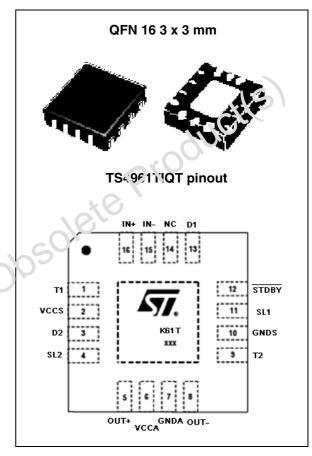


Mono class D audio power amplifier with dedicated analog switch

Features

- Wide operating voltage range from V_{CC} = 2.4 V to 4.3 V
- Audio amplifier standby mode active low
- Output power: 1.6 W at 4.2 V or 0.75 W at 3.0 V into 4 Ω with 1% THD+N maximum
- Output power: 0.95 W at 4.2 V or 0.45 W at 3.0 V into 8 Ω with 1% THD+N maximum
- Adjustable gain via external resistors
- Low current consumption 2 mA at 3 V
- Efficiency: 88% typical
- Signal-to-noise ratio: 85 dB typical
- PSRR: 63 dB typical at 217 Hz with 6 dB gain
- PWM base frequency: 250 kHz
- Low pop and click noise
- Dual Power SPST with separated control
- Ultra-high off-isolation on analog switch: -80 dB typical from 20 Hz to 20 kHz


Applications

- Cellular telephones
- PDAs
- Notabook PCs

Description

The TS4961T is a smart combination of one mono class D audio power amplifier and a high-speed CMOS low-voltage dual power analog SPST.

One of the key functions of this device is the switch mode of the various audio signals coming from the codec or baseband through the loudspeaker. It can drive up to 1.6 W into a 4 Ω load and 0.95 W into an 8 Ω load. It achieves an outstanding efficiency of up to 88% typical.

The audio amplifying gain of the device can be controlled via two external gain-setting resistors. It is designed to operate from 2.4 to 4.3 V, making this device ideal for portable applications.

Contents TS4961T

Contents

1	Abso	lute maximum ratings and operating conditions	. 3
2	Electi	rical characteristics	. 6
	2.1	Audio amplifier section	. 6
	2.2	Analog switch section	16
3	Electi	rical characteristics curves	
	3.1	Audio amplifier section	19
	3.2	Analog switch section	28
4	Appli	cation component information	35
	4.1	Common mode feedback loop limitations	36
	4.2	Low frequency response	37
	4.3	Decoupling of the circuit	37
	4.4	Wake-up time (t _{WU})	37
	4.5	Shutdown time (t _{STEY})	38
	4.6	Consumption in standay mode	38
	4.7	Single-ended input configuration	38
	4.8	Output filler considerations	40
	4.9	F_xcmples with summed inputs	41
	× (2)	4.9.1 Example 1: dual differential inputs	. 41
2/6	3/10	4.9.2 Example 2: one differential input plus one single-ended input	. 42
OSO,	4.10	Using the audio amplifier and switch on the same speaker	43
5	Packa	age information	45
6	Order	ring information	48
7	Revis	sion history	48

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CCA} & V _{CCS}	Supply voltage ⁽¹⁾ ⁽²⁾	GND to 5.5	V
V _{in}	Input voltage	GND-0.3V / V _{CC} +0.3V	V
T _{oper}	Operating free-air temperature range	-40 to + 85	°C
T _{stg}	Storage temperature	-65 to +150	°C
T _j	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient (3)	39	N.Co
R _{thjc}	Thermal resistance junction to case	5	°C/W
P _d	Power dissipation	Internally limited (4)	
ESD	Human body model ⁽⁵⁾	2	kV
ESD	Machine model ⁽⁶⁾	200	V
Latch-up	Latch-up immunity of the Class D Amplifier (All Pins) Latch-up immunity of the Analog Switch (Supply Pinc) Latch-up immunity of the Analog Switch Supply (VC, Pins)	200 100 200	mA
V _{STBY}	Standby pin voltage maximum voltage	GND-0.3V / V _{CC} +0.3V	V
	Lead temperature (soldering, 10 sec)	260	°C

- Caution: this device is not protected in the every of abnormal operating conditions, such as short-circuiting between any
 one output pin and ground, between any one output pin and V_{CC}, and between individual output pins.
- 2. All voltage values are measured with respect to the ground pin.
- 3. When mounted on a 4-layers PC:
- 4. Exceeding the power derating `umes during a long period provokes abnormal operating conditions.
- 5. Human body model a 10 oF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine mc de la 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the
 device with ne external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations
 while the other pins are floating.

