Value				
H(1)	H(9)	+1				
H(2)	H(8)	-4				
H(3)	H(7)	+13				
H(4)	H(6)	-51				
H(5)	-	+610				

Remark: The transfer function of this features adds some gain to the signals and some saturation can occur with a level of distortion in the output spectrum as result. Update the digital gain accordingly to avoid this saturation.

11.2.3.9 Digital gain

The full-scale output current for each DAC is the sum of the two complementary current outputs:

•
$$I_{OA(fs)} = I_{IOUTA_P} + I_{IOUTA_N}$$

•
$$I_{OB(fs)} = I_{IOUTB_P} + I_{IOUTB_N}$$

The IQ-modulator can have an amplitude imbalance which results in undesired sidebands. The unwanted sideband can be reduced by adjusting the amplitude of signals A and B. The two gains are purely digital and could be enabled by registers DAC_A_GAIN_EN and DAC_B_GAIN_EN (see <u>Table 77</u>).

The output current of DAC A depends on the digital input data and the gain factor defined by bits DAC_A_DGAIN[11:0] of register DAC_A_DGAIN_MSB and register DAC_A_DGAIN_LSB (see <u>Table 76</u>).

$$I_{IOUTA_P} = I_{OA(fs)} \times \frac{(DAC_A_DGAIN[11:0])}{4096} \times \left(\frac{DATAA}{65535}\right)$$
(3)

$$I_{IOUTA_N} = I_{OA(fs)} \times \left(1 - \frac{(DAC_A_DGAIN[11:0])}{4096} \times \left(\frac{DATAA}{65535} \right) \right)$$
(4)

The output current of DAC B depends on the digital input data and the gain factor defined by bits DAC_B_DGAIN[11:0] of register DAC_B_DGAIN_MSB and DAC_B_DGAIN_LSB (see <u>Table 76</u>).

$$I_{IOUTB_P} = I_{OB(fs)} \times \frac{(DAC_B_DGAIN[11:0])}{4096} \times \left(\frac{DATAB}{65535}\right)$$
(5)

$$I_{IOUTB_N} = I_{OB(fs)} \times \left(1 - \frac{(DAC_B_DGAIN[11:0])}{4096} \times \left(\frac{DATAB}{65535} \right) \right)$$
(6)

<u>Table 20</u> shows the output current as a function of the input data, when $I_{OA(fs)} = I_{OB(fs)} = 20$ mA.

DAC1653D; DAC1658D

Datasheet

Table 20.	DAC transfer function	on		
Data	I15 to I0/Q15 to Q0 (binary coding)	I15 to I0/Q15 to Q0 (two's complement coding)	IOUTA_P/ IOUTB_P	IOUTA_N/ IOUTB_N
0	0000 0000 0000 0000	1000 0000 0000 0000	0 mA	20 mA
32768	1000 0000 0000 0000	0000 0000 0000 0000	10 mA	10 mA
65535	1111 1111 1111 1111	0111 1111 1111 1111	20 mA	0 mA

11.2.3.10 Auto-mute

The DAC165xD provides a new Auto-mute feature allowing muting the DAC analog output if a conditional event occurs. The Auto-mute feature is based on a state machine as described in Figure 51 and on the control of the digital gains.

In normal operating mode, the state machine is in IDLE state. The digital gains are specified by the user.

Various mute events can be detected in the DAC. These trigger the MUTE state. Once the MUTE state is entered, the DAC automatically sets the digital gains to zero using several mute actions. The SOFT mute and HOLD mute drops to zero gradually. The HARD mute drop to zero instantly (see Figure 52).

When the digital gains have been set to zero, the state machine enters the WAIT state. In this state, the gains are kept at zero. The state machine stays in this mode until the end of the wait period and the mute event is not de-asserted.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

When the mute event is cleared and the wait period has elapsed, the state machine enters the DEMUTE state. In this state, the digital gains are set again to the initial values. This is done relatively to the mute rate setting. If during this state, a new mute event is triggered, the state machine enters the MUTE state again. The gain decreases from the current gains values, not from the initial ones.

When the digital gains reach the initial values, the state machine enters the IDLE state again.

The mute feature is set by enabling bit MUTE_ENA in register MUTE_CTRL_0 (see Table 85).

Mute events

The MUTE action is triggered by one of the following mute events. Each of them is linked to either an error detection, a status change or signal power monitoring:

• SPI_SW_MUTE:

Software event that can be requested by the host interface through the SPI bus.

• RF_EN:

Hardware event that can be requested by the host interface through pin RFTX_ENABLE/IO1

• CLK_MON:

Event linked to the monitoring of the clocks in the receiver physical layer control block.

• MON_DCLK_ERR:

Event triggered when a clock error occurs in the CDI (see Section 11.2.6.1).

• CA_ERR:

Event triggered when a clock error occurs in the DLP (see Section 11.8.3).

• TEMP_ALARM:

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Event triggered when the temperature sensor measures a temperature that exceeds the threshold value. TEMP_SEL_MAN must be specified first (see <u>Table 94</u>).

• ERR_RPT_FLAG:

Event triggered when DATA_INVALID is detected by the DLP (see Section 11.8.3).

• LVL_DET_OR:

Event triggered when the signal levels exceed the LVL_DET (see <u>Table 77</u>) on channel X or Y. LVL_DET_EN and LVL_DET must be set first (see Table 77 and Table 78).

• MDS_BSY:

Event triggered while the MDS process is busy capturing the SYSREF (see Section 11.7.3).

• DATA_IQ_VALID:

Event is triggered when DATA_INVALID is detected by the DLP (see Section 11.8.3)

• SPD_OVF:

Event triggered when the Signal Power Detector (SPD) average value is exceeding the threshold value (Section 11.2.4.2).

• IQR_ERR:

Event triggered when the IQ signal is out of range (see Section 11.2.4.3).

The monitoring of these events can also be done using the interrupt process available in the DAC165xD (see <u>Section 11.8</u>). Once the interrupt is detected, the host controller (e.g. an FPGA) can read back the events flags in registers INTR_FLAGS_0 and INTR_FLAGS_1 (see <u>Table 92</u>) and determine the actions to be taken.

Ignore events option

Set bits IGN_RT_EN, IGN_MDS_BSY, and IGN_DATA_V_IQ of the mute control register (see <u>Table 85</u>) for the mute controller to ignore certain events.

Mute event categories

The MUTE state is entered when one of the mute events is asserted. Four categories of mute events can be distinguished: ALARM, DATA, INCIDENT, and DIRECT (see <u>Table 21</u>).

Table 21. Mute event categories

Mute event	ALARM ^[1]		DATA		INCIDENT		DIRECT	
	Enable	Disable	Enable	Disable	Enable	Disable	Enable	Disable
SPI_SW_MUTE							default ^[2]	
RF_EN							default	IGN_RF_EN
CLK_MON	ALARM_EN [0] ^[3]							
MON_DCLK_ERR	ALARM_EN [1] ^[3]							
CA_ERR	ALARM_EN [2] ^[3]							
TEMP_ALARM	ALARM_EN [3] ^[3]							
ERR_RPT_FLAG	ALARM_EN [4] ^[3]		default		ERF_INCIDENT_EN			
LVL_DET_OR	ALARM_EN [5] ^[3]							
MDS_BSY	ALARM_EN [6] ^[3]		default	IGN_MDS_BSY				
DATA_IQ_VALID	ALARM_EN [7] ^[3]		default	IGN_DATA_V_IQ				
SPD_OVF	ALARM_EN [8] ^[3]				SPD_INCIDENT_EN			
IQR_ERR	ALARM_EN [9] ^[3]				IQR_INCIDENT_EN			

[1] All ALARM mute events can be disabled using bit IGN_ALARM. However, their detection can still be monitored using the INTERRUPT module.

[2] This bit is not auto-clear.

[3] The ALARM mute events must be cleared with bit ALARM_CLR to move from the WAIT state to the DEMUTE state.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

DAC1653D/DAC1658D

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Priority between categories

The priority in which the Auto-mute module evaluates its inputs is:

- Priority 1: DIRECT: controlled via software (SW_MUTE) or hardware (pin IO[1] used as RF_ENABLE)
- Priority 2: ALARM: selectable set of triggers
- Priority 3: DATA: controlled by data path module (DLP, MDS, JESD204B state machine)
- Priority 4: INCIDENT: selectable set of incidents (Signal Power Detector, IQ-Range, Level Detector)

Mute actions

Four mute actions can be selected for each of the four previous mute event categories.

mute IQ: The digital data is reset to its default value (bits I_DC_LVL and Q_DC_LVL; see <u>Table 80</u>) to avoid disturbances in the FIR filters.

Register MUTE_CTRL_1 (see <u>Table 85</u>):

• Hard_mute + mute IQ:

The digital gains of the DACs are set to zero immediately (within 1 DAC clock period). The digital path is filled with the default I and Q levels.

• Hold_mute + mute IQ:

The outputs of the DACs are kept to the latest good value (within 1 DAC clock period). The digital path is filled with the default I and Q levels.

Remark: Bit HOLD_DATA (see <u>Table 85</u>) must be enabled for this action. If this bit is not set, the overall Hold_mute + mute IQ actions are not taken into account.

• Soft_mute + mute IQ:

The digital gains of the DACs are swept down to zero at the x_MUTE_RATE value (see <u>Table 87</u>). The digital path is filled with the default I and Q levels.

Soft_mute:

The outputs of the DACs are swept down to zero at the x_MUTE_RATE value (see <u>Table 87</u>). The digital path is kept with the received values.

Remark: As the DC offsets are applied after the digital gain, the outputs are still impacted by their values, even if a mute action event occurs.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Mute rate

The time period used to decrease or increase the gains during a MUTE or DEMUTE state is called mute rate. Each mute action category has its own mute rate available through the registers ALARM_MRATE, DATA_MRATE, INCIDENT_MRATE and DIRECT_MRATE.

Table 22. Mute rate availability Through ALARM_MRATE, DATA_MRATE, INCIDENT_MRATE, and DIRECT_MRATE.						
DAC clock	750 MHz	1 GHz	1.5 GHz	1.76 GHz		
Period ×8 (ns)	10.67	8.00	5.33	4.54		
Value	Mute rate (ns)	Mute rate (ns)	Mute rate (ns)	Mute rate (ns)		
0000	10.67	8.00	5.33	4.54		
0001	21.34	16.00	10.66	9.09		
0010	42.68	32.00	21.32	18.18		

Datasheet

Through ALARM_MF	RAIE, DAIA_MRAIE,	INCIDENT_MRATE	, and DIRECT_MRA	AIE.
DAC clock	750 MHz	1 GHz	1.5 GHz	1.76 GHz
Period ×8 (ns)	10.67	8.00	5.33	4.54
Value	Mute rate (ns)	Mute rate (ns)	Mute rate (ns)	Mute rate (ns)
0011	85.36	64.00	42.64	36.36
0100	170.72	128.00	85.28	72.72
0101	341.44	256.00	170.56	145.45
0110	682.88	512.00	341.12	290.90
0111	1,365.76	1,024.00	682.24	581.81
1000	2,731.52	2,048.00	1,364.48	1163.63
1001	3,642.47	2,731.00	1,819.53	1551.71
1010	5,463.04	4 096.00	2,728.96	2327.27
1011	7,283.61	5,461.00	3,638.39	3102.84
1100	10,926.08	8,192.00	5,457.92	4654.54
1101	14,557.88	10,915.00	7,272.12	6201.71
1110	21,852.16	16,384.00	10,915.84	9309.09
1111	43,704.32	32,768.00	21,831.68	18618.18

Table 22. Mute rate availability ... continued

Mute wait period

The wait period time can be calculated with Equation 7:

wait period = $(MUTE_WAIT_PERIOD + 1) \times 8 \times DAC_CLK_PERIOD$

At 1 Gsps, this gives a wait period between 8 ns and 527 µs.

DEMUTE triggering

When the mute action is either a DIRECT, an INCIDENT or a DATA mute action, the WAIT state is enabled as long as the wait period is not elapsed and the event is not released.

When the mute action is an ALARM mute action, the WAIT state is enabled as long as the alarm controller is not reset using bit ALARM CLR (see Table 85).

11.2.3.11 Digital offset adjustment

When the DAC165xD analog output is DC connected to the next stage, the digital offset correction (bits DAC_A_OFFSET[15:0] and DAC_B_OFFSET[15:0]; see Table 79) can be used to adjust the common-mode level at the output of each DAC. Table 23 shows the variation range of the digital offset.

Table 25. Digital Offset aujus	Sumeric
DAC_A_OFFSET[15:0] DAC_B_OFFSET[15:0] (two's complement)	Offset applied
1000 0000 0000 0000	-32768
1000 0000 0000 0001	-32767
1111 1111 1111 1111	-1

Fable	23.	Digital	offset	adi	iustme	ent
		- I gitter	011000	~~~	10000111	

(7)

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 23. Digital offset adjustr	nentcontinued
DAC_A_OFFSET[15:0] DAC_B_OFFSET[15:0] (two's complement)	Offset applied
0000 0000 0000 0000	0
0000 0000 0000 0001	+1
0111 1111 1111 1110	+32766
0111 1111 1111 1111	+32767

Care should be taken when adding DC offset to large signal. The resulting signal might exceeds the 16 bits dynamic of the DAC.

11.2.4 Signal detectors

11.2.4.1 Level detector

A level detector feature is available at the end of the digital path. It can be enabled using bit LVL_DET_EN (see <u>Table 77</u>). This feature specifies a signal output range limited (or clipped) to $-128 \times LVL_DET$ to $+128 \times LVL_DET$ around the half Full-Scale (FS) (see <u>Table 78</u>). If the signal value enters the upper or lower clipping area, it is clipped to $+128 \times LVL_DET$ or $-128 \times LVL_DET$, respectively). Figure 53 shows this behavior.

Use this feature in combination with the auto-mute feature to avoid unexpected spectral spurs after the clipping of the signal (see <u>Section 11.2.3.10</u>).

Table 24.	Level	detector	values

LVL_DET[7:0]	Peak excursion from full-scale / 2	Code output range (binary offset)	dBFS value 10log(peak excursion x 2 / 65536)
00h	0	32768	NaN
19h	3200	32568 to 35968	-10.1 dBFS
80h	16384	16384 to 49152	–3 dBFS

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 24. Lev	el detector valuesco	ontinued	
LVL_DET[7:0]	Peak excursion from full-scale / 2	Code output range (binary offset)	dBFS value 10log(peak excursion x 2 / 65536)
CBh	25984	6784 to 58752	-1 dBFS
FFh	32767	0 to 65535	0 dBFS

11.2.4.2 Signal Power Detector (SPD)

- - -

The Signal Power Detector (SPD) takes the 7 MSBs of the I and Q signal to determine the IQ power of an IQ-pair. Averaging is done over the programmable number (2⁶, 2⁷ to 2²¹) of IQ-pairs using the SPD_WINLENGTH register (see <u>Table 82</u>). If the SPD_AVG bit (see <u>Table 83</u>) exceeds the 16-bits threshold value, the SPD overflow (SPD_OVF) flag becomes active and can invoke a mute action depending on the mute control settings.

The SPD can have a large response time because of the samples average based algorithm. This must be taken into account at system level.

11.2.4.3 IQ Range (IQR)

The IQ range detector checks if the I and Q signal values are within the range specified by register IQR_THRESHOLD (see <u>Table 89</u>) compared to the center value (= 0 if the data are in 2 complement's representation or 32768 if the data are in binary offset representation):

-IQR_THRESHOLD < I – center value < +IQR_THRESHOLD</p>
-IQR_THRESHOLD < Q – center value < +IQR_THRESHOLD</p>

Datasheet

11.2.5 Pin RF_ENABLE

A RF_ENABLE pin is available to shutdown the analog output of the DACs. The shutdown consists in a MUTE request on the MUTE controller. This trigger is active low and is part of the DIRECT_CFG mute events container (see <u>Section 11.2.3.10</u>). This means that to enable the DACs output, a signal high needs to be applied on the pin. When applying a signal low, the MUTE controller will mute the DACs output.

Pin 9 is a multipurpose pin and needs to be properly configured to act as the RF_ENABLE feature. Because the RF_ENABLE feature is using the MUTE controller, it needs to be configured too.

The following registers must be set to configure pin 9 in RF_ENABLE mode (these are the default values at start-up time):

- IO_DIR[1] must be set to '0' to set the pin to input mode (see Table 67)
- IGN_RF_EN (see Table 85) must be disabled to allow the triggering of the event
- MUTE_ENA (see Table 85) must be enabled

11.2.6 Analog core of the dual DAC

This section refers to the analog configuration required to set up the dual DAC core. The clock and output stages are described as well as the internal registers (Block x0020; see Figure 57 and Table 54) used to configure the clock tree inside the chip.

Datasheet

11.2.6.1 Clocks

The DAC165xD requires one single differential clock (CLKIN_P, CLKIN_N) for the whole device (including the digital data path, the dual DAC core and the JESD204B interface).

During the reset phase (RESET_N asserted), the input clock must be stable and running, ensuring a proper reset of the complete device.

Clock input external configuration

The DAC165xD incorporates one differential clock input, CLKIN_N/CLKIN_P, with embedded 100 Ω differential resistor. The clock input can be LVDS but it can also be interfaced with CML.

The clock input buffer is self biased, so an AC coupling circuit could be used and this is the recommended usage. The minimum requested differential voltage is about 500mVpp,diff but a higher voltage swing of 1000mVpp,diff will give better results. In case of AC coupling, the DAC165xD self-biased clock common mode voltage is typically 800mV. When using DC coupling the common mode level has to be set around this 800mV level. It is recommended to use AC coupling for LVDS.

Clock frequency input range

The DAC165xD can only operate in two modes:

Direct clocking mode:

The input clock frequency is limited to 2 GHz

• Divided clocking mode:

The input clock is internally divided by 2, 4, 6, or 8. The maximum input frequency is 3 GHz. This mode allows the programming of the group delay feature.

Clocks internal configuration

The following registers must be specified to configure the DAC165xD clocking mode:

- WCLK_GENCFG to specify the WCLK configuration (see Table 56)
- DCKDIV_CFG to specify the DCLK configuration and the divider / group delay feature (see Table 60)
- PON_DCKDIV_CFG to power on the clock divider (required only for divided clock) (see Table 58)

The final clock is referred to as the "DAC clock". This is the clock that is going directly to the dual DAC core and is running at maximum speed. From this DAC clock two digital clocks are derived: DCLK and WCLK.

DCLK is the digital clock used for all logic related to the Digital Signal Processing (DSP) of the DAC. DCLK is automatically generated from the registers PON_DAC_CORE_CFG_0, INTERPOLATION (see <u>Table 72</u>) and CDI_MOD (see <u>Table 69</u>). Registers MON_DCLK (see <u>Table 70</u>) and CLK_MON_RST (see <u>Table 56</u>) can be used to monitor this automatic generation. This flag can also raise the interrupt feature (see Interrupt section).

Datasheet

WCLK is the digital clock used for all logic related to the Digital Lane Processing (DLP) of the input interface. The divider ratio WCLK_DIV_SEL (see <u>Table 56</u>) must be specified using the following equation:

$$\frac{WCLK}{DAC_Clock} = \frac{M}{(L \times INTERPOLATION)}$$
(8)

Where:

• M stands for the number of DACs used inside the DAC165xD (M = 2)

Remark: DAC165xD is a dual core device therefore M = 2. It is possible to use the device in a single core manner, but the configuration must still be set to M = 2 and the related lanes and DAC core must be powered off.

- L stands for the number of serial input lanes used (L = 1, L = 2, or L = 4)
- INTERPOLATION stands for the interpolation factor specified in register INTERPOLATION (see Table 72).

Table 25 shows the results for nominal use cases

Table 25. WCLK_DIV selection					
LMF configuration	Interpolation ratio	WCLK/DAC clock	WCLK_DIV_BYP	WCLK_DIV_SEL	
421 / 422	2	1/4	0	010	
	4	1/8	0	100	
	8	1/16	0	110	
222	2	1/2	0	000	
	4	1/4	0	010	
	8	1/8	0	100	
124	2	1	1	XXX	
	4	1/2	0	000	
	8	1/4	0	010	
211	2	1/2	0	000	
	4	1/4	0	010	
	8	1/8	0	100	

Clock divider and Group Delay configuration

To enable the Clock division, the dividers biasing should be powered on using PON_DCKDIV_1 and PON_DCKDIV_2 (see <u>Table 58</u>). Then the division ratio CLKDIV_SEL_DIV needs to be configured and the default bypass mode must be disabled (CLKDIV_CLK_BYP) see <u>Table 60</u>. In this mode, the CLKDIV_SEL_PHASE bits are used to specify the group delay phase. The CLKDIV_SEL_DIV must be set during the DAC initialization phase only (see <u>Table 60</u>).

When changing the DAC clock phase during nominal usage, the DAC output will be kept at the previous value while the new phase is set. For instance, setting the DAC clock phase from setting 0 to setting 1 will imply a 1.5 DAC clock constant value. No glitches are expected during this phase.

Table 26. CLKI	DIV_SEL	PHASE	selection
----------------	---------	-------	-----------

CL	_KDIV_SEL_PHASE	
	000	DAC clock phase = 0
	001	DAC clock phase = 1 x (CLK IN period) /2
	010	DAC clock phase = 2 x (CLK IN period) /2
	011	DAC clock phase = 3 x (CLK IN period) /2
	100	DAC clock phase = 4 x (CLK IN period) /2

Datasheet

able 26. CLKDIV_SEL_PHASE selectioncontinued			
CLKDIV_SEL_PHASE			
101	DAC clock phase = 5 x (CLK IN period) /2		
110	DAC clock phase = 6 x (CLK IN period) /2		
111	DAC clock phase = 7 x (CLK IN period) / 2		

Clock Domain Interface (CDI)

A CDI logic handles the error-free data transition from the WCLK clock domain to the DCLK domain. It consists of 12 buffers that absorb the phase variation between the two clocks. The reliability of the data transmission depends on the clock-frequency ratios and therefore on the interpolation mode. The CDI must be set in the same mode as the interpolation ratio to be properly configured. This mode is configured with register CDI_CTRL (see Table 69).

Interpolation	CDI mode	Maximum input data rate (Msps)
		DAC165xD2G0 / DAC165xD1G5 / DAC165xD1G0
~1	Mode 0 (^2)	1000
×2	Mode 0 (^2)	1000
×4	Mode 1 (^4)	500
×8	Mode 2 (^8)	250

Ideally, buffer number 11 is selected as the reference. If jitter of +/- 1 clock cycle is injected between the clocks occurs, the pointer can oscillate between buffers 10 and 0. If more jitter is injected, the range increases to buffers 9 and 1, etc.

This buffer position can be monitored using register MON_DCLK (see Table 70).

The variation of the buffer location could also raise an interrupt (see <u>Section 11.8</u>).

Datasheet

11.3 Overall Latency

The implementation of the different features of the DAC165xD imply a different latency regarding the mode used. This latency is dependent of the following features:

- 1. the LMF-S configuration
- 2. the Interpolation mode
- 3. the Phase Correction usage
- 4. the SSBM/NCO usage
- 5. the InvSin(x)/x usage

The total latency is expressed in DAC clock cycles and could therefore be scaled regarding the DAC clock frequency used. Moreover, the values of the table are showing the uncertainties due to the internal design implementation. There are two buffers/fifo that are used to compensate the skew between the lanes (ILA_MON_L_LN_xx see <u>Table 126</u>) and to delay the data path (MDS_MAN_ADJ_DLY see <u>Table 106</u>). The values of the table are provided for the case when all the lanes are aligned (ILA_MON_LN_xx = 8 by default) and the MDS_MAN_ADJ_DLY is set to 0 (minimal delay). See <u>Table 29</u> for additional delays.

Remark: The overall latency values are given when the MDS feature is not used.

Table 28.Latency for LMF-S (without MDS, Phase correction, SSBM, and InvSin x/x)

			Total latency	
LMF-S	Interpolation		DAC clk	
		min	avg	max
421-1	x2	250	254	266
or 422-2	x4	420	424	444
422-2	x8	740	744	780
222-1	x2	216	220	228
	x4	352	356	368
	x8	588	592	612
124-1	x2	195	199	205
	x4	310	314	322
	x8	504	508	520

Table 29. Additional latency

Digital feature	Additional latency
Lanes skew compensation	+/- 7 wclk (see Table 25 for the DAC clock ratio)
MDS_MAN_ADJ_DLY	0 to 256 DAC clk
Phase Correction	+16 DAC clk
SSBM/NCO	+16 DAC clk
InvSin(x)/x	+4 DAC clk

11.4 Analog dual DAC core

The DAC165xD core consists of two DACs. Each of them can be independently set to Power-down mode if using the DAC in single channel mode is preferred (DAC_A_PON, DAC_B_PON; see <u>Table 55</u>).

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.4.1 Regulation

The DAC165xD reference circuitry integrates an internal band gap reference voltage which delivers a 0.7 V reference on the GAPOUT pin. Decouple pin GAPOUT using a 100 nF capacitor.

The reference current is generated via an external resistor of 562 Ω (1 %) connected to VIRES.

Figure 60 shows the optimal configuration for temperature drift compensation because the band gap reference voltage can be matched to the voltage across the feedback resistor.

The DAC current can also be adjusted by applying an external reference voltage to the non-inverting input pin GAPOUT and disabling the internal band gap reference voltage (bit BGAP_PON; see <u>Table 55</u>).

11.4.2 Full-scale current adjustment

The default full-scale current $(I_{O(fs)})$ is 20 mA. However, further adjustments, ranging from 10 mA to 30 mA, can be made to both DACs independently using the SPI interface. The registers values allowed to reach lower and higher current values but those values are out the range that maintains the typical dynamics performances.

The settings applied to DAC_A_AGAIN[9:0] (see <u>Table 61</u>) define the full-scale current of DAC A:

$$I_{O(f_{\delta})} \mu A = DAC_A AGAIN_X 2 \times DAC_A AGAIN[9:0] \times 25$$
(9)

The DAC_B_AGAIN[9:0] (see Table 61) define the full-scale current of DAC B:

$$I_{O(fs)} \mu A = DAC_B_AGAIN_X2 \times DAC_B_AGAIN[9:0] \times 25$$
(10)

11.5 Analog output

11.5.1 DAC1658D: High common-mode output voltage

The device has two output channels, each producing two complementary current outputs, which enable the reduction of even-order harmonics and noise. The pins are IOUTA_P/IOUTA_N and IOUTB_P/IOUTB_N. Connect these pins using a load resistor R_L to the 3.3 V analog power supply ($V_{DDA(3V3)}$).

Figure 61 shows the equivalent analog output circuit of one DAC. This circuit includes a parallel combination of NMOS current sources and associated switches for each segment.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

The cascode source configuration increases the output impedance of the source, which improves the dynamic performance of the DAC because there is less distortion.

Depending on the application, the various stages and the targeted performances, the device can be used for an output level of up to 2 V (p-p) with degraded performances. To reach optimal performances a value of 1 V (p-p) differential is strongly advised.

11.5.2 DAC1653D: Low common-mode output voltage

The device has two output channels, each producing two complementary current outputs, which enable the reduction of even-order harmonics and noise. The pins are IOUTA_P/IOUTA_N and IOUTB_P/IOUTB_N. Connect these pins using a load resistor R_L to the analog ground (GND).

Figure 62 shows the equivalent analog output circuit of one DAC. This circuit includes a parallel combination of PMOS current sources and associated switches for each segment.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.5.2.1 Auxiliary DACs

The DAC165xD integrates two auxiliary DACs, which are used to compensate any offset between the DACs and the next stage in the transmission path. Both auxiliary DACs have a 10-bit resolution and are current sources (referenced to ground). Both of them can be disabled using bits DAC_A_AUX_PON and DAC_B_AUX_PON of the Auxiliary DACs registers (see Table 62).

The full-scale output current for each DAC is the sum of the two complementary current outputs:

$$\bullet_{OAUXA(fs)} = I_{AUXA_P} + I_{AUXA_N}$$
$$\bullet_{OAUXB(fs)} = I_{AUXB_P} + I_{AUXB_N}$$

The output current depends on the digital input data set by SPI registers DAC_A_AUX_MSB (bits DAC_A_AUX[9:8]), DAC_A_AUX_LSB (bits DAC_A_AUX[7:0]), DAC_B_AUX_MSB (bits DAC_B_AUX[9:8]) and DAC_B_AUX_LSB (bits DAC_B_AUX[7:0]; see Table 62).

$$I_{AUXA_P} = I_{OAUXA(fs)} \times \left(\frac{\text{DAC}_A \text{AUX}[9:0]}{1023}\right)$$
(11)

$$I_{AUXA_N} = I_{OAUXA(fs)} \times \left(\frac{1023 - \text{DAC}_A \text{AUX}[9:0]}{1023}\right)$$
(12)

$$I_{AUXB_P} = I_{OAUXB(fs)} \times \left(\frac{\text{DAC}_B_AUX[9:0]}{1023}\right)$$
(13)

$$I_{AUXB_N} = I_{OAUXB(fs)} \times \left(\frac{1023 - \text{DAC}_B_AUX[9:0]}{1023}\right)$$
(14)

Table 30 shows the output current as a function of the auxiliary DACs data DATAA and DATAB Equation 11 to Equation 14.

Table 30. Auxiliary DAC transfer function

DATAA / DATAB	DAC_A_AUX[9:0]/DAC_B_AUX[9:0] (binary coding)	I _{AUXA_P} / I _{AUXB_P} (mA)	$I_{AUXA_N} / I_{AUXB_N} (mA)$
0	00 0000 0000	0	2.3
512	10 0000 0000	1.15	1.15
1023	11 1111 1111	2.3	0

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.6 Temperature sensor

The DAC165xD embeds a temperature sensor to monitor the temperature inside the chip. This module is based on a 6-bit resolution ADC clocked at DAC_CLK / (8 × TEMP_CLK_DIV). The mode of measurements is configurable as a one shot measurement, continuous measurements or continuous measurements with alarm flag held in case of temperature exceeding a preset threshold. In continuous mode, the measurement is done every TEMP_SENS_TIMER cycles. The TEMPS_LVL specifies the threshold level that is compared with the measured value. If the measured value exceeds the threshold, the TEMP_ALARM flag is set and triggers a mute action (see Section 11.2.3.10). The maximum and minimum temperatures measured are stored in registers TEMP_MAX (see Table 98) and TEMP_MIN (see Table 99). The current temperature is stored in register TEMP_ACTUAL (see Table 97). Once the TEMP_ALARM flag is set, it must be reset using the TEMP_SENS_RST_ALARM bit of the temperature sensor control register (see Table 93). The maximum and minimum temperature can also be reset using bits TEMP_SENS_RST_MAX and TEMP_SENS_RST_MIN of the temperature sensor control register (see Table 93).

