1.2W Audio Power Amplifier with Standby Mode Active High

- Operating from $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$ to 5.5 V
- Rail-to-rail output

■ 1.2W output power @ Vcc=5V, THD=1\%, $\mathrm{F}=1 \mathrm{kHz}$, with 8Ω load

- Ultra low consumption in standby mode (10nA)
■ 75dB PSRR @ 217Hz from 2.5 to 5V
- Low pop \& click
- Ultra low distortion (0.05\%)
- Unity gain stable
- Flip-chip package $8 \times 300 \mu \mathrm{~m}$ bumps

Description

The TS4972 is an Audio Power Amplifier capable of delivering 1.6 W of continuous RMS ouput power into a 4Ω load @ 5 V .

This Audio Amplifier is exhibiting 0.1% distortion level (THD) from a 5 V supply for a Pout $=250 \mathrm{~mW}$ RMS. An external standby mode control reduces the supply current to less than 10nA. An internal shutdown protection is provided.

The TS4972 has been designed for high nillity audio applications such as mobile phor $\geqslant s$ an x to minimize the number of external cur m.onents.

The unity-gain stable amplifie \llcorner an be configured by external gain setting ressistc ${ }^{\circ}$

Applications

- Mobi'e nheics (cellular / cordless)
- P'JA=
- Lipto //notebook computers
- Portable audio devices

Pin Connections (top view)

r.ㅁㅋ:AL APPLICATION SCHEMATIC

Order Codes

Part Number	Temperature Range	Package	Packing	Marking
TS4972IJT TS4972EIJT	$-40,+85^{\circ} \mathrm{C}$	Flip-Chip	Tape \& Reel	4972

[^0]
1 Absolute Maximum Ratings

Table 1: Key parameters and their absolute maximum ratings

Symbol	Parameter	Value	Unit
VCC	Supply voltage 1	6	V
$\mathrm{~V}_{\mathrm{i}}$	Input Voltage 2	$\mathrm{G}_{\text {ND }}$ to V_{CC}	V
$\mathrm{T}_{\text {oper }}$	Operating Free Air Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{j}	Maximum Junction Temperature	150	${ }^{\circ} \mathrm{C}$
$\mathrm{R}_{\text {thja }}$	Thermal Resistance Junction to Ambient ${ }^{3}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Pd	Power Dissipation	Internally Limited ${ }^{4}$	
ESD	Human Body Model	2	kV
ESD	Machine Model	200	V
Latch-up	Latch-up Immunity	Class A	
	Lead Temperature (soldering, 10sec)	250	${ }^{\circ} \mathrm{C}$

1) All voltages values are measured with respect to the ground pin.
2) The magnitude of input signal must never exceed $V_{C C}+0.3 V / G_{N D}-0.3 V$
3) Device is protected in case of over temperature by a thermal shutdown active @ $150^{\circ} \mathrm{C}$.
4) Exceeding the power derating curves during a long period, involves abnormal operating condition.

Table 2: Operating Conditions

Symbol	Parameter	Value	Unit
VCC	Supply Voltage	2.5 to 5.5	V
$\mathrm{V}_{\text {ICM }}$	Common Mode Input Voltage Range	G_{ND} to $\mathrm{V}_{\mathrm{CC}}-1.2 \mathrm{~V}$	V
VSTB	Standby Voltage Input : Device ON Device OFF	$\begin{gathered} \mathrm{G}_{\mathrm{ND}} \leq \mathrm{V}_{\text {STB }} \leq 0.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}-0.5 \mathrm{~V} \leq \mathrm{V}_{\text {STB }} \leq \mathrm{V}_{\mathrm{CC}} \end{gathered}$	V
RL	Load Resistor	4-32	Ω
$\mathrm{R}_{\text {thja }}$	Thermal Resistance Junction +n Arit ent ${ }^{1}$	90	${ }^{\circ} \mathrm{C} / \mathrm{W}$

1) With Heat Sink Surface $=125 \mathrm{~mm}^{2}$

2 Electrical Characteristics

Table 3: $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}$, GND $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{CC}	Supply Current No input signal, no load		6	8	mA
$I_{\text {Standby }}$	Standby Current ${ }^{1}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, RL $=8 \Omega$		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		1.2		W
THD + N	Total Harmonic Distortion + Noise $\mathrm{Po}=250 \mathrm{~mW} \mathrm{rms}, \mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2}$ $f=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega$, RFeed $=22 \mathrm{~K} \Omega$, Vripple $=200 \mathrm{mV}$ rms		75		NB
Φ_{M}	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		Degrees
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		<n		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		2		MHz