Table 2. Operating conditions for audio amplifier section

Symbol	Parameter	Value	Unit
V_{CCA}	Supply voltage ⁽¹⁾	2.4 to 4.3	V
V _{IC}	Common mode input voltage range ⁽²⁾	0.5 to V _{CC} -0.8	V
V _{STBY}	Standby voltage input: ⁽³⁾ Class D amplifier ON Class D amplifier OFF ⁽⁴⁾	$1.4 \le V_{STBY} \le V_{CC}$ $GND \le V_{STBY} \le 0.4$	V
R_{L}	Load resistor	≥ 4	Ω

- 1. For V_{CC} from 2.4 V to 2.5 V, the operating temperature range is reduced to 0° C≤T_{amb} ≤70° C.
- 2. For V_{CC} from 2.4 V to 2.5 V, the common mode input range must be set at $V_{CC}/2$.
- 3. Without any signal on V_{STBY}, the device is in standby.
- 4. Minimum current consumption is obtained when $V_{STBY} = GND$.

Table 3. Operating conditions for analog switch section

Symbol	Parameter	Value	Unit	
V _{CC}	Supply voltage	2.4 to 4.3	V	
V _{in}	Input voltage	0 to V _{CC}	V	
V _{IC}	Control input voltage	0 to 4.3	V	
V _O	Output voltage		0 to V _{CC}	V
dt/dv	Input rise and fall time control input	V _{CC} = 2.5 V	0 to 20	ns/V
ui/uv	imput rise and iaii time control imput	$V_{CC} = 3.0 \text{ V to } 4.3 \text{ V}$	0 to 10	115/V

Audio amplifier standby mode settings Table 4.

	/STDBY	Functional description
	Low	OFF Device is in shut-down mode
	High	ON Device is in operating rode
Table 5.	Analog switch	settings truth table

Analog switch settings truth table Table 5.

High	ON D1 is connected to T1	ON
	I DI IS CONNECTED TO LI	D2 is connected to T2
Low	OFF High impedarce from D1 to T1	OFF High impedance from D2 to T2
Pro	90.	
osolete '		

Table 6. Pin description

Name	Pin number	Function
VCCA	6	Class D audio amplifier power supply voltage input pin
VCCS	2	Analog switch power supply voltage input pin
/STDBY	12	Standby input pin (active low) to disable the audio amplifier
T1	1	Independent output audio channel 1
D2	3	Common input audio channel 2
SL2	4	Select input pin for D2 to T2 (active high)
OUT+	5	Positive differential audio output
GNDA	7	Audio amplifier input ground
OUT-	8	Negative differential audio output
T2	9	Independent output audio channel 2
GNDS	10	Analog switch input ground
SL1	11	Select input pin for D1 to T1 (active !iigh)
D1	13	Common input audio chancel :
NC	14	No internal connection
IN-	15	Audio negative ciffcrential input
IN+	16	Audio p sitive differential input
E-Pad	-	Exposed pad (should be connected to GND)
.0	oducil	

2 Electrical characteristics

2.1 Audio amplifier section

Table 7. Electrical characteristics at V_{CC} = +4.3 V with GND = 0 V, V_{icm} = 2.1 V and T_{amb} = 25° C (unless otherwise specified)⁽¹⁾