The value stored in the maximum, current, and minimum registers represents the output value of the ADC. This value must be matched to the real temperature.

$$T(^{\circ}C) = \alpha \times ADC_value - offset$$
(15)

Where:

•α = 4.64 °C
•ADC_value is either TEMP_MAX, TEMP_MIN or TEMP_ACTUAL
•offset = 50.34 °C

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.7 Multiple Device Synchronization (MDS); JESD204B subclass I

The MDS feature enables multiple DAC channels to be sampled synchronously and phase coherently to within one DAC clock period. This feature is part of the JESD204B standard but the implementation adds some unique features that simplify the PCB design. The alignment of the data is certified within one DAC clock cycle, however, the kick-off of the NCO is not synchronous to the SYSREF and will create a NCO carrier phase difference up to eight DAC clock cycles. Refers to the "MDS guidelines" application note to have more information on this topic.

11.7.1 Non-deterministic latency of a system

In a system using multiple DAC devices, there are numerous sources of timing uncertainties. <u>Figure 64</u> gives an overview of these uncertainties.

The sources of uncertainties are shared between the Transmitter devices (TX), the Receiver devices (RX), the PCB layout and the architectures of the JESD204B system clocks. A single device can detect timing drift and uncertainties, but not at system level. Therefore a synchronization process is required to enable the system to output the analog signals of all the RX devices in a coherent way. Moreover, the system becomes predictable if from one start-up to another one, the overall latency is deterministic.

The MDS feature of the DAC165xD has been implemented in accordance with the JESD204B subclass 1 specification to fulfill these requirements.

11.7.2 JESD204B system clocks and SYSREF clock

There are various system 'clocks' that are used in the JESD204B specification. However, only one of them is seen at system level, the device clock, which is provided to the device. The other clocks are related to the JESD204B standard and are used to assemble/deassemble the data in octets and then in 10B words (see JESD204B standard). Figure 65 and Table 31 show the relationship between them.

Datasheet

Table 31. Relationship between various clocks

Clock name	Ratio with respect to multi-frame clock	Comments regarding JESD204B specification
multi-frame clock	1	-
frame clock	×K	$Ceil(17 \ / \ F) \leq K \leq min(32, \ floor(1024 \ / \ F))$
character clock	$\times F \times K$	F = 1 to 256
bit clock	\times 10 \times F \times K	8b/10b encoding
sample clock	\times S \times K	S = 1 to 32
device clock	× D	D is integer
sysref clock	/ R	R is integer

As all clocks can be derived from the Multi-Frame Clock (MFC), this clock becomes the reference for a JESD204B system. Each device used in the system has its own local version of the MFC. These local version are called Local Multi-Frame Clock (LMFC). Due to the timing uncertainties the phase relationships between all the device LMFCs are unknown. The goal of MDS is to be able to realign all LMFCs in a deterministic and accurate way.

To align all the LMFCs within the system, a new clock named SYSREF (SYStem REFerence) is used. This clock is linked to the multi-frame clock by a divided ratio R, therefore it is a low frequency signal.

The SYSREF signals must be propagated to all the devices of the system. They are used as a timing reference to align the internal LMFC of each devices. To ensure that all phases of the signals are aligned at the source, the SYSREF signals and the device clocks must be generated from the same clock IC (see Figure 66). The appropriate clock device could be found within the IDT Timing Division unit portfolio.

Datasheet

All the JESD204B devices will capture their SYSREF signal and use it to align their datastream/LMFC. The edge detection of the SYSREF signal is used as a system timing reference and the device align their LMFCs phase to the closest edge of the SYSREF. To ensure an accurate alignment within all devices, the SYSREF signal must show the same phase at the input port of all the devices to synchronize. Therefore, the trace lengths of the SYSREF signals must be equal for all the DAC devices.

The DAC165xD embeds updated SYSREF buffers. Both West and East side are using the incoming SYSREF signal asynchronously to remove the uncertainties due to the sampling moment inside each devices. There is no more setup and hold constraint on the SYSREF signal.

The following figure shows the virtual LMFCs before and after alignment to the SYSREF clock.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.7.3 MDS implementation

The DAC165xD MDS implementation is based on two modules as described in Figure 68:

• M1:

This module contains the SYSREF detector and the control loop used to create a $LMFC_{DAC}$ signal. The control loop is clocked with the digital clock. The digital clock equals DAC clock / 8.

• M2:

This module compares the phase of the LMFC_{RCV} received from the JESD204B digital lane processing to the phase of the LMFC_{DAC} and shifts the position of the buffer to align the data path to the LMFC_{DAC}.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.7.3.1 SYSREF signal

SYSREF can be either a periodic, or a "gapped" periodic signal. The one shot (strobe pulse) is not supported.. It is an active high signal which is sampled by the DAC clock. The sampling of the SYSREF signal could be done either one the DAC clock rising edge, either on the DAC clock falling edge.

The period of the SYSREF signal is an integer multiple of the LMFC period. The LMFC and frame clock within a device shall be phase aligned to the DAC clock sampling edge upon which the sampled SYSREF value has transitioned from 0 to 1.

11.7.3.2 Capturing the SYSREF signal

Module M1 ensures the capture of the SYSREF signal at DAC clock accuracy. This is done by an early-late detector and a control-loop. The control-loop must capture several SYSREF edges to deliver an accurate $LMFC_{DAC}$ signal to the M2 module. The Initialization of the control-loop is triggered by the edge detection of the SYSREF signal (see Figure 69). The capture is done during the capture window and is repeated at the end of every control loop period until the signal is locked. The SYSREF edge must occur within the capture window.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Figure 70 shows an example on how to set up the M1 module.

The DAC165xD requires the following parameters:

• LMFC_PERIOD (register x0AA):

Period of the LMFC in digital clock cycles (e.g. 8×8 ns)

• Capture window and control loop period:

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

These are specified using MDS_WIN_HIGH and MDS_WIN_LOW registers (respectively x0A9 and x0A8; see <u>Table 109</u>). They are expressed in digital clock cycles and must be set using the following equations:

capture window =
$$2 \times (MDS_WIN_HIGH + 1)$$

control loop period = capture window + MDS_WIN_LOW + 1

Remark: The capture window must be smaller than the SYSREF period.

At the end of the capture process, the LMFC_{MDS} signal is provided to the M2 module and the MDS_LOCK bit of the MDS status register (see <u>Table 113</u>) is set to 1. If the M1 module cannot lock, the MDS_BSY flag is kept high and a mute action can be held (see <u>Section 11.2.3.10</u>, <u>Table 85</u>, and <u>Table 86</u>).

11.7.3.3 Aligning the LMFCs and the data

Module M2 ensures the phase alignment of the LMFC_{RCV} to the closest LMFC_{DAC} edge. The LMFC_{RCV} is issued from the digital lane processing by analyzing the ILA sequence using the multi-frames /A/ symbols present. The transmitter (TX) is expected to have its self-synchronization process to the global MFC_{SYSTEM}. It generates the ILA sequence based on the aligned LMFC_{TX}. The total latency of the link is compounded of a fixed value (due to PCB traces, devices internal fixed delays, etc.) and a random value (due to elastic buffers, clocks domains interface, etc.). By buffering the data and the LMFC_{RCV} after the initial-lane alignment process, the M2 module is capable to adjust the position of the buffer delay to match the recovered LMFC_{DAC}.

Figure 71 shows the alignment process for two links. The two links have two different total latencies but due to the LMFC_{TX} and LMFC_{DAC} phase synchronization to the MFC_{SYSTEM}, the various devices are capable to align to the same MFC_{SYSTEM} edge in a fixed and deterministic way.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Take special care when selecting the MFC_{SYSTEM} period. A longer period is better than a short one. In general, the MFC_{SYSTEM} period must be at least two times the maximum latency between devices to avoid a wrong edge selection as shown in Figure 72.

11.7.3.4 Monitoring the MDS process

The buffer adjustment performed using the M1 and M2 modules can be read back using the MDS_ADJ_DLY register (see <u>Table 112</u>). Bits 7 to 3 of this register represent the coarse delay expressed in digital clock cycles whereas bits 2 to 0 represent the fine adjustment in DAC clock cycles. The buffer adjustment has a default value of 80h.

MDS_LOCK bit is set to 1 when the MDS process is completed. You can use this bit to check if the device is aligned to the SYSREF.

11.7.3.5 MDS registers signification

There is many registers linked to the monitoring of the MDS process. The following diagram is showing the way their signification in terms of timing relationships. The global reference is the SYSREF signal at the input of the DAC pins. In order to achieve a reliable alignment through multiples devices, it is necessary to tune LMFC_PRESET register in all DAC devices in order to have a read value of register I_ENA_SAMPLE that is about the LMFC_PERIOD/2 (in DCLK). This programation will make sure that all the DAC devices are aligned to the same SYSREF edge. The LMFC_PRESET value should be the same in all DACs.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.7.3.6 Adding adjustment offset

The DAC165xD allows adding an offset on top of the automatic adjustment. This is available via register MDS_OFFSET_DLY (see <u>Table 108</u>). The offset range is from –16 to 15 digital clock cycles. This offset value can be set at the start-up time as well as in at later period. This enables compensating a layout error or adding a specific phase to one DAC device.

Another adjustment delay can be set but only after a first automatic alignment using the manual adjustment delay register MDS_MAN_ADJ_DLY (see <u>Table 106</u>) with a resolution of DAC clk.

11.7.3.7 Selecting the SYSREF input port

The DAC165xD incorporates two SYSREF differential ports: SYSREF_E_P/N (East side of the device) and SYSREF_W_P/N (West side of the device). One of these ports can be selected as the input for the SYSREF signal and will be capture in an asynchronous way.

Remark: SYSREF signal is only needed during SYNC_Request periods. The signal should/could be switched off later to avoid analog disturbances.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Register MDS_EAST_WEST (see Table 103) is used to select between the East port or the West port. Each SYSREF input buffer has an optional internal differential resistor termination of about 100 Ω . This resistor can be enabled with registers MDS_SEL_EAST_RT and MDS_SEL_WEST_RT (see Table 104). Polarity could also been switched using MDS_SYSREF_POL_W and MDS_SYSREF_POL_E bits.

11.7.3.8 MDS script example

Here are some guidelines to ensure basic correct MDS SPI programming (based on default register settings). This sequence must be applied before DCLK and WCLK resets are released (step 11 in <u>Section 11.2.2</u>):

- 1. Specify the asynchronous mode and the polarity expected for East and West input by asserting the bits of register MDS_MISC_CFG (see <u>Table 59</u>)
- 2. Specify the input to use (MDS_EAST_WEST bit) by asserting MDS_MAIN (see Table 103)
- 3. Power on the expected SYSREF buffer by setting PON_SYSREF_W or PON_SYSREF_E (see Table 104)
- 4. Specify optional offset delay by programming register MDS_OFFSET_DLY (see Table 108)
- 5. Specify the MDS_WIN_LOW and MDS_WIN_HIGH registers (see Table 109)
- 6. Specify the LMFC_PERIOD (see Table 110)

Other advanced settings could be added, refer to the IDT application note about MDS. Once the device started (after WCLK and DCLK clocks release), the MDS_LOCK bit could be checked to verify that MDS process has worked (see <u>Table 113</u>)

SPI configuration example:

- 1. Register x002B write x08: Mandatory: use asynchronous mode
- 2. Register x00A0 write xCD: Mandatory: specify the correct option and input selection (here East)
- 3. Register x00A2 write x24: Mandatory: power on the East SYSREF buffer and activate the internal resistor
- 4. Register x00A7 write a value if needed: Optional: use this register to compensate a PCB layout issue
- 5. Register x00A8 write x0B: Mandatory: specify the MDS_WIN_HIGH

DAC1653D; DAC1658D

Datasheet

- 6. Register x00A9 write x01: Mandatory: specify the MDS_WIN_LOW
- 7. Register x00AA write x10: Mandatory: specify the LMFC_PERIOD

11.8 Interrupts

In some cases it may be useful if the host-controller is notified that a certain internal event has taken place by means of an interrupt . The DAC165xD includes a simple interrupt (INTR) controller for this purpose.

The INTR-signal can be made available on one of the I/O pins. The polarity is programmable (see section <u>Section 11.8.7</u>).

11.8.1 Events monitored

The DAC165xD monitors various internal events and indicates their occurrence in the INTR_FLAGS registers (see Table 92). The following event can be observed:

• INTR_DLP:

Digital Lane Processing (DLP) has its own interrupt controller. The result of this slave controller is provided to the main interrupt controller through the INTR_DLP bit (see <u>Section 11.8.3</u>).

• MDS_BSY and MDS_BSY:

Refer to the activity of the MDS controller. During the SYSREF capture phase, the MDS_BUSY signal is high, and becomes low once finished.

- MDS_BSY reflects the start of the activity of the MDS controller
- MDS_BSY reflects the end of the activity of the MDS controller
- TEMP_ALARM:

Indicates that the temperature measured by the on-chip temperature sensor exceeds the threshold temperature (see Section 11.6).

• LVL_DET_OR:

Indicates that one of the level detectors is enabled.

• CA_ERR:

Indicates a DLP clock error.

• CLK_MON:

Indicates a CDI clock error.

• DCLK_ERR_MON:

Indicates a drift on the DCLK as specified by register INTR_MON_DCLK_RANGE (see Table 90).

• ERR_RPT_FLAG:

Indicates the transmission of error reporting via the SYNCB interface.

• ALARM_STATE:

Indicates when an auto-mute event occurs (see Section 11.2.3.10).

11.8.2 Enabling interrupts

An indication of an $0\rightarrow1$ transition of the corresponding monitor- or error indicator activates the INTR-signal can be given using the INTR_EN_0 and INTR_EN_1 registers (see <u>Table 91</u>). The INTR_FLAGS (see <u>Table 92</u>) registers indicate which of the selected events has invoked the interrupt. When bit INTR_RST (see <u>Table 90</u>) is set to 1 the flags and the INTR-signal are reinitialized.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.8.3 Digital Lane Processing (DLP) interrupt controller

The DLP has its own interrupt controller that reports to the main interrupt controller. This DLP interrupt controller is managed from the SPI registers of block x00E0 (see Figure 75).

As this interrupt controller is dedicated to the JESD204B serial interface the INTR_MODE bits (see <u>Table 142</u>) must be specified according to the LMF configuration used in the system.

Table 32. IN	TR_MOD settings	
INTR_MOD	Interrupt setting ^[1]	Nominal LMF use ^[2]
000	DLP interrupt depends on lane 0	124
001	DLP interrupt depends on lane 1	124
010	DLP interrupt depends on lane 2	124
011	DLP interrupt depends on lane 3	124
100	DLP interrupt depends on lane 0 or lane 2	222
101	DLP interrupt depends on lane 0 or lane 1 or lane 2 or lane 3	421 / 422
110	Hold_flagcnt ^[3]	-
111	no interrupt	-

[1]The lane numbering refers to the logical lanes (see Section 11.8.4).

[2]Any mode can also be used for debug purposes.

[3]The "HOLD_FLAG_CNT" feature is explained in Section 11.8.6.1.

Register INTR_DLP is reinitialized when the bit INTR_RST control is set to logic 1 (see Table 90).

Datasheet

The DLP events that can be monitored with the interrupt controller are programmable via register INTR_EN (see <u>Table 91</u>). Those events are related to the lanes specified by the INTR_MOD bits in register INTR_SER_CTRL (see <u>Table 142</u>). They can be enabled by the following bits:

- INTR_EN_NIT: A Not-In-Table (NIT) error has occurred on one of the lanes
- INTR_EN_DISP: A disparity error has occurred on one of the lanes
- INTR_EN_KOUT: K control characters have been detetected on one of the lanes
- INTR_EN_KOUT_UNEXP: An unexpected K control character has been detected on one of the lanes
- INTR_EN_K28_7: A K28.7 symbol has been detected on one of the lanes
- INTR_EN_K28_5: A K28.5 symbol has been detected on one of the lanes
- INTR_EN_K28_3: A K28.3 symbol has been detected on one of the lanes
- INTR_EN_MISC: An event related to the INTR_MISC_EN register (see <u>Table 135</u>) has occurred Register INTR_MISC_EN (see <u>Table 135</u>) refers to two kinds of events, mainly for debug purposes:
 - Lane x has reached the CS_INIT state (see <u>Table 35</u>)
 - An error has occurred in the ILA alignment process on lane x

When register INTR_DLP is invoked, the "FLAGS" registers must be read to determine which event has occurred:

- An INTR_EN_NIT event is related to the DEC_NIT_ERR_LNx bits of register DEC_FLAGS (see Table 128)
- An INTR_EN_DISP event is related to the DEC_DISP_ERR_LNx bits of register DEC_FLAGS (see Table 128)
- An INTR_EN_KOUT event is related to the DEC_KOUT_LNx bits of register KOUT_FLAGS (see Table 129)
- An INTR_EN_KOUT_UNEXP event is related to the DEC_KOUT_UNEXP_LNx bits of register KOUT_UNEXP_FLAGS (see <u>Table 131</u>)
- An INTR_ENA_K28_7 event is related to the K28_7_LNx bits of register K28_FLAG (see Table 130)
- An INTR_EN_K28_5 event is related to the K28_5_LNx bits of register K28_FLAG (see Table 130)
- An INTR_EN_K28_3 event is related to the K28_3_LNx bits of register K28_FLAG (see Table 130)
- An INTR_EN_MISC event is related to the CS_STATE_LNx bits of register CS_STATE_LNX (see <u>Table 133</u>) and the ILA_BUFF_ERR_LNx bits of register ILA_BUFF_ERR register (see <u>Table 127</u>)

All flag bits can be reset using register RST_FLAGS_MON (see <u>Table 141</u>).

Remark: Checking the CS_STATE_LNx = CS_INIT interrupts allows to indirectly test the SYNC_REQUEST of the DAC. This feature can help if one does not want to use the differential SYNC_OUT signal.

11.8.4 JESD204B physical and logical lanes

The DAC165xD integrates a JESD204B serial interface with a high flexibility of configuration.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Because of various implementations for JESD204B transmitter devices, a flexible configuration of the physical lanes is required. This configuration allows the lane polarity to invert individually and to arbitrary swap the lane order. Identifying the lane numbers can be confusing because of the lane swapping. Two terms, physical and logical, are used in this document to explicitly identify the lanes.

Physical lanes:

The DAC165xD integrates four JESD204B serial receivers that are referenced via the pinning information (see Figure 2).

- Physical lane 0 refers to the signal coming from pins VIN_P0 and VIN_N0
- Physical lane 1 refers to the signal coming from pins VIN_P1 and VIN_N1
- Physical lane 2 refers to the signal coming from pins VIN_P2 and VIN_N2
- Physical lane 3 refers to the signal coming from pins VIN_P3 and VIN_N3

Logical lanes:

The DAC165xD incorporates a Swap lanes module (see $\underline{Figure 76}$) that allows a remapping of the lane numbers to be compatible with the system implementation.

- Logical lane 0 refers to the lane specified with the LN_SEL_LN0 bits in register LN_SEL (see Table 119)
- Logical lane 1 refers to the lane specified with the LN_SEL_LN1 bits in register LN_SEL (see Table 119)
- Logical lane 2 refers to the lane specified with the LN SEL LN2 bits in register LN SEL (see Table 119)
- Logical lane 3 refers to the lane specified with the LN SEL LN3 bits in register LN SEL (see Table 119)

The following naming convention is used to distinguish between the physical lanes and the logical lanes in the SPI registers: "P_LNx" is used to identify the physical lanes. "L_LNx" is used to identify the logical lanes. "x" stands for the lane number in both cases.

11.8.5 RX Digital Lane Processing (DLP)

Digital lane processing is the module containing all JESD204B interface controls except the PHY deserializer.

Figure 77 shows the registers for the configuration of the digital lane processing.
Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.8.5.1 Lane polarity

Each physical lane polarity can be individually inverted with the POL_P_LNx bits of register P_LN_POL (see <u>Table 118</u>). Using this feature transforms the 10 bits from ABCDEFGHIJ to ABCDEFGHIJ.

11.8.5.2 Scrambling

The descrambler is a 16-bit parallel self-synchronous descrambler based on the polynomial $1 + x^{14} + x^{15}$. From the JESD204B specification, the scrambling/descrambling process only occurs on the user data, not on the code group synchronization or the ILA sequence. After two received bytes, the descrambler is correctly set up to decode the data in the proper way. However, it the initial state of the descrambler bits is set incorrectly, the two first decoded bytes are decoded incorrectly. The JESD204B specification proposes an initial state for both scrambler and descrambler to avoid this.

Using registers INIT_DESCR_P_LNx (see <u>Table 120</u>) any kind of intitial state can be set in the DAC165xD. The descrambling process starts when the ILA sequence has finished. This process can be turned off by deasserting bit DESCR_EN in register ILA_CTRL_1 (see <u>Table 115</u>).

The first samples can not be sent to the DSP using the FORCE_FIRST_SAMPLE_LOW bits of register FORCE_ALIGN. This avoids the use of the two incorrectly decoded samples.

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.8.5.3 Lane swapping and selection

If the physical lanes do not match with the ordering of the transmitter lanes, they can be reordered using the lane swapping module. As the DAC165xD allows various LMF configurations (see <u>Table 124</u>), it is important that the lane swapping respects the following reordering constraints linked to the L value (see <u>Table 33</u>).

Table 33.	Logical	lanes	versus	L	values
-----------	---------	-------	--------	---	--------

L value		Logical lanes used for the Sample assembly module
Binary	Decimal	
100	4	logical lane 0
		logical lane 1
		logical lane 2
		logical lane 3
010	2	logical lane 0
		logical lane 2
001	1	logical lane 0

The selection of the logical lanes can be is specified by the LN_SEL_L_LNx bits of register LN_SEL (see Table 119).

Table 34 shows the possible choices regarding the value of the L parameter.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

L	4	2	1
logical lane 0	physical lane 0	physical lane 0	physical lane 0
	or	or	or
	physical lane 1	physical lane 1	physical lane 1
	or	or	or
	physical lane 2	physical lane 2	physical lane 2
	or	or	or
	physical lane 3	physical lane 3	physical lane 3
logical lane 1	physical lane 0	not used	not used
	or		
	physical lane 1		
	or		
	physical lane 2		
	or		
	physical lane 3		
logical lane 2	physical lane 0	physical lane 0	not used
	or	or	
	physical lane 1	physical lane 1	
	or	or	
	physical lane 2	physical lane 2	
	or	or	
	physical lane 3	physical lane 3	
logical lane 3	physical lane 0	not used	not used
	or		
	physical lane 1		
	or		
	physical lane 2		
	or		
	physical lane 3		

 Table 34.
 Lane mapping between Logical and Physical lanes regarding the L value

11.8.5.4 Word locking and Code Group Synchronization (CGS)

When the bits are received from the RX physical layer, DLP has to identify the MSB and LSB boundaries of the 10-bit codes from the bitstream. This can be monitored using the LOCK_CNT_MON_P_LN01 and LOCK_CNT_MON_P_LN23 registers (see <u>Table 132</u>).

When all lanes are locked, the values of the registers are stable and the code group synchronization process can start. This process is described by the JESD204B specification and is represented by the state machine shown in Figure 78.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

The CGS states of each lane can be monitored using the CSYNC_STATE_P_LNx bits of register CSYNC_STATE_P_LNx (see Table 133). The definition of each state can be found in Table 35.

Table 35.	Code group	synchronization	state	machine

CSYNC_STATE_P_LNx[1:0]	Name	Definition
00	CSYNC_INIT	looking for K28_5 (/K/) symbol
01	CSYNC_CHECK	four consecutive K28_5 (/K/) symbols have been received
10	CSYNC_DATA	code group synchronization achieved

11.8.5.5 SYNC configuration

The SYNC signal is the feedback signal that is sent to the transmitter device to ensure the JESD204B link synchronization. When all lanes are in CSYNC_INIT state a sync_request is sent to the SYNC buffer that is linked to pins SYNC_OUT_P and SYNC_OUT_N (see Figure 2).

The polarity of this buffer is controlled by bit SYNC_POL of register SYNC_OUT_MOD (see <u>Table 117</u>). By default the synchronization request is active low. The synchronization request signal can be specified by bits SEL_SYNC and SYNC_INIT_LVL of register SYNC_OUT_MOD. Bit SYNC_INIT_LVL of register SYNC_OUT_MOD only specifies the state of the sync_request signal after resetting the CGS state machine (at start-up time or after device reset only).

Table 36. Sync_request control					
SEL_SYNC	[2:0]	Description			
000		sync_request active when state machine of one of the lanes is in CS_INIT mode			
001		sync_request active when state machine of all lanes is in CS_INIT mode			
010		sync_request active when state machine of lane 0 is in CS_INIT mode			
011		sync_request active when state machine of lane 1 is in CS_INIT mode			
100		sync_request active when state machine of lane 2 is in CS_INIT mode			
101		sync_request active when state machine of lane 3 is in CS_INIT mode			
110		sync_request fixed to 1			
111		sync_request fixed to 0			

Datasheet

11.8.5.6 SYNC output level configuration

The SYNC output common mode is programmable by setting the register SYNC_SET_VCM. The final value depends on the voltage provided on VDD(sync). The recommended value depends of the VDD(sync) voltage.

Table 37.	SYNC	output	common	mode	voltage
-----------	------	--------	--------	------	---------

SYNC_SET_VCM[2:0]	VCM general formula	VCM when VDD(diff)=1.8V	VCM when VDD(diff)=1.2V	Remark
000	VDD(diff)-0.8	1.0V	0.4V	
001	VDD(diff)-0.7	1.1V	0.5V	
010	VDD(diff)-0.6	1.2V	0.6V	recommended when VDD(diff)=1.8v
011	VDD(diff)-0.5	1.3V	0.7V	
100	VDD(diff)-0.4	1.4V	0.8V	recommended when VDD(diff)=1.2V
101	VDD(diff)-0.3	1.5V	0.9V	
110	VDD(diff)-0.2	1.6V	1.0V	
111	VDD(diff)-0.1	1.7V	1.1V	

11.8.5.7 SYNC output swing configuration

The SYNC output swing is programmable by setting the register SYNC_SET_LVL. The recommended value is b100.

Ιαυι		i swilly voltage	
SYN	IC_SET_LVL[2:0]	Single ended value	Differential value
	000	0.05V	0.10V
	000	0.10V	0.20V
	010	0.15V	0.30V
	011	0.20V	0.40V
	100	0.30V	0.60V
	101	0.40V	0.80V
	110	0.50V	1.00V
	111	0.60V	1.20V

Table 38. SYNC output swing voltage

11.8.5.8 Initial-lane alignment

This module handles the alignment of the logical lanes based on the ILA sequence described in the JESD204B specification. Inter-lane alignment starts when all lanes are locked and at reception of the first non-K28.5 (or /K/) symbol.

During the ILA sequence, the K28.3 (/A/ symbol) is used to align the data streams. During this sequence, the length (K) of the multi-frame is measured. This value is used by the lane monitoring and correction process. The value is also used for the MDS circuitry, where the SYSREF signal is expected to be a multiplication of the multi-frame length (K) in the JESD204B specification.

During the second multi-frame, the JESD204B configuration data of each physical lane is stored in register blocks x0120 and x0140 (see Figure 79 and Figure 80). The DAC165xD does not do anything with these configuration data. They are only made available for the host controller.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

LANE	0 JESD204 CONFIGUE	RATION	LANE	1 JESD204 CONFIGUE	RATION
CONFIG 0	P_LN0_DID		CONFIG 0	P_LN1_DID	
CONFIG 1	P_LN0_AD_JCNT	P_LN0_BID	CONFIG 1	P_LN1_ADJ_CNT	P_LN1_BID
CONFIG 2	P_LN0_ADJ_DIR P_LN0_ADJ_PH	P_LN0_LID	CONFIG 2	P_LN1_ADJ_DIR P_LN1_ADJ_PH	P_LN1_LID
CONFIG 3	P_LN0_SCR	P_LN0_L	CONFIG 3	P_LN1_SCR	P_LN1_L
CONFIG 4	P_LN0_F		CONFIG 4	P_LN1_F	
CONFIG 5		P_LN0_K	CONFIG 5		P_LN1_K
CONFIG 6	P_LN0_M		CONFIG 6	P_LN1_M	
CONFIG 7	P_LN0_CS	P_LN0_N	CONFIG 7	P_LN1_CS	P_LN1_N
CONFIG 8	P_LN0_SBCLSS_VS	P_LN0_N'	CONFIG 8	P_LN1_SBCLSS_VS	P_LN1_N'
CONFIG 9	P_LN0_JESD_VS	P_LN0_S	CONFIG 9	P_LN1_JESD_VS	P_LN1_S
CONFIG 10	P_LN0_HD	P_LN0_CF	CONFIG 10	P_LN1_HD	P_LN1_CF
CONFIG 11	P_LN0_RES1		CONFIG 11	P_LN1_RES1	
CONFIG 12	P_LN0_RES2		CONFIG 12	P_LN1_RES2	
CONFIG 13	P LN0 FCHK		CONFIG 13	P LN1 FCHK	

Fig 79. JESD204 read configuration for physical lanes 0 and 1

LANE	2 JESD204 CONFIGUE	RATION	LANE	3 JESD204 CONFIGUE	RATION
CONFIG 0	P_LN2_DID		CONFIG 0	P_LN3_DID	
CONFIG 1	P_LN2_ADJ_CNT	P_LN2_BID	CONFIG 1	P_LN3_ADJ_CNT	P_LN3_BID
CONFIG 2	P_LN2_ADJ_DIR P_LN2_ADJ_PH	P_LN2_LID	CONFIG 2	P_LN3_ADJ_DIR P_LN3_ADJ_PH	P_LN3_LID
CONFIG 3	P_LN2_SCR	P_LN2_L	CONFIG 3	P_LN3_SCR	P_LN3_L
CONFIG 4	P_LN2_F		CONFIG 4	P_LN3_F	
CONFIG 5		P_LN2_K	CONFIG 5		P_LN3_K
CONFIG 6	P_LN2_M		CONFIG 6	P_LN3_M	
CONFIG 7	P_LN2_CS	P_LN2_N	CONFIG 7	P_LN3_CS	P_LN3_N
CONFIG 8	P_LN2_SBCLSS_VS	P_LN2_N'	CONFIG 8	P_LN3_SBCLSS_VS	P_LN3_N
CONFIG 9	P_LN2_JESD_VS	P_LN2_S	CONFIG 9	P_LN3_JESD_VS	P_LN3_S
CONFIG 10	P_LN2_HD	P_LN2_CF	CONFIG 10	P_LN3_HD	P_LN3_CF
CONFIG 11	P_LN2_RES1		CONFIG 11	P_LN3_RES1	
CONFIG 12	P_LN2_RES2		CONFIG 12	P_LN3_RES2	
CONFIG 13	P LN2 FCHK		CONFIG 13	P_LN3_FCHK	

Fig 80. JESD204 read configuration for physical lanes 2 and 3

The ILA module uses a 16-bit buffer for each lane. The first /A/ symbol received over the lanes is used as reference. The /A/ symbols of the other lanes, which are received later, are compared to the first one to be all aligned. The initial location of the symbols is predefined by the INIT_ILA_BUFF_PNTR_L_LNxy registers (see <u>Table 120</u>). The alignment can be monitored with the ILA_MON_L_LNxy bits of register ILA_MON (see <u>Table 126</u>). If the lane difference is too great, a buffer out-of-range error occurs, which can be monitored with bits ILA_BUFF_ERR_L_LNx of register ILA_BUFF_ERR (see <u>Table 127</u>). In this specific case, a reinitialization of the full link can be requested by setting the REINIT_ILA_LNx bits of register REINIT_CTRL (see <u>Table 122</u>).