1) Standby mode is actived when Vstdby is tied to Vcc
2) Dynamic measurements - $20^{\star} \log (r m s($ Vout $) / r m s(V r i p p l e))$. Vripple is an ad'ea viru; si jnal to $\mathrm{Vcc} @ f=217 \mathrm{~Hz}$

Table 4: $\mathrm{V}_{\mathrm{CC}}=+3.3 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}\left(\right.$ unless otherwise specified) $\left.{ }^{3}\right)$

Symbol	Parameter	Min.	Typ.	Max.	Unit
$I_{\text {cc }}$	Supply Current No input signal, no load		5.5	8	mA
$\mathrm{I}_{\text {Standby }}$	Standby Current ${ }^{1}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, RL $=8 \Omega$		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		500		mW
THD + N	Total Harmonic Distortion + Noise $\mathrm{Po}=250 \mathrm{~mW}$ rms, $\mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2}$ $\mathrm{f}=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega$, RFeed $=22 \mathrm{~K} \Omega$, Vripple $=200 \mathrm{mV} \mathrm{rms}$		75		dB
Φ_{M}	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		De are as
GM	Gain Margin $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		20	-	dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$		i		MHz

1) Standby mode is actived when Vstdby is tied to Vcc
2) Dynamic measurements - 20* $\log (r m s($ Vout $) / \mathrm{rms}($ Vripple)). Vripple is an added sinu: signal to Vcc $@ f=217 \mathrm{~Hz}$
3. All electrical values are made by correlation between 2.6 V and 5 V measure. neı.

Table 5: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Typ.	Max.	Unit
I_{cc}	Supply Current No input signal, no load		5.5	8	mA
$\mathrm{I}_{\text {Standby }}$	Standby Current ${ }^{1}$ No input signal, Vstdby $=\mathrm{Vcc}, \mathrm{RL}=8 \Omega$		10	1000	nA
Voo	Output Offset Voltage No input signal, RL $=8 \Omega$		5	20	mV
Po	Output Power $\mathrm{THD}=1 \% \mathrm{Max}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=8 \Omega$		300		mW
THD + N	$\begin{aligned} & \text { Total Harmonic Distortion + Noise } \\ & \quad \mathrm{Po}=200 \mathrm{~mW} \text { rms }, \mathrm{Gv}=2,20 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}, \mathrm{RL}=8 \Omega \end{aligned}$		0.1		\%
PSRR	Power Supply Rejection Ratio ${ }^{2}$ $f=217 \mathrm{~Hz}, \mathrm{RL}=8 \Omega, \text { RFeed }=22 \mathrm{~K} \Omega \text {, Vripple }=200 \mathrm{mV} \mathrm{rms}$		75		dB
$\Phi_{\text {M }}$	Phase Margin at Unity Gain $\mathrm{R}_{\mathrm{L}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=500 \mathrm{pF}$		70		Dis.eas
GM	$\begin{aligned} & \text { Gain Margin } \\ & \quad R_{L}=8 \Omega, C_{L}=500 \mathrm{pF} \end{aligned}$		20		dB
GBP	Gain Bandwidth Product $\mathrm{R}_{\mathrm{L}}=8 \Omega$				MHz

1) Standby mode is actived when Vstdby is tied to Vcc
2) Dynamic measurements - 20* $\log (r m s($ Vout $) / r m s(V r i p p l e))$. Vripple is an added sinu - signal to $\mathrm{Vcc} @ f=217 \mathrm{~Hz}$