	Symbol	Parameter	Min.	Тур.	Max.	Unit
	I _{CC}	Supply current No input signal, no load		2.1	3	mA
	I _{STBY}	Standby current ⁽²⁾ No input signal, V _{STBY} = GND		10	1000	rΑ
	V _{oo}	Output offset voltage No input signal, $R_L = 8\Omega$		3	25	mV
	P _{out}	Output power, G=6dB THD = 1% Max, f = 1kHz, $R_L = 4\Omega$ THD = 10% Max, f = 1kHz, $R_L = 4\Omega$ THD = 1% Max, f = 1kHz, $R_L = 8\Omega$ THD = 10% Max, f = 1kHz, $R_L = 8\Omega$	P	1.5 1.95 0.9 1.1		W
	THD + N	Total harmonic distortion + noise $P_{out} = 600 \text{ mW}_{RMS}, G = 60\%, 20\% \text{Hz} < f < 20\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$ $P_{out} = 700\text{mW}_{RMS}, G = 3\text{dB}, f = 1\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$		2 0.35		%
	Efficiency	Efficiency $P_{out} = 1.45 \text{ W}_{RMS}, R_L = 4\Omega + \geq 15 \mu H$ $P_{NL} = 0.9 \text{ W}_{RMS}, R_L = 8\Omega + \geq 15 \mu H$		78 88		%
	PSR.?	Power supply rejection ratio with inputs grounded $^{(3)}$ f = 217Hz, R _L = 8 Ω , G=6dB, V_{ripple} = 200m V_{pp}		63		dB
Obsole	CMRR	Common mode rejection ratio $f = 217Hz$, $R_L = 8\Omega$, $G = 6dB$, $\Delta Vic = 200mV_{pp}$		57		dB
Opso	Gain	Gain value (R _{in} in kΩ)	273kΩ R _{in}	300kΩ R _{in}	<u>327kΩ</u> R _{in}	V/V
	R _{STBY}	Internal resistance from standby to GND	273	300	327	kΩ
	F _{PWM}	Pulse width modulator base frequency		280		kHz
	SNR	Signal to noise ratio (A-weighting) $P_{out} = 0.8W, R_L = 8\Omega$		85		dB
	t _{WU}	Wake-up time		5	10	ms
	t _{STBY}	Standby time		5	10	ms

TS4961T Electrical characteristics

Table 7. Electrical characteristics at V_{CC} = +4.3 V with GND = 0 V, V_{icm} = 2.1 V and T_{amb} = 25° C (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Output voltage noise f = 20Hz to 20kHz, G = 6dB				
	Unweighted $R_L = 4\Omega$ A-weighted $R_L = 4\Omega$		85 60		
	Unweighted $R_L = 8\Omega$ A-weighted $R_L = 8\Omega$		86 62		
	Unweighted $R_L = 4\Omega + 15\mu H$ A-weighted $R_L = 4\Omega + 15\mu H$		83 60		
V _N	Unweighted R _L = 4Ω + 30μ H A-weighted R _L = 4Ω + 30μ H		88 64	1/2	μν' _{RMS}
	Unweighted $R_L = 8\Omega + 30\mu H$ A-weighted $R_L = 8\Omega + 30\mu H$		78 57	700	
	Unweighted $R_L = 4\Omega + Filter$ A-weighted $R_L = 4\Omega + Filter$ Unweighted $R_L = 4\Omega + Filter$	Pr	37 65 82		
	A-weighted $R_L = 4\Omega + \text{Filter}$		59		

^{1.} All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.

^{2.} Standby mode is active when V_{STBY} is tied to GND.

^{3.} Dynamic measurements - 20*log(rms(V_{out}, 'rms V_{ripple})). V_{ripple} is the superimposed sinusoidal signal to V_{CC} at f = 217 Hz.

Table 8. Electrical characteristics at V_{CC} = +3.6 V with GND = 0 V, V_{icm} = 1.8 V, T_{amb} = 25° C (unless otherwise specified)⁽¹⁾