Datasheet

The JESD204B specification also mentions a dynamic realignment mode where a monitoring process is checking the /A/-symbol location. This can realign the data stream if two successive /A/ symbols are found at the same new position. By default this monitoring and correction process is disabled to avoid any moving latency over the link, but one can enable the feature by setting the DYN_ALIGN_EN bit of register FORCE_ALIGN (see Table 116).

11.8.5.9 SYNC TX response time and ILA alignment

When the DAC is deasserting the SYNC signal from level 1 to level 0, the internal DAC states machines are reseted during 10 µsec. In the meantime the TX will detect the SYNC request and should be able to response to this request and to send the K28.5 symbols. When the DAC states machines retrieve their initial states, the DAC will proceed to the alignment based on the K28.5 symbols and the ILA.

However, if the TX takes more time to response to the SYNC request, then when the DAC states machines retrieve their initial states, the DAC could wrongly proceed to the multi-frame alignment based on the DATA received before the K28.5 sequence. In this case, the first ILA multi-frame will not be correctly detected, but the alignment monitoring process will compensate this error in a later stage. This will result in a wrong ILA configuration data extraction, but as long as the bits SEL_ILA of the ILA_CNTRL register (0x00C7) are set to '11', the DATA stream will be correctly aligned.

11.8.5.10 Character replacement

Character replacement, as specified by the JESD204B specification, can occur at the end of the frame (K28.7 or /F/ symbol) or at the end of the multi-frame (K28.3 or /A/ symbol). By default this feature is enabled, but it can be disabled using bit FRAME_ALIGN_EN of the ILA_CTRL_0 register (see <u>Table 115</u>).

Remark: The DAC165xD can handle multi-frame length values (K) between ceil(17 / F) and 32 but with the restriction that the number of octets in a multi-frame must always be even. This implies that if F = 1, a value of K = 17 is not allowed. When F = 1 only even values > 17 are allowed. Working with F = 1 and K = 17 often implies that the character replacement process is not reliable.

11.8.5.11 Sample assembly

Sample assembly handles the assembly of the data based on the LMF parameters described by register LMF_CTRL (see <u>Table 124</u>). The following configurations are supported:

- LMF-S = 421-1
- LMF-S = 422-2
- LMF-S = 222-1
- LMF-S = 124-1

Sample assembly is based on the logical lanes definition when updating the L value.

11.8.5.12 Resynchronization over links

The DAC165xD recognizes a K28.5 (/K/) symbols sequence coming over its lanes. This identification allows resynchronization of the device if the RESYNC_OLINK_P_LNx bits of register REINIT_CTRL are set correctly (see Table 122).

11.8.5.13 Symbols detection monitoring and error handling

The DLP decodes the 10-bit words to 8-bit words. The decoding table is specified in the IEEE 802.3-2005 specification. During decoding, the disparity is calculated according to the disparity rules mentioned in the same specification. The JESD204B specification also defines the following definitions:

• VALID:

The code group is found in the column of the 10b/8b decoding tables according to the current running disparity.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

• DISPARITY ERROR:

The received code group exists in the 10b/8b decoding table, but is not found in the correct column according to the current running disparity.

• NOT-IN-TABLE (NIT) ERROR:

The received code group is not found in the 10b/8b decoding table of either disparity.

• INVALID:

A code group that either shows a disparity error or that does not exist in the 10b/8b decoding table.

Remark: The 8b/10b decoder only provides reliable information in the CSYNC_CHCK and CSYNC_DATA states. During CSYNC_INIT state, the DLP is "hunting" for the correct position of the K28.5 (/K/) symbols in the received bitstream. Therefore the DISPARITY ERROR/NOT-IN-TABLE/ INVALID flags are not yet consistent and are not be used in the internal monitoring.

The Not-In-Table error (NIT) and Disparity error (DISP) can be monitored using the DEC_NIT_ERR_P_LNx and DEC_DISP_ERR_P_LNx bits of register DEC_FLAGS (see <u>Table 128</u>). Both are considered invalid, but the DAC165xD has some flexibility in this definition. The specified invalid errors can also be totally ignored by setting the bit IGN_ERR of register ERR_HNDLNG to logic 1 (see <u>Table 121</u>). This specific mode is designed for debug purposes only, especially when sample error measurement needs to be executed.

The VALID/INVALID status of the decoded word can trigger the MUTE feature using the DATA_V_IQ_CFG bits of register MUTE_CTRL_1 (see <u>Table 85</u>; see <u>Section 11.2.3.10</u>).

The following comma symbols are detected during data transmission irrespective of the running disparity:

/K/ = K28.5 /F/ = K28.7 /A/ = K28.3 /R/ = K28.0 /Q/ = K28.4

Their single detection is monitored in registers KOUT_FLAG (see Table 129) and K28_FLAG (see Table 130).

During the data transmission phase, only K28.3 (/A/) and K28.7 (/F/) symbols are expected. Sometimes (e.g. wrong bit transmission), a code group is interpreted as a K character that is not K28.3 or K28.7. If this occurs a KOUT_UNEXP flag is asserted that can be read using the DEC_KOUT_UNEXP_L_LNx bits of register KOUT_UNEXP_FLAG (see Table 131).

All the previous flags can be reset using the RST_FLAGS_MON register (see <u>Table 141</u>). Detection of them can also assert the DLP interrupt (see <u>Section 11.8.3</u>).

11.8.6 Monitoring and test modes

The DAC165xD embeds various monitoring and test modes that are useful during the prototyping phase of a system.

Remark: The test capability linked to observing specific characters, errors or state machine statuses is not reviewed in this section. It is up to the reader to define specific modes based on the DAC165xD capability.

11.8.6.1 Flag counters

Due to the high data rate of the JESD204B serial interface, it is hard to monitor events that occur on the lanes in real time. Four multi-purpose counters have been added to the design to help this monitoring. Each counter is 16 bits wide and is linked to one lane. It increments its value each time a specific event occurs. These flags counters can be read using the

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

FLAG_CNT_LNx registers (see <u>Table 136</u>) and reset using the RST_CTRL_FLAG_CNT_LNxx bits of the CTRL_FLAG_CNT_LNxx registers (see <u>Table 140</u>). The flag counters can also be reset automatically when DLP is reset by setting the AUTO_RST_FLAG_CNTS bit of register RST_BUF_ERR_FLAGS (see <u>Table 134</u>) to logic 1.

The specification of the event that increments the counter is done by setting the SEL_CTRL_FLAG_CNT_LNxx bits of the CTRL_FLAG_CNT_LNxx registers (see <u>Table 140</u>) to one of the sources described in <u>Table 39</u>.

Table 39. Counter source Default settings are shown highlighted.	
SEL_CTRL_FLAG_CNT_LNxx[2:0]	Source
000	not-in-table error
001	disparity error
010	K symbol not found
011	unexpected K symbol found
100	K28_7 (/F/) symbol found
101	K28_5 (/K/) symbol found
110	K28_3 (/A/) symbol found
111	K28_0 (/R/) symbol found

When the counter is reaching its maximum value (0xFFFF), this value is held until the next counter reset. Bit HOLD_FLAG_CNT_EN of RST_BUFF_ERR_FLAGS register (see <u>Table 134</u>) gives two options for when a counter reaches the maximum value.

Table 40.	HOLD_FLAG	_CNT_EN options	
Default set	tings are shown	n highlighted.	

HOLD_FLAG_CNT_EN	Option
0	All counters are independent. Each counter continues its own counting.
1	All counters are linked. When one counter reached the maximum value and stops, all other counters stop as well.

When the counters are stopped, an interrupt can be activated (see Section 11.8.3).

This feature makes it possible to, for instance, analyze the occurrence of character replacement or NIT errors.

11.8.6.2 Sample Error Rate (SER)

A sample error rate feature is implemented in the DAC165xD to analyze the quality of the transmission. Due to the 8b10b encoding, the analysis is done at sample level only and not at bit level. The transmitter sends a constant data over the link and the DAC165xD compared this received value to the value specified in the SER_LVL_LSB and SER_LVL_MSB registers (see <u>Table 147</u>). Enable the scrambling on both transmitter and receiver side to add more random effect on the data. The SER_LVL_MSB and SER_LVL_LSB are specifying a 16-bit value at the lane level, it means the device can be considered as operating in one of two modes:

• F = 2 mode:

The lane is receiving 16-bit data specified by SER_LVL_MSB and SER_LVL_LSB.

• F = 1 mode:

The lane is receiving alternately 8-bit data specified by SER_LVL_MSB and SER_LVL_LSB.

The SER mode requires that the DAC is already synchronized (using CGS and ILA sequence). The kick-off of the measurement is done by setting the SER_MOD bit of register SER_INTR_CTRL (see <u>Table 142</u>). In this mode, the flags counters are used to count the number of 16-bit samples that do not match the SER_LVL value. This mode enables the establishing of the sample error rate of each lane.

DAC1653D; DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.8.6.3 PRBS test

The DAC165xD embeds the following PRBS checker that is shared for the 4 lanes:

- PRBS31
- PRBS23
- PRBS15
- PRBS7

To test a specific lane, the setting SEL_XBERT_LN[1:0] needs to be set first. Then it is required to disable the restart of the RX PHY due to the error monitoring this is done by setting the register ERR_HANDLING_1 to value xFF and REINIT_CTRL to value x00. After the release of the DCLK and WCLK clocks, the XBERT_CNTRL[1:0] bits must be specified to the expected test (PRBS31, 23, 15, 7) and the CHECK_PRBS bit must be set to the "sync to prbs sequence" mode. Once synchronized, the internal PRBS counter is aligned with the received PRBS sequence. The test starts when the CHECK_PRBS is set to the "check prbs sequence" mode. The XBERT_CNT[15:0] counter indicates the number of bits in error.

Example of SPI settings:

Write register x0000 to value x99 to configure the SPI mode and apply a reset

Write register x0060 to value x02 to specify the interpolation mode

Write register x004B to value x01 to specify the CDI mode

Write register x0022 to value x52 to specify the WCLK divider

Write register x0081 to value x55 to specify a hold mute on all the events (to quiet the internal digital)

Write register x00C7 to value x62

Write register x00DE to value x92 to specify the LMF422 mode

Write register x0050 to value xFD to output the test result on pin IO0

Write register x0052 to value x02 to output the test result on pin IO0

Setting up the PRBS-test

Write register x00DB to value xFF to disable the error handler

Write register x00DC to value x00 to prevent restart due to k28.5

Write register x0042 to value x01 to disable the watchdog of the lanes

Optional: Write register x0162 to value x84 to enable the low speed mode in case the bit rate is below 3 Gbps

Write register x0163 to value x24 (recommended value for the CDR charge pump parameter)

Write register x0168 to value x02 to change the equalizer gain of lane 0

Write register x0169 to value x02 to change the equalizer gain of lane 1

Write register x016A to value x02 to change the equalizer gain of lane 2

Write register x016B to value x02 to change the equalizer gain of lane 3

Write register x0040 to value x00 to release the internal clocks resets

DAC1653D; DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

wait for 2 seconds

Write register x0100 to value x05 to reset XBERT counter

Write register x0100 to value x04 to enable XBERT test on lane 0 with PRBS 31 selection (synchronization mode)

wait for 2 seconds

Write register x0100 to value x24 to enable XBERT test on lane 0 with PRBS 31 selection (checking mode)

Read registers x0104 and x0105 to read the xbertest counters

11.8.6.4 JTSPAT test

The Jitter Tolerance Scrambled PATtern (JTSPAT) is an 1180-bit pattern intended for receiving jitter tolerance testing for scrambled systems. The JTSPAT test pattern consists of two copies of JSPAT and an additional 18 characters intended to cause extreme late and early phases in the CDR PLL followed by a sequence, which can cause an error (i.e. an isolated bit following a long run). This pattern was developed to stress the receiver within the boundary conditions established by scrambling.

	i tolerance scra		symbols sequer		
D1.4	D16.2	D24.7	D30.4	D9.6	D10.5
0111010010	0110110101	0011001110	1000011101	1001010110	0101011010
D16.2	D7.7	D24.0	D13.3	D23.4	D13.2
1001000101	1110001110	0011001011	1011000011	0001011101	1011000101
D13.7	D1.4	D7.6	D0.2	D21.5	D22.1
1011001000	0111010010	1110000110	1001110101	1010101010	0110101001
D23.4	D20.0	D27.1	D30.7	D17.7	D4.3
0001011101	0010110100	1101101001	1000011110	1000110001	1101010011
D6.6	D23.5	D7.3	D19.3	D27.5	D19.3
0110010110	0001011010	1110001100	1100101100	110101010	1100100011
D5.3	D22.1	D5.0	D15.5	D24.7	D16.3
1010010011	0110101001	1010010100	0101111010	0011001110	1001001100
D1.2	D23.5	D29.2	D31.1	D10.4	D4.2
0111010101	0001011010	1011100101	0101001001	0101011101	0010100101
D5.5	D10.2	D21.5	D10.2	D21.5	D20.7
1010011010	0101010101	1010101010	0101010101	1010101010	0010110111
D11.7	D20.7	D18.7	D29.0	D16.6	D25.3
1101001000	0010110111	0100110001	1011100100	0110110110	1001100011
D1.0	D18.1	D30.5	D5.2	D21.6	D1.4
1000101011	0100111001	1000011010	1010010101	1010100110	0111010010
D16.2	D24.7	D30.4	D9.6	D10.5	D16.2
0110110101	0011001110	1000011101	1001010110	0101011010	1001000101
D7.7	D24.0	D13.3	D23.4	D13.2	D13.7
1110001110	0011001011	1011000011	001011101	1011000101	1011001000
D1.4	D7.6	D0.2	D21.5	D22.1	D23.4
0111010010	1110000110	1001110101	1010101010	0110101001	0001011101
D20.0	D27.1	D30.7	D17.7	D4.3	D6.6
0010110100	1101101001	1000011110	1000110001	1101010011	0110010110

Table 41. Jitter tolerance scrambled pattern symbols sequence [1]

DAC1653D; DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

D23.5	D7.3	D19.3	D27.5	D19.3	D5.3					
0001011010	1110001100	1100101100	1101101010	1100100011	1010010011					
D22.1	D5.0	D15.5	D24.7	D16.3	D1.2					
0110101001	1010010100	0101111010	0011001110	1001001100	0111010101					
D23.5	D27.3	D3.0	D3.7	D14.7	D28.3					
0001011010	1101100011	1100010100	1100011110	0111001000	0011101100					
D30.3	D30.3	D7.7	D7.7	D20.7	D11.7					
0111100011	1000011100	1110001110	0001110001	0010110111	1101001000					
D20.7	D8.7	D29.0	D16.6	D25.3	D1.0					
0010110111	0100110001	1011100100	0110110110	1001100011	1000101011					
D18.1	D30.5	D5.2	D21.6							
0100111001	1000011010	1010010101	1010100110							

 Table 41. Jitter tolerance scrambled pattern symbols sequence ...continued

[1] This table must be read, starting from the top, left-to-right first and then line-by-line to follow the sequence.

The DAC165xD embeds a JTSPAT checker. The control registers are located in the JESD204 receiver monitoring registers block (see <u>Table 146</u>).

11.8.6.5 DLP strobe

The data coming out of the ILA module can be sampled by setting the DLP_STROBE bit of register MISC_CTRL (see <u>Table 123</u>). On each lane two octets are stored, which can be read out through registers P_LNxx_SMPL_MSB and P_LNxx_SMPL_LSB (see <u>Table 154</u> and <u>Table 156</u>). The selection of the lane to read out the data is done by registers P_LN10_SEL and P_LN32_SEL (see <u>Table 155</u> and <u>Table 157</u>).

11.8.7 IO-mux

The DAC165xD uses two general purpose pins, IO0 and IO1. IO0 and IO1 can be configured as an input (x01) or as an output (x00) by setting the IO_DIR bit of register EHS_CTRL (see Table 67).

When acting as an input, the IO1 pin is referred as the RF enable feature (see Section 11.2.5).

When acting as an output, the two IO pins are multiplexed to internal signals that can be useful for debug purposes. <u>Table 42</u> shows the main configuration when using registers bit IO_SEL_x in register IO_MUX_CTRL_x. The definitions of the three registers depend on the "Indicator" and the "Range" values used to specify the signal that is sent through pins IO0 and IO1 (see Table 42 and Table 43).

Table 42. Definition of IO_SEL registers										
Register name	b7	b6	b5	b4	b3	b2	b1	b0		
IO_SEL_2	х	х	х	х	IO1indic	ator[1:0]	IO0 indic	cator[1:0]		
IO_SEL_1 IO1 range[7:0]										
IO_SEL_0 IO0 range[7:0]										

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Indicator[1:0]	Range[7:0]	Output signal
00	xxxx xxx0	IO0: WCLK
		IO1: DCLK
00	xxxx 0011	synchronization request
10	1111 0010	end of ILA
10	1111 1101	xbert flag
11	1100 0000	interrupt
11	1100 0001	interrupt
11	1111 even	IO0: fixed to logic 1
		IO1: fixed to logic 0
11	1111 odd	IO0: fixed to logic 0
		IO1: fixed to logic 1

Table 43. Output signals for combination of indicators and ranges

11.9 JESD204B PHY receiver

Each JESD204B lane owns its own physical deserializer (RX PHY) that provides the 10-bit data stream to the DLP module. The SPI registers of block x0160 control the various features of the RX PHY, like the equalizer, the common-mode voltage and the resistor termination. The registers of x0180 monitor the status of these controls.

Remark: Most of the main controls (power on/off, PLL clock dividers,etc.) are automatically set while specyfing the LMF mode (see <u>Section 11.8.5.11</u>) and/or by the MAIN_CTRL register (see <u>Table 64</u>).

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.9.1 JRES pin

The JRES pin is used for internal biasing of the RX PHY. The pin needs to be connected to a 6.98kOhms 1% resistor.

11.9.2 Lane input

Each lane is Current Mode Logic (CML) compliant.

The common-mode voltage and the termination resistor can be programmed using register HS_RX_RT_VCM (see <u>Table 162</u>). When not used, the lane input buffer can be set to a high impedance mode (register HS_RX_RT_CTRL; see <u>Table 163</u>).

AC-coupling is always required (see Figure 82).

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.9.3 Equalizer

The DAC165xD embeds an internal equalizer (bits HS_RX_LNx_EQZ_EN in register HS_RX_EQZ_CTRL; see <u>Table 167</u>) in each high-speed serial lane. This improves the interference robustness between signals by amplifying the high-frequency jumps in the data conserving the energy of the low-frequencies ones. The equalizer can be programmed depending on the quality of the channel used (PCB traces/layout, connectors, etc.).

The auto-zero feature (bit HS_RX_EQZ_AUTO_ZERO_EN in register HS_RX_EQZ_CTRL; see <u>Table 160</u>) is enabled by default for the deserializer to adapt itself to the common-mode of the received signal.

Set the equalizer gains to control the high-frequency jumps of the data (bits HS_RX_0_EQZ_IF_GAIN[2:0] of register HS_RX_LNx_EQZ_GAIN; see Table 161). The total Equalizer gain is defined as the ratio IF_GAIN/LF_GAIN.

Table 44.	Equalizer gain
IF_GAIN	Equalizer Gain (dB)
000	0.0
001	0.0
010	0.5
011	2.0
100	3.5
101	5.0
110	6.5
111	8.0

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.9.4 Deserializer

The deserializer performs the incoming data clock recovery and also the serial-to-parallel conversion. One global PLL provides the same reference clock to the four lanes. The PLL configuration is automatically done when specifying the LMF parameters (see Table 9).

11.9.5 Low Serial Input Data Rate

When using the DAC165xD with a low serial input data rate (lower than 3 Gbps), it is recommended to enable the low speed mode of the Clock Data Recovery (CDR) unit by writing the value x84 in register HS_RX_CDR_DIVX (see Table 159).

11.9.6 PHY test mode

A special test mode is available for measurement purposes only. The recovered clock of each CDR unit can be transmitted to the SYNC buffer after a frequency division by 20. This is done by setting the SYNC_TST_DATA_EN bit of register SYNC_SEL_CTRL to logic 1 (see <u>Table 165</u>). Bit SYNC_TST_DATA_SEL[1:0] is used to specify which CDR clock is used.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.10 Output interfacing configuration

11.10.1 DAC1658D: High common-mode output voltage

The DAC1658D can easily be interfaced with an IQ-modulator. <u>Figure 84</u> is showing a typical connection in a 1Vpp configuration. <u>Table 45</u> is showing various configurations regarding the common mode voltage of the IQ-modulator.

Table 45. DAC1658D output configurations [1]

Mode	V _{ref}	Vo(cm)	Vo(diff)	VIQmod(cm)	VIQmod(diff)	RLT	RLB	Z	RB	RM	RT
Unit	v	v	v	V	V	Ohms			Ohms	Ohms	Ohms
AC coupling	3.3	2.6	1	0.5	1	60.4	nc	10 nF	287	27.4	5360
AC coupling	3.3	2.55	1	0.3	1	64.9	nc	10 nF	196	34	8870
AC coupling	5	3	1	0.5	1	84.5	249	10 nF	243	14.7	5230
AC coupling	5	3	1	1.5	1	84.5	249	10 nF	309	18.7	976
AC coupling	5	3.3	1	1.7	1	84.5	249	10 nF	590	35.7	402
DC coupling	3.3	2.7	1	2.7	1	69.8	169	0 Ohms	nc	nc	nc

[1] All values are given considering that the load impedance (filter + IQ-modulator) is equal to 100 Ohms differential.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.10.2 DAC1653D: Low common-mode output voltage

The DAC1653D can easily be interfaced with an IQ-modulator. <u>Figure 85</u> is showing a typical connection in a 1Vpp configuration. <u>Table 46</u> is showing various configurations regarding the common mode voltage of the IQ-modulator.

	Table 46.	DAC1653D	output	configurations	[1]
--	-----------	----------	--------	----------------	-----

Mode	Vo(cm)	Vo(diff)	VIQmod(cm)	VIQmod(diff)	RL _B	
Unit	v	V	V	V	Ohms	
DC coupling	0.5	1	0.5	1	50	

[1] All values are given considering that the load impedance (filter + IQ-modulator) is equal to 100 Ohms.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.11 Design recommendations

11.11.1 Power and grounding

Use a separate power supply regulator for the generation of the 1.2 V analog power (pins 43, 48. 51. 56) and the 1.2 V digital power (pins 7, 10, 33, 36) to ensure optimal performance.

High-speed input lanes are powered by a 1.2 V power supply that can require a dedicated power supply. Pins 15, 16, 19, 22, 25, 28 can be connected to either the global 1.2 V power supply or to a dedicated one.

Also, include individual LC decoupling for the following five sets of power pins:

- V_{DDA(1V2)} (pins 43, 46, 48, 51, 53 and 56)
- V_{DDD(1V2)} (core: pins 7, 10, 15, 16, 19, 22, 25, 28, 33 and 36)
- V_{DDA(3V3)} (pins 47 and 52)
- V_{DDD(IO)} (pin 29)
- V_{DDD(sync)} (pin 11)

Use at least two capacitors for each power pin decoupling. Locate these capacitors as close as possible to the DAC165xD power pins.

Use a separate LDO for the generation of the 1.2 V analog power ($V_{DDA(1V2)}$ and the 1.2 V digital power (V_{DDD1V2}) to ensure the best performance.

The die pad is used for both the power dissipation and electrical grounding. Insert several vias (typically 8×8) to connect the internal ground plane to the top layer die area (see Figure 87).

Note: all the above applies if the 1.2 V is intended to be used as a 1.3 V for DAC sample rate above 1.8 Gsps.

11.12 Registers

DAC1653D; DAC1658D Datasheet

11.12.1 SPI configuration block

11.12.1.1 SPI configuration block register allocation map

Table 47 shows an overview all the interface DAC DSP registers.

Addr.	Register name	R/W		Bit definition D							Default
Hex		_	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0000h	SPI_CFG_A	R/W	SPI_RST	-	SPI_ASC	SPI_4W		MIRRO	R[3:0]		00h
0001h	SPI_CFG_B	R/W	SPI_ SINGLE	-	SPI_ READ_ BUFF	-	-	-	-	-	00h
0002h	DEV_PWR_MOD	R/W	-	-	-	-	-	-	DEV_PW	00h	
0003h	CHIP_TYPE	R		CHIP_TYPE[7:0]							04h
0004h	CHIP_ID_0	R		CHIP_ID_0[7:0]							
0005h	CHIP_ID_1	R				CHIP_ID	_1[7:0]				
0006h	CHIP_VS	R				CHIP_V	/S[7:0]				01h
000Ch	VENDOR_ID_LSB	R		VENDOR_ID[7:0]							26h
000Dh	VENDOR_ID_MSB	R		VENDOR_ID[15:8]						04h	
000Fh	SPI_CFG_C	R/W	-	-	-	-	-	-	-	TRANSFER _BIT	00h

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

AC1653D/DAC1658D

rated Device Technology

Datasheet

Datasheet

11.12.1.2 SPI configuration block bit definition detailed description

The tables in this section contain detailed descriptions of the SPI configuration registers.

Table 48. Default va	SPI configuration registers alues are shown highlighted.								
Address	Register	Bit	Symbol	Access	Value	Description			
0000h	SPI_CFG_A	7	SPI_CFG_RST	R/W		reset SPI configuration			
					0	no action			
					1	sets all registers (except 000h/0001h) to their defaults (reserved for LSB first)			
		5	SPI_ASC	R/W		auto-increment/auto-decrement			
					0	ascend off (auto-decrement)			
					1	ascend on (auto-increment)			
		4	SPI_4W	R/W		SDO active; 3-wire/4-wire SPI interface			
					0	3-wire SPI-interface			
					1	4-wire SPI-interface			
		3 to 0	MIRROR[3:0]	R/W		mirror check (write protection for this register): should be mirror [4:7]			
0001h	SPI_CFG_B	7	SPI_SINGLE	R/W		streaming mode/one-byte mode			
					0	streaming mode			
					1	one-byte mode (independent of SCS_N)			
		5	SPI_READ_BUFF	R/W		read back registers			
					0	read back resynchronized registers			
					1	read back buffer registers (double buffers)			

Table 49.Device power mode registerDefault values are shown highlighted.

DEV_PWR_MODE (address 0002h)								
Bit	Symbol	Access	Value	Description				
1 to 0	DEV_PWR_MOD[1:0]	R/W	00	device power mode; reserved				

Table 50.Chip type registerDefault values are shown highlighted.

CHIP_TYPE (address 0003h)							
Bit	Symbol	Access	Value	Description			
7 to 0	CHIP_TYPE[7:0]	R	0000 0100	chip type; high-speed DAC			

Datasheet

Table 51. Chip registers

Default values are	shown	highlighted.
--------------------	-------	--------------

Address	Register	Bit	Symbol	Access	Value	Description
0004h	CHIP_ID_0	7 to 0	CHIP_ID_0[7:0]	R		identification of the chip D4h: DAC1653D Low Common Mode F4h: DAC1658D High Common Mode
0005h	CHIP_ID_1	7 to 0	CHIP_ID_1[7:0]	R		identification of the chip
0006h	CHIP_VS	7 to 0	CHIP_VS[7:0]	R		version

Table 52. Chip vendor identification registers

Chip ID as defined per USB ID repository.

Address	Register	Bit	Symbol	Access Valu	ue	Description
000Ch	VEND_ID_LSB	7 to 0	VEND_ID[7:0]	R		IDT vendor identification (LSB)
000Dh	VEND_ID_MSB	7 to 0	VEND_ID[15:8]	R		IDT vendor identification (MSB)

Table 53.SPI configuration registerDefault values are shown highlighted.

SPI_CFG_C (address 000Fh)							
Bit	Symbol	Access	Value	Description			
Г О	TRANSFER_BIT	R/W		transfer double-buffered registers (auto-clear)			
			0	double-buffered registers preserve current value			
			1	double-buffered registers are updated with values that are set using SPI			

11.12.2 Dual DAC core block

This block of registers specifies the main analog features of the DAC cores.

11.12.2.1 Dual DAC core block register allocation map

Table 54 shows an overview of all the dual DAC core registers.

 Table 54.
 Dual DAC core block register allocation map

Addr.	Register name	R/W				Bit d	efinition				Default
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0020h	PON_DDC_CFG_0	R/W	SEL_CLK	BGAP_ PON	RESERVED[1:0]	DAC_B_ PON	RESERVED	DAC_A_ PON	RESERVED	FFh
0022h	WCLKGENCFG	R/W	CLK_ MON_ RST	CLK_GEN_ EN_DIV	CLK_GEN_ INIT_DIV	-	WCLK_DIV _BYP	WC	LK_DIV_SEL[2:0]	52h
0024h	HRES_AUC_DAC	R/W	RESER VED	BYP_HRES _AUX_DAC			RESER	RVED[5:0]			FFh
0027h	PON_DCKDIV_CF G	R/W	PON_DCK DIV_2	PON_DCK DIV_1	-	-	-	-	-	-	00h
002Bh	MDS_MISC_CFG	R/W	-	- MDS_ MDS RESERVED[3:0] SYSREF_ SYSREF_ POL_W POL_E							88h
0032h	DCKDIV_CFG	R/W	CLKDIV_S	EL_DIV[1:0]	CLKDIV_RS T	CLKDIV_S EL_FREQ	CLKDIV_B YP	CLKDI	V_SEL_PHAS	SE[2:0]	88h
0037h	DAC_A_AGAIN_ LSB	R/W				DAC_A_	AGAIN[7:0]				20h
0038h	DAC_A_AGAIN_ MSB	R/W	DAC_A_ AGAIN_ PON	-	-	-	-	DAC_A_ AGAIN_X2	DAC_A_/	AGAIN[9:8]	83h
0039h	DAC_B_AGAIN_ LSB	R/W				DAC_B_	AGAIN[7:0]				20h
003Ah	DAC_B_AGAIN_ MSB	R/W	DAC_B_ AGAIN_ PON	-	-	-	-	DAC_B_ AGAIN_X2	DAC_B_/	AGAIN[9:8]	83h
003Bh	DAC_A_AUX_LSB	R/W				DAC_A	_AUX[7:0]				00h
003Ch	DAC_A_AUX_MSB	R/W	DAC_A_ AUX_PON	-	-	-	-	-	DAC_A	_AUX[9:8]	82h
003Dh	DAC_B_AUX_LSB	R/W				DAC_B	_AUX[7:0]				00h
003Eh	DAC_B_AUX_MSB	R/W	DAC_B_ AUX_PON	-	-	-	-	-	DAC_B	_AUX[9:8]	82h

IDT: Itegrated Device Technology

AC1653D/DAC1658D

Datasheet

Rev. 2.41 — 28 April 2014

DAC1653D; DAC

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.2.2 Dual DAC core block bit definition detailed description

The tables in this section contain detailed descriptions of the dual DAC core registers.