Table 6: Components description

Components	Funct onal こescription
Rin	Inverting input resistor which sets the c_{1}) forms a high pass filter with Gi . fc : $1 /(2 \times \mathrm{Pi} \times \operatorname{Rin} \times \mathrm{Cin})$)
Cin	Input coupling capacite $\mathrm{wl}_{1} \mathrm{c}_{1}$ bluzis the DC voltage at the amplifier input terminal
Rfeed	Feed back resistor which, sets the closed loop gain in conjunction with Rin
Cs	Supply Bypas ce rac tor which provides power supply filtering
Cb	Bypass, ir Earacitor which provides half supply filtering
Cfeed	Lnw गas : tilter capacitor allowing to cut the high frequency (iuw pass filter cut-off frequency $1 /(2 \times \mathrm{Pi} \times$ Rfeed \times Cfeed))
Rstb	Jull-up resistor which fixes the right supply level on the standby pin
Gv	Closed loop gain in BTL configuration $=2 \times$ (Rfeed $/$ Rin $)$

Remarks:

1. All measurements, except PSRR measurements, are made with a supply bypass capacitor Cs $=$ $100 \mu \mathrm{~F}$.
2. External resistors are not needed for having better stability when supply @ Vcc down to 3V. By the way, the quiescent current remains the same.
3. The standby response time is about $1 \mu \mathrm{~s}$.

Figure 1: Open Loop Frequency Response

Figure 2: Open Loop Frequency Response

Figure 3: Open Loop Frequency Respolse

Figure 4: Open Loop Frequency Response

Figure 5: Open Loop Frequency Response

Figure 6: Open Loop Frequency Response

Figure 7: Open Loop Frequency Response

Figure 8: Open Loop Frequency Response

Figure 9: Open Loop Frequency t. osponse

Figure 10: Power Supply Rejection Ratio (PSRR) vs Power supply

Figure 11: Power Supply Rejection Ratio (PSRR) vs Bypass Capacitor

Figure 12: Power Supply Rejection Ratio (PSRR) vs Feedback Resistor

Figure 13: Power Supply Rejection Ratio (PSRR) vs Feedback Capacitor

Figure 14: Power Supply Rejection Ratio (PSRR) vs Input Capacitor

Figure 15: Pout @ THD + N = 1\% \s Supply Voltage vs RL

Figure 16: Power Dissipation vs Pout

Figure 17: Power Dissipation vs Pout

Figure 18: Pout @ THD + N = 10\% vs Supply Voltage vs RL

Figure 19: Power Dissipation vs Pout

Figure 20: Power Derating Curves

Figure 21: THD + N vs Output Power

Figure 22: THD + N vs Output Power

Figure 23: THD + N vs Output Power

Figure 24: THD + N vs Output Power

Figure 25: THD + N vs Output Power

Figure 26: THD + N vs Output Power

Figure 27: THD + N vs Output Power

Figure 28: THD + N vs Output Power

Figure 29: THD + N vs Output Power

Figure 30: THD + N vs Output Power

Figure 31: THD + N vs Output Power

Figure 32: THD + N vs Output Power

Figure 33: THD + N vs Output Power

Figure 34: THD + N vs Output Power

Figure 35: THD + N vs Output Power

Figure 36: THD + N vs Output Power

Figure 37: THD + N vs Output Power

Figure 38: THD + N vs Output Power

Figure 39: THD + N vs Output Power

Figure 40: THD + N vs Output Power

Figure 41: THD + N vs Output Power

Figure 42: THD + N vs Output Power

Figure 43: THD + N vs Output Power

Figure 44: THD + N vs Output Power

Figure 45: THD + N vs Frequency

Figure 46: THD + N vs Frequency

Figure 47: THD + N vs Frequency

Figure 48: THD + N vs Frequency

Figure 49: THD + N vs Frequency

Figure 50: THD + N vs Frequency

Figure 51: THD + N vs Frequency

Figure 52: THD + N vs Frequency

Figure 53: THD + N vs Frequency

Figure 54: THD + N vs Frequency

Figure 55: THD + N vs Frequency

Figure 56: THD + N vs Frequency

Figure 57: THD + N vs Frequency

Figure 58: THD + N vs Frequency

Figure 59: THD + N vs Frequency

Figure 60: THD + N vs Frequency

Figure 61: THD + N vs Frequency

Figure 62: THD + N vs Frequency

Figure 63: THD + N vs Frequency

Figure 64: THD + N vs Frequency

Figure 65: THD + N vs Frequency

Figure 66: THD + N vs Frequency

Figure 67: THD + N vs Frequency

Figure 68: THD + N vs Frequency

Figure 69: Signal to Noise Ratio v : Power Supply with Unwei , \boldsymbol{r}.ed Filter (20 Hz to 20 kHz)

