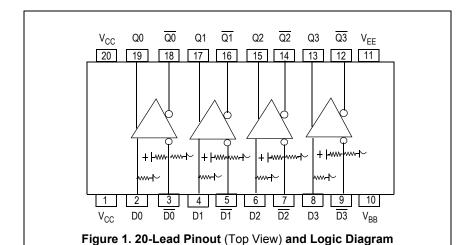
Document Number: MC100ES6017 Rev 2, 09/2005


3.3 V ECL/PECL Quad Differential Receiver

The MC100ES6017 is a 3.3 V ECL/PECL quad differential receiver. Under open input conditions, the \overline{D} input will be biased at $V_{CC}/2$ and the D input will be pulled down to V_{EE} . This operation will force the Q output LOW and ensure stability.

For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

Features

- High bandwidth output transitions
- LVPECL operating range: V_{CC} = 3.0 V to 3.6 V
- Internal input pulldown resistors on D inputs, pullup and pulldown resistors on D inputs
- · 20 lead SOIC package
- Ambient temperature range -40°C to +85°C
- · 20-lead Pb-free package available

MC100ES6017

ECL/PECL QUAD DIFFERENTIAL RECEIVER

DW SUFFIX 20-LEAD SOIC PACKAGE CASE 751D-07

EG SUFFIX 20-LEAD SOIC PACKAGE Pb-FREE PACKAGE CASE 751D-07

ORDERING INFORMATION					
Device	Package				
MC100ES6017DW	SO-20				
MC100ES6017DWR2	SO-20				
MC100ES6017EG	SO-20 (Pb-Free)				
MC100ES6017EGR2	SO-20 (Pb-Free)				

PIN DESCRIPTION						
Pin Function						
Dn, Dn	ECL Differential Data Inputs					
Qn, Qn	ECL Differential Data Outputs					
V_{BB}	Reference Voltage Output					
V _{CC}	Positive Supply					
V _{EE}	Negative Supply					

Table 1. General Specifications

Characteristi	Value	
Internal Input Pulldown Resistor	75 kΩ	
Internal Input Pullup Resistor	75 kΩ	
ESD Protection Human Body Model Machine Model Charged Device Model		> 2000 V > 200 V > 1500 V
θ_{JA} Thermal Resistance (Junction to Ambient)	90 °C/W 60 °C/W	
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup T	est	

Table 2. Absolute Maximum Ratings⁽¹⁾

Symbol	Parameter	Conditions	Rating	Unit
V _{SUPPLY}	Power Supply Voltage	difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} - 0.3	V V
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
I _{BB}	V _{BB} Sink/Source		± 0.5	mA
TA	Operating Temp Range		-40 to +85	°C
T _{STG}	Storage Temp Range		-65 to +150	°C

^{1.} Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 3. DC Characteristics (V_{CC} = 3.0 to 3.6 V; V_{EE} = 0 V or V_{CC} = 0 V; V_{EE} = -3.6 to -3.0 V)

			-40°C		0°C to 85°C			
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		20	31		28	35	mA
V _{OH} ⁽¹⁾	Output HIGH Voltage	V _{CC} - 1150	V _{CC} - 1020	V _{CC} - 800	V _{CC} - 1200	V _{CC} - 970	V _{CC} - 750	mV
V _{OL} ⁽¹⁾	Output LOW Voltage	V _{CC} - 1950	V _{CC} - 1620	V _{CC} - 1250	V _{CC} - 2000	V _{CC} - 1680	V _{CC} - 1300	mV
V _{IH}	Input HIGH Voltage	V _{CC} - 1165		V _{CC} - 880	V _{CC} - 1165		V _{CC} - 880	mV
V _{IL}	Input LOW Voltage	V _{CC} - 1810		V _{CC} - 1475	V _{CC} - 1810		V _{CC} - 1475	mV
V _{BB} ⁽²⁾	Output Voltage Reference (I _{BB} = 0.5 mA)	V _{CC} - 1440		V _{CC} - 1235	V _{CC} - 1440		V _{CC} - 1235	mV
V _{PP}	Differential Input Votage	0.12		1.3	0.12		1.3	V
V _{CMR}	Differential Cross Point Voltage	V _{EE} + 1.3		V _{CC} - 0.9	V _{EE} + 1.3		V _{CC} - 0.9	V
I _{IH}	Input HIGH Current			150			150	μΑ
I _{IL}	Input LOW Current Dn Dn	0.5 -300			0.5 -300			μ Α μ Α

^{1.} Outputs are terminated through a 50Ω resistor to $\mbox{V}_{\mbox{CC}}\mbox{-2}$ volts.