Parameter	Min.	Тур.	Max.	Unit
Supply current No input signal, no load		2	2.8	mA
Standby current ⁽²⁾ No input signal, V _{STBY} = GND		10	1000	nA
Output offset voltage No input signal, $R_L = 8\Omega$		3	25	mV
Output power, G=6dB THD = 1% Max, f = 1kHz, $R_L = 4\Omega$ THD = 10% Max, f = 1kHz, $R_L = 4\Omega$ THD = 1% Max, f = 1kHz, $R_L = 8\Omega$ THD = 10% Max, f = 1kHz, $R_L = 8\Omega$		1.1 1.4 0.7 0.85	cil	Sw
Total harmonic distortion + noise $P_{out} = 450 \text{ mW}_{RMS}, G = 6\text{dB}, 20\text{Hz} < f < 20\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$ $P_{out} = 500\text{mW}_{RMS}, G = 6\text{dB}, f = 1\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$	P	2 0.1		%
Efficiency $P_{out} = 1 \text{ W}_{RMS}, R_L = 4\Omega + \geq 15\mu \text{ h}$ $P_{out} = 0.65 \text{ W}_{RMS}, R_L = 8\Omega + \geq 15\mu \text{H}$		78 88		%
Power supply rejection ratio with inputs grounded $^{(3)}$ f = 217Hz, R _L = Ω G =6dB, V_{ripple} = 200m V_{pp}		62		dB
Common racde rejection ratio $f = 217 r^{1}z, \; f_{1}L = 8\Omega, \;\; G = 6dB, \; \Delta Vic = 200 mV_{pp}$		56		dB
Gaırı value (R _{in} in kΩ)	273kΩ R _{in}	<u>300kΩ</u> R _{in}	<u>327kΩ</u> R _{in}	V/V
Internal resistance from standby to GND	273	300	327	kΩ
Pulse width modulator base frequency		280		kHz
Signal to noise ratio (A-weighting) $P_{out} = 0.6W, R_L = 8\Omega$		83		dB
Wake-up time		5	10	ms
Standby time		5	10	ms
1	Supply current No input signal, no load Standby current (2) No input signal, $V_{STBY} = GND$ Output offset voltage No input signal, $R_L = 8\Omega$ Output power, $G=6dB$ THD = 1% Max, $f=1kHz$, $R_L = 4\Omega$ THD = 10% Max, $f=1kHz$, $R_L = 4\Omega$ THD = 1% Max, $f=1kHz$, $R_L = 8\Omega$ THD = 10% Max, $f=1kHz$, $R_L = 8\Omega$ THD = 10% Max, $f=1kHz$, $R_L = 8\Omega$ THD = 10% Max, $f=1kHz$, $R_L = 8\Omega$ Total harmonic distortion + noise $P_{out} = 450 \text{ mW}_{RMS}$, $G=6dB$, $20Hz < f < 20kHz$ $R_L = 8\Omega + 15\mu H$, $BW < 30kHz$ $P_{out} = 500mW_{RMS}$, $G=6dB$, $f=1kHz$ $R_L = 8\Omega + 15\mu H$, $BW < 30kHz$ Efficiency $P_{out} = 1 \text{ W}_{RMS}$, $R_L = 4\Omega + \geq 15\mu H$ Power supply rejection ratio with inputs grounded (3) $f=217Hz$, $R_L = \Omega$ $G=6dB$, $V_{ripple} = 200mV_{pp}$ Common rac de rejection ratio $f=217Hz$, $f=212Hz$, $f=312Hz$ $f=$	Supply current No input signal, no load $Standby \ current \ ^{(2)} \ No \ input \ signal, \ V_{STBY} = GND$ Output offset voltage No input signal, $R_L = 8\Omega$ Output power, $G=6dB$ $THD = 1\% \ Max, \ f = 1kHz, \ R_L = 4\Omega$ $THD = 10\% \ Max, \ f = 1kHz, \ R_L = 8\Omega$ $THD = 10\% \ Max, \ f = 1kHz, \ R_L = 8\Omega$ $THD = 10\% \ Max, \ f = 1kHz, \ R_L = 8\Omega$ $THD = 10\% \ Max, \ f = 1kHz, \ R_L = 8\Omega$ $Total \ harmonic \ distortion + noise$ $P_{out} = 450 \ mW_{RMS}, \ G = 6dB, \ 20Hz < f < 20kHz$ $R_L = 8\Omega + 15\mu H, \ BW < 30kHz$ $P_{out} = 500mW_{RMS}, \ G = 6dB, \ f = 1kHz$ $R_L = 8\Omega + 15\mu H, \ BW < 30kHz$ $P_{out} = 10.65 \ W_{RMS}, \ R_L = 8\Omega + 2.15\mu H$ $Power \ supply \ rejection \ ratio \ with inputs \ grounded \ ^{(3)}$ $f = 217Hz, \ R_L = 8\Omega \ G = 6dB, \ V_{ripple} = 200mV_{pp}$ Common \text{race } \text{de } \text{rejection ratio} \text{ f } \text{ common race } \text{de } \text{ rejection ratio} \text{ f } \text{ common race } \text{ de } \text{ rejection ratio} \text{ f } \text{ common race } \text{ Re } \text{ common race } \text{ Re } \text{ common race } \text{ rejection ratio} \text{ f } \text{ common race } \text{ Re } \text{ common race } \text{ rejection ratio} \text{ f } \text{ common race } \text{ Re } \text{ common race } \text{ rejection ratio} \text{ f } \text{ common race } \text{ rejection ratio} \text{ f } \text{ common race } \text{ Re } \text{ rejection ratio} \text{ rejection ratio} \text{ f } \text{ common race } \text{ rejection ratio} rejection	Supply current No input signal, no load	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TS4961T Electrical characteristics