 Table 55.
 Dual DAC core power configuration register

Default values are shown highlighted.

PON_DD	PON_DDC_CFG_0 (address 0020h)									
Bit	Symbol	Access	Value	Description						
7	SEL_CLK	R/W	0	DAC clock inactive						
			1	DAC clock provided via clock input						
6	BGAP_PON	R/W	0	Bandgap references power-down						
			1	Bandgap references enabled						
5 to 4	RESERVED	R/W	11	reserved to 11						
3	DAC_B_PON	R/W	0	DAC B power-down						
			1	DAC B enabled						
2	RESERVED	R/W	1	reserved to 1						
1	DAC_A_PON	R/W	0	DAC A power-down						
			1	DAC A enabled						
0	RESERVED	R/W	1	reserved to 1						

Table 56.Word clock generation configuration registerDefault values are shown highlighted.

WCLK_	WCLK_GEN_CFG (address 0022h)								
Bit	Symbol	Access	Value	Description					
7	CLK_MON_RST	R/W	0	no action					
			1	reset clk_mon_flag					
6	CLK_GEN_EN_DIV	R	0	disable divide detector					
			1	enable divide dectector					
5	CLK_GEN_INIT_DIV	R/W	0	free running mode					
			1	clear CLK_GEN divider					
3	WCLK_DIV_BYP	R/W	0	word clock depends on wclk_div_sel					
			1	WCLK = DAC clock					
2 to 0	WCLK_DIV_SEL[2:0]	R/W	000	WCLK = DAC clock / 2 (see <u>Table 25</u>)					
			001	WCLK = DAC clock / 3					
			010	WCLK = DAC clock / 4					
			011	WCLK = DAC clock / 6					
			100	WCLK = DAC clock / 8					
			101	WCLK = DAC clock / 12					
			110	WCLK = DAC clock / 16					
			111	WCLK = DAC clock / 24					

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 57. High resolution auxiliary DAC registerDefault values are shown highlighted.

HRES_AUX_DAC (address 0024h)							
Bit	Symbol	Access	Value	Description			
7	RESERVED	R/W	1	reserved			
6	BYP_HRES_AUX_DAC	R/W	0	enable high resolution auxiliary DACs mode			
			1	bypass high resolution auxiliary DACs mode			
5 to 0	RESERVED[5:0]	R/W	11111	reserved			

Table 58.Power On Clock Divider buffer configuration registerDefault values are shown highlighted.

PON_DCKDIV_CFG (address 0027h)							
Bit	Symbol	Access	Value	Description			
7	PON_DCKDIV_2	R/W	0	power off			
			1	power on			
6	PON_DCKDIV_1	R/W	0	power off			
			1	power on			

Table 59. MDS SYSREF miscellaneous configuration register Default values are shown highlighted.

Default values are snown nighlighted.

MDS_MIS	MDS_MISC_CFG (address 002Bh)							
Bit	Symbol	Access	Value	Description				
7	RESERVED to 0		0	SYSREF signal used asynchronously				
6	MDS_SYSREF_POL_W	R/W	0	normal use				
			1	SYSREF_W is inverted				
5	MDS_SYSREF_POL_E	R/W	0	normal use				
			1	SYSREF_E is inverted				
4	NOT USED	-	-	-				
3 to 0	RESERVED	R/W	1000	reserved				

Table 60.Input clock divider registerDefault values are shown highlighted.

DCKD	IV_CFG (address 0032h)			
Bit	Symbol	Access	Value	Description
7 to 6	CLKDIV_SEL_DIV[1:0]	R/W	00	DAC clock =CLK IN / 2
			01	DAC clock =CLK IN / 4
			10	DAC clock =CLK IN / 6
			11	DAC clock =CLK IN / 8
6	CLKDIV_RST	R/W	0	no action
			1	reset DAC clock dividers
4	CLKDIV_SEL_FREQ	R/W	0	low frequency mode
			1	high frequency mode
3	CLKDIV_CLK_BYP	R/W	0	DAC clock depend of CLKDIV_SEL_DIV[1:0]
			1	DAC clock = CLK IN (dividers and phase are bypassed)

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 60.Input clock divider register ...continuedDefault values are shown highlighted.

DCKDI	DCKDIV_CFG (address 0032h)								
Bit	Symbol	Access	Value	Description					
2 to 0	CLKDIV_SEL_PHASE[2:0]	R/W	000	DAC clock phase = 0					
			001	DAC clock phase = 1 x (CLK IN period) /2					
			010	DAC clock phase = 2 x (CLK IN period) /2					
			011	DAC clock phase = 3 x (CLK IN period) /2					
			100	DAC clock phase = 4 x (CLK IN period) /2					
			101	DAC clock phase = 5 x (CLK IN period) /2					
			110	DAC clock phase = 6 x (CLK IN period) /2					
			111	DAC clock phase = 7 x (CLK IN period) / 2					

Table 61. Analog gain control registersDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0037h	DAC_A_AGAIN_LSB	7 to 0	DAC_A_AGAIN[7:0]	R/W	-	least significant 8 bits for analog gain DAC A
0038h	DAC_A_AGAIN_MSB	7	DAC_A_AGAIN_	R/W		Analog gain DAC A power
			PON		0	off
					1	on (see Section 11.5)
		2	DAC_A_AGAIN_X2		0	off
					1	output current doubled range
		1 to 0	DAC_A_AGAIN[9:8]		-	most significant 2 bits for analog gain DAC A
0039h	DAC_B_AGAIN_LSB	7 to 0	DAC_B_AGAIN[7:0]	R/W	-	least significant 8 bits for analog gain DAC B
003Ah	DAC_B_AGAIN_MSB	7	DAC_B_AGAIN_ PON	R/W	-	Analog gain DAC B power
					0	off
					1	on (see Section 11.5)
		2	DAC_B_AGAIN_X2		0	off
					1	output current doubled range
		1 to 0	DAC_B_AGAIN[9:8]			most significant 2 bits for analog gain DAC B

 Table 62.
 Auxiliary DACs registers

 Default values are shown highlighted.

Doluult vu								
Address	Register	Bit	Symbol	Access	Value	Description		
003Bh	DAC_A_AUX_LSB	7 to 0	DAC_A_AUX[7:0]	R/W	-	least significant 8 bits for auxiliary DAC A		
003Ch	DAC_A_AUX_MSB	7	DAC_A_AUX_PON	R/W		auxiliary DAC A power		
					1	on (see <u>Section 11.5.2.1</u>)		
					0	off		
		1 to 0	DAC_A_AUX[9:8]		-	most significant 2 bits for auxiliary		

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 Table 62. Auxiliary DACs registers ...continued

 Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
003Dh	DAC_B_AUX_LSB	7 to 0	DAC_B_AUX[7:0]	R/W	-	least significant 8 bits for auxiliary DAC B
003Eh	DAC_B_AUX_MSB	7	DAC_B_AUX_PON	R/W		auxiliary DAC B power
					1	on (see Section 11.5.2.1)
					0	off
		1 to 0	DAC_B_AUX[9:8]		-	most significant 2 bits for auxiliary DAC B

11.12.3 Main controls block

This block of registers specifies the main configuration of the different clocking systems used in the DAC165xD.

11.12.3.1 Main controls block register allocation map

Table 63 shows an overview of all the main controls registers.

 Table 63.
 Main controls block register allocation map

Addr.	Register name	R/W		Bit definition						Default	
Hex		_	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0040h	MAIN_CTRL	R/W		PD_P_LN	I_RX[3:0]		RESER'	VED[1:0]	FORCE_ RST_DCLK	FORCE_ RST_ WCLK	03h
0042h	WATCHDOG	R/W	-	-	-	REINIT_ MC_ALAR M-DIS	WD_SYNC _SENS	WD_ REINIT_ DISABLE	WD_BARK_ ONCE	WD_ DISABLE	00h
0043h	PD_ANA_CTRL	R/W	-	-	-	-	-	-	RTFX_ENA _PD	PD_ANA_E NA	03h
0047h	EHS_CTRL	R/W	-	IO_DIR[1:0] IO_EHS[1:0] SDO_EHS[1:0]					HS[1:0]	2Ah	
004Bh	CDI_CTRL	R/W	CDI_SW_R ST	CDI_SW_R CDI_MODE[1:0]					DDE[1:0]	00h	
0050h	IO_MUX_CTRL0	R/W				IO_SEL	_0[7:0]				15h
0051h	IO_MUX_CTRL1	R/W				IO_SEL	_1[7:0]				15h
0052h	IO_MUX_CTRL2	R/W		IO_SEL_2[7:0] 00						00h	
0054h	MON_DCLK	R	MON_ DCLK_ STOP	MON						uuh	
0055h	MON_DCLK_ FLAGS	R				MON_DCLK_	FLAGS[7:0]				uuh

Rev. 2.41 — 28 April 2014

DAC1653D; DAC

[1] u = undefined at power-up or after reset.

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

AC1653D/DAC1658D

Table 64 Main controls register

DAC1653D/DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.3.2 Main controls block bit definition detailed description

The tables in this section contain detailed descriptions of the main controls registers.

Default	Default values are shown highlighted.							
MAIN_0	MAIN_CTRL (address 0040h)							
Bit	Symbol	Access	Value	Description				
7 to 4	PD_P_LN_RX[3:0]	R/W	-	power-down of the physical lane receiver bit 7 = lane 3 bit 6 = lane 2 bit 5 = lane 1 bit 4 = lane 0				
3 to 2	RESERVED[1:0]	R/W	00	reserved to 00				
1	FORCE_RST_DCLK	R/W		digital clock reset				
			0	release digital clock reset				
			1	force digital clock reset				
0	FORCE_RST_WCLK	R/W		work clock reset				
			0	release work clock reset				
			1	force work clock reset				

Table 65. Watch Dog control register

Default values are shown highlighted.

WATCH	NATCHDOG (address 0042h)							
Bit	Symbol	Access	Value	Description				
4	REINIT_MC_ALARM_DIS							
3	WD_SYNC_SENS							
2	WD_REINIT_DISABLE							
1	WD_BARK_ONCE							
0	WD_DISABLE			disable the watchdog for PRBS testing (need to write 1)				

Table 66.Power Down control registerDefault values are shown highlighted.

PD_AN/	PD_ANA_CTRL (address 0043h)						
Bit	Symbol	Access	Value	Description			
1	RFTX_ENA_PD	R/W		use RF_ENABLE pin as a trigger for Power Down mode			
			0	RF_ENABLE pin is not used for power Down mode			
			1	RF_ENABLE pin is used for Power Down mode			
0	PD_ANA_ENA	R/W	0	no action			
			1	Power Down analog (except clocks)			

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 67. EHS control register

Default values are shown highlighted.

EHS_CTRL (address 0047h)						
Bit	Symbol	Access	Value	Description		
5 to 4	IO_DIR[1:0]	R/W	10	IO control direction , 1 = input, 0 = output		
3 to 2	IO_EHS[1:0]	R/W	10	IO EHS-drive control (see next table)		
1 to 0	SDO_EHS[1:0]	R/W	10	SDO/SDIO EHS-drive control (see next table)		

Table 68. EHS modes

Programmable current drive strength.

xx_EHS					
Value	Output mode				
00	very low noise / low speed				
01	medium noise / fast speed				
10	low noise / medium speed				
11	high noise / high speed				

Table 69. Clock domain interface reset register Default values are shown highlighted.

CDI_CT	CDI_CTRL (address 004Bh)								
Bit	Symbol	Access	Value	Description					
7	CDI_SW_RST	R/W		CDI block software reset control					
			0	no action					
			1	perform a software reset on CDI					
1 to 0	CDI_MOD[1:0]	R/W		CDI mode specification (see Table 27)					
			00	cdi_mode 0 (^2 mode)					
			01	cdi_mode 1 (^4 mode)					
			10	cdi_mode 2 (^8 mode)					
			11	not used					

Table 70. IO_MUX and MON_DCLK registers Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0050h	IO_MUX_CTRL_0	7 to 0	IO_SEL_0[7:0]	R/W	-	io_mux select for IO 0
0051h	IO_MUX_CTRL_1	7 to 0	IO_SEL_1[7:0]	R/W	-	io_mux select for IO 1
0052h	IO_MUX_CTRL_2	7 to 0	IO_SEL_2[7:0]	R/W	-	io_mux select for io[1:0]
0054h	MON_DCLK	7	MON_DCLK_STOP	R	-	stop digital clock monitoring
		5	NO_ACT_F20_FLAG		-	indicates inactivity of the recovered clock in the CDR
		4	ILA_RCV_FLAG		-	indicates that ILA-sequence has been received
		3 to 0	MON_DCLK[3:0]		-	digital clock monitoring
0055h	MON_DCLK_FLAGS	7 to 0	MON_DCLK_FLAGS[7:0]	R	-	digital clock monitoring flags

11.12.4 Interface DAC DSP block

This block of registers specifies the main features of the digital signal processing of the DAC165xD.

11.12.4.1 Interface DAC DSP block register allocation map

Table 71 shows an overview all the interface DAC DSP registers.

 Table 71.
 Interface DAC DSP register allocation map

Addr.	Register name	R/W				Bit defi	inition				Default	
Hex		1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 4 Bit 3 Bit 2 Bit 1 Bit 0				Hex	
0060h	TX_CFG	R/W	NCO_EN	NCO_LP_ SEL	INV_SINC_ SEL	M	MODULATION[2:0] INTERPOLATION[1:0]					
0062h	NCO_PH_OFFSET_ LSB ^[2]	R/W		NCO_PH_OFFSET[7:0]								
0063h	NCO_PH_OFFSET_ MSB ^[2]	R/W		NCO_PH_OFFSET[15:8]								
0064h	NCO_FREQ_B0 ^[2]	R/W				NCO_FR	REQ[7:0]				66h	
0065h	NCO_FREQ_B1 ^[2]	R/W				NCO_FR	EQ[15:8]				66h	
0066h	NCO_FREQ_B2 ^[2]	R/W				NCO_FRE	EQ[23:16]				66h	
0067h	NCO_FREQ_B3 ^[2]	R/W				NCO_FRE	EQ[31:24]				66h	
0068h	NCO_FREQ_B4 ^[2]	R/W		NCO_FREQ[39:32] 2							26h	
0069h	PH_CORR_CTRL_0 ^[2]	R/W		PH_CORR[7:0]							00h	
006Ah	PH_CORR_CTRL_1 ^[2]	R/W	PH_COR_ EN	PH_COR PH_CORR[12:8]						00h		
006Bh	DAC_A_DGAIN_ LSB ^[2]	R/W		DAC_A_DGAIN[7:0]						50h		
006Ch	DAC_A_DGAIN_ MSB ^[2]	R/W	-	-	-	-		DAC_A_DG	AIN[11:8]		0Bh	
006Dh	DAC_B_DGAIN_ LSB ^[2]	R/W				DAC_B_D	GAIN[7:0]				50h	
006Eh	DAC_B_DGAIN_ MSB ^[2]	R/W	-	-	-	-		DAC_B_DG	AIN[11:8]		0Bh	
006Fh	DAC_OUT_CTRL ^[2]	R/W	-	-	-	-	A_DGAIN_ EN	B_DGAIN_ EN	MINUS_ 3DB	LVL_DET_ EN	00h	
0070h	DAC_LVL_DET ^[2]	R/W				LVL_DE	ET[7:0]				FFh	
0071h	DAC_A_OFFSET_ LSB ^[2]	R/W		DAC_A_OFFSET[7:0]						00h		
0072h	DAC_A_OFFSET_ MSB ^[2]	R/W				DAC_A_OF	FSET[15:8]				00h	
0073h	DAC_B_OFFSET_	R/W				DAC_B_OF	FSET[7:0]				00h	

Datasheet

AC1653D/DAC1658D

DAC1653D; DAC

14. All rights reserved. 103 of 168

Table 71. Interface DAC DSP register allocation map ...continued

Addr.	Register name	R/W		Bit definition D							Default
Hex			Bit 7	Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0							Hex
0074h	DAC_B_OFFSET_ MSB ^[2]	R/W		DAC_B_OFFSET[15:8]							00h
0075h	CODING_IQ ^[2]	R/W	CODING_ IQ	CODING_ - - I_LVL_CTRL[1:0] Q_LVL_CTRL[1:0] IQ IQ IQ IQ IQ						CTRL[1:0]	85h
0076h	I_DC_LVL_LSB ^[2]	R/W		I_DC_LVL[7:0] 0 ⁴							
0077h	I_DC_LVL_MSB ^[2]	R/W		I_DC_LVL[15:8] 8							80h
0078h	Q_DC_LVL_LSB ^[2]	R/W		Q_DC_LVL[7:0] 01							00h
0079h	Q_DC_LVL_MSB ^[2]	R/W				Q_DC_L\	/L[15:8]				80h
007Ah	SPD_CTRL ^[2]	R/W	SPD_EN	-	-	-		SPD_WINL	ENGTH		00h
007Bh	SPD_THRESHOLD_ LSB ^[2]	R/W		SPD_THRESHOLD[7:0] 00							00h
007Ch	SPD_THRESHOLD_ MSB ^[2]	R/W		SPD_THRESHOLD[15:8] 00h						00h	
007Dh	SPD_AVG_LSB	R				SPD_AV	′G[7:0]				uuh
007Eh	SPD_AVG_MSB	R				SPD_AV	G[15:8]				uuh

[1] u = undefined at power-up or after reset.

[2] These registers use a double buffer (see Section 11.2.1.3).

₽

Datasheet

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

AC1653D/DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.4.2 Interface DAC DSP block bit definition detailed description

The tables in this section contain detailed descriptions of the interface DAC DSP registers.

Table 72.	Transmission configuration register
Default valu	es are shown highlighted.

TX_CFC	G (address 0060h)			
Bit	Symbol	Access	Value	Description
7	NCO_EN	R/W		NCO (see Section 11.2.3.4)
			0	NCO disabled, the NCO phase is reset to 0
			1	NCO enabled
6	NCO_LP_SEL	R/W		NCO low-power selection (see Section 11.2.3.5)
			0	low-power NCO disabled
			1	low-power NCO enabled (frequency and phase given by the five MSB of the registers 68h and 63h, respectively)
5	INV_SIN_SEL	R/W		inverse (sin x) / x function selection (see <u>Section 11.2.3.8</u>)
			0	disabled
			1	enabled
4 to 2	MODULATION[2:0]	R/W		modulation (see Section 11.2.3.3)
			000	dual DAC: no modulation
			001	positive upper single sideband upconversion
			010	positive lower single sideband upconversion
			011	negative upper single sideband upconversion
			100	negative lower single sideband upconversion
			others	not defined
1 to 0	INTERPOLATION[1:0]	R/W		interpolation (see Section 11.2.3.2)
			00	no interpolation
			01	×2 interpolation
			10	×4 interpolation
			11	×8 interpolation

Table 73.Numerically controlled oscillator phase offset registersDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0062h	NCO_PH_OFFSET_LSB	7 to 0	NCO_PH_ OFFSET[7:0]	R/W	-	least significant 8 bits for the NCO phase offset
0063h	NCO_PH_OFFSET_MSB	7 to 0	NCO_PH_ OFFSET[15:8]	R/W	-	most significant 8 bits for the NCO phase offset (see <u>Section 11.2.3.4</u>)

Datasheet

Table 74. Numerically controlled oscillator frequency registers Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0064h	NCO_FREQ_B0	7 to 0	NCO_FREQ[7:0]	R/W		NCO frequency (see Section 11.2.3.4)
					-	least significant 8 bits for the NCO frequency setting
0065h	NCO_FREQ_B1	7 to 0	NCO_FREQ[15:8]	R/W	-	intermediate 8 bits for the NCO frequency setting
0066h	NCO_FREQ_B2	7 to 0	NCO_FREQ[23:16]	R/W	-	intermediate 8 bits for the NCO frequency setting
0067h	NCO_FREQ_B3	7 to 0	NCO_FREQ[31:24]	R/W	-	intermediate 8 bits for the NCO frequency setting
0068h	NCO_FREQ_B4	7 to 0	NCO_FREQ[39:32]	R/W	-	most significant 8 bits for the NCO frequency setting

Table 75. DAC output phase correction factor registers Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0069h	PH_CORR_CTRL_0	7 to 0	PH_CORR[7:0]	R/W		DAC output phase correction factor (LSB)
					-	least significant 8 bits for the DAC output phase correction factor
006Ah	PH_CORR_CTRL_1	7	PH_CORR_EN	R/W		DAC output phase correction control
					0	DAC output phase correction disabled
					1	DAC output phase correction enabled (see <u>Section 11.2.3.7</u>)
		4 to 0	PH_CORR[12:8]	R/W		DAC output phase correction factor (MSB)
					-	most significant 5 bits for the DAC output phase correction factor

Table 76.DAC digital gain control registersDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
006Bh	DAC_A_DGAIN_LSB	7 to 0	DAC_A_DGAIN[7:0]	R/W		DAC A digital gain control (see Section 11.2.3.9)
					-	least significant 8 bits for DAC A digital gain
006Ch	DAC_A_DGAIN_MSB	3 to 0	DAC_A_DGAIN[11:8]	R/W	-	most significant 4 bits for DAC A digital gain
006Dh	DAC_B_DGAIN_LSB	7 to 0	DAC_B_DGAIN[7:0]	R/W		DAC B digital gain control (see Section 11.2.3.9)
					-	least significant 8 bits for DAC B digital gain
006Eh	DAC_B_DGAIN_MSB	3 to 0	DAC_B_DGAIN[11:8]	R/W	-	most significant 4 bits for DAC B digital gain

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 77. DAC output control register Default values are shown highlighted.

DAC_O	DAC_OUT_CTRL (address 006Fh)							
Bit	Symbol	Access	Value	Description				
3	DAC_A_DGAIN_EN	R/W		DAC A digital gain control (see Section 11.2.3.9)				
			0	disable				
			1	enable				
2	DAC_B_DGAIN_EN	R/W		DAC B digital gain control (see Section 11.2.3.9)				
			0	disable				
			1	enable				
1	MINUS_3DB	R/W		DAC attenuation control (see Section 11.2.3.6)				
			0	unity gain				
			1	–3 dB gain				
0	LVL_DET_EN	R/W		Digital DAC output level detector control				
			0	disable				
			1	enable (see Section 11.2.4.1)				

Table 78.Register level detectorDefault values are shown highlighted.

DAC_LVL_DET (address 0070h)							
Bit	Symbol	Access	Value	Description			
7 to 0	LVL_DET[7:0]	R/W	-	Digital DAC output level detector value (see Section 11.2.4.1)			

Table 79.DAC digital offset registersDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0071h	DAC_A_OFFSET_ LSB	7 to 0	DAC_A_ OFFSET[7:0]	R/W		DAC A digital offset value (see <u>Section 11.2.3.11</u>)
					-	least significant 8 bits for DAC A digital offset
0072h	DAC_A_OFFSET_ MSB	3 to 0	DAC_A_ OFFSET[15:8]	R/W	-	most significant 8 bits for DAC A digital offset
0073h	DAC_B_OFFSET_ LSB	7 to 0	DAC_B_ OFFSET[7:0]	R/W		DAC B digital offset value (see <u>Section 11.2.3.11</u>)
					-	least significant 8 bits for DAC B digital offset
0074h	DAC_B_OFFSET_ MSB	3 to 0	DAC_B_ OFFSET[15:8]	R/W	-	most significant 8 bits for DAC B digital offset

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 80.Input word coding registerDefault values are shown highlighted.

CODING_IQ (address 0075h)							
Bit	Symbol	Access	Value	Description			
7	CODING_IQ	R/W	-	coding of input word (see Section 11.2.3.1)			
			0	two's complement coding			
			1	unsigned format			
6 to 4	RESERVED[2:0]	R/W	000	reserved to 000			
3 to 2	I_LVL_CTRL[1:0]	R/W		specifies output from CDI for the I path			
			00	normal operation (CDI data output sent to digital signal processing input)			
			01	if end of ila = 1: normal operation			
				if end of ila = 0: digital signal processing			
				input = I_DC_LVL register value			
			10	digital signal processing input = I_DC_LVL			
			11	digital signal processing input = I_DC_LVL			
1 to 0	Q_LVL_CTRL[1:0]	R/W		specifies output from CDI for the Q path			
			00	normal operation (CDI data output sent to digital signal processing input)			
			01	if end of ila = 1: normal operation			
				if end of ila = 0: digital signal processing			
				input = Q_DC_LVL register value			
			10	digital signal processing input = Q_DC_LVL			
			11	digital signal processing input = Q_DC_LVL			

Table 81. LSB/MSB of I/Q levels register Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0076h	I_DC_LVL_LSB	7 to 0	I_DC_LVL[7:0]	R/W	-	least significant 8 bits for I_DC_LVL
0077h	I_DC_LVL_MSB	7 to 0	I_DC_LVL[15:8]	R/W	-	most significant 8 bits for I_DC_LVL
0078h	Q_DC_LVL_LSB	7 to 0	Q_DC_LVL[7:0]	R/W	-	least significant 8 bits for Q_DC_LVL
0079h	Q_DC_LVL_MSB	7 to 0	Q_DC_LVL[15:8]	R/W	-	most significant 8 bits for Q_DC_LVL

Datasheet
Datasheet

Table 82.Signal power detector control registerDefault values are shown highlighted.

SPD_C	TRL (address 007Ah)			
Bit	Symbol	Access	Value	Description
7	SPD_EN	R/W	-	Signal power detector:
			0	disabled
			1	enabled
3 to 0	SPD_WINLENGTH[3:0]	R/W		SPD averages 2 ^(winlength + 6) ; IQ pairs
			0000	average 64 pairs (2 ⁶ samples)
			0001	average 128 pairs (2 ⁷ samples)
			0010	average 256 pairs (2 ⁸ samples)
			0011	average 512 pairs (2 ⁹ samples)
			0100	average 1024 pairs (2 ¹⁰ samples)
			0101	average 2048 pairs (2 ¹¹ samples)
			0110	average 4096 pairs (2 ¹² samples)
			0111	average 8192 pairs (2 ¹³ samples)
			1000	average 16384 pairs (2 ¹⁴ samples)
			1001	average 32768 pairs (2 ¹⁵ samples)
			1010	average 65536 pairs (2 ¹⁶ samples)
			1011	average 131073 pairs (2 ¹⁷ samples)
			1100	average 262144 pairs (2 ¹⁸ samples)
			1101	average 524288 pairs (2 ¹⁹ samples)
			1110	average 1048576 pairs (2 ²⁰ samples)
			1111	average 2097152 pairs (2 ²¹ samples)

Table 83. SPD LSB/MSB registers Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
007Bh	SPD_THRESHOLD_LSB	7 to 0	SPD_THRESHOLD[7:0]	R/W	-	least significant 8 bits for SPD_THRESHOLD
007Ch	SPD_THRESHOLD_MSB	7 to 0	SPD_THRESHOLD[15:8]	R/W	-	most significant 8 bits for SPD_THRESHOLD
007Dh	SPD_AVG_LSB	7 to 0	SPD_AVG[7:0]	R	นนนน นนนน	least significant 8 bits for SPD_AVG
007Eh	SPD_AVG_MSB	7 to 0	SPD_AVG[15:8]	R	นนนน นนนน	most significant 8 bits for SPD_AVG

11.12.5 Mute, interrupt, and temperature control

This block of registers specifies the main features of the mute, interrupt and temperature control of the DAC165xD.

11.12.5.1 Mute, interrupt and temperature control register allocation map

Table 84 shows an overview all the interface Mute, interrupt and temperature control registers.

Addr.	Register name	R/W				Bit defi	nition		Bit definition						
Hex		1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex				
0080h	MUTE_CTRL_0	R/W	MUTE_EN A	SW_MUTE	ALARM_CL R	HOLD_DAT A	-	LEV_DET_E NA	LEV_SEL	1:0]	90h				
0081h	MUTE_CTRL_1	R/W	INCIDENT	_CFG[1:0]	DATA_V_IC	Q_CFG[1:0]	ALARM_	CFG[1:0]	DIRECT	_CFG[1:0]	77h				
0082h	MUTE_CTRL_2	R/W	IGN_ALAR M	IGN_RF_ EN	IGN_MDS_ BSY	IGN_ DATA_ IQ_VAL	-	ENA_ IQR_INCID ENT	ENA_ SPD_ INCI DENT	ENA_ERF_ INCIDENT	81h				
0083h	MUTE_ALARM_EN_0	R/W	DATA_IQ_ VAL	MC_MDS_ BSY	MC_LVL_ DET_OR	MC_ERR_ RPT_FLAG	MC_TEMP_ ALARM	MC_CLK_ ALIGN_ERR	MC_ DCLK_ ERR_ MON	MC_CLK_ MON	00h				
0084h	MUTE_ALARM_EN_1	R/W	-	-	-	-	-	-	IQR_ ERR	SPD_OVF	00h				
0085h	MUTE_RATE_ CTRL_0	R/W		ALARM_MUT	E_RATE[3:0]		E	DIRECT_MUTE	_RATE[3:0]	7Ch				
0086h	MUTE_RATE_ CTRL_1	R/W	I	NCIDENT_MU	ITE_RATE[3:0]		DATA_MUTE_	RATE[3:0]		7Ch				
0087h	MUTE_WAIT_ PERIOD_LSB	R/W			Ν	UTE_WAIT_	PERIOD[7:0]				40h				
0088h	MUTE_WAIT_ PERIOD_MSB	R/W			Μ	UTE_WAIT_F	PERIOD[15:8]				00h				
0089h	IQ_RANGE_LIMIT_ LSB	R/W				IQ_RANGE_	LIMIT[7:0]				00h				
008Ah	IQ_RANGE_LIMIT_ MSB	R/W	IQ_RANGE _DIS			IQ_RA	NGE_LIMIT[1	4:8]			80h				
008Ch	INTR_CTRL	R/W	-	-	-	-	INTR_RST	INTR_DCLM	K_MON_RA	NGE_[2:0]	08h				
008Dh	INTR_EN_0	R/W			INTR_EN[7:0]						00h				
008Eh	INTR_EN_1	R/W	-	INTR_E	EN[9:8]	RESERVED[4:0]					00h				
008Fh	INTR_FLAGS_0	R/W	INTR_DLP	MDS_BSY	MDS_BSY	TEMP_ ALARM	LVL_DET_ OR	CLK_ ALIGN_ERR	CLK_ MON	DCLK_ ERR_MON	uuh				

ed Device Technology

AC1653D/DAC1658D

Datasheet

Datasheet DAC1653D; DAC

1000L

ted Device Technology

Default

uuh

00h

00h

00h

00h

uuh

uuh

uuh

00h

uuh

uuh

uuh

uuh

Hex

Bit 0

-

AC1653D/DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

				ERR	CTRL_ ALARM					
0092h	TEMP_CTRL	R/W	TEMP_ SENS_ PON	TEMP_ SENS_ RST_ ALARM	TEMP_ SENS_ FULL_ RANGE	TEMP_ SENS_ TOGGLE	TEMP_ SENS_ RST_ MAX	TEMP_ SENS_ RST_ MIN	TEMP MO	_SENS_ D[1:0]
0093h	TEMP_LVL	R/W	-	-			TEMP_SEL	MAN[5:0]		
0094h	TEMP_CLK_DIV	R/W				TEMP_CLK	_DIV[7:0]			
0095h	TEMP_SENS_TIMER	R/W			-	TEMP_SENS_	TIMER[7:0]			
0096h	TEMP_OUT	R	TEMP_ SENS_ OUT	TEMP_ ALARM	TEMP_ACTUAL[5:0]					
0097h	TEMP_MAX	R	-	-			TEMP_M	AX[5:0]		
0098h	TEMP_MIN	R	-	-			TEMP_M	IN[5:0]		
0099h	DSP_SMPL_CTRL	R/W	-	-	-	DSP_ READ_SEL	DSP_ STROBE	DSP_	SMPL_SEI	_[2:0]
009Ah	DSP_READ_LSB	R				DSP_RE	AD[7:0]			
009Bh	DSP_READ_LSIB	R		DSP_READ[15:8]						
009Ch	DSP_READ_MSIB	R	DSP_READ[23:16]							
009Dh	DSP_READ_MSB	R			DSP_READ[31:24]					
[1] u = u	[1] u = undefined at power-up or after reset.									