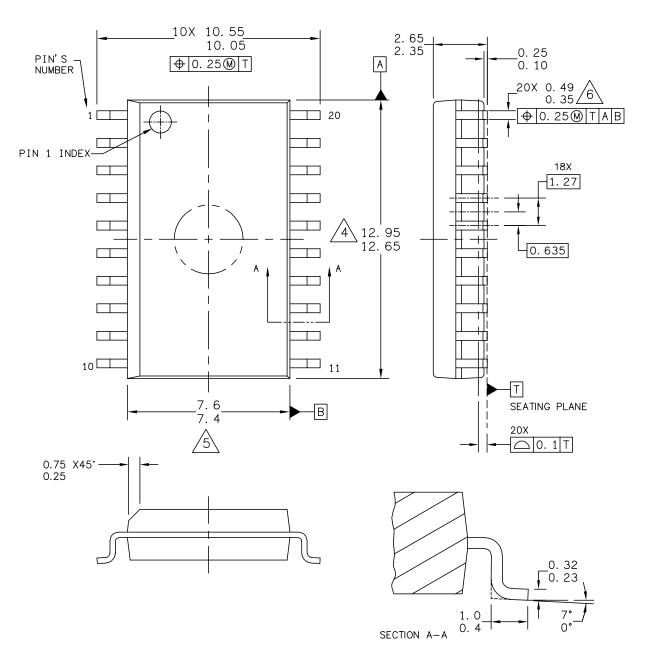

^{2.} Input swing is centered around V_{BB} .

Table 4. AC Characteristics (V_{CC} = 3.0 to 3.6 V; V_{EE} = 0 V or V_{CC} = 0 V; V_{EE} = -3.6 to -3.0 V)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Toggle Frequency		1.75			1.75			1.75		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Diff S.E. ⁽¹⁾	310 225		510 595	310 225		510 595	310 225		510 595	ps
t _{SKEW}	Data Path Skew ⁽²⁾ (differential) Part-to-Part Skew ⁽²⁾ (differential) Pulse Width Skew ⁽²⁾ (3) (differential)			50 200 50			50 200 50			50 200 50	ps
t _{JITTER}	Cycle to Cycle Jitter			1			1			1	ps
$V_{PP}^{(4)}$	Input Swing	150		1000	150		1000	150		1000	mV
t_r / t_f	Output Rise/Fall Times (20% - 80%)	50		250	50		250	50		250	ps

- 1. Single-ended input propagation delay requires t_r and $t_f \leq 350$ ps to meet specified propagation delay. Device will function with larger t_r and t_f values.
- 2. Skews are valid across specified voltage range, part-to-part skew is for a given temperature and frequency
- Pulse width skew is the difference between a t_{PLH} and t_{PHL} propagation delay through a device.
 V_{PP} (min) is minimum input swing for which AC parameters guaranteed. The device has a DC gain of approximately 40.

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	07 017011): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH CASE-OUTLINE		CASE NUMBER	R: 751D-07	23 MAR 2005
CNSE OUTE1		STANDARD: JE	IDEC MS-013AC	

PAGE 1 OF 2

CASE 751D-07 ISSUE J 20-LEAD SOIC PACKAGE

PACKAGE DIMENSIONS

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994.
- 3. DATUMS A AND B TO BE DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSION OR GATE BURRS. MOLD FLASH, PROTRUSION OR GATE BURRS SHALL NOT EXCEED 0.15 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED 0.25 MM PER SIDE. THIS DIMENSION IS DETERMINED AT THE PLANE WHERE THE BOTTOM OF THE LEADS EXIT THE PLASTIC BODY.
- THIS DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED 0.62 mm.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:		DOCUMENT NO): 98ASB42343B	REV: J
20LD SOIC W/B, 1.27 PITCH, CASE OUTLINE		CASE NUMBER	R: 751D−07	23 MAR 2005
		STANDARD: JE	IDEC MS-013AC	

PAGE 2 OF 2

CASE 751D-07 ISSUE J 20-LEAD SOIC PACKAGE

MC100ES6017

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale ™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