Figure 70: Signal to Noise Ratio vs Power Supply with Weighted Filter Type A

Figure 71: Frequency Response Gain vs -in, \& Cfeed

Figure 72: Signal to Noise Ratio vs Power Supply with Unweighted Filter (20Hz to 20 kHz)

Figure 73: Signal to Noise Ratio vs Power Supply with Weighted Filter Type A

Figure 74: Current Consumption vs Power Supply Voltage

Figure 75: Current Consumption is Standby Voltage @ Vcc = 5

Figure 76: Current Consumption vs Standby
Voltage @ Vcc=2.6V

Figure 77: Clipping Voltage vs Power Surnly Voltage and Load Resistor

Figure 78: Current Consumption vs Standby Voltage @ Vcc=3.3V

Figure 79: Clipping Voltage vs Power Supply Voltage and Load Resistor

3 Application Information

Figure 80: Demoboard Schematic

Figure 81: Flip-Chip 300 $\mu \mathrm{m}$ Demoboard Components S d

Figure 82：Flip－Chip $\mathbf{3 0 0} \mu \mathrm{m}$ Demoboard Top Solder Layer

Figure 83：Flip－Chip $300 \mu \mathrm{~m}$ Demoboard Bottom Solder Layer

E CL じく ${ }^{\text {f．guration Principle }}$
The Tこペ 12 is a monolithic power amplifier with a BTL output type．BTL（Bridge Tied Load） means that each end of the load is connected to two single ended output amplifiers．Thus，we have ：

Single ended output $1=$ Vout1 $=$ Vout（V） Single ended output $2=$ Vout2 $=-\operatorname{Vout}(\mathrm{V})$
And Vout1－Vout2 $=2$ Vout（V）

The output power is：

$$
\text { Pout }=\frac{\left(2 \text { Vout }_{\mathrm{RMS}}\right)^{2}}{R_{\mathrm{L}}}(\mathrm{~W})
$$

For the same power supply voltage，the output power in BTL configuration is four times higher than the output power in single ended configuration．
－Gain In Typical Application Schematic （cf．page 1）
In flat region（no effect of Cin），the output voltage of the first stage is：

$$
\text { Vout1 }=- \text { Vin } \frac{\text { Rfeed }}{\text { Rin }}(\mathrm{V})
$$

For the second stage ：Vout2＝－Vout1（V）
The differential output voltage is：

$$
\text { Vout2 }- \text { Vout1 }=2 \text { Vin } \frac{\text { Rt }}{\text { Fin }} \frac{\epsilon d}{(V)}
$$

The differential gain na ne，yain（Gv）for more convenient usa je is．

$$
\text { Gv }=\frac{\text { Vout'2-Vout } 1}{\text { Vin }}=2 \frac{\text { Rfeed }}{\text { Rin }}
$$

Rיm rrk •＇Vout2 is in phase with Vin and Vout1 is ． 80 phased with Vin．It means that the positive terminal of the loudspeaker should be connected to Vout2 and the negative to Vout1．
－Low and high frequency response
In low frequency region，the effect of Cin starts． Cin with Rin forms a high pass filter with a－3dB cut off frequency．

$$
\mathrm{FCL}=\frac{1}{2 \pi \operatorname{RinCin}}(\mathrm{~Hz})
$$

In high frequency region，you can limit the bandwidth by adding a capacitor（Cfeed）in parallel on Reed．Its form a low pass filter with a -3 dB cut off frequency．

$$
\mathrm{FcH}=\frac{1}{2 \pi \text { Rfeed Cfeed }}(\mathrm{Hz})
$$

－Power dissipation and efficiency

Hypothesis ：
－－Voltage and current in the load are sinusoidal（Vout and lout）
－Supply voltage is a pure DC source（Vcc）

Regarding the load we have：

$$
\text { VOUT }=V_{\text {PEAK }} \sin \omega t(V)
$$

and

$$
\text { Iout }=\frac{\text { Vout }}{R L}(A)
$$

and

$$
\text { Pout }=\frac{V_{P E A K}^{2}}{2 R L}(W)
$$

Then，the average current delivered by the supply voltage is：

$$
I C C ~ A V G=2 \frac{V P E A K}{\pi R L}(A)
$$

The power delivered by the supply voltage is Psupply＝Vcc Icc ${ }_{\text {AVG }}$（W）