Bit definition

Bit 3

Bit 2

Bit 1

Bit 4

_

DAC 16281 0090h INTR_FLAGS_1 R/W RPT_FLAG_ -

R/W

Table 84. Mute, interrupt and temperature control register allocation map ...continued

Bit 7

Bit 6

Bit 5

MUTE

Rev. 2.41 — 28 April 2014

Datasheet DAC

Addr.

Hex

Register name

© IDT 2014. All rights reserved. 111 of 168

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.5.2 Mute, interrupt and temperature control bit definition detailed description

The tables in this section contain detailed descriptions of the Mute, Interrupt and Temperature Sensor control registers.

Table	85.	Mute	control	registers
Defau	lt valu	es are	e shown	highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0080h	MUTE_CTRL_0			R/W		mute control (see <u>Section 11.2.3.10</u>)
		7	MUTE_ENA		0	disables mute feature
					1	enables mute feature
		6	SW_MUTE		0	no action
					1	software mute (use DIRECT_CFG)
		5	ALARM_CLR		0	no action
					1	clear alarm flags
		4	HOLD_DATA		0	disable hold feature
					1	enable hold feature
		2	LEV_DET_ENA		0	disable level detection
					1	enable level detection
		1 to 0	LEV_DET_SEL[1:0]			specify the level detectors combination (only if LEV_DET_ENA is set)
					00	no mute action
					01	mute on LEV_DET_A
					10	mute on LEV_DET_B
					11	mute on LEV_DET_A or LEV_DET_B
0081h	MUTE_CTRL_1	7 to 6	INCIDENT_CFG[1:0]	R/W	00	hard mute and mute_iq
					01	hold mute and mute_iq
					10	soft mute and mute_iq
					11	soft mute
		5 to 4	DATA_V_IQ_CFG[1:0]		00	hard mute and mute_iq
					01	hold mute and mute_iq
					10	soft mute and mute_iq
					11	soft mute
		3 to 2	ALARM_DET_CFG[1:0]		00	hard mute and mute_iq
					01	hold mute and mute_iq
					10	soft mute and mute_iq
					11	soft mute
		1 to 0	DIRECT_CFG[1:0]		00	hard mute and mute_iq
					01	hold mute and mute_iq
					10	soft mute and mute_iq
					11	soft mute

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 85.Mute control registers ... continuedDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0082h	MUTE_CTRL_2	7	IGN_ALARM	R/W	0	no action
					1	ignore alarm trigger
		6	IGN_RF_EN		0	no action
					1	ignore RF_ENABLE state
		5	IGN_MDS_BSY		0	no action
					1	ignore mds_bsy state
		4	IGN_DATA_V_IQ		0	no action
					1	ignore internal data error detection
		2	ENA_IQR_INCIDENT		0	no action
					1	enable IQ-out-of-Range as incident
		1	ENA_SPD_INCIDENT		0	no action
					1	enable SignalPowerDetector detector as incident
		0	ENA_ERF_INCIDENT		0	no action
					1	enable ErrorReportFlag (DLP) as incident

Table 86.Mute alarm enable registersDefault values are shown highlighted.

Register	Bit	Symbol	Access	Value	Description
MUTE_ALARM_EN_0					enables alarm condition for mute action (see <u>Section 11.2.3.10</u>)
	7	DATA_IQ_VAL	R/W	0	$1 \rightarrow 0$
				1	$0 \rightarrow 1$
	6	MC_MDS_BSY	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	5	MC_LVL_DET_OR	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	4	MC_ERR_RPT_FLAG	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	3	MC_TEMP_ALARM	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	2	MC_CLK_ALIGN_ERR	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	1	MC_DCLK_ERR_MON	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	0	MC_CLK_MON	R/W	0	$0 \rightarrow 1$
				1	$1 \rightarrow 0$
	Register MUTE_ALARM_EN_0	Register Bit MUTE_ALARM_EN_0 7 7 6 5 4 3 2 1 0	RegisterBitSymbolMUTE_ALARM_EN_07DATA_IQ_VAL7DATA_IQ_VAL6MC_MDS_BSY6MC_LVL_DET_OR5MC_LVL_DET_OR4MC_ERR_RPT_FLAG3MC_TEMP_ALARM2MC_CLK_ALIGN_ERR1MC_DCLK_ERR_MON0MC_CLK_MON	RegisterBitSymbolAccessMUTE_ALARM_EN_07DATA_IQ_VALR/W7DATA_IQ_VALR/W6MC_MDS_BSYR/W5MC_LVL_DET_ORR/W4MC_ERR_RPT_FLAGR/W3MC_TEMP_ALARMR/W2MC_OLK_ALIGN_ERRR/W1MC_DCLK_ERR_MONR/W	Register Bit Symbol Access Value MUTE_ALARM_EN_0

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 86. Mute alarm enable registers ... continued Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0084h	MUTE_ALARM_EN_1	1	IQ_RANGE	R/W	0	0 ightarrow 1
					1	$1 \rightarrow 0$
		0	SPD_OVF	R/W	0	0 ightarrow 1
					1	$1 \rightarrow 0$

Table 87.Mute rate control registersDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0085h	MUTE_RATE_CTRL_0	7 to 4	ALARM_MUTE_RATE[3:0]	R/W	0111	sets mute and unmute rate in case of an alarm event
		3 to 0	DIRECT_MUTE_RATE[3:0]	R/W	1100	sets mute and unmute rate in case of direct mute control
0086h	MUTE_RATE_CTRL_1	7 to 4	INCIDENT_MUTE_RATE[3:0]	R/W	0111	sets mute and unmute rate in case of an incident
		3 to 0	DATA_MUTE_RATE[3:0]	R/W	1100	sets mute and unmute rate in case of a data error detection

Table 88. Mute wait period LSB/MSB registers

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0087h	MUTE_WAIT_ PERIOD_LSB	7 to 0	MUTE_WAIT_PERIOD[7:0]	R/W	0100 0000	least significant 8 bits for MUTE_WAIT_PERIOD
0088h	MUTE_WAIT_ PERIOD_MSB	7 to 0	MUTE_WAIT_PERIOD[15:8]	R/W	0000 0000	most significant 8 bits for MUTE_WAIT_PERIOD

Table 89. IQ range limit LSB/MSB registers

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0089h	IQ_RANGE_LIMIT_LSB	7 to 0	IQ_RANGE_LIMIT[7:0]	R/W	0000 0000	least significant 8 bits for IQ_RANGE_LIMIT
008Ah	IQ_RANGE_LIMIT_MSB	7	IQ_RANGE_DIS	R/W	1	disable IQ-out-of-Range detector
		6 to 0	IQ_RANGE_LIMIT[14:8]	R/W	0000 0000	most significant 8 bits for IQ_RANGE_LIMIT

Datasheet

Table 90.Interrupt control registerDefault values are shown highlighted.

INTR_C	NTR_CTRL (address 008Ch)							
Bit	Symbol	Access	Value	Description				
3	INTR_RST	R/W		reset INTERRUPT signal and Interrupts flags (intr_flags[9:0])				
			0	disabled				
			1	enabled (see Section 11.8)				
2 to 0	INTR_DCLK_MON_RANGE[2:0]	R/W		interrupt condition as related to the DCLK monitoring (see Figure 59)				
			000	interrupt when CDI buffer drifts to (1 9)				
			001	interrupt when CDI buffer drifts to (2 8)				
			010	interrupt when CDI buffer drifts to (3 7)				
			011	interrupt when CDI buffer drifts to (4 6)				
			100	interrupt when CDI buffer drifts to (5)				
			others	interrupt disabled				

Table 91. Interrupt enable registers Default values are shown highlighted.

	5 5					
Address	Register	Bit	Symbol	Access	Value	Description
008Dh	INTR_EN_0	7 to 0	INTR_EN[7:0]	R/W	0000 0000	enables usage of intr_src[7:0] for intr_flags[7:0]
008E	INTR_EN_1	6 to 5	INTR_EN[9:8]	R/W	0000 0000	enables usage of intr_src[9:8] for intr_flags[9:8] (see Table 92)

Table 92.Interrupt flags registersDefault values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
008Fh	INTR_FLAGS_0	7	INTR_DLP	R	-	intr_dlp active
		6	MDS_BSY		-	indicates transition $1 \rightarrow 0$ on mds_busy
		5	MDS_BSY		-	indicates transition $0 \rightarrow 1$ on mds_busy
		4	TEMP_ALARM		-	indicates transition $0 \rightarrow 1$ on temp_alarm
		3	CLIP_DET_OR		-	indicates transition $0 \rightarrow 1$ on clip_detect (a or b)
		2	CLK_ALIGN_ERR		-	indicates transition $0 \rightarrow 1$ on clock_align_monitor
		1	CLK_MON		-	indicates transition $0 \rightarrow 1$ on clkmon (div8)
		0	MON_DCLK_ERR		-	indicates transition $0 \rightarrow 1$ on mon dclk error flags

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 92. Interrupt flags registers ...continued Default values are shown highlighted.

	0 0					
Address	Register	Bit	Symbol	Access	Value	Description
0090h	INTR_FLAGS_1	6	ERR_RPT_FLAG	R	-	indicates transition $0 \rightarrow 1$ on err_rpt_flag
		5	MUTE_CTRL_ ALARM		-	indicates alarm event detected by mute_ctrl
		4 to 0	RESERVED		-	reserved

Table 93.Temperature Sensor control registerDefault values are shown highlighted.

TEMP_S	TEMP_SENS_CTRL register (address 0092h)						
Bit	Symbol	Access	Value	Description			
7	TEMP_SENS_PON	R/W		temperature sensor power			
			0	disabled (power-down)			
			1	enabled (see Section 11.6)			
6	TEMP_SENS_RST_ALARM	R/W		reset temperature sensor alarm			
			0	no action			
			1	reset temp_sensor_alarm flag			
5	TEMP_SENS_FULLRANGE	R/W		temperature sensor full range			
			0	sweep 22 to 63			
			1	sweep 0 to 63			
4	TEMP_SENS_TOGGLE	R/W		temperature sensor toggle			
			0	wait for $0 \rightarrow 1$ transition			
			1	wait for $1 \rightarrow 0$ transition			
3	TEMP_SENS_RST_MAX	R/W		temperature sensor, maximum reset			
			0	no action			
			1	reset temp_max_value			
2	TEMP_SENS_RST_MIN	R/W		temperature sensor, minimum reset			
			0	no action			
			1	reset temp_min_value			
1 to 0	TEMP_SENS_MOD[1:0]	R/W		temperature sensor mode			
			00	raw mode (direct access to temperature sensor)			
			01	one-shot measurement			
			10	continuous measurement			
			11	continuous measurement (hold temp_alarm_flag)			

Datasheet

Table 94. Temperature Sensor level register Default values are shown highlighted

Delaun	Delaut values are shown nightighted.						
TEMP_LVL (address 0093h)							
Bit	Symbol	Access	Value	Description			
5 to 0	TEMP_SEL_MAN[5:0]	R/W	-	temperature sensor level selection usage depends on ts_mode: TEMP_SENS_MOD = "00": applied directly to temp_sensor			
				TEMP_SENS_MOD = "others": sets threshold for temp_alarm			

Table 95.Temperature Sensor clock divider registerDefault values are shown highlighted.

TEMP_CLK_DIV (address 0094h)						
Bit	Symbol	Access	Value	Description		
7 to 0	TEMP_CLK_DIV[7:0]	R/W	-	sets clock frequency temp_sensor_ctrl (dclk / temp_sens_clkdiv)		

Table 96. Temperature Sensor timer register

Default values are shown highlighted.

TEMP_SENS_TIMER (address 0095h)						
Bit	Symbol	Access	Value	Description		
7 to 0	TEMP_SENS_TIMER[7:0]	R/W	-	sets number of wait cycles between measurements		

Table 97. Temperature Sensor output register

Default values are shown highlighted.

TEMP_SENS_OUT (address 0096h)							
Bit	Symbol	Access	Value	Description			
7	TEMP_SENS_OUT	R	-	Temperature Sensor output (for use in raw mode)			
6	TEMP_ALARM	R	-	temp_actual > temp_threshold flag			
5 to 0	TEMP_ACTUAL[5:0]	R	-	temp_actual (result of last measurement)			

Table 98. Maximum temperature register

Default values are shown highlighted.

TEMP_MAX (address 0097h)						
Bit	Symbol	Access	Value	Description		
5 to 0	TEMP_MAX[5:0]	R	-	maximum temp_actual found since last ts_rst_max		

Table 99.Minimum temperature registerDefault values are shown highlighted.

TEMP_MIN (address 0098h)						
Bit	Symbol	Access	Value	Description		
5 to 0	TEMP_MIN[5:0]	R	-	minimum temp_actual found since last ts_rst_max		

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 Table 100. DSP sample control register

 Default values are shown highlighted.

DSP_S	DSP_SMPL_CTRL (address 0099h)						
Bit	Symbol	Access	Value	Description			
4	DSP_READ_SEL	R/W	0	reserved			
			1	store sample from DSP to buffer DSP_READ[31:0] ← DSP_SMPL[31:0]			
3	DSP_STROBE	R/W	0	no action			
			1	update DSP sample			
2 to 0	DSP_SMPL_SEL[2:0]	R/W	000	$DSP_SMPL \leftarrow Q_0 and I_0$			
			001	$DSP_SMPL \leftarrow Q_1 \text{ and } I_1$			
			010	DSP_SMPL \leftarrow Q_2 and I_2			
			011	DSP_SMPL \leftarrow Q_3 and I_3			
			others	reserved			

Table 101. DSP read LSB/MSB registers Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
009Ah	DSP_READ_LSB	7 to 0	DSP_READ[7:0]	R	-	least significant 8 bits for DSP_READ
009Bh	DSP_READ_LSIB	7 to 0	DSP_READ[15:8]	R	-	least significant intermediate 8 bits for DSP_READ
009Ch	DSP_READ_MSIB	7 to 0	DSP_READ[23:16]	R	-	most significant intermediate 8 bits for DSP_READ
009Dh	DSP_READ_MSB	7 to 0	DSP_READ[31:24]	R	-	most significant 8 bits for DSP_READ

11.12.6 Multiple Device Synchronization and Interrupt block

This block of registers specifies the configuration of the SYSREF signals (East and West) and how they are used for the Multiple Devices Synchronization (MDS) feature. It also specifies the interrupts.

11.12.6.1 Multiple Device Synchronization and Interrupt block register allocation map

Table 102 shows an overview of all the Multiple Device Synchronization and interrupt registers.

Table 102. Multiple Device Synchronization and Interrupt block register allocation map

Addr.	Register name	R/W		Bit definition					Default		
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
00A0h	MDS_MAIN	R/W	MDS_EQ_0	CHECK[1:0]	MDS_ MAN	MDS_ SREF_DIS	MDS_ EAST_ WEST	MDS_M	OD[1:0]	MDS_EN	E0h
00A2h	MDS_IO_ CTRL	R/W	-	-	PON_SYS REF_E	PON_SYS REF_W	-	SEL_RT_ SYSREF_E	-	SEL_RT_ SYSREF_W	30h
00A3h	MDS_MISC_ CTRL_0	RW	RESERVED	MDS_NCO			RESE	RVED[5:0]			10h
00A4h	MDS_MAN_ ADJUST_DLY	R/W				MDS_MAN_A	DJ_DLY[7:0]				80h
00A6h	MDS_MISC_ CTRL_1	R/W	F	RESERVED[2:0)]	MDS_ RELOCK		MDS_LOC	<_DLY[3:0]		0Fh
00A7h	MDS_OFFSET_DL Y	RW		MDS_OFFSET_DLY[7:0]				00h			
00A8h	MDS_WIN_ LOW	R/W		MDS_WIN_PERIOD_A[7:0]				0Fh			
00A9h	MDS_WIN_ HIGH	R/W				MDS_WIN_PE	ERIOD_B[7:0]				07h
00AAh	LMFC_ PERIOD	R/W				LMFC_PE	RIOD[7:0]				10h
00ABh	LMFC_ PRST	R/W				LMFC_PR	ESET[7:0]				04h
00ACh	MDS_CNT_ PRESET	R/W				MDS_CNT_F	PRESET[7:0]				02h
00B5h	MDS_ADJ_ DLY	R		MDS_ADJ_DLY[7:0]				uuh			
00B6h	MDS_ STATUS_0	R	RPT_FLAG _ERR	-	MCP_CALC _ERR	ADD_ERR	EARLY_ER R	LATE_ ERR	-	MDS_ ACTIVE	uuh
00B7h	MDS_ STATUS_1	R	I_BUSY	I_STATE_ ERR	RESER'	VED[1:0]		I_STAT	E[3:0]		uuh
00B8h	MDS_ STATUS_2	R	MDS_LOCK	-	-	-	-	-	-		uuh

AC1653D/DAC1658D

DAC1653D; DAC

658L

Fable 102.	Multiple Device	Synchronization and	I Interrupt block register	allocation map continued
-------------------	------------------------	---------------------	----------------------------	--------------------------

5P											
Baddr.	Register name	R/W				Bit def	inition				Default
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
ទ្ ធី 00BAh	MDS_ STATUS_4	R		NOT USED[3:0] LOCK_CNT[3:0]							uuh
00BBh	MDS_ STATUS_5	R		DELAY_CNT[7:0] u						uuh	
00BCh	MDS_ STATUS_6	R		I_ENA_SAMPLE[7:0]						uuh	
00BDh	MDS_ STATUS_7	R	-	EN_PHASE[1:0]						uuh	

[1] u = undefined at power-up or after reset.

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

DAC1653D/DAC1658D

Datasheet

IDT. Integrated Device Technology

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.6.2 Multiple Device Synchronization and interrupt block bit definition detailed description

The tables in this section contain detailed descriptions of the Multiple Device Synchronization and interrupt registers.

Table 10 Default	03. MDS main register values are shown highlighted.			
MDS_N	IAIN (address 00A0h)			
Bit	Symbol	Access	Value	Description
7 to 6	MDS_EQ_CHCK[1:0]	R/W		MDS equalizer check: lock mode
			00	lock when EARLY and LATE conditions are met (more accurate but more sensitive to jitter)
			01	lock when LATE condition is met
			10	lock when EARLY condition is met
			11	lock when (START_EARLY and LATE) or (START_LATE and EARLY) conditions are met (less accurate but more stable)
5	MDS_MAN	R/W		control adjustment delays
			0	auto-control adjustment delays
			1	manual control adjustment delays
4	MDS_SREF_DIS	R/W		sref generation
			0	enabled
			1	disabled
3	MDS_EAST_WEST	R/W		MDS input/output (see Section 11.7)
			0	SYSREF_west used as MDS input
			1	SYSREF_east used as MDS input
2 to 1	MDS_MOD[1:0]	R/W		MDS mode (see Section 11.7)
			00	alternate JESD204B mode
			01	not used
			10	JESD204B subclass I compatible mode
			11	not used
0	MDS_EN	R/W		MDS function control
			0	disabled
			1	enabled (see Section 11.7)

Table 104. MDS IO control registerDefault values are shown highlighted.

MDS_IO_CTRL (address 00A2h)					
Bit	Symbol	Access	Value	Description	
5	PON_SYSREF_E	R/W	0	SYSREF_E buffer disabled	
			1	SYSREF_E buffer enabled	
4	PON_SYSREF_W	R/W	0	SYSREF_W buffer disabled	
			1	SYSREF_W buffer enabled	

3 NOT USED

Datasheet

 Table 104. MDS IO control register ...continued

 Default values are shown highlighted.

MDS_IC	MDS_IO_CTRL (address 00A2h)							
Bit	Symbol	Access	Value	Description				
2	SEL_RT_SYSREF_E	R/W		SYSREF_east internal resistor termination activation (see <u>Section 11.7</u>)				
			0	inactive				
			1	active				
1	NOT USED							
0	SEL_RT_SYSREF_W	R/W		SYSREF_west internal resistor termination activation (see <u>Section 11.7</u>)				
			0	inactive				
			1	active				

Table 105. MDS miscellaneous control registerDefault values are shown highlighted.

MDS_M	MDS_MISC_CTRL_0 (address 00A3h)						
Bit	Symbol	Access	Value	Description			
7	RESERVED	R/W	0	reserved to 0			
6	MDS_NCO	R/W					
			0	no action			
			1	NCO synchronization enabled			
5 to 0	RESERVED[5:0]	R/W	10000	reserved			

Table 106. MDS manual adjustment delay registerDefault values are shown highlighted.

MDS_MAN_ADJ_DLY (address 00A4h)						
Bit	Symbol	Access	Value	Description		
7 to 0	MDS_MAN_ADJ_DLY[7:0]	R/W		adjustment delay value		
			0	if MDS_MAN = 0 then initial value adjustment delay		
			1	if MDS_MAN = 1 then controls adjustment delay		

 Table 107. MDS miscellaneous control register

 Default values are shown highlighted.

MDS_MISC_CTRL_1 (address 00A6h)						
Bit	Symbol	Access	Value	Description		
7 to 5	RESERVED	R/W	0	reserved to 0		
4 N	MDS_RELOCK	R/W		relock mode		
			0	no action		
			1	relock when lockout occurs		
3 to 0	MDS_LOCK_DLY[3:0]	R/W	-	number of succeeding 'equal-check' detections until lock		

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 Table 108. MDS offset delay register

 Default values are shown highlighted.

MDS_OFFSET_DLY (address 00A7h)					
Bit	Symbol	Access	Value	Description	
7 to 0	MDS_OFFSET_DLY[7:0]	R/W	-	delay offset for dataflow in DAC clock periods (two's complement [-128 to 127])	

 Table 109. MDS window registers

 Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
00A8h	MDS_WIN_LOW	7 to 0	MDS_WIN_ PERIOD_A[7:0]	R/W	-	determines MDS window LOW time
00A9h	MDS_WIN_HIGH	7 to 0	MDS_WIN_ PERIOD_B[7:0]	R/W	-	determines MDS window HIGH time

Table 110.LMFC period registerDefault values are shown highlighted.

LMFC_PERIOD (address 00AAh)							
Bit	Symbol	Access	Value	Description			
7 to 0	LMFC_PERIOD[7:0]	R/W	-	determines the LMFC period			

Table 111. LMFC preset register

Default values are shown highlighted.

LMFC_PRST (address 00ABh)							
Bit	Symbol	Access	Value	Description			
7 to 0	LMFC_PRESET[7:0]	R/W	-	delays the LMFC period as related to the internal sref signal			

Table 112. MDS adjustment delay register

Default values are shown highlighted.

MDS_ADJ_DLY (address 00B5h)								
Bit	Symbol	Access	Value	Description				
7 to 0	MDS_ADJ_DLY[7:0]	R	-	actual value adjustment delay (in DAC clock period)				

Table 113. MDS status registers

Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
00B6h	MDS_STATUS_0	0	MDS_ACTIVE	R		evaluation logic active
					0	false
					1	true
00B7h	MDS_STATUS_1	7	I_BUSY	R		indicates that the MDS state machine is busy
		6	I_STATE_ERR	R		internal state error
					0	ОК
					1	error
		5 to 4	RESERVED	R		reserved
		3 to 0	I_STATE[3:0]	R		internal state of state machine

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

 Table 113. MDS status registers ...continued

 Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
00B8h	MDS_STATUS_2	7	MDS_LOCK	R		SYSREF has been found
					0	false
					1	true
00BAh	MDS_STATUS_4	7 to 4	NOT_USED[3:0]	R		
		3 to 0	LOCK_CNT[3:0]	R		
00BBh	MDS_STATUS_5	7 to 0	DELAY_CNT[7:0]	R		
00BCh	MDS_STATUS_6	7 to 0	I_ENA_SAMPLE[7:0]	R		
00BDh	MDS_STATUS_7	1 to 0	EN_PHASE[1:0]	R		

11.12.7 RX Digital Lane Processing (DLP) block

This block of registers specifies the configuration of the digital lane processing.

11.12.7.1 RX digital lane processing block register allocation map

Table 114 shows an overview of all the RX digital lane processing registers.

Table 114. RX digital lane processing block register allocation map

Addr.	Register name	R/W				Bit de	finition				Default
Hex		1	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
00C7h	ILA_CTRL_1	R/W	-	SEL_I	SEL_ILA[1:0]		SEL_LOCK[2:0]			DATA_ DESCR_EN	63h
00C8h	FORCE_ALIGN	R/W	FORCE_ FIRST_SAM PLE_LOW	USE_Q	USE_Q NOT_USE		SUBCLASS0	FRAME_ ALIGN_EN	DYN_ REALIGN_ EN	RESERVED	86h
00CCh	SYNC_OUT_ MODE	R/W	S	EL_REINIT[2:	0]	-	SYNC_INIT_ LVL		SEL_SYNC[2:0)]	00h
00CDh	P_LN_POL	R/W	-	-	-	SYNC_POL	POL_P_LN3	POL_P_LN2	POL_P_LN1	POL_P_LN0	00h
00CEh	P_LN_SEL	R/W	SEL_L_	LN3[1:0]	SEL_L_	LN2[1:0]	SEL_L_	LN1[1:0]	SEL_L_	LN0[1:0]	E4h
00D1h	INIT_DESCR_P_ LN0_MSB	R/W		INIT_DESCR_P_LN0[15:8]							00h
00D2h	INIT_DESCR_P_ LN0_LSB	R/W	-		INIT_DESCR_P_LN0[7:1]					00h	
00D3h	INIT_DESCR_P_ LN1_MSB	R/W		INIT_DESCR_P_LN1[15:8]				00h			
00D4h	INIT_DESCR_P_ LN1_LSB	R/W	-			INIT_	DESCR_P_LN	11[7:1]			00h
00D5h	INIT_DESCR_P_ LN2_MSB	R/W				INIT_DESCR	P_LN2[15:8]				00h
00D6h	INIT_DESCR_P_ LN2_LSB	R/W	-			INIT_	DESCR_P_LN	12[7:1]			00h
00D7h	INIT_DESCR_P_ LN3_MSB	R/W		INIT_DESCR_P_LN3[15:8] 04						00h	
00D8h	INIT_DESCR_P_ LN3_LSB	R/W	-			INIT_	DESCR_P_LN	13[7:1]			00h
00D9h	INIT_ILA_ BUFF_PNTR_L_ LN_1_0	R/W	INI	T_ILA_BUFF_PNTR_L_LN1[3:0] INIT_ILA_BUFF_PNTR_L_LN0[3:0]				88h			
00DAh	INIT_ILA_ BUFF_PNTR_L_ LN_3_2	R/W	INI	T_ILA_BUFF_	PNTR_L_LN3	[3:0]	INI	IT_ILA_BUF_F	PNTR_L_LN2[3:0]	88h

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

I DT. Itegrated Device Technology

DAC1653D; DAC

Rev. 2.41 — 28 April 2014

Table 114. RX digital lane processing block register allocation map ...continued

Table 114. RX digital lane processing block register allocation mapcontinued												
1653D	Addr.	Register name	R/W				Bit def	finition				Default
; DAC1	Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
1658D	00DBh	ERR_ HNDLNG	R/W	DISP_ERR_ P_LN3_EN	DISP_ERR_ P_LN2_EN	DISP_ERR_ P_LN1_EN	DISP_ERR_ P_LN0_EN	CONCEAL_ MODE	-	IGN_ERR[1:0]		F8h
	00DCh	REINIT_CTRL	R/W	REINIT_ ILA_L_LN3	REINIT_ILA_ L_LN2	REINIT_ILA_ L_LN1	REINIT_ILA_ L_LN0	RESYNC_ OLINK_ P_LN3	RESYNC_ OLINK_ P_LN2	RESYNC_ OLINK_ P_LN1	RESYNC_ OLINK_ P_LN0	FFh
	00DDh	MISC_CTRL	R/W	DLP_ STROBE	-	-	-	-	-	-	-	00h
	00DEh	LMF_CTRL	R/W		L[2:0]		M[²	1:0]		F[2:0]		92h

Datasheet

DAC1653D/DAC1658D

rated Device Technology -

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.7.2 RX digital lane processing block bit definition detailed description

The tables in this section contain detailed descriptions of the RX digital lane processing registers.

Table 115. Initial-lane alignment control register

ILA_CT	ILA_CTRL_1 (address 00C7h)								
Bit	Symbol	Access	Value	Description (see Section 11.8.5.8)					
6 to 5	SEL_ILA	R/W	11	reserved to 11 (alignment is done based on the 4-th /A/ character of the ILA)					
4 to 2	SEL_LOCK[2:0]	R/W		initial-lane alignment start mode					
			000	initial-lane alignment can only start if all (4 or 2) lanes are locked					
			001	initial-lane alignment can start if one of the (4 or 2) lanes are locked					
			010	initial-lane alignment can start if lane 0 is locked					
			011	initial-lane alignment can start if lane 1 is locked					
			100	initial-lane alignment can start if lane 2 is locked					
			101	initial-lane alignment can start if lane 3 is locked					
1	ILA_SYNC	R/W		initial-lane alignment enable					
			0	initial-lane alignment synchronization disabled					
			1	initial-lane alignment synchronization enabled					
0	DATA_DESCR_EN	R/W		data descrambling (see Section 11.8.5.2)					
			0	disabled					
			1	enabled					

Table 116. Force alignment register

FORCE_	FORCE_ALIGN (address 00C8h)									
Bit	Symbol	Access	Value	Description						
7	FORCE_FIRST_SAMPLE_LOW	R/W	0	no action						
			1	first sample will not be used (to avoid scrambler initialization uncertainty)						
6	USE_Q	R/W	0	ignore /Q/ symbol for Lane Config extraction						
			1	use /Q/ symbol for Lane Config extraction						
5:4	NOT_USED[1:0]									
3	SUBCLASS0	R/W	0	for Subclass 1 and 2: number of multiframes in the ILA is equal to 4						
			1	Subclass 0: number of multiframes in the ILA is equal or greater than 4						
2	FRAME_ALIGN_EN	R/W	0	frame alignment mode disabled						
			1	frame alignment mode enabled						
1	DYN_REALIGN_EN	R/W		dynamic realignment mode						
			0	no dynamic realignment						
			1	dynamic realignment (and monitoring) enabled						
0	RESERVED	R/W	0	reserved						

Datasheet

Table 117. Synchronization output modes registerDefault settings are shown highlighted.