Table 8. Electrical characteristics at $V_{CC} = +3.6 \text{ V}$ with GND = 0 V, $V_{icm} = 1.8 \text{ V}$, $T_{amb} = 25^{\circ} \text{ C}$ (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Output voltage noise f = 20Hz to 20kHz, G = 6dB				
	Unweighted R $_{L}$ = 4Ω A-weighted R $_{L}$ = 4Ω		83 57		
	Unweighted $R_L = 8\Omega$ A-weighted $R_L = 8\Omega$		83 61		
	Unweighted R _L = 4Ω + 15μ H A-weighted R _L = 4Ω + 15μ H		81 58		
V _N	Unweighted R _L = 4Ω + 30μ H A-weighted R _L = 4Ω + 30μ H		87 62	1/3	μν' _{RMS}
	Unweighted R _L = 8Ω + 30μ H A-weighted R _L = 8Ω + 30μ H		77 56	Cer	
	Unweighted $R_L=4\Omega+$ Filter A-weighted $R_L=4\Omega+$ Filter Unweighted $R_L=4\Omega+$ Filter	PI	პ5 63 80		
	A-weighted $R_L = 4\Omega + \text{Filter}$		57		

- 1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.
- 2. Standby mode is activated when V_{STBY} is tied to Gi 'D.
- 3. Dynamic measurements 20*log(rms(V_{out}, 'rms V_{ripple})). V_{ripple} is the superimposed sinusoidal signal to V_{CC} at f = 217 Hz.

Table 9. Electrical characteristics at V_{CC} = +3.0 V with GND = 0 V, V_{icm} = 1.5 V, T_{amb} = 25° C (unless otherwise specified)⁽¹⁾

S	Symbol	Parameter	Min.	Тур.	Max.	Unit
	I _{CC}	Supply current No input signal, no load		1.9	2.7	mA
	I _{STBY}	Standby current ⁽²⁾ No input signal, V _{STBY} = GND		10	1000	nA
	V _{oo}	Output offset voltage No input signal, $R_L = 8\Omega$		3	25	mV
	P _{out}	Output power, G=6dB THD = 1% Max, f = 1kHz, $R_L = 4\Omega$ THD = 10% Max, f = 1kHz, $R_L = 4\Omega$ THD = 1% Max, f = 1kHz, $R_L = 8\Omega$ THD = 10% Max, f = 1kHz, $R_L = 8\Omega$		0.7 1 0.5 0.3	cil	Sw
Т	⁻HD + N	Total harmonic distortion + noise $P_{out} = 300 \text{ mW}_{RMS}, G = 6\text{dB}, 20\text{Hz} < f < 20\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, \text{BW} < 30\text{kHz}$ $P_{out} = 350\text{mW}_{RMS}, G = 6\text{dB}, f = 1\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, \text{BW} < 30\text{kHz}$	Pr	2 0.1		%
E	fficiency	Efficiency $P_{out} = 0.7 \text{ W}_{RMS}, R_L = 4\Omega + \geq 15\mu \text{ h}$ $P_{out} = 0.45 \text{ W}_{RMS}, R_L = 8\Omega + \geq 15\mu \text{ H}$		78 88		%
	PSRR	Power supply rejection ratio with inputs grounded $^{(3)}$ f = 217Hz, R _L = 1 1 1 2 2 3 4 4 5 5 5 6 5 6 6 6 7		60		dB
	CMRR	Common incide rejection ratio $f = 2^{17} \cdot ^{12} \cdot ^{1} $		54		dB
	Gai	Gaın value (R _{in} in kΩ)	$\frac{273k\Omega}{R_{in}}$	300kΩ R _{in}	<u>327kΩ</u> R _{in}	V/V
K	S'BY	Internal resistance from standby to GND	273	300	327	kΩ
76	F _{PWM}	Pulse width modulator base frequency		280		kHz
)SO.	SNR	Signal to noise ratio (A-weighting) $P_{out} = 0.4W, \ R_L = 8\Omega$		82		dB
	t _{WU}	Wake-up time		5	10	ms
	t _{STBY}	Standby time		5	10	ms