Then，the power dissipated by the amplifier is Pdiss＝Psupply－Pout（W）

$$
\mathrm{P}_{\text {diss }}=\frac{2 \sqrt{2 \mathrm{Vcc}}}{\pi \sqrt{R \mathrm{R}}} \sqrt{\text { PoUT }}-\text { Pout }(\mathrm{W})
$$

and the maximum value is obtained when：

$$
\frac{\partial \text { Pdiss }}{\partial \mathrm{PoUT}}=0
$$

and its value is：

$$
\text { Pdiss max }=\frac{2 \mathrm{Vcc}^{2}}{\pi^{2} \mathrm{R}_{\mathrm{L}}}(\mathrm{~W})
$$

Remark：This maximum value is oniy depending on power supply voltage ar． 1 ，rar values．

The efficiency is the ratil）between the output power and the pov＇er iupply

$$
1=\frac{\text { POUT }}{\text { Psupply }}=\frac{\pi \mathrm{V} \text { PEAK }}{4 \mathrm{VCC}}
$$

The maxımum theoretical value is reached when Vpeak＝Vcc，so

$$
\frac{\pi}{4}=78.5 \%
$$

－Decoupling of the circuit

Two capacitors are needed to bypass properly the TS4972，a power supply bypass capacitor Cs and a bias voltage bypass capacitor Cb ．

Cs has especially an influence on the THD＋N in high frequency（above 7 kHz ）and indirectly on the power supply disturbances．
With $100 \mu \mathrm{~F}$ ，you can expect similar THD＋N performances like shown in the datasheet．

If Cs is lower than $100 \mu \mathrm{~F}$ ，in high frequency increases，THD＋N and disturbances on the power supply rail are less filtered．
To the contrary，if Cs is higher than $100 \mu \mathrm{~F}$ ，those disturbances on the power supply rail are more filtered．
$\mathbf{C b}$ has an influence on $\mathrm{THD}+\mathrm{N}$ in lower frequency，but its function is critical on the final result of PSRR with input grounded in lower frequency．

If Cb is lower than $1 \mu \mathrm{~F}$ ，THD +N increase ir ic wer frequency（see THD＋N vs frequency ririe＿，and the PSRR worsens up
If Cb is higher than $1 \mu \mathrm{~F}$ ，the be ietr ${ }^{\circ}$ © $\mathrm{THD}+\mathrm{N}$ in lower frequency is small but the wenefit on PSRR is substantial（see Pこ．Rト vs Co curve ：fig．12）．

Note that Cin has a non negligible effect on PSRR in lower frequeroy．Lower is its value，higher is the PSRR（cee fig．13）．

「op a id Click performance

Pon and Click performance is intimately linked with the size of the input capacitor Cin and the bias voltage bypass capacitor Cb ．

Size of Cin is due to the lower cut－off frequency and PSRR value requested．Size of Cb is due to THD＋N and PSRR requested always in lower frequency．

Moreover， Cb determines the speed that the amplifier turns ON．The slower the speed is，the softer the turn ON noise is．

The charge time of Cb is directly proportional to the internal generator resistance 50k Ω ．
Then，the charge time constant for Cb is
$\tau \mathrm{b}=50 \mathrm{k} \Omega \mathrm{xCb}$（ s ）
As Cb is directly connected to the non－inverting input（pin $2 \& 3$ ）and if we want to minimize，in amplitude and duration，the output spike on Vout1 （pin 5），Cin must be charged faster than Cb．The charge time constant of Cin is
$\tau \mathrm{in}=($ Rin + Rfeed $) \times$ Cin（ s$)$

Thus we have the relation

$$
\tau \mathrm{in} \ll \tau \mathrm{~b} \quad(\mathrm{~s})
$$

The respect of this relation permits to minimize the pop and click noise．

Remark ：Minimize Cin and Cb has a benefit on pop and click phenomena but also on cost and size of the application．