Di4	Symbol	A	Value	Description
BIt	Symbol	Access	value	Description
7 to 5	SEL_REINIT	R/W		Reinitialization is done when:
			000	one of the enabled lane reset is active
			001	all of the enabled lane reset are active
			010	lane 0 reset is active
			011	lane 1 reset is active
			100	lane 2 reset is active
			101	lane 3 reset is active
			110	Reinitialization is forced to 1
			111	Reinitialization is forced to 0
3	SYNC_INIT_LVL	R/W		synchronization initialization level (see <u>Section 11.8.5.5</u>)
			0	synchronization starts with '0'
			1	synchronization starts with '1'
2 to 0	SEL_SYNC[2:0]	R/W		synchronization mode (see Section 11.8.5.5)
			000	sync_request active when state machine of one of the lanes is in CS_INIT mode
			001	sync_request active when state machine of all lanes is in CS_INIT mode
			010	sync_request active when state machine of lane 0 is in CS_INIT mode
			011	sync_request active when state machine of lane 1 is in CS_INIT mode
			100	sync_request active when state machine of lane 2 is in CS_INIT mode
			101	sync_request active when state machine of lane 3 is in CS_INIT mode
			110	sync_request fixed to 1
			111	sync request fixed to 0

Table 118. Physical lane polarity register

P_LN_P	P_LN_POL (address 00CDh)							
Bit	Symbol	Access	Value	Description (see Section 11.8.5.1)				
4	SYNC_POL	R/W		synchronization polarity (see Section 11.8.5.5)				
			0	sync_out is active when LOW				
			1	sync_out is active when HIGH				
3	POL_P_LN3	R/W		physical lane 3 data polarity				
			0	no action				
			1	invert all data bits of lane 3				
2	POL_P_LN2	R/W		physical lane 2 data polarity				
			0	no action				
			1	invert all data bits of lane 2				

Datasheet

Table 118. Physical lane polarity register ... continued

P_LN_POL (address 00CDh)							
Bit	Symbol	Access	Value	Description (see Section 11.8.5.1)			
1	POL_P_LN1	R/W		physical lane 1 data polarity			
			0	no action			
			1	invert all data bits of lane 1]			
0	POL_P_LN0	R/W		physical lane 0 data polarity			
			0	no action			
			1	invert all data bits of lane 0			

Table 119. Physical lane selection register

Default settings are shown highlighted.

P_LN_S	EL register (address 00CEh)			
Bit	Symbol	Access	Value	Description (see <u>Section 11.8.4</u> and <u>Section 11.8.5.3</u>)
7 to 6	SEL_L_LN3[1:0]	R/W		lane 3 data mapping
			00	logical lane 3 is mapped to physical lane 0
			01	logical lane 3 is mapped to physical lane 1
			10	logical lane 3 is mapped to physical lane 2
			11	logical lane 3 is mapped to physical lane 3
5 to 4	SEL_L_LN2[1:0]	R/W		lane 2 data mapping
			00	logical lane 2 is mapped to physical lane 0
			01	logical lane 2 is mapped to physical lane 1
			10	logical lane 2 is mapped to physical lane 2
			11	logical lane 2 is mapped to physical lane 3
3 to 2	SEL_L_LN1[1:0]	R/W		lane 1 data mapping
			00	logical lane 1 is mapped to physical lane 0
			01	logical lane 1 is mapped to physical lane 1
			10	logical lane 1 is mapped to physical lane 2
			11	logical lane 1 is mapped to physical lane 3
1 to 0	SEL_L_LN0[1:0]	R/W		lane 0 data mapping
			00	logical lane 0 is mapped to physical lane 0
			01	logical lane 0 is mapped to physical lane 1
			10	logical lane 0 is mapped to physical lane 2
			11	logical lane 0 is mapped to physical lane 3

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 120. Descrambler initialization values registers Default settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.5.2</u>)
00D1h	INIT_DESCR_P_LN0_MSB	7 to 0	INIT_DESCR_P_ LN0[15:8]	R/W	00h	initialization value for physical lane 0 descrambler 8 most significant bits
00D2h	INIT_DESCR_P_LN0_LSB	6 to 0	INIT_DESCR_P_ LN0[7:1]	R/W	00h	initialization value for physical lane 0 descrambler 7 least significant bits
00D3h	INIT_DESCR_P_LN1_MSB	7 to 0	INIT_DESCR_P_ LN1[15:8]	R/W	00h	initialization value for physical lane 1 descrambler 8 most significant bits
00D4h	INIT_DESCR_P_LN1_LSB	6 to 0	INIT_DESCR_P_ LN1[7;1]	R/W	00h	initialization value for physical lane 1 descrambler 7 least significant bits
00D5h	INIT_DESCR_P_LN2_MSB	7 to 0	INIT_DESCR_P_ LN2[15:8]	R/W	00h	initialization value for physical lane 2 descrambler 8 most significant bits
00D6h	INIT_DESCR_P_LN2_LSB	6 to 0	INIT_DESCR_P_ LN2[7:1]	R/W	00h	initialization value for physical lane 2 descrambler 7 least significant bits
00D7h	INIT_DESCR_P_LN3_MSB	7 to 0	INIT_DESCR_P_ LN3[15:8]	R/W	00h	initialization value for physical lane 3 descrambler 8 most significant bits
00D8h	INIT_DESCR_P_LN3_LSB	6 to 0	INIT_DESCR_P_ LN3[7:1]	R/W	00h	initialization value for physical lane 3 descrambler 7 least significant bits
00D9h	INIT_ILA_BUFF_PNTR_L_LN01	7 to 4	INIT_ILA_ BUFPTR_P_ LN1[3:0]	R/W	88h	initialization value for logical lane 1 ILA buffer pointer (see <u>Section 11.8.5.8</u>)
		3 to 0	INIT_ILA_ BUFF_PNTR_P_ LN0[3:0]	R/W	88h	initialization value for logical lane 0 ILA buffer pointer (see <u>Section 11.8.5.8</u>)
00DAh	INIT_ILA_BUFF_PNTR_L_LN23	7 to 4	INIT_ILA_ BUFF_PNTR_L_ LN3[3:0]	R/W	88h	initialization value for logical lane 3 ILA buffer pointer (see <u>Section 11.8.5.8</u>)
		3 to 0	INIT_ILA_ BUFF_PNTR_L_ LN2[3:0]	R/W	88h	initialization value for logical lane 2 ILA buffer pointer (see <u>Section 11.8.5.8</u>)

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 121. Error handling register

Default settings are shown highlighted.

ERR_H	2RK_HNDLNG (address 00DBh)								
Bit	Symbol	Access	Value	Description					
7	DISP_ERR_P_LN3_EN	R/W	0	no action					
			1	not-in-table errors passed to frame assembler					
6	DISP_ERR_P_LN2_EN	R/W	0	no action					
			1	not-in-table errors passed to frame assembler					
5	DISP_ERR_P_LN1_EN	R/W	0	no action					
			1	not-in-table errors passed to frame assembler					
4	DISP_ERR_P_LN0_EN	R/W	0	no action					
			1	not-in-table errors passed to frame assembler					
3	CONCEAL_MODE	R/W	0	conceal error by repeating one sample					
			1	conceal error by repeating two samples					
1 to 0	IGN_ERR[1:0]	R/W		general error mode (see Section 11.8.5.13)					
			00	NIT and DISP error are used					
			01	ignore NIT errors					
			10	ignore DISP error					
			11	ignore NIT and DISP errors					

Table 122. Reinitialization control registerDefault settings are shown highlighted.

REINIT_	INIT_CTRL (address 00DCh)							
Bit	Symbol	Access	Value	Description				
7	REINIT_ILA_L_LN3	R/W		logical lane 3, ila buffer out-of-range check (see <u>Section 11.8.5.8</u>)				
			0	no action				
			1	lane 3 ila buffer out-of-range_error activates reinitialization				
6	REINIT_ILA_L_LN2	R/W		logical lane 2, ila buffer out-of-range check (see <u>Section 11.8.5.8</u>)				
			0	no action				
			1	lane 2 ila buffer out-of-range_error activates reinitialization				
5	REINIT_ILA_L_LN1	R/W		logical lane 1, ila buffer out-of-range check (see <u>Section 11.8.5.8</u>)				
			0	no action				
			1	lane 1 ila buffer out-of-range_error activates reinitialization				
4	REINIT_ILA_L_LN0	R/W		logical lane 0, ila buffer out-of-range check (see <u>Section 11.8.5.8</u>)				
			0	no action				
			1	lane 0 ila buffer out-of-range_error activates reinitialization				

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 122. Reinitialization control register ...continued Default settings are shown highlighted.

REINIT_	REINIT_CTRL (address 00DCh)							
Bit	Symbol	Access	Value	Description				
3	RESYNC_OLINK_P_LN3	R/W		physical lane 3, resynchronization over link (see <u>Section 11.8.5.12</u>)				
			0	no action				
			1	lane 3 controller checks for K28.5 /K/ symbols				
2	RESYNC_OLINK_P_LN2	R/W		physical lane 2, resynchronization over link (see Section 11.8.5.12)				
			0	no action				
			1	lane 2 controller checks for K28.5 /K/ symbols				
1	RESYNC_OLINK_P_LN1	R/W		physical lane 1, resynchronization over link (see Section 11.8.5.12)				
			0	no action				
			1	lane 1 controller checks for K28.5 /K/ symbols				
0	RESYNC_OLINK_P_LN0	R/W		physical lane 0, resynchronization over link (see Section 11.8.5.12)				
			0	no action				
			1	lane 0 controller checks for K28.5 /K/ symbols				

Table 123. Miscellaneous control register

MISC_C	MISC_CTRL (address 00DDh)								
Bit	Symbol	Access	Value	Description					
7	DLP-STROBE	R/W		captures 16-bit data inside the DLP for each lane (see <u>Section 11.8.6.5</u>)					
			0	no action					
			1	update DLP samples					
1 to 0	RESERVED[1:0]	R/W	00	reserved to 00					

Table 124. LMF control register

LMF_CTRL register (address 00DEh)							
Bit	Symbol	Access	Value	Description (see Section 11.8.5.11)			
7 to 5	L[2:0]	R/W	-	number of lanes [1, 2, 4]			
4 to 3	M[1:0]	R/W	-	number of converters [1]			
2 to 0	F[2:0]	R/W	-	number of octets/frame [1, 2, 4]			

11.12.8 RX digital lane processing monitoring block

This block of registers enables the monitoring of the digital lane processing, ensuring the data is decoded correctly. The validity of the link can also be tested by using simple Bit Error Rate testing and be monitored through various available flags and counters registers.

11.12.8.1 RX digital lane processing monitoring block register allocation map description

Table 125 shows an overview of all the RX digital lane processing monitoring registers.

 Table 125. RX digital lane processing monitoring block register allocation map

Addr.	Register name	R/W		Bit definition						Default	
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
00E0h	ILA_MON_L_ LN_1_0	R		ILA_MON_	L_LN1[3:0]		ILA_MON_L_LN0[3:0				uuh
00E1h	ILA_MON_L_ LN_3_2	R		ILA_MON_L_LN3[3:0]				ILA_MON_L_LN2[3:0]			
00E2h	ILA_BUFF_ERR	R	-	-	-	-	ILA_BUFF_ ERR_L_LN3	ILA_BUFF_ ERR_L_LN2	ILA_BUFF_ ERR_L_LN1	ILA_BUFF_ ERR_L_LN0	uuh
00E4h	DEC_FLAGS	R	DEC_NIT_ ERR_P_LN3	DEC_NIT_ ERR_P_LN2	DEC_NIT_ ERR_P_LN1	DEC_NIT_ ERR_P_LN0	DEC_DISP_ ERR_P_LN3	DEC_DISP_ ERR_P_LN2	DEC_DISP_ ERR_P_LN1	DEC_DISP_ ERR_P_LN0	uuh
00E5h	KOUT_FLAG	R	-	-	-	-	DEC_ KOUT_P_ LN3	DEC_ KOUT_P_ LN2	DEC_ KOUT_P_ LN1	DEC_ KOUT_P_ LN0	uuh
00E6h	K28_P_LN0_ FLAG	R	LN0_ILA_ MFR_ERR	LN0_ILA_ GT4_ERR	LN0_ILA_ LT4_ERR	K28_7_P_ LN0	K28_5_P_ LN0	K28_4_P_ LN0	K28_3_P_ LN0	K28_0_P_ LN0	uuh
00E7h	K28_P_LN1_ FLAG	R	LN1_ILA_ MFR_ERR	LN1_ILA_ GT4_ERR	LN1_ILA_ LT4_ERR	K28_7_P_ LN1	K28_5_P_ LN1	K28_4_P_ LN1	K28_3_P_ LN1	K28_0_P_ LN1	uuh
00E8h	K28_P_LN2_ FLAG	R	LN2_ILA_ MFR_ERR	LN2_ILA_ GT4_ERR	LN2_ILA_ LT4_ERR	K28_7_P_ LN2	K28_5_P_ LN2	K28_4_P_ LN2	K28_3_P_ LN2	K28_0_P_ LN2	uuh
00E9h	K28_P_LN3_ FLAG	R	LN3_ILA_ MFR_ERR	LN3_ILA_ GT4_ERR	LN3_ILA_ LT4_ERR	K28_7_P_ LN3	K28_5_P_ LN3	K28_4_P_ LN3	K28_3_P_ LN3	K28_0_P_ LN3	uuh
00EAh	KOUT_UNEXP_ FLAG	R	-	-	-	-	DEC_KOUT _UNEXP_P_ 	DEC_KOUT _UNEXP_P_ LN2	DEC_KOUT _UNEXP_P_ LN1	DEC_KOUT _UNEXP_P_ LN0	uuh
00EBh	LOCK_CNT_ MON_LN01	R	L	LOCK_CNT_MON_P_LN1[3:0]				OCK_CNT_M	ON_P_LN0[3:	0]	uuh
00ECh	LOCK_CNT_ MON_LN23	R	L	LOCK_CNT_MON_P_LN3[3:0]			L	OCK_CNT_M	ON_P_LN2[3:	0]	uuh
00EDh	CS_STATE_LNX	R	CS_STATE	_P_LN3[1:0]	CS_STATE	_P_LN2[1:0]	CS_STATE	_P_LN1[1:0]	CS_STATE	_P_LN0[1:0]	uuh
00EEh	MISC_FLAG_ CTRL	R/W	RST_BUFF_ ERR_ FLAGS	AUTO_ RST_ FLAG_CNTS	HOLD_ FLAG_CNT_ EN		F	RESERVED[4:	0]		00h

DAC1653D; DAC

1859

AC1653D/DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

ted Device Technology

Addr.	Register name	R/W				Bit de	finition				Default
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
00EFh	INTR_MISC_EN	R/W	INTR_BUFF _EN_CS_ INIT_P_LN3	INTR_EN_ CS_INIT_P_ LN2	INTR_EN_ CS_INIT_P_ LN1	INTR_EN_C S_INIT_P_ LN0	INTR_EN_ BUFF_ERR_ L_LN3	INTR_EN_ BUFF_ERR_ L_LN2	INTR_EN_ BUFF_ERR_ L_LN1	INTR_EN_ BUFF_ERR_ L_LN0	00h
00F0h	FLAG_CNTLN 0_LSB	R				FLAG_CN	T_LN0[7:0]				uuh
00F1h	FLAG_CNT_ LN0_MSB	R		FLAG_CNT_LN0[15:8] u						uuh	
00F2h	FLAG_CNT_ LN1_LSB	R		FLAG_CNT_LN1[7:0] uu						uuh	
00F3h	FLAG_CNT_ LN1_MSB	R		FLAG_CNT_LN1[15:8] uul						uuh	
00F4h	FLAG_CNT_ LN2_LSB	R				FLAG_CN	T_LN2[7:0]				uuh
00F5h	FLAG_CNT_ LN2_MSB	R				FLAG_CN	T_LN2[15:8]				uuh
00F6h	FLAG_CNT_ LN3_LSB	R		FLAG_CNT_LN3[7:0] ut					uuh		
00F7h	FLAG_CNT_ LN3_MSB	R				FLAG_CN	T_LN3[15:8]				uuh
00F8h	ERR_MIX_CTL	R/W	EM	EM_KUX	EM_DISP	EM_NIT	ERPT_ILA_ ENA	ERPT_KUX_ ENA	ERPT_DIS_ ENA	ERPT_NIT_ ENA	FFh
00F9h	INTR_EN_0	R/W		NOT US	SED[3:0]		INTR_STLT P_ERR	INTR_BER	INTR_ILA_R CV	INTR_NO_F 20_ACT	00h
00FAh	INTR_EN_1	R/W	INTR_EN_ NIT	INTR_EN_ DISP	INTR_EN_ KOUT	INTR_EN_ KOUT_ UNEXP	INTR_EN_ K28_7	INTR_EN_ K28_5	INTR_EN_ K28_3	INTR_EN_ MISC	00h
00FBh	CTRL_FLAG_ CNT_LN10	R/W	RST_CTRL_ FLAG_CNT_ LN1	CTRL_SEL_CTRL_FLAG_CNT_LN1[2:0] RST_CTRL_SEL_CTRL_FLAG_CNT_LN0[2:0] SLOT_LN0[2:0] RST_CTRL_LN0[2:0] SLOT_LN0[2:0]				T_LN0[2:0]	55h		
00FCh	CTRL_ FLAG_CNT_ LN32	R/W	RST_CTRL_ FLAG_CNT_ LN3	CTRL SEL_CTRL_FLAG_CNT_LN3[2:0] RST_CTRL SEL_CTRL_FLAG_CNT_LN2[2:0] G_CNT_ LN3 LN2			T_LN2[2:0]	55h			
00FDh	RST_MON_ FLAGS	R/W	RST_NIT_ ERR-FLAGS	RST_DISP_ ERR_ FLAGS	RST_KOUT_ FLAGS	RST_KOUT_ UNEXP_ FLAGS	RST_K28_ LN3_FLAGS	RST_K28_ LN2_FLAGS	RST_K28_ LN1_FLAGS	RST_K28_ LN0_FLAGS	00h
00FEh	DBG_CTRL	R/W	SER_MOD	INTR_ CLR	I	INTR_MOD[2:	0]	F	RESERVED[2:	0]	00h

rated Device Technology -

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

DAC1653D/DAC1658D

Table 125. RX digital lane processing monitoring block register allocation map ... continued

Datasheet DAC1653D; DAC1658D

© IDT 2014. All rights reserved. 134 of 168

[1] u = undefined at power-up or after reset.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.8.2 RX digital lane processing monitoring block bit definition detailed description

The tables in this section contain detailed descriptions of the RX digital lane processing monitoring registers.

Table 126. Initial-lane alignment monitor registersDefault settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.5.8</u>)
00E0h	ILA_MON_L_LN_1_0	7 to 4	ILA_MON_L_ LN1[3:0]	R	-	ila_buf_I_In1 pointer
		3 to 0	ILA_MON_L_ LN0[3:0]		-	ila_buf_I_ln0 pointer
00E1h	ILA_MON_L_LN_3_2	7 to 4	ILA_MON_L_ LN3[3:0]	R	-	ila_buf_I_In3 pointer
		3 to 0	ILA_MON_L_ LN2[3:0]		-	ila_buf_I_In2 pointer

Table 127. Initial-lane alignment buffer error registerDefault settings are shown highlighted.

ILA_BUF	ILA_BUFF_ERR (address 00E2h)								
Bit	Symbol	Access	Value	Description (see Section 11.8.5.8)					
3	ILA_BUFF_ERR_L_LN3	R		logical lane 3 ila buffer error					
			0	ila_buf_I_In3 pointer is in range					
			1	ila_buf_I_In3 pointer is out of range					
2	ILA_BUFF_ERR_L_LN2	R		logical lane 2 ila buffer error					
			0	ila_buf_I_In2 pointer is in range					
			1	ila_buf_I_In2 pointer is out of range					
1	ILA_BUFF_ERR_L_LN1	R		logical lane 1 ila buffer error					
			0	ila_buf_l_In1 pointer is in range					
			1	ila_buf_I_In1 pointer is out of range					
0	ILA_BUFF_ERR_L_LN0	R		logical lane 0 ila buffer error					
			0	ila_buf_I_In0 pointer is in range					
			1	ila_buf_I_In0 pointer is out of range					

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 128. Decoder flags register

DEC_FLAGS (address 00E4h)								
Bit	Symbol	Access	Value	Description (see Section 11.8.5.13				
7	DEC_NIT_ERR_P_LN3	R	-	decoder not-in-table error flag physical lane 3				
6	DEC_NIT_ERR_P_LN2	R	-	decoder not-in-table error flag physical lane 2				
5	DEC_NIT_ERR_P_LN1	R	-	decoder not-in-table error flag physical lane 1				
4	DEC_NIT_ERR_P_LN0	R	-	decoder not-in-table error flag physical lane 0				
3	DEC_DISP_ERR_P_LN3	R	-	decoder disparity error flag physical lane 3				
2	DEC_DISP_ERR_P_LN2	R	-	decoder disparity error flag physical lane 2				
1	DEC_DISP_ERR_P_LN1	R	-	decoder disparity error flag physical lane 1				
0	DEC_DISP_ERR_P_LN0	R	-	decoder disparity error flag physical lane 0				

Table 129. Decoder /K/ symbols flag register

KOUT_FLAG (address 00E5h)								
Bit	Symbol	Access	Value	Description (see Section 11.8.5.13)				
3	DEC_KOUT_P_LN3	R	-	decoder: /K/ symbols found in physical lane 3				
2	DEC_KOUT_P_LN2	R	-	decoder: /K/ symbols found in physical lane 2				
1	DEC_KOUT_P_LN1	R	-	decoder: /K/ symbols found in physical lane 1				
0	DEC_KOUT_P_LN0	R	-	decoder: /K/ symbols found in physical lane 0				

Table 130. K28 flag registers

Default settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.5.13</u>)
00E6h	K28_P_LN0_P_FLAG	7	LN0_ILA_MFR_ER R	R	-	irregular length of multiframes during ILA sequence
		6	LN0_ILA_GT4_ERR		-	ILA sequence with more than 4 multiframes
		5	LN0_ILA_LT4_ERR		-	ILA sequence with less than 4 multiframes
		4	K28_7_P_LN0		-	K28_7 /F/ symbols found in physical lane 0
		3	K28_5_P_LN0		-	K28_5 /K/ symbols found in physical lane 0
		2	K28_4_P_LN0		-	K28_4 /Q/ symbols found in physical lane 0
		1	K28_3_P_LN0		-	K28_3 /A/ symbols found in physical lane 0
		0	K28_0_P_LN0		-	K28_0 /R/ symbols found in physical lane 0

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 130. K28 flag registers ...continuedDefault settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.5.13</u>)
00E7h	K28_P_LN1_P_FLAG	7	LN1_ILA_MFR_ER R	R	-	irregular length of multiframes during ILA sequence
		6	LN1_ILA_GT4_ERR		-	ILA sequence with more than 4 multiframes
		5	LN1_ILA_LT4_ERR		-	ILA sequence with less than 4 multiframes
		4	K28_7_P_LN1		-	K28_7 /F/ symbols found in physical lane 1
		3	K28_5_P_LN1		-	K28_5 /K/ symbols found in physical lane 1
		2	K28_4_P_LN1		-	K28_4 /Q/ symbols found in physical lane 1
		1	K28_3_P_LN1		-	K28_3 /A/ symbols found in physical lane 1
		0	K28_0_P_LN1		-	K28_0 /R/ symbols found in physical lane 1
00E8h	K28_P_LN2_P_FLAG	7	LN2_ILA_MFR_ER R	R	-	irregular length of multiframes during ILA sequence
		6	LN2_ILA_GT4_ERR		-	ILA sequence with more than 4 multiframes
		5	LN2_ILA_LT4_ERR		-	ILA sequence with less than 4 multiframes
		4	K28_7_P_LN2		-	K28_7 /F/ symbols found in physical lane 2
		3	K28_5_P_LN2		-	K28_5 /K/ symbols found in physical lane 2
		2	K28_4_P_LN2		-	K28_4 /Q/ symbols found in physical lane 2
		1	K28_3_P_LN2		-	K28_3 /A/ symbols found in physical lane 2
		0	K28_0_P_LN2		-	K28_0 /R/ symbols found in physical lane 2

Datasheet

Table 130. K28 flag registers ...continuedDefault settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.5.13</u>)	
00E9h	K28_P_LN3_P_FLAG	7	LN3_ILA_MFR_ER R	R	-	irregular length of multiframes during ILA sequence	
		6	LN3_ILA_GT4_ERR		-	ILA sequence with more than 4 multiframes	
		5	LN3_ILA_LT4_ERR			-	ILA sequence with less than 4 multiframes
		4	K28_7_P_LN3		-	K28_7 /F/ symbols found in physical lane 3	
		3	K28_5_P_LN3		-	K28_5 /K/ symbols found in physical lane 3	
		2	K28_4_P_LN3		-	K28_4 /Q/ symbols found in physical lane 3	
		1	K28_3_P_LN3		-	K28_3 /A/ symbols found in physical lane 3	
		0	K28_0_P_LN3		-	K28_0 /R/ symbols found in physical lane 3	

Table 131. Decoder unexpected /K/ symbols flag register

KOUT_UNEXP_FLAG (address 00EAh)									
Bit	Symbol	Access	Value	Description (see Section 11.8.5.13)					
3	DEC_KOUT_UNEXP_P_LN3	R	-	decoder: unexpected /K/ symbols found in physical lane 3					
2	DEC_KOUT_UNEXP_P_LN2	R	-	decoder: unexpected /K/ symbols found in physical lane 2					
1	DEC_KOUT_UNEXP_P_LN1	R	-	decoder: unexpected /K/ symbols found in physical lane 1					
0	DEC_KOUT_UNEXP_P_LN0	R	-	decoder: unexpected /K/ symbols found in physical lane 0					

Table 132. Lock counter monitor registers

Delault	settings	ares	nown	nigniig	jnieu.	

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.6</u>)
00EBh	LOCK_CNT_MON_P_LN01	7 to 4	LOCK_CNT_ MON_P_ LN1[3:0]	R	-	lock_state monitor synchronization word alignment physical lane 1
		3 to 0	LOCK_CNT_ MON_P_ LN0[3:0]		-	lock_state monitor synchronization word alignment physical lane 0
00ECh	LOCK_CNT_MON_P_LN23	7 to 4	LOCK_CNT_ MON_P_ LN3[3:0]	R	-	lock_state monitor synchronization word alignment physical lane 3
		3 to 0	LOCK_CNT_ MON_P_ LN2[3:0]		-	lock_state monitor synchronization word alignment physical lane 2

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 133. Lane code synchronization state register Default settings are shown highlighted.

CS_STATE_LNX (address 00EDh)								
Bit	Symbol	Access	Value	Description (see Section 11.8.5.4)				
7 to 6	CS_STATE_P_LN3[1:0]	R	-	monitor cs_state fsm physical lane 3				
5 to 4	CS_STATE_P_LN2[1:0]	R	-	monitor cs_state fsm physical lane 2				
3 to 2	CS_STATE_P_LN1[1:0]	R	-	monitor cs_state fsm physical lane 1				
1 to 0	CS_STATE_P_LN0[1:0]	R	-	monitor cs_state fsm physical lane 0				

Table 134. Reset buffer error flags register Default settings are shown highlighted.

RST_BUF_ERR_FLAGS (address 00EEh)									
Bit	Symbol	Access	Value	Description					
7	RST_BUFF_ERR_FLAGS	R/W	0	reset ILA_BUF_ERR_LNx flags (see <u>Section 11.8.5.8</u>)					
6	AUTO_RST_FLAG_CNTS	R/W	0	FLAGs counters are reset when DLP is reset (see <u>Section 11.8.6.1</u>)					
5	HOLD_FLAG_CNT_EN	R/W	0	see Section 11.8.6.1					

Table 135. Miscellaneous interrupt enable register Default settings are shown highlighted.

INTR_MI	SC_EN (address 00EFh)			
Bit	Symbol	Access	Value	Description (see Section 11.8.3)
7	INTR_EN_CS_INIT_P_LN3	R/W	0	no action
			1	intr_misc in case cs_state_p_In3 = cs_init
6	INTR_EN_CS_INIT_P_LN2	R/W	0	no action
			1	intr_misc in case cs_state_p_ln2 = cs_init
5	INTR_EN_CS_INIT_P_LN1	R/W	0	no action
			1	intr_misc in case cs_state_p_In1 = cs_init
4	INTR_EN_CS_INIT_P_LN0	R/W	0	no action
			1	intr_misc in case cs_state_p_In0 = cs_init
3	INTR_EN_BUFF_ERR_L_LN3	R/W	0	no action
			1	generate interrupt if ILA_BUF_ERR_L_LN3 = 1
2	INTR_EN_BUFF_ERR_L_LN2	R/W	0	no action
			1	generate interrupt if ILA_BUF_ERR_L_LN2 = 1
1	INTR_EN_BUFF_ERR_L_LN1	R/W	0	no action
			1	generate interrupt if ILA_BUF_ERR_L_LN1 = 1
0	INTR_EN_BUFF_ERR_L_LN0	R/W	0	no action
			1	generate interrupt if ILA_BUF_ERR_L_LN0 = 1

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 136. LSB/MSB of flag_counter lane registers Default settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.6.1</u>)
00F0h	FLAG_CNT_LN0_LSB	7 to 0	FLAG_CNT_LN0[7:0]	R	-	8 least significant bits of flag counter lane 0
00F1h	FLAG_CNT_LN0_MSB	7 to 0	FLAG_CNT_LN0[15:8]	R	-	8 most significant bits of flag_counter lane 0
00F2h	FLAG_CNT_LN1_LSB	7 to 0	FLAG_CNT_LN1[7:0]	R	-	8 least significant bits of flag counter lane 1
00F3h	FLAG_CNT_LN1_MSB	7 to 0	FLAG_CNT_LN1[15:8]	R	-	8 most significant bits of flag_counter lane 1
00F4h	FLAG_CNT_LN2_LSB	7 to 0	FLAG_CNT_LN2[7:0]	R	-	8 least significant bits of flag counter lane 2
00F5h	FLAG_CNT_LN2_MSB	7 to 0	FLAG_CNT_LN2[15:8]	R	-	8 most significant bits of flag_counter lane 2
00F6h	FLAG_CNT_LN3_LSB	7 to 0	FLAG_CNT_LN3[7:0]	R	-	8 least significant bits of flag counter lane 3
00F7h	FLAG_CNT_LN3_MSB	7 to 0	FLAG_CNT_LN3[15:8]	R	-	8 most significant bits of flag_counter lane 3

Table 137. Miscellaneous interrupt enable registerDefault settings are shown highlighted.