TS4961T Electrical characteristics

Table 9. Electrical characteristics at V_{CC} = +3.0 V with GND = 0 V, V_{icm} = 1.5 V, T_{amb} = 25° C (unless otherwise specified)⁽¹⁾ (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
	Output voltage noise f = 20Hz to 20kHz, G = 6dB				
	Unweighted R $_{\rm L}$ = 4Ω A-weighted R $_{\rm L}$ = 4Ω		83 57		
	Unweighted $R_L=8\Omega$ A-weighted $R_L=8\Omega$		83 61		
	Unweighted R _L = 4Ω + 15μ H A-weighted R _L = 4Ω + 15μ H		81 58		
V _N	Unweighted R _L = 4Ω + 30μ H A-weighted R _L = 4Ω + 30μ H		87 62		μ./ _{RMS}
	Unweighted R _L = 8Ω + 30μ H A-weighted R _L = 8Ω + 30μ H		77 56	YO.	
	Unweighted $R_L = 4\Omega + Filter$ A-weighted $R_L = 4\Omega + Filter$ Unweighted $R_L = 4\Omega + Filter$	PI	85 63 80		
	A-weighted $R_L = 4\Omega + Filter$		57		

- 1. All electrical values are guaranteed with correlation measurements at 2.5 V and 5 V.
- 2. Standby mode is active when V_{STBY} is tied to GND.
- 3. Dynamic measurements 20*log(rms(V_{out}, 'rms V_{ripple})). V_{ripple} is the superimposed sinusoidal signal to V_{CC} at f = 217 Hz.

Table 10. Electrical characteristics at V_{CC} = +2.5 V with GND = 0 V, V_{icm} = 1.25 V, T_{amb} = 25° C (unless otherwise specified)