Example ：your target for the -3 dB cut off frequency is 100 Hz ．With Rin＝Rfeed＝22 k Ω ， Cin＝ $72 n F$（in fact $82 n F$ or 100 nF ）．
With $\mathrm{Cb}=1 \mu \mathrm{~F}$ ，if you choose the one of the latest two values of Cin，the pop and click phenomena at power supply ON or standby function ON／OFF will be very small
$50 \mathrm{k} \Omega \times 1 \mu \mathrm{~F} \gg 44 \mathrm{k} \Omega \times 100 \mathrm{nF}$（ $50 \mathrm{~ms} \gg 4.4 \mathrm{~ms}$ ）．
Increasing Cin value increases the pop and click phenomena to an unpleasant sound at power supply ON and standby function ON／OFF．

Why Cs is not important in pop and click

 consideration ？Hypothesis ：
－－Cs $=100 \mu \mathrm{~F}$
－Supply voltage $=5 \mathrm{~V}$
－Supply voltage internal resistor $=0.1 \Omega$
－Supply current of the amplifier Icc $=6 \mathrm{~mA}$
At power ON of the supply，the supply capacitor is charged through the internal power sur $\rho 1$ ； resistor．So，to reach 5 V you need about $\begin{gathered}\text { ないっ } \\ \text { た }\end{gathered}$ ten times the charging time constant $\boldsymbol{\jmath 1} \mathrm{Cs}$ ícs＝ $0.1 x \mathrm{Cs}(\mathrm{s})$ ）．
Then，this time equal $50 \mu \mathrm{~s}$ tc $1^{2} 0 \mu \mathrm{~s} \ll \tau b$ in the majority of application．
At power OFF of the $\alpha L \eta^{\prime}{ }^{1}$, ，Cs is discharged by a constant currer． lc ？．he discharge time from 5 V to OV of Cs io．

$$
\text { tDischCs }=\frac{5 C s}{I c c}=83 \mathrm{~ms}
$$

Now，we must consider the discharge time of Cb． At power OFF or standby ON, Cb is discharged by a $100 \mathrm{k} \Omega$ resistor．So the discharge time is about $\tau \mathrm{b}_{\text {Disch }} \approx 3 \times \mathrm{Cbx} 100 \mathrm{k} \Omega$（s）．
In the majority of application， $\mathrm{Cb}=1 \mu \mathrm{~F}$ ，then $\tau \mathrm{b}_{\text {Disch }} \approx 300 \mathrm{~ms} \gg \mathrm{t}_{\text {dischCs }}$ ．
Power amplifier design examples

Given ：

－•Load impedance ： 8Ω
－Output power＠1\％THD＋N ：0．5W
－Input impedance ： $10 \mathrm{k} \Omega \mathrm{min}$ ．
－Input voltage peak to peak：1Vpp
－Bandwidth frequency ： 20 Hz to 20 kHz （0，－ 3 dB ）
－Ambient temperature $\max =50^{\circ} \mathrm{C}$
－SO8 package
First of all，we must calculate the minimum power supply voltage to obtain 0.5 W into 8Ω ．With curves in fig．15，we can read 3.5 V ．Thus，the power supply voltage value min．will be 3.5 V ．
Following the maximum power dissipatior． equation

$$
\text { Pdissmax }=\frac{2 \mathrm{Vcc}^{2}}{\pi^{2} R_{L}}(\mathrm{~W})
$$

with 3.5 V we have Pdissmax $=0.31 \mathrm{~W}$ ．
Refer to power derati＇s cures（fig．20），with 0.31 W the maximı m aı k i $100^{\circ} \mathrm{C}$ ．This last vaı a rould be higher if you follow the examole layout shown on the demoboard （better rlissiration）．

Tr．？y air，of the amplifier in flat region will be：

$$
G v=\frac{\text { Voutpp }}{\text { VINPP }}=\frac{2 \sqrt{2 R L P O U T}}{\text { VINPP }}=5.65
$$

We have $\operatorname{Rin}>10 \mathrm{k} \Omega$ ．Let＇s take $\operatorname{Rin}=10 \mathrm{k} \Omega$ ，then Rfeed $=28.25 \mathrm{k} \Omega$ ．We could use for Rfeed $=30 \mathrm{k} \Omega$ in normalized value and the gain will be $\mathrm{Gv}=6$ ．