ERR_MIX_CTL (address 00F8h)								
Bit	Symbol	Access	Value	Description (see Section 11.8.3)				
7	EM	R/W	0	SEL_CFC_LN is used for K28 monitoring				
			1	SEL_CFC_LN is used for ERR_MIX				
6	EM_KUX	R/W	0	no action				
			1	ERR_MIX_LN is using KOUT_UNEXPECTED monitoring				
5	EM_DISP	R/W	0	no action				
			1	ERR_MIX is using DISP error for monitoring				
4	EM_NIT	R/W	0	no action				
			1	ERR_MIX is using NIT err for monitoring				
3	ERPT_ILA_ENA	R/W	0	no action				
			1	ERR_RPT_FLAG impacted by ILA_BUF_ERR errors				
2	ERPT_KUX_ENA	R/W	0	no action				
			1	ERR_RPT_FLAG impacted by KOUT_UNEXPECTED errors				
1	ERPT_DIS_ENA	R/W	0	no action				
			1	ERR_RPT_FLAG impacted by DISP errors				
0	ERPT_NIT_ENA	R/W	0	no action				
			1	ERR_RPT_FLAG is impacted by NIT errors				

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 138. Miscellaneous interrupt enable registerDefault settings are shown highlighted.

INTR_EN_0(address 00F9h)									
Bit	Symbol	Access	Value	Description (see Section 11.8.3)					
3	INTR_STLTP_ERR	R/W	0	no action					
			1	Interrupt i_In <x> impacted by STLTP error</x>					
2	INTR_BER	R/W	0	no action					
			1	Interrupt i_In <x> impacted by BER_LN error</x>					
1	INTR_ILA_RCV	R/W	0	no action					
			1	Interrupt i_In <x> impacted by ILA_RCV</x>					
0	INTR_NO_F20_ACT	R/W	0	no action					
			1	Interrupt i_In <x> impacted by NO_F20_ACT flag</x>					

Table 139. Interrupt enable register

INTR_EN	INTR_EN_1 (address 00FAh)								
Bit	Symbol	Access	Value	Description (see Section 11.8.4)					
7	INTR_EN_NIT	R/W		not-in-table interrupt					
			0	no action					
			1	nit_error impacts global interrupt as per INTR_MODE configuration (bit 1E)					
6	INTR_EN_DISP	R/W		disparity-error interrupt					
			0	no action					
			1	disparity-error in In <x> affects i_In<x></x></x>					
5	INTR_EN_KOUT	R/W		K-character interrupt					
			0	no action					
			1	detection k-control character in ln <x> affects i_ln<x></x></x>					
4	INTR_EN_KOUT_UNEXP	R/W		unexpected K-character interrupt					
			0	no action					
			1	detection unexpected K-character in In <x> affects i_In<x></x></x>					
3	INTR_EN_K28_7	R/W		K28_7 interrupt					
			0	no action					
			1	detection K28_7 in In <x> affects i_In<x></x></x>					
2	INTR_EN_K28_5	R/W		K28_5 interrupt					
			0	no action					
			1	detection K28_5 in In <x> affects i_In<x></x></x>					
1	INTR_EN_K28_3	R/W		K28_3 interrupt					
			0	no action					
			1	detection K28_3 in In <x> affects i_In<x></x></x>					
0	INTR_EN_MISC	R/W		miscellaneous interrupt intr_misc (see reg x0F)					
			0	no action					
			1	detection depends on intr_misc_ena (see <u>Table 135</u>)					

Datasheet

Table 140. Flag counter control registers

0	0
Default settings are shown	n highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.6.1</u>)
00FBh	CTRL_FLAG_CNT_LN10	7	RST_CTRL_FLAG_ CNT_LN1	R/W	0	reset FLAG_CNT_LN1
		6 to 4	SEL_CTRL_FLAG_ CNT_LN1[2:0]		5h	select FLAG_CNT_LN1 source
		3	RST_CTRL_FLAG_ CNT_LN0		0	reset FLAG_CNT_LN0
		2 to 0	SEL_CTRL_FLAG_ CNT_LN0[2:0]		5h	select FLAG_CNT_LN0 source
00FCh	CTRL_FLAG_CNT_LN32	7	RST_CTRL_FLAG_ CNT_LN3	R/W	0	reset FLAG_CNT_LN3
		6 to 4	SEL_CTRL_FLAG_ CNT_LN3[2:0]		5h	select FLAG_CNT_LN3 source
		3	RST_CTRL_FLAG_ CNT_LN2		0	reset FLAG_CNT_LN2
		2 to 0	SEL_CTRL_FLAG_ CNT_LN2[2:0]		5h	select FLAG_CNT_LN2 source

Table 141. Reset flags monitor register

MON_FLAGS_RST (address 00FDh)									
Bit	Symbol	Access	Value	Description (see Section 11.8.5.13)					
7	RST_NIT_ERR_FLAGS	R/W	0	reset not-in-table error monitor flags					
6	RST_DISP_ERR_FLAGS	R/W	0	reset disparity monitor flags					
5	RST_KOUT_FLAGS	R/W	0	reset /K/ symbols monitor flags					
4	RST_KOUT_UNEXP_FLAGS	R/W	0	reset unexpected /K/ symbols monitor flags					
3	RST_K28_LN3_FLAGS	R/W	0	reset K28_x monitor flags for lane 3					
2	RST_K28_LN2_FLAGS	R/W	0	reset K28_x monitor flags for lane 2					
1	RST_K28_LN1_FLAGS	R/W	0	reset K28_x monitor flags for lane 1					
0	RST_K28_LN0_FLAGS	R/W	0	reset K28_x monitor flags for lane 0					

Table 142. Sample error rate interrupts control register

SER_INTR_CTRL (address 00FEh)								
Bit	Symbol	Access	Value	Description				
7	SER_MOD	R/W		simple BER-measurement				
			0	no action				
			1	simple BER measurement enabled				
6	INTR_RST	R/W		interrupts clear				
			0	no action				
			1	clear interrupts (to '1')				

Datasheet

Table 142. Sample error rate interrupts control register ...continued

SER_INT	SER_INTR_CTRL (address 00FEh)									
Bit	Symbol	Access	Value	Description						
5 to 3	INTR_MOD[2:0]	R/W		interrupt settings						
			000	DLP interrupt depends on lane 0						
			001	DLP interrupt depends on lane 1						
			010	DLP interrupt depends on lane 2						
			011	DLP interrupt depends on lane 3						
			100	DLP interrupt depends on lane 0 or lane 2						
			101	DLP interrupt depends on lane 0 or lane 1 or lane 2 or lane 3						
			110	Hold_flagcnt (see Section 11.8.6.1)						
			111	no interrupt						

11.12.9 JESD204 receiver monitoring

This block of registers enables the monitoring of the JESD receiver.

11.12.9.1 JESD204 receiver monitoring block register allocation map description

Table 143 shows an overview of all the JESD204 receiver monitoring registers.

 Table 143. JESD204 receiver monitoring register allocation map

Addr.	Register name	R/W	Bit definition I								Default
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0100h	SER_CTRL_0	R/W	SEL_XBE	RT_LN[1:0]	CHCK_ PRBS	RD_SEL	XI	BERT_CTL[2:0]	SR_XBERT _CNT	00h
0101h	SER_CTRL_1	R/W	-			STA	RT_WIN_JTSI	PAT[6:0]			00h
0102h	SER_CTRL_2	R/W	-			STO	OP_WIN_JTSF	PAT[6:0]			75h
0103h	SER_CTRL_3	R/W		STLTP_LN	STLTP_LN_MASK[3:0] RST_ RST_ STLTP_FL XBERT_FL AG AG						F0h
0104h	XBERT_CNT_ LSB	R			XBERT_CNT[7:0]						
0105h	XBERT_CNT_ MSB	R		XBERT_CNT[15:8]							uuh
010Ch	FIRST_JTSPAT	R	-			FIR	ST_JTSPAT_L	N0[6:0]			uuh
0110h	FIRST_XBERT_ PAT_LSB	R			FIRST_XBERT_PAT[7:0]						uuh
0111h	FIRST_XBERT_ PAT_MSB	R	-	-	FRST_XBERT_PAT[9:8]					uuh	
0112h	SER_LVL_L_LN 0_LSB	R				SER_LV	/L_L_LN0[7:0]				uuh
0113h	SER_LVL_L_LN 0_MSB	R		SER_LVL_L_LN0[15:8]						uuh	
0114h	SER_LVL_L_LN 1_LSB	R		SER_LVL_L_LN1[7:0]						uuh	
0115h	SER_LVL_L_LN 1_MSB	R		SER_LVL_L_LN1[15:8] u						uuh	
0116h	SER_LVL_L_LN 2_LSB	R		SER_LVL_L_LN2[7:0] u						uuh	
0117h	SER_LVL_L_LN 2_MSB	R		SER_LVL_L_LN2[15:8] ι						uuh	
0118h	SER_LVL_L_LN 3_LSB	R/W				SER_LV	/L_L_LN3[7:0]				00h

Datasheet

AC1653D/DAC1658D

Rev. 2.41 — 28 April 2014

DAC1653D; DAC
Table 143. JESD204 receiver monitoring register allocation map ...continued

DAC	Table 143.	JESD204 receiver	monito	ring registe	r allocation	mapcontir	nued						
1653D	Addr.	Register name	R/W				Bit	definition				Default	
; DAC1	Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex	
658D	0119h	SER_LVL_L_LN 3_MSB	R/W				00h						
	011Ah	MAN_MFB_LN0	R/W	-		MAN_MFB_LN0[6:0] 0							
	011Bh	MAN_MFB_LN1	R/W	-			Ν	IAN_MFB_LN'	1[6:0]			01h	
	011Ch	MAN_MFB_LN2	R/W	-			Ν	IAN_MFB_LN2	2[6:0]			01h	
	011Dh	MAN_MFB_LN3	R/W	-		MAN_MFB_LN3[6:0] 0							
	011Eh	FORCE_MFB_ LNX	R/W	-	-	-	-	FORCE_ MFB_LN3	FORCE_ MFB_LN2	FORCE_ MFB_LN1	FORCE_ MFB_LN0	00h	

[1] u = undefined at power-up or after reset.

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

DAC1653D/DAC1658D

Datasheet

rated Device Technology ÷

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.9.2 JESD204 receiver monitoring block bit definition detailed description

The tables in this section contain detailed descriptions of the JESD204x receiver monitoring registers.

Table 144.Sample rate error control registersDefault settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0100h	SER_CTRL_0	7 to 6	SEL_XBERT_LN[1:0]	R/W		XBERT operates on lane:
					00	lane 0
					01	lane 1
					10	lane 2
					11	lane 3
		5	CHCK_PRBS	R/W		prbs sequence
					0	synchronization to prbs sequence
					1	check prbs sequence
		4	RD_SEL	R/W		read back selection
					0	normal operation
					1	reserved
		3 to 1	XBERT_CTL[2:0]	R/W		XBERT selection
					000	idle mode
					001	JTSPAT
					010	PRBS31
					011	PRBS23
					100	PRBS15
					101	PRBS7
					others	idle
		0	SR_XBERT_CNT	R/W		soft reset XBERT_CNT
					0	no action
					1	soft reset XBERT counter
0101h	SER_CTRL_1	6 to 0	START_WIN_JTSPAT[6:0]	R/W		start win jtspat generation
0102h	SER_CTRL_2	6 to 0	STOP_WIN_JTSPAT[6:0]	R/W		stop window jtspat generation
0103h	SER_CTRL_3	7 to 4	STLTP_LN_MASK[3:0]	R/W		Mask to used STLTP_ERR_FLAG
			bit 7			lane 3
			bit 6			lane 2
			bit 5			lane 1
			bit 4			lane 0
		1	RST_STLTP_FLAG	R/W		reset STLTP FLAG
		0	RST_XBERT_FLAG	R/W		reset XBERT_FLAG

DAC1653D/DAC1658D Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 145. LSB/MSB of sample error rate counter registersDefault settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0104h	XBERT_CNT_LSB	7 to 0	XBERT_CNT[7:0]	R	-	8 least significant bits of XBERT error rate counter
0105h	XBERT_CNT_MSB	7 to 0	XBERT_CNT[15:8]	R	-	8 most significant bits of XBERT error rate counter

Table 146. First JTSPAT with sample error rate registersDefault settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
010Ch	FIRST_JTSPAT	6 to 0	FIRST_JSTPAT[6:0]	R	-	indication of first jtspat

 Table 147. LSB/MSB of first sample error rate pattern registers

 Default settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0110h	FIRST_XBERT_PAT_LSB	7 to 0	FIRST_XBERT_PAT[7:0]	R	-	8 least significant bits of first sample error rate pattern
0111h	FIRST_XBERT_PAT_MSB	1 to 0	FIRST_XBERT_PAT[9:8]	R	-	2 most significant bits first sample error rate pattern
0112h	SER_LVL_L_LN0_LSB	7 to 0	SER_LVL_L_LN0[7:0]	R	-	8 least significant bits of sample error rate level lane 0
0113h	SER_LVL_L_LN0_MSB	7 to 0	SER_LVL_L_LN0[15:8]	R	-	8 most significant bits of sample error rate level lane 0
0114h	SER_LVL_L_LN1_LSB	7 to 0	SER_LVL_L_LN1[7:0]	R	-	8 least significant bits of sample error rate level lane 1
0115h	SER_LVL_L_LN1_MSB	7 to 0	SER_LVL_L_LN1[15:8]	R	-	8 most significant bits of sample error rate level lane 1
0116h	SER_LVL_L_LN2_LSB	7 to 0	SER_LVL_L_LN2[7:0]	R	-	8 least significant bits of sample error rate level lane 2
0117h	SER_LVL_L_LN2_MSB	7 to 0	SER_LVL_L_LN2[15:8]	R	-	8 most significant bits of sample error rate level lane 2
0118h	SER_LVL_L_LN3_LSB	7 to 0	SER_LVL_L_LN3[7:0]	R	-	8 least significant bits of sample error rate level lane 3
0119h	SER_LVL_L_LN3_MSB	7 to 0	SER_LVL_L_LN3[15:8]	R	-	8 most significant bits of sample error rate level lane 3

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 148. Multi-frame bytes registers

Default settings are shown highlighted.

	0 0 0					
Address	Register	Bit	Symbol	Access	Value	Description
011Ah	MAN_MFB_LN0	6 to 0	MAN_MFB_LN0[6:0]	R/W	-	number of multi-frame bytes instead of force_mfb_In0 is '1
011Bh	MAN_MFB_LN1	6 to 0	MAN_MFB_LN1[6:0]	R/W	-	number of multi-frame bytes instead of force_mfb_In1 is '1
011Ch	MAN_MFB_LN2	6 to 0	MAN_MFB_LN2[6:0]	R/W	-	number of multi-frame bytes instead of force_mfb_ln2 is '1
011Dh	MAN_MFB_LN3	6 to 0	MAN_MFB_LN3[6:0]	R/W	-	number of multi-frame bytes instead of force_mfb_In3 is '1

Table 149. Force multi-frame bytes register

FORCE	_MFB (address 011Eh)			
Bit	Symbol	Access	Value	Description
3	FORCE_MFB_LN3	R/W		force multi-frame bytes for lane_3
			0	no action
			1	force man_mfb_In3 to ILA_CTRL
2	FORCE_MFB_LN2	R/W		force multi-frame bytes for lane_2
			0	no action
			1	force man_mfb_In2 to ILA_CTRL
1	FORCE_MFB_LN1	R/W		force multi-frame bytes for lane_1
			0	no action
			1	force man_mfb_In1 to ILA_CTRL
0	FORCE_MFB_LN0	R/W		force multi-frame bytes for lane_0
			0	no action
			1	force man_mfb_In0 to ILA_CTRL

11.12.10 JESD204 read configuration block

These blocks of registers reproduce the values of the configuration data transmitted from the TX in the second multi-frame of the initial-lane alignment sequence and decoded in the DAC165xD.

Table 150 show an overview of the generic parts of the register addresses.

Table 150. Overview of generic parts of register addresses

	DAC AB
lane 0	nnn = 012
lane 1	nnn = 013
lane 2	nnn = 014
lane 3	nnn = 015

11.12.10.1 JESD204 read configuration block lane register allocation map

Table 151 shows an overview of all the JESD204 read configuration lane registers.

Table 151. JESD204 read configuration block DAC X/Y lane 0/lane 1 register allocation map

Addr.	Register name	R/W				Bit def	finition				Default	
Hex			Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex	
nnn0h	P_LN_CFG_0	R				P_LN_I	DID[7:0]				uuh	
nnn1h	P_LN_CFG_1	R		P_LN_AD	JCNT[3:0]			P_LN_	BID[3:0]		uuh	
nnn2h	P_LN_CFG_2	R	-	P_LN_ ADJDIR	P_LN_ PHADJ		P_LN_LID[4:0]					
nnn3h	P_LN_CFG_3	R	P_LN_SCR	-	-		P_LN_L[4:0]					
nnn4h	P_LN_CFG_4	R				P_LN	_F[7:0]				uuh	
nnn5h	P_LN_CFG_5	R	-	-	-	P_LN_K[4:0]					uuh	
nnn6h	P_LN_CFG_6	R				P_LN_	M[7:0]				uuh	
nnn7h	P_LN_CFG_7	R	P_LN_	CS[1:0]	-			uuh				
nnn8h	P_LN_CFG_8	R	P_LN	LSUBCLASS	V[2:0]			P_LN_N'[4:0]			uuh	
nnn9h	P_LN_CFG_9	R	P_	LN_JESDV[2	:0]			P_LN_S[4:0]			uuh	
nnnAh	P_LN_CFG_10	R	P_LN_HD	-	-			P_LN_CF[4:0]		uuh	
nnnBh	P_LN_CFG_11	R				P_LN_R	ES1[7:0]				uuh	
nnnCh	P_LN_CFG_12	R				P_LN_R	ES2[7:0]				uuh	
nnnDh	P_LN_CFG_13	R				P_LN_F	CHK[7:0]				uuh	

[1] u = undefined at power-up or after reset.

Datasheet

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

AC1653D/DAC1658D

ted Device Technology

DAC1653D; DAC1658E

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.10.2 JESD204 read configuration block lane bit definition detailed description

The tables in this section contain detailed descriptions of the JESD204 read configuration lane registers.

Default settings are shown highlighted. See Table 150 for the generic information on the register addresses.

Address	Register	Bit	Symbol	Access	Value	Description
nnn0h	P_LN_CFG_0	7 to 0	P_LN_DID[7:0]	R	-	physical lane device ID
nnn1h	P_LN_CFG_1	7 to 4	P_LN_ADJ_CNT[3:0]	R	-	physical lane adjustable counter
		3 to 0	P_LN_BID[3:0]		-	physical lane bank ID
nnn2h	P_LN_CFG_2	6	P_LN_ADJ_DIR	R	-	physical lane adjustable direction
		5	P_LN_PH_ADJ			physical lane adjustable phase
		4 to 0	P_LN_LID[4:0]		-	physical lane lane ID
nnn3h	P_LN_CFG_3	7	P_LN_SCR	R	-	physical lane scrambler enabled
		4 to 0	P_LN_L[4:0]		-	number of physical lanes minus 1
nnn4h	P_LN_CFG_4	7 to 0	P_LN_F[7:0]	R	-	number of octets per frame minus 1
nnn5h	P_LN_CFG_5	4 to 0	P_LN_K[4:0]	R	-	number of frames per multi-frame minus 1
nnn6h	P_LN_CFG_6	7 to 0	P_LN_M[7:0]	R	-	number of converters per device minus 1
nnn7h	P_LN_CFG_7	7 to 6	P_LN_CS[1:0]	R	-	number of control bits
		4 to 0	P_LN_N[4:0]		-	converter resolution minus 1
nnn8h	P_LN_CFG_8	7 to 5	P_LN_SBCLSS_VS[2:0]	R	-	physical lane JESD204B subclass version
					00	subclass 0
					01	subclass 1
					10	subclass 2
		4 to 0	P_LN_N'[4:0]	R	-	number of bits per sample minus 1
nnn9h	P_LN_CFG_9	7 to 5	P_LN_JESDV	R	-	physical lane 0 JESD204 version
					000	version A
					001	version B
		4 to 0	P_LN0_S[4:0]	R	-	number of samples per converter per frame cycle minus 1
nnnAh	P_LN_CFG_10	7	P_LN_HD	R	-	high density
		4 to 0	P_LN_CF[4:0]		-	number of control words per frame cycle
nnnBh	P_LN_CFG_11	7 to 0	P_LN_RSRVD1[7:0]	R	-	physical lane reserved field
nnnCh	P_LN_CFG_12	7 to 0	P_LN_RSRVD2[7:0]	R	-	physical lane reserved field
nnnDh	P_LN_CFG_13	7 to 0	P_LN_FCHK[7:0]	R	-	physical lane checksum

Table 152. Lane configuration registers

11.12.10.3 JESD204 read configuration block sample measurement registers

Table 153 shows an overview of all the JESD204 read configuration sample measurement registers.

Table 15	53. JESD204	read configuration	block sample	measurement registers
----------	-------------	--------------------	--------------	-----------------------

Register name		R/W	R/W Bit definition									
	b7 b6 b5 b4 b3 b2 b1 b0									b0	Hex	
012Eh	P_LN10_ SAMPLE_LSB	R		P_LN10_SAMPLE[7:0]								
012Fh	P_LN10_ SAMPLE_MSB	R		P_LN10_SAMPLE[15:8] u								
013Eh	P_LN10_SEL	W		P_LN10_SEL[7:0] (
014Eh	P_LN32_ SAMPLE_LSB	R		P_LN32_SAMPLE[7:0]								
014Fh	P_LN32_ SAMPLE_MSB	R		P_LN32_SAMPLE[15:8]								
015Eh	P_LN32_SEL	W				P_LN32	_SEL[7:0]				00h	

ted Device Technology

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

AC1653D/DAC1658D

[1] u = undefined at power-up or after reset.

Datasheet

11.12.10.4 JESD204 read configuration block sample measurement registers detailed description

Table 154 shows an overview of all the JESD204 read configuration sample measurement registers.

Table 154. Lane 1/lane 0 sample LSB/MSB registers Default settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.6.5</u>)
012Eh	P_LN10_SAMPLE_ LSB	7 to 0	P_LN10_ SAMPLE[7:0]	R	-	internal DLP data on physical lane 0 or physical lane 1 depending on the value of LN10_SELECT (bit 1E; LSB) The data are strobed by DLP_STROBE
012Fh	P_LN10_SAMPLE_ MSB	7 to 0	P_LN10_ SAMPLE[15:8]	R	-	internal DLP data on physical lane 0 or physical lane 1 depending on the value of LN10_SELECT (bit 1E; MSB) The data are strobed by DLP_STROBE

Table 155. Physical lane 1/lane 0 selection register Default settings are shown highlighted.

LN10_SE	EL (address 013Eh)			
Bit	Symbol	Access	Value	Description (see Section 11.8.6.5)
7 to 0	P_LN10_SEL	W		specifies the lane affected by DLP_STROBE
			0	physical lane 0
			1	physical lane 1

Table 156. Lane 3/lane 2 sample LSB/MSB registers Default settings are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description (see <u>Section 11.8.6.5</u>)
014Eh	P_LN32_SAMPLE_ LSB	7 to 0	P_LN32_ SAMPLE[7:0]	R	-	internal DLP data on lane 2 or lane 3 depending on the value of LN10_SELECT (bit 1E; LSB) The data are strobed by DLP_STROBE
014Fh	P_LN32_SAMPLE_ MSB	7 to 0	P_LN32_ SAMPLE[15:8]	R	-	internal DLP data on lane 2 or lane 3 depending on the value of LN10_SELECT (bit 1E; MSB) The data are strobed by DLP_STROBE

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 157. Physical lane 3/lane 2 selection registerDefault settings are shown highlighted.

P_LN32_SEL (address 015Eh)						
Bit	Symbol	Access	Value	Description (see Section 11.8.6.5)		
7 to 0	P_LN32_SEL	W		specifies the lane affected by DLP_STROBE		
			0	physical lane 2		
			1	physical lane 3		

11.12.11 RX physical layer control block

This block of registers specifies the configuration of the physical layer of the deserializer. The control block the various features as the equalizer and the common-mode voltage or resistor termination. The RX physical layer monitor block monitors the status of the previous controls.

11.12.11.1 RX physical layer block register allocation map

Table 158 shows an overview of all the RX physical layer control registers.

Table 158. RX physical layer control block register allocation map

Addr.	Register name	R/W			Bit definition						Default
Hex			Bit 7	Bit 6	Bit 6 Bit 5		Bit 3	Bit 2	Bit 1	Bit 0	Hex
0162h	HS_RX_CDR_ DIV	R/W	HS_RX_ CDR_ LOW_ SPEED_EN	HS_RX_CD	HS_RX_CDR_DIVM[1:0]		HS_RX_CDR_DIVN[4:0]				
0163h	HS_RX_CDR_C P	R/W		CP_ITR	ACK[3:0]			CP_IP	FD[3:0]		54h
0167h	HS_RX_EQ_ CTRL	R/W	-	-	- RESERVED		HS_RX_3_ EQ_EN	HS_RX_2_ EQ_EN	HS_RX_1_ EQ_EN	HS_RX_0_ EQ_EN	1Fh
0168h	HS_RX_LN0_ EQ_GAIN	R/W	-	-			-	HS_RX_LN0_EQ_IF_GAIN[2:0]		GAIN[2:0]	04h
0169h	HS_RX_LN1_ EQ_GAIN	R/W	-	-			-	HS_RX_LN1_EQ_IF_GAIN[2:0]		GAIN[2:0]	04h
016Ah	HS_RX_LN2_ EQ_GAIN	R/W	-	-	-	-	-	HS_RX_LN2_EQ_IF_GAIN[2:0]		GAIN[2:0]	04h
016Bh	HS_RX_LN3_ EQ_GAIN	R/W	-	-	-	-	-	HS_RX_	LN3_EQ_IF_(GAIN[2:0]	04h
0170h	HS_RX_RT_ VCM	R/W	-	-	HS_RX_RT _VCM_SEL	HS_RX_RT_VCM_REF[4:0]				25h	
0171h	HS_RX_RT_ CTRL	R/W	HS_RX_ LN3_RT_ HIZ_EN	HS_RX_ LN2_RT_ HIZ_EN	HS_RX_ LN1_RT_ HIZ_EN	HS_RX_ LN0_RT_ HIZ_EN	HS_RX_ LN3_RT_ EN	HS_RX_ LN2_RT_ EN	HS_RX_ LN1_RT_ EN	HS_RX_ LN0_RT_ EN	0Fh
017Dh	SYNC_CFG_ CTRL	R/W	SYNC_EN	SYN	NC_SET_VCM[[2:0]	-	SYI	NC_SET_LVL[2:0]	80h
017Eh	SYNC_SEL_ CTRL	R/W	SYNC_TST _DATA_ TX_EN	- SYNC_TST SEL[T_DATA_ 1:0]	-	-	-	-	00h

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

C1653D/DAC1658D

ted Device Technology

© IDT 2014. All rights reserved. 154 of 168

Rev. 2.41 — 28 April 2014

DAC1653D; DAC

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.11.2 RX physical layer control block bit definition detailed description

The tables in this section contain detailed descriptions of the RX physical layer control registers.

 Table 159. High speed receiver clock data recovery divider register

 Default values are shown highlighted.

HS_RX_	HS_RX_CDR_DIV (address 0162h)								
Bit	Symbol	Access	Value	Description					
7	HS_RX_CDR_LOW_SPEED_EN	R/W		low speed receiver clock data recovery mode					
			0	disabled					
			1	enabled					
6 to 5	HS_RX_CDR_DIVM[1:0]	R/W	-	divm ratio used to divide the reference clock (predivider) (see Figure 81)					
4 to 0	HS_RX_CDR_DIVN[4:0]	R/W	-	divn ratio used in clock data receiver reference loop (see Figure 81)					
				loop (see <u>Figure or</u>)					

 Table 160. High speed receiver equalizer control register

 Default values are shown highlighted.

HS_RX_	HS_RX_EQ_CTRL (address 0167h)								
Bit	Symbol	Access	Value	Description					
5	RESERVED	R/W	0	reserved to 0					
4	HS_RX_EQ_AUTO_ZERO_EN	R/W		Equalizer auto zero mode					
			0	disabled (for all lanes)					
			1	enabled (for all lanes)					
3	HS_RX_LN3_EQ_EN	R/W		Equalizer of receiver lane 3					
			0	disabled (power-down)					
			1	enabled (active)					
2	HS_RX_LN2_EQ_EN	R/W		Equalizer of receiver lane 2					
			0	disabled (power-down)					
			1	enabled (active)					
1	HS_RX_LN1_EQ_EN	R/W		Equalizer of receiver lane 1					
			0	disabled (power-down)					
			1	enabled (active)					
0	HS_RX_LN0_EQ_EN	R/W		Equalizer of receiver lane 0					
			0	disabled (power-down)					
			1	enabled (active)					

Datasheet

 Table 161. High speed equalizer gain registers

 Default values are shown highlighted.

Address	Register	Bit	Symbol	Access	Value	Description
0168h	HS_RX_LN0_EQ_GAIN	2 to 0	HS_RX_LN0_EQ_IF_GAIN[2:0]	R/W	-	sets if-gain for receiver lane 0 equalizer
0169h	HS_RX_LN1_EQ_GAIN	2 to 0	HS_RX_LN1_EQ_IF_GAIN[2:0]	R/W	-	sets if-gain for receiver lane 1 equalizer
016Ah	HS_RX_LN2_EQ_GAIN	2 to 0	HS_RX_LN2_EQ_IF_GAIN[2:0]	R/W	-	sets if-gain for receiver lane 2 equalizer
016Bh	HS_RX_LN3_EQ_GAIN	2 to 0	HS_RX_LN3_EQ_IF_GAIN[2:0]	R/W	-	sets if-gain for receiver lane 3 equalizer

 Table 162. High speed receiver termination resistor voltage common-mode register

 Default values are shown highlighted.

HS_RX_RT_VCM (address 0170h)									
Bit	Symbol	Access	Value	Description					
5	HS_RX_RT_VCM_SEL	R/W		rx_rt modules configuration					
			0	do not use					
			1	rx_rt_modules configured for RX-use (all lanes)					
4 to 0	HS_RX_RT_VCM_REF[4:0]	R/W	-	sets common-mode reference for hs_rx_rt (all lanes)					

 Table 163. High speed resistor termination control register

 Default values are shown highlighted.