In lower frequency we want $20 \mathrm{~Hz}(-3 \mathrm{~dB}$ cut off frequency）．Then：

$$
\mathrm{CIN}_{\mathrm{IN}}=\frac{1}{2 \pi \operatorname{RinFCL}}=795 \mathrm{nF}
$$

So，we could use for Cin a $1 \mu \mathrm{~F}$ capacitor value which gives 16 Hz ．

In Higher frequency we want 20 kHz （－3dB cut off frequency）．The Gain Bandwidth Product of the TS4972 is 2 MHz typical and doesn＇t change when the amplifier delivers power into the load．
The first amplifier has a gain of：

$$
\frac{\text { Rfeed }}{\text { Rin }}=3
$$

and the theoretical value of the -3dB cut-off higher frequency is $2 \mathrm{MHz} / 3=660 \mathrm{kHz}$.
We can keep this value or limit the bandwidth by adding a capacitor Cfeed, in parallel on Rfeed. Then:

$$
\mathrm{C}_{\text {FEED }}=\frac{1}{2 \pi \text { RFEEDFCH }}=265 \mathrm{pF}
$$

So, we could use for Cfeed a 220pF capacitor value that gives 24 kHz .

Now, we can calculate the value of Cb with the formula $\tau \mathrm{b}=50 \mathrm{k} \Omega \times \mathrm{Cb} \gg \tau$ in $=($ Rin + Rfeed $) \mathrm{xCin}$ which permits to reduce the pop and click effects.
Then $\mathrm{Cb} \gg 0.8 \mu \mathrm{~F}$.
We can choose for Cb a normalized value of $2.2 \mu \mathrm{~F}$ that gives good results in THD+N and PSRR.

In the following tables, you could find three another examples with values required for the demoboard.

Application $\mathrm{n}^{\circ} 1: 20 \mathrm{~Hz}$ to 20 kHz bandwidth and 6dB gain BTL power amplifier

Components:

Designator	Part Type
R1	22k / 0.125W
R4	22k / 0.125W
R6	Short Cicuit
R7	100k / 0.1ヶ. Wh
R8	Short Circuil
C5	4, $\mathrm{nn}^{\text {, }}$
C6	1,00\%
C7	100nF
C9	Short Circuit
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
S1, S2, S6, S7	2mm insulated Plug 10.16 mm pitch
S8	3 pts connector 2.54 mm pitch
P1	SMB Plug

Application $\mathrm{n}^{\circ} 2: 20 \mathrm{~Hz}$ to 20 kHz bandwidth and 20dB gain BTL power amplifier
Components:

Designator	Part Type
R1	110k / 0.125W
R4	22k / 0.125W
R6	Short Cicuit
R7	100k / 0.125W
R8	Short Cicuit
C5	470nF
C6	100 F
C7	100nF
C9	Short Circuit
C10	Short Cirru.
C12	1μ -
S1, S2, S6, S7	$\begin{aligned} & 2 \mathrm{~m} m \text { insulated Plug } \\ & 10.16 \mathrm{~mm} \text { pitch } \end{aligned}$
S8	3 pts connector 2.54 mm pitch
P	SMB Plug

1. plication $\mathrm{n}^{\circ} 3: 50 \mathrm{~Hz}$ to 10 kHz bandwidth and 10dB gain BTL power amplifier
Components:

Designator	Part Type
R1	$33 k / 0.125 \mathrm{~W}$
R2	Short Circuit
R4	$22 k / 0.125 \mathrm{~W}$
R6	Short Cicuit
R7	$100 \mathrm{k} / 0.125 \mathrm{~W}$
R8	Short Cicuit
C2	470 pF
C5	150 nF
C6	$100 \mu F$
C7	100 nF
C9	Short Circuit

Designator	Part Type
C10	Short Circuit
C12	2 Fm insulated Plug 10.16 mm pitch
S1, S2, S6, S7	3 pts connector 2.54 mm pitch
S8	SMB Plug
P1	

Application $\mathrm{n}^{\circ} 4$: Differential inputs BTL power amplifier

In this configuration, we need to place these components : R1, R4, R5, R6, R7, C4, C5, C12.

We have also : R4 = R5, R1 = R6, C4 = C5.
The differential gain of the amplifier is:

$$
\text { GVDIFF }=2 \frac{\mathrm{R} 1}{\mathrm{R} 4}
$$

Note : Due to the VICM range (see Operating Condition), GVDIFF must have a minimum value shown in figure 84.