HS_RX_	HS_RX_RT_CTRL (address 0171h)								
Bit	Symbol	Access	Value	Description					
7	HS_RX_LN3_RT_HIZ_EN	R/W		high speed receiver lane 3 input					
			0	100 Ω (differential impedance)					
			1	high ohmic					
6	HS_RX_LN2_RT_HIZ_EN	R/W		high speed receiver lane 2 input					
			0	100 Ω (differential impedance)					
			1	high ohmic					
5	HS_RX_LN1_RT_HIZ_EN	R/W		high speed receiver lane 1 input					
			0	100 Ω (differential impedance)					
			1	high ohmic					
4	HS_RX_LN0_RT_HIZ_EN	R/W		high speed receiver lane 0 input					
			0	100 Ω (differential impedance)					
			1	high ohmic					
3	HS_RX_LN3_RT_EN	R/W		high speed receiver lane 3 resistance termination					
			0	disabled (power-down)					
			1	enabled (active)					

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

Table 163. High speed resistor termination control register ...continued Default values are shown highlighted.

HS_RX_I	HS_RX_RT_CTRL (address 0171h)								
Bit	Symbol	Access	Value	Description					
2	HS_RX_LN2_RT_EN	R/W		high speed receiver lane 2 resistance termination					
			0	disabled (power-down)					
			1	enabled (active)					
1	HS_RX_LN1_RT_EN	R/W		high speed receiver lane 1 resistance termination					
			0	disabled (power-down)					
			1	enabled (active)					
0	HS_RX_LN0_RT_EN	R/W		high speed receiver lane 0 resistance termination					
			0	disabled (power-down)					
			1	enabled (active)					

Table 164. Synchronization configuration control registerDefault values are shown highlighted.

SYNC_	SYNC_CFG_CTRL (address 017Dh)								
Bit	Symbol	Access	Value	Description					
7	SYNC_EN	R/W		synchronization buffer					
			0	disabled (power-down)					
			1	enabled (active)					
6 to 4	SYNC_SET_VCM[2:0]	R/W	-	sets common-mode output voltage of synchronization buffer					
2 to 0	SYNC_SET_LVL[2:0]	R/W	-	sets output levels (swing) of synchronization buffer					

Table 165. Synchronization test data control registerDefault values are shown highlighted.

SYNC_SEL_CTRL (address 017Eh)				
Bit	Symbol	Access	Value	Description
7	SYNC_TST_DATA_TX_EN	R/W		synchronization test data transmission
			0	normal operation (JESD204x synchronization buffer)
			1	test mode (synchronization output depends on SYNC_TST_DATA_SEL)
5 to 4	SYNC_TST_DATA_SEL[1:0]	R/W		synchronization test data selection
			00	synchronization ← HS_RX_0_CLK_DX
			01	synchronization \leftarrow HS_RX_1_CLK_DX
			10	synchronization \leftarrow HS_RX_2_CLK_DX
			11	synchronization \leftarrow HS_RX_3_CLK_DX

11.12.11.3 RX physical layer monitor register allocation map

Table 166 shows an overview of all RX physical layer monitor registers.

Table 166. RX physical layer monitor register allocation map

Addr.	Register name	R/W		Bit definition [Default		
Hex]	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Hex
0185h	HS_RX_CDR_ EN_MON_0	R	-	-	-	-	HS_RX_ LN3_CDR_ EN_MON	HS_RX_ LN2_CDR_ EN_MON	HS_RX_ LN1_CDR_ EN_MON	HS_RX_ LN0_CDR_ EN_MON	0Fh
0187h	HS_RX_EQ_ CTRL_MON	R	-	-	RESERVED	HS_RX_EQ _AUTO_ ZERO_EN_ MON	HS_RX_ LN3_EQ_ EN_MON	HS_RX_ LN2_EQ_ EN_MON	HS_RX_LN1_ EQ_EN_MON	HS_RX_ LN0_EQ_ EN_MON	1Fh

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

DAC1653D/DAC1658D

ted Device Technology

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.12.11.4 RX physical layer monitor block bit definition detailed description

The tables in this section contain detailed descriptions of the RX physical layer monitor registers.

Table 167. Current high speed RX equalizer control registerDefault values are shown highlighted.

I_HS_RX	I_HS_RX_EQ_CTRL (address 0187h)				
Bit	Symbol	Access	Value	Description	
5	RESERVED	R		reserved to 0	
4	HS_RX_EQ_AUTO_ZERO_EN_MON	R		Equalizer auto zero mode	
			0	disabled (for all lanes)	
			1	enabled (for all lanes)	
3	HS_RX_LN3_EQ_EN_MON	R		Equalizer of receiver lane 3	
			0	disabled (power-down)	
			1	enabled (active)	
2	HS_RX_LN2_EQ_EN_MON	R		Equalizer of receiver lane 2	
			0	disabled (power-down)	
			1	enabled (active)	
1	HS_RX_LN1_EQ_EN_MON	R		Equalizer of receiver lane 1	
			0	disabled (power-down)	
			1	enabled (active)	
0	HS_RX_LN0_EQ_EN_MON	R		Equalizer of receiver lane 0	
			0	disabled (power-down)	
			1	enabled (active)	

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

12. PACKAGE OUTLINE

Fig 86. Package outline VFQFP-N 56

DAC1653D; DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

13. ABBREVIATIONS

Table 168. Abbre	viations
Acronym	Description
BW	BandWidth
BWA	Broadband Wireless Access
CDI	Clock Domain Interface
CDMA	Code Division Multiple Access
CDR	Clock Data Recovery
CML	Current Mode Logic
CMOS	Complementary Metal Oxide Semiconductor
CTLE	Continuous Time Linear Equalization
DAC	Digital-to-Analog Converter
EDGE	Enhanced Data rates for GSM Evolution
FIR	Finite Impulse Response
GSM	Global System for Mobile communications
IF	Intermediate Frequency
IMD3	Third Order InterModulation
LMDS	Local Multipoint Distribution Service
LO	Local Oscillator
LTE	Long Term Evolution
LVDS	Low-Voltage Differential Signaling
MDS	Multiple Device Synchronization
MIMO	Multiple In Multiple Out
NCO	Numerically Controlled Oscillator
NMOS	Negative Metal-Oxide Semiconductor
PCB	Printed Circuit Board
PLL	Phase-Locked Loop
SFDR	Spurious-Free Dynamic Range
SPI	Serial Peripheral Interface
WCDMA	Wide band Code Division Multiple Access
WLL	Wireless Local Loop

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

14. GLOSSARY

14.1 Static parameters

INL — The deviation of the transfer function from a best fit straight line (linear regression computation).

DNL — The difference between the ideal and the measured output value between successive DAC codes.

14.2 Dynamic parameters

Spurious-Free Dynamic Range (SFDR) — The ratio between the RMS value of the reconstructed output sine wave and the RMS value of the largest spurious observed (harmonic and non-harmonic, excluding DC component) in the frequency domain.

InterModulation Distortion (IMD) — From a dual-tone digital input sine wave (these two frequencies being close together), the intermodulation distortion products IMD2 and IMD3 (second order and third order components) are defined below.

IMD2 — The ratio between the RMS value of either tone and the RMS value of the worst second order intermodulation product.

IMD3 — The ratio between the RMS value of either tone and the RMS value of the worst third order intermodulation product.

Total Harmonic Distortion (THD) — The ratio between the RMS value of the harmonics of the output frequency and the RMS value of the output sine wave. Usually, the calculation of THD is done on the first 5 harmonics.

Signal-to-Noise Ratio (SNR) — The ratio between the RMS value of the reconstructed output sine wave and the RMS value of the noise excluding the harmonics and the DC component.

Restricted BandWidth Spurious-Free Dynamic Range (SFDR_{RBW}) — the ratio between the RMS value of the reconstructed output sine wave and the RMS value of the noise, including the harmonics, in a given bandwidth centered around f_{offset} .

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

15. REVISION HISTORY

Table 169. Revision history			
Document ID		Release date	Data sheet status
DAC1653D; DAC1658D v.2.41		20140428	Final
Table 170. Revision history			
Item changed current revision	Comments		
MDS sample accuracy	explicit information about the phase delay uncertainty of the	NCO carrier when using	the MDS and the NCO together
Titles and register typo	updated with correct values and default values in bold chara	icter	
NSD fig 17 and 18	change X-label on both graph		
previous revision 2.40			
PRBS test sequence	updated with new settings		
Max Power figures	updated with new values		
Digital current consumptions (fig 31)	updated with new values		
SYSREF signal	updated specification (periodic/gapped)		
previous revision 2.31			
PRBS test sequence	updated with new settings		
IO-Mux	added xbert flag setting		
LVDS clock	400 mV min value		
Statics characteristics	all values updated with final ones		
Dynamics characteristics	all values updated with final ones		
Startup sequence	update SEL_ILA bits to 11		
SEL_ILA information	added section about ILA wrong detection in case TX takes to	oo long time to respond	to SYNC low
Latency	222 mode values were incorrect		
Equalizer gain	added		
previous revision 2.20			
Block diagram	clock dividers were wrongly indicated		
Block diagram	IO0 is now bi-directionnal		
Block Diagram and Pins list	VDDA(out) renamed in VDDA(3V3)		
Block Diagram and Pins list	VDDD(DIF) renamed in VDDD(sync)		
Block Diagram and Pins list	JRES value specified to 6.98 kOhms		
DAC output voltage compliance range	change the specification information		
SPI timings	figures for read/write in 3 or 4 wires mode added. Tin	ning specification upo	lated
Main device configuration section	Startup sequence has been added		
Power down mode	Power down mode feature at startup time.		
CDI table	Maximum input data rate updated		
SYNC output level configuration	values updated for common mode and swing		
PRBS test	new support for PRBS23, 15, 7		
PRBS checker	only one module for all the lanes		
PRBS example	script added		
IO-mux	IO1 indicator location updated		
JRES pin section	section added		
Equalizer section	text updated		
Output interfacing configuration	schematics updated for High and Low common mode	e	
Power and grounding	text updated		
Registers table	updated to latest information		

DAC1653D; DAC1658D

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

16. TABLES

Table 1.	Ordering information 3
Table 2.	Pin description 5
Table 3.	Limiting values 8
Table 4.	Thermal characteristics
Table 5.	Common characteristics 10
Table 6.	Currents characteristics 12
Table 7.	Specific characteristics
Table 8.	Dynamic characteristics DAC165xD 15
Table 9.	LMF configuration
Table 10.	Read mode or Write mode access description 28
Table 11.	Double buffered registers
Table 12.	SPI timing characteristics - 4 wires
Table 13.	SPI timing characteristics - 3 wires
Table 14.	Interpolation
Table 15:	Interpolation filter coefficients
Table 16.	Complex modulator operation mode
Table 17.	Inversion filter coefficients
Table 18.	DAC transfer function
Table 19.	Mute event categories
Table 20.	Mute rate availability 46
Table 21.	Digital offset adjustment
Table 22.	Level detector values
Table 23.	WCLK_DIV selection
Table 24.	CLKDIV_SEL_PHASE selection
Table 25.	Interpolation and CDI modes
Table 26.	Latency for LMF-S= without : MDS , Phase
	correction, SSBM, and InvSin x/x 54
Table 27.	Additional latency 54
Table 28.	Auxiliary DAC transfer function 57
Table 29.	Relationship between various clocks 60
Table 30.	INTR_MOD settings 69
Table 31.	Logical lanes versus L values
Table 32.	Lane mapping between Logical and Physical
	lanes regarding the L value
Table 33.	Code group synchronization state machine 75
Table 34.	Sync_request control 75
Table 35.	SYNC output common mode voltage
Table 36.	SYNC output swing voltage 76
Table 37.	Counter source
Table 38.	HOLD_FLAG_CNT_EN options 80
Table 39.	Jitter tolerance scrambled pattern symbols
	sequence
Table 40.	Definition of IO_SEL registers
Table 41.	Output signals for combination of indicators
	and ranges 84
Table 45.	Interface DAC DSP register allocation map 91
Table 45. Table 46.	Interface DAC DSP register allocation map
Table 45. Table 46. Table 47.	Interface DAC DSP register allocation map 91 SPI configuration registers 92 Device power mode register
Table 45. Table 46. Table 47. Table 48.	Interface DAC DSP register allocation map 91 SPI configuration registers 92 Device power mode register 92 Chip type register 92 Chip type register 92
Table 45. Table 46. Table 47. Table 48. Table 49.	Interface DAC DSP register allocation map 91 SPI configuration registers
Table 45. Table 46. Table 47. Table 48. Table 49. Table 50.	Interface DAC DSP register allocation map 91 SPI configuration registers
Table 45. Table 46. Table 47. Table 48. Table 48. Table 49. Table 50. Table 51.	Interface DAC DSP register allocation map 91 SPI configuration registers 92 Device power mode register 92 Chip type register 92 Chip registers 93 Chip vendor identification registers 93 SPI configuration register 93 Chip vendor identification registers 93 SPI configuration register 93 SPI configuration register 93 SPI configuration register 93
Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52.	Interface DAC DSP register allocation map 91 SPI configuration registers 92 Device power mode register 92 Chip type register 92 Chip registers 93 Chip vendor identification registers 93 SPI configuration register 93 Dual DAC core block register allocation map 94 Dual DAC core power configuration register 95
Table 45. Table 46. Table 47. Table 47. Table 48. Table 50. Table 51. Table 52. Table 53. Table 54.	Interface DAC DSP register allocation map 91 SPI configuration registers 92 Device power mode register 92 Chip type register 92 Chip registers 93 Chip vendor identification registers 93 SPI configuration register 93 Dual DAC core block register allocation map 94 Dual DAC core power configuration register 95 Word elock apportion configuration register 95
Table 45. Table 46. Table 47. Table 47. Table 48. Table 50. Table 50. Table 51. Table 52. Table 53. Table 54. Table 54.	Interface DAC DSP register allocation map 91 SPI configuration registers 92 Device power mode register 92 Chip type register 92 Chip registers 93 Chip vendor identification registers 93 SPI configuration register 93 Dual DAC core block register allocation map 94 Dual DAC core power configuration register 95 Word clock generation configuration register 95 Word clock generation configuration register 95

Table 56.	Power On Clock Divider buffer configuration	6
Table 57.	MDS SYSREF miscellaneous configuration	,
	register	5
Table 58.	Input clock divider register 96	3
Table 59.	Analog gain control registers 97	7
Table 60.	Auxiliary DACs registers 97	7
Table 61.	Main controls block register allocation map 99	9
Table 62.	Main controls register 100	C
Table 63.	Watch Dog control register 100	C
Table 64.	Power Down control register 100	C
Table 65.	EHS control register 10	1
Table 66.	EHS modes 10 ⁻	1
Table 67.	Clock domain interface reset register 10	1
Table 68.	IO_MUX and MON_DCLK registers 107	1
Table 69.	Interface DAC DSP register allocation map . 102	2
Table 70.	Transmission configuration register 104	4
Table 71.	Numerically controlled oscillator phase offset	
	registers 104	4
Table 72.	Numerically controlled oscillator frequency	
	registers 105	5
Table 73.	DAC output phase correction factor registers 105	5
Table 74.	DAC digital gain control registers 105	5
Table 75.	DAC output control register 106	3
Table 76.	Register level detector 100	3
Table 77.	DAC digital offset registers 100	6
Table 78.	Input word coding register 10	7
Table 79.	LSB/MSB of I/Q levels register 10	7
Table 80.	Signal power detector control register 108	3
Table 81.	SPD LSB/MSB registers 108	3
Table 82.	Mute, interrupt and temperature control	
	register allocation map 109	9
Table 83.	Mute control registers11	1
Table 84.	Mute alarm enable registers	2
Table 85.	Mute rate control registers	3
Table 86.	Mute wait period LSB/MSB registers113	3
Table 87.	IQ range limit LSB/MSB registers	3
Table 88.	Interrupt control register	4
Table 89.	Interrupt enable registers	4
Table 90.	Interrupt flags registers	4
Table 91.	Imperature Sensor control register11	ō
Table 92.	Iemperature Sensor level register	ō
Table 93.	Iemperature Sensor clock divider register 110	5 O
Table 94.	Iemperature Sensor timer register	5 S
Table 95.	Iemperature Sensor output register110	5 O
Table 96.	Maximum temperature register	5
Table 97.		2
Table 98.	DSP sample control register	2 7
Table 99.	DSP read LSB/MSB registers	1
	Interrupt block register election men	0
Table 101	MDS main register	c n
	MDS IO control register	ר ח
	MDS manual adjustment delay register	ן 1
	MDS miscellaneous control register 12	ו 1
	MDS offset delay register 12	י 1
	. MDG Gliser ucidy register	1

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Table 106. MDS window registers 12	22
Table 107. LMFC period register 12	22
Table 108. LMFC preset register 12	22
Table 109. MDS adjustment delay register 12	22
Table 110. MDS status registers 12	22
Table 111. RX digital lane processing block register	
allocation map 12	24
Table 112. Initial-lane alignment control register 12	26
Table 113. Force alignment register 12	26
Table 114. Synchronization output modes register 12	27
Table 115. Physical lane polarity register 12	27
Table 116. Physical lane selection register 12	28
Table 117. Descrambler initialization values registers . 12	28
Table 118. Error handling register 12	29
Table 119. Reinitialization control register 13	30
Iable 120. Miscellaneous control register 13	31
Table 121. LMF control register	31
Table 122. RX digital lane processing monitoring block	
register allocation map	32
Table 123. Initial-lane alignment monitor registers 13	34
Table 124. Initial-lane alignment buffer error register 13	34
Table 125. Decoder flags register	35
Table 126. Decoder /K/ symbols flag register	35
Table 127. K28 flag registers	35
Table 128. Decoder unexpected /K/ symbols flag	~ 7
	57
Table 129. Lock counter monitor registers	57
Table 130. Lane code synchronization state register 13	20
Table 131. Reset buller erfor liags register	30
Table 132. Miscellaneous interrupt enable register 13	20
Table 133. LSD/MSD Of Hay_counter faile registers 13	20
Table 135. Miscellaneous interrupt enable register)9 10
Table 136 Interrupt enable register	ŧΟ 10
Table 137 Flag counter control registers	+0 11
Table 138 Reset flags monitor register	11
Table 139 Sample error rate interrunts control register 14	11
Table 140 JESD204 receiver monitoring register	•••
allocation map	43
Table 141. Sample rate error control registers	45
Table 142. LSB/MSB of sample error rate counter	
registers 14	46
Table 143. First JTSPAT with sample error rate	
registers 14	46
Table 144. LSB/MSB of first sample error rate pattern	
registers 14	16
Table 145. Multi-frame bytes registers 14	17
Table 146. Force multi-frame bytes register 14	17
Table 147. Overview of generic parts of register	
addresses 14	17
Table 148. JESD204 read configuration block DAC X/Y	
lane 0/lane 1 register allocation map 14	18
Table 149. Lane configuration registers 14	19
Table 150. JESD204 read configuration block sample	
measurement registers	50
Table 151. Lane 1/lane 0 sample LSB/MSB registers . 15	51
Table 152. Physical lane 1/lane 0 selection register 15	51
Iable 153. Lane 3/lane 2 sample LSB/MSB registers 15	זכ

Table 154. Physical lane 3/lane 2 selection registerTable 155. RX physical layer control block register	152
allocation map	153
Table 156. High speed receiver clock data recovery	
	154
Table 157. High speed receiver equalizer control	151
	104
Table 158. High speed equalizer gain registers	155
Table 159. High speed receiver termination resistor	
voltage common-mode register	155
Table 160. High speed resistor termination control	
register	155
Table 161. Synchronization configuration control	
register	156
Table 162. Synchronization test data control register	156
Table 163. RX physical layer monitor register allocation	
map	157
Table 164. Current high speed RX equalizer control	
register	158
Table 165 Abbreviations	161
	101
	163
Table 167. Revision history	163

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

17. CONTENTS

1	General description	1
2	Features and benefits	2
3	Applications.	2
4	Ordering information	3
5	Block diagram	4
6	Pinning information	5
61	Pinning	5
6.2	Pin description	5
7		2 2
<i>'</i>	Thermal characteristics	0
0	Statia abaracteristica	40
9		10
9.1	Specific characteristics	10
9.2		12
10		
11	Application information	25
11.1		
11.2		
11 2 1 1	Protocol description	27
11.2.1.2	SPI controller configuration	28
11.2.1.3	Double buffering and Transfer mode	29
11.2.1.4	Device description	30
11.2.1.5	SPI RESET_N wait duration requirement	30
11.2.1.6	SPI timing description - 4 wires mode	30
11.2.1.7	SPI timing description - 3 wires mode	31
11.2.1.8	SPI IOs strength	32
11.2.2	Main device configuration and Start-up	
	Sequence	33
11.2.2.1		34
11.2.3	Interface DAC DSP block	35
11.2.3.1	Finite Impulse Response (EIR) filters	
11.2.3.2	Single Side Band Modulator (SSBM)	
11.2.3.4	40-bit NCO	
11.2.3.5	NCO low power	
11.2.3.6	Minus 3dB	39
11.2.3.7	Phase correction	39
11.2.3.8	Inverse sin(x) / x	40
11.2.3.9	Digital gain	40
11.2.3.1	0 Auto-mute	41
11.2.3.1	1 Digital offset adjustment.	47
11.2.4	Signal detectors	48
11.2.4.1		48
11.2.4.2	IO Range (IOR)	49 10
11.2.4.5		
11.2.6	Analog core of the dual DAC	
11.2.6.1	Clocks	51
11.3	Overall Latency	54
11.4	Analog dual DAC core	54
11.4.1	Regulation	55

11.4.2	Full-scale current adjustment	55
11.5.1	DAC1658D: High common-mode output	
11.5.2	voltage DAC1653D: Low common-mode output	55
	voltage	56
11.5.2.1	Auxiliary DACs	57
11.6	Temperature sensor	58
11.7	Multiple Device Synchronization (MDS);	
	JESD204B subclass I	59
11.7.1	Non-deterministic latency of a system	59
11.7.2	JESD204B system clocks and SYSREF	50
11 7 2	MDS implementation	59
11.7.3		62
11.7.3.1	Conturing the SVSDEE signal	63
11.7.3.2	Aligning the LMECs and the data	65
11.7.3.3	Monitoring the MDS process	66
11 7 3 5	MDS registers signification	66
11.7.3.5	Adding adjustment offset	67
11 7 3 7	Selecting the SYSREF input port	67
11738	MDS script example	68
11.8	Interrupts	69
11.8.1	Events monitored	69
11.8.2	Enabling interrupts	69
11.8.3	Digital Lane Processing (DLP) interrupt	
	controller	70
11.8.4	JESD204B physical and logical lanes	71
11.8.4 11.8.5	JESD204B physical and logical lanes RX Digital Lane Processing (DLP)	71 72
11.8.4 11.8.5 11.8.5.1	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity	71 72 73
11.8.4 11.8.5 11.8.5.1 11.8.5.2	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling	71 72 73 73
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection	71 72 73 73 74
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group	71 72 73 73 74
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS)	71 72 73 73 74 75
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration.	71 72 73 73 74 75 76
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration	71 72 73 73 74 75 76 77
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output swing configuration	71 72 73 73 74 75 76 77 77
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.7 11.8.5.8	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration Initial-lane alignment	71 72 73 73 74 75 76 77 77 77
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC configuration SYNC output level configuration SYNC output swing configuration SYNC output swing configuration SYNC TX response time and ILA alignment	71 72 73 73 74 75 76 77 77 77 77 79
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration Initial-lane alignment SYNC TX response time and ILA alignment Character replacement	71 72 73 73 74 75 76 77 77 77 79 79
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.11	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration Initial-lane alignment SYNC TX response time and ILA alignment Character replacement Sample assembly	71 72 73 73 74 75 76 77 77 77 77 79 79 79
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.11 11.8.5.12	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration Initial-lane alignment SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links	71 72 73 73 74 75 76 77 77 77 79 79 79 79 79
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.10 11.8.5.12 11.8.5.13	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration Initial-lane alignment SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error bandling	71 72 73 73 74 75 76 77 77 77 77 79 79 79 79 79
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.12 11.8.5.13 11.8.5	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration SYNC output swing configuration SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling	71 72 73 73 74 75 76 77 77 77 77 79 79 79 79 79
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.12 11.8.5.13 11.8.6 11.8.6 11.8.6	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration SYNC output swing configuration SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Monitoring and test modes	71 72 73 73 74 75 76 77 77 77 77 79 79 79 79 79 80
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.7 11.8.5.10 11.8.5.10 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration Initial-lane alignment SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Flag counters Sample Error Rate (SER)	71 72 73 73 74 75 76 77 77 77 79 79 79 79 79 80 80 80
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2 11.8.6.3	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration Initial-lane alignment SYNC TX response time and ILA alignment . Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Flag counters Sample Error Rate (SER) PRBS test	71 72 73 73 74 75 76 77 77 77 79 79 79 79 80 80 81 82
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.7 11.8.5.10 11.8.5.10 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2 11.8.6.3 11.8.6.4	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration SYNC output swing configuration SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Flag counters Sample Error Rate (SER) PRBS test	71 72 73 73 74 75 76 77 77 77 79 79 79 79 79 79 80 80 81 82 83
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.7 11.8.5.7 11.8.5.10 11.8.5.10 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2 11.8.6.3 11.8.6.4 11.8.6.5	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration SYNC output swing configuration SYNC output swing configuration SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Monitoring and test modes Flag counters Sample Error Rate (SER) PRBS test JTSPAT test DLP strobe	71 72 73 73 74 75 76 77 77 79 79 79 79 79 79 80 80 81 82 83 84
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.7 11.8.5.7 11.8.5.10 11.8.5.10 11.8.5.10 11.8.5.11 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2 11.8.6.3 11.8.6.4 11.8.6.5 11.8.7	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration Nitial-lane alignment SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Monitoring and test modes Flag counters Sample Error Rate (SER) PRBS test JTSPAT test DLP strobe	71 72 73 73 74 75 76 77 77 79 79 79 79 79 79 80 80 81 82 83 84 84
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.4 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.10 11.8.5.10 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2 11.8.6.3 11.8.6.4 11.8.6.5 11.8.7 11.9	JESD204B physical and logical lanes. RX Digital Lane Processing (DLP) Lane polarity Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration. SYNC output level configuration SYNC output swing configuration Initial-lane alignment. SYNC TX response time and ILA alignment. Character replacement Sample assembly Resynchronization over links. Symbols detection monitoring and error handling. Monitoring and test modes Flag counters Sample Error Rate (SER) PRBS test. JTSPAT test DLP strobe IO-mux JESD204B PHY receiver	71 72 73 73 73 74 75 76 77 77 79 79 79 79 79 79 80 80 81 82 83 84 84 85
11.8.4 11.8.5 11.8.5.1 11.8.5.2 11.8.5.3 11.8.5.3 11.8.5.5 11.8.5.6 11.8.5.7 11.8.5.8 11.8.5.9 11.8.5.10 11.8.5.10 11.8.5.10 11.8.5.10 11.8.5.11 11.8.5.12 11.8.5.13 11.8.6 11.8.6.1 11.8.6.2 11.8.6.3 11.8.6.3 11.8.6.4 11.8.6.5 11.8.7 11.9 11.9.1	JESD204B physical and logical lanes RX Digital Lane Processing (DLP) Scrambling Lane swapping and selection Word locking and Code Group Synchronization (CGS) SYNC configuration SYNC output level configuration SYNC output level configuration Initial-lane alignment SYNC TX response time and ILA alignment Character replacement Sample assembly Resynchronization over links Symbols detection monitoring and error handling Flag counters Sample Error Rate (SER) PRBS test JTSPAT test DLP strobe JESD204B PHY receiver JRES pin	71 72 73 73 73 74 75 76 77 77 79 79 79 79 79 80 81 82 83 84 84 85 86

continued >>

Dual 16-bit DAC: 10 Gbps JESD204B interface: x2, x4 and x8 interpolating

Datasheet

11.9.2	Lane input
11.9.3	Equalizer
11.9.4	Deserializer 88
11.9.5	Low Serial Input Data Rate
11.9.6	PHY test mode
11.10	Output interfacing configuration
11.10.1	DAC1658D: High common-mode output
	voltage
11.10.2	DAC1653D: Low common-mode output
	voltage
11.11	Design recommendations
11.11.1	Power and grounding 91
11.12	Registers
11.12.1	SPI configuration block 92
11.12.1.1	SPI configuration block register allocation
	map
11.12.1.2	SPI configuration block bit definition detailed
	description
11.12.2	Dual DAC core block 95
11.12.2.1	Dual DAC core block register allocation map . 95
11.12.2.2	Dual DAC core block bit definition detailed
	description
11.12.3	Main controls block 100
11.12.3.1	Main controls block register allocation map . 100
11.12.3.2	Main controls block bit definition detailed
	description
11.12.4	Interface DAC DSP block 103
11.12.4.1	Interface DAC DSP block register allocation
11 10 10	map
11.12.4.2	Interface DAC DSP block bit definition detailed
44 40 5	description
11.12.3	Mute, interrupt, and temperature control. 110
11.12.5.1	Mule, interrupt and temperature control register
11 10 5 0	Allocation map
11.12.3.2	definition detailed description
11 126	Multiple Device Synchronization and
11.12.0	Interrupt block 110
11 12 6 1	Multiple Device Synchronization and
11.12.0.1	Interrupt block register allocation man 110
11 12 6 2	Multiple Device Synchronization and interrupt
11.12.0.2	block bit definition detailed description 121
11 12 7	RX Digital Lane Processing (DLP) block 125

	11.12.7.1	RX digital lane processing block register	
		allocation map	125
	11.12.7.2	RX digital lane processing block bit definition	
		detailed description	127
	11.12.8	RX digital lane processing monitoring	400
	44 40 0 4	block	133
	11.12.8.1	RX digital lane processing monitoring block	100
	11 12 9 2	PX digital lang processing monitoring block	133
	11.12.0.2	bit definition detailed description	135
	11 12 9	JESD204 receiver monitoring	144
	11.12.9.1	JESD204 receiver monitoring block register	1
		allocation map description	144
	11.12.9.2	2 JESD204 receiver monitoring block bit	
		definition detailed description	146
	11.12.10	JESD204 read configuration block	148
	11.12.10	1 JESD204 read configuration block lane	
		register allocation map	149
	11.12.10	1.12.10.2 JESD204 read configuration block lane bit	
	11 10 10		150
	11.12.10	.3 JESD204 read conliguration block sample	151
	11 12 10	4 IESD204 read configuration block sample	151
	11.12.10	measurement registers detailed description	152
	11.12.11	RX physical laver control block	154
11.12.11.1 RX physical layer block register allocation			
map			154
11.12.11.2 RX physical layer control block bit definit			
detailed description		detailed description	155
11.12.11.3 RX physical layer monitor register allocation			
map			158
11.12.11.4 RX physical layer monitor block bit definition			450
			159
	12	Package outline	160
	13	Abbreviations	162
	14 (Glossary	163
	14.1	Static parameters	163
	14.2	Dynamic parameters	163
	15 I	Revision history	164
	16 .	Tables	165
	17 (Contents	167

Disclaimer

© 2013, Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT's sole discretion.

All information in this document, including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of of others. This document is presented only as a guide and does not convey any license under intellectual property rights of IDT or any third parties.

IDT's products are not intended for use in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.

Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third party owners.