Figure 84: Minimum Differential Gain vs Power Supply Voltage

For $\mathrm{Vcc}=5 \mathrm{~V}$, a 20 Hz to 20 kHz bandwidth and 20dB gain BTL power amplifier you could follow the bill of material below.

Components:

Designator	Part Type
R1	110k / 0.125W
R4	22k / 0.125W
R5	22k / 0.125W
R6	110k / 0.125W
R7	100k / 0.125W
R8	Short circuit
C4	470nF
C5	470nF
C6	$100 \mu \mathrm{~F}$
C7	10, nr
C9	Sh ort Circuit
C10	Short Circuit
C12	$1 \mu \mathrm{~F}$
$\mathrm{S}_{1} \because 2, \therefore 6 \mathrm{si}$	2mm insulated Plug 10.16 mm pitch
-0	3 pts connector 2.54 mm pitch
P1, P2	SMB Plug

- Note on how to use the PSRR curves (page 7)

We have finished a design and we have chosen the components values :

- Rin=Rfeed=22k Ω
- Cin=100nF
- $\mathrm{Cb}=1 \mu \mathrm{~F}$

Now, on fig. 13, we can see the PSRR (input grounded) vs frequency curves. At 217 Hz we have a PSRR value of -36 dB .
In reality we want a value about -70dB. So, we need a gain of 34 dB !
Now, on fig. 12 we can see the effect of Cb on the PSRR (input grounded) vs. frequency. With $\mathrm{Cb}=100 \mu \mathrm{~F}$, we can reach the -70 dB value.

The process to obtain the final curve ($\mathrm{Cb}=100 \mu \mathrm{~F}$, Cin $=100 \mathrm{nF}, \quad$ Rin=Rfeed=22k) is a simple transfer point by point on each frequency of the curve on fig. 13 to the curve on fig. 12.
The measurement result is shown on the next figure.
Figure 85: PSRR changes with Cb

Nc:: on PSRR measurement

What is the PSRR?

The PSRR is the Power Supply Rejection Ratio. It's a kind of SVR in a determined frequency range. The PSRR of a device, is the ratio between a power supply disturbance and the result on the output. We can say that the PSRR is the ability of a device to minimize the impact of power supply disturbances to the output.

How we measure the PSRR ?
Figure 86: PSRR measurement schematic

Principle of operation

- We fixed the DC voltace s iprly (Vcc)
- We fixed the AC siruso dal ripple voltage (Vripple)
- No bypass cı paci.or Cs is used

The PSRR value for each frequency is:

Kemark : The measure of the Rms voltage is not a Rms selective measure but a full range (2 Hz to 125 kHz) Rms measure. It means that we measure the effective Rms signal + the noise.

4 Mechanical Data

Figure 87: TS4972 Footprint Recommendation (Non Solder Mask Defined)

Pad in $\mathrm{Cu} 35 \mu \mathrm{~m}$ with FlashNiAu $(6 \mu \mathrm{~m}, 0.15 \mu \mathrm{~m})$
Figure 88: Top View Of The Daisy Chain Mechanical Data (all drawing`dir.ensions are in millimeters

Reme:n::

Daisy she n sample is featuring pins connection two by two. The schematic above is illustrating the way connecting pins each other. This sample is used for testing continuity on board. PCB needs to be designed on the opposite way, where pin connections are not done on daisy chain samples. By that way, just connecting an Ohmeter between pin 8 and pin 1, the soldering process continuity can be tested.

Order Codes

Part Number	Temperature Range	Package	Marking
		\mathbf{J}	
TSDC03IJT	$-40,+85^{\circ} \mathrm{C}$	\bullet	DC3

Figure 89: Tape \& reel specification (top view)

5 Package Mechanical Data

5.1 Flip-Chip - 8 BUMPS

Figure 90: Pin Out (top view)

Balls aro $\because \because u \ni r n e a t h$

Figure 91: Marking (top view)

Revision History

Date	Revision	Description of Changes
January 2003	1	First Release
October 2004	2	Update Mechanical Data for Flip-Chip package

Inform tion fl nished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use $0_{1} \cdots=1$ information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Repubic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

[^0]: 1) Lead free Flip-Chip part number