Parameter	Min.	Тур.	Max.	Unit
Supply current No input signal, no load		1.7	2.4	mA
Standby current ⁽¹⁾ No input signal, V _{STBY} = GND		10	1000	nA
Output offset voltage No input signal, $R_L = 8\Omega$		3	25	mV
Output power, G=6dB THD = 1% Max, f = 1kHz, $R_L = 4\Omega$ THD = 10% Max, f = 1kHz, $R_L = 4\Omega$ THD = 1% Max, f = 1kHz, $R_L = 8\Omega$ THD = 10% Max, f = 1kHz, $R_L = 8\Omega$		0.5 0.65 0.33 0.4)Cil	Sw
Total harmonic distortion + noise $P_{out} = 180 \text{ mW}_{RMS}, G = 6\text{dB}, 20\text{Hz} < f < 20\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$ $P_{out} = 200\text{mW}_{RMS}, G = 6\text{dB}, f = 1\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$	P	1 0.05		%
Efficiency $P_{out} = 0.47 \text{ W}_{RMS}, R_L = 4\Omega + \ge 15 \mu H$ $P_{out} = 0.3 \text{ W}_{RMS}, R_L = 8\Omega + \ge 15 \mu H$		78 88		%
Power supply rejection ratio with inputs grounded $^{(2)}$ f = 217Hz, R _L = Ω G =6dB, V_{ripple} = 200m V_{pp}		60		dB
Common race rejection ratio $f = 2171^{12}, \text{ fi}_{L} = 8\Omega, G = 6\text{dB}, \ \Delta V_{ic} = 200\text{mV}_{pp}$		54		dB
Gaιπ value (R _{in} in kΩ)	273kΩ R _{in}	<u>300kΩ</u> R _{in}	<u>327kΩ</u> R _{in}	V/V
Internal resistance from standby to GND	273	300	327	kΩ
Pulse width modulator base frequency		280		kHz
Signal to noise ratio (A-weighting) $P_{out} = 0.3W, R_L = 8\Omega$		80		dB
Wake-up time		5	10	ms
Standby time		5	10	ms
	No input signal, no load Standby current (1) No input signal, $V_{STBY} = GND$ Output offset voltage No input signal, $R_L = 8\Omega$ Output power, $G=6dB$ $THD = 1\%$ Max, $f = 1kHz$, $R_L = 4\Omega$ $THD = 10\%$ Max, $f = 1kHz$, $R_L = 4\Omega$ $THD = 10\%$ Max, $f = 1kHz$, $R_L = 8\Omega$ $THD = 10\%$ Max, $f = 1kHz$, $R_L = 8\Omega$ $THD = 10\%$ Max, $f = 1kHz$, $R_L = 8\Omega$ Total harmonic distortion + noise $P_{out} = 180 \text{ mW}_{RMS}$, $G = 6dB$, $20Hz < f < 20kHz$ $R_L = 8\Omega + 15\mu H$, $BW < 30kHz$ $P_{out} = 200mW_{RMS}$, $G = 6dB$, $f = 1kHz$ $R_L = 8\Omega + 15\mu H$, $BW < 30kHz$ Efficiency $P_{out} = 0.47 \text{ W}_{RMS}$, $R_L = 4\Omega + 2 + 5\mu H$ Power supply rejection ratio with inputs grounded (2) $f = 217Hz$, $R_L = 8\Omega$, $G = 6dB$, $V_{ripple} = 200mV_{pp}$ Common red de rejection ratio $f = 217 + 2 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3 + 3$	No input signal, no load Standby current (1) No input signal, $V_{STBY} = GND$ Output offset voltage No input signal, $R_L = 8\Omega$ Output power, $G=6dB$ $THD = 1\%$ Max, $f = 1kHz$, $R_L = 4\Omega$ $THD = 10\%$ Max, $f = 1kHz$, $R_L = 4\Omega$ $THD = 1\%$ Max, $f = 1kHz$, $R_L = 8\Omega$ Thus $R_L = 8\Omega$ Total harmonic distortion + noise $R_L = 8\Omega + 15\mu H$, $R_L = 8\Omega + 15\mu H$ Power supply rejection ratio with inputs grounded (2) $R_L = 217Hz$, $R_L = 2\Omega + 2\Omega + 215\mu H$ Power supply rejection ratio with inputs grounded (2) $R_L = 217Hz$, $R_L = 8\Omega + 2\Omega + 215\mu H$ Power supply rejection ratio $R_L = R_L + R_L +$	No input signal, no load $ \begin{array}{c} 1.7 \\ \text{Standby current} \ ^{(1)} \\ \text{No input signal, V}_{\text{STBY}} = \text{GND} \\ \\ \text{Output offset voltage} \\ \text{No input signal, R}_{L} = 8\Omega \\ \\ \\ \text{Output power, G=6dB} \\ \text{THD} = 1\% \text{ Max, f} = 1\text{kHz, R}_{L} = 4\Omega \\ \text{THD} = 1\% \text{ Max, f} = 1\text{kHz, R}_{L} = 8\Omega \\ \\ \text{THD} = 1\% \text{ Max, f} = 1\text{kHz, R}_{L} = 8\Omega \\ \text{THD} = 1\% \text{ Max, f} = 1\text{kHz, R}_{L} = 8\Omega \\ \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_{L} = 8\Omega \\ \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_{L} = 8\Omega \\ \\ \text{Total harmonic distortion + noise} \\ \text{Pout} = 180 \text{ mW}_{\text{RMS}}, \text{G} = 6\text{dB, 20Hz} < \text{f} < 20\text{kHz} \\ \\ \text{R}_{L} = 8\Omega + 15\mu\text{H, BW} < 30\text{kHz} \\ \\ \text{Pout} = 200\text{mW}_{\text{RMS}}, \text{G} = 6\text{dB, f} = 1\text{kHz} \\ \\ \text{R}_{L} = 8\Omega + 15\mu\text{H, BW} < 30\text{kHz} \\ \\ \text{Pout} = 0.3 \text{ W}_{\text{RMS}}, \text{R}_{L} = 4\Omega + 2 + 2 + 5\mu\text{H} \\ \\ \text{Power supply rejection ratio with inputs grounded} \ ^{(2)} \\ \\ \text{f} = 217\text{Hz, R}_{L} = 8\Omega \text{ G} = 6\text{dB, } \text{V}_{\text{ripple}} = 200\text{mV}_{\text{pp}} \\ \\ \text{Common racede rejection ratio} \\ \\ \text{f} = 217\text{Hz, R}_{L} = 8\Omega \text{ G} = 6\text{dB, } \Delta\text{V}_{\text{ic}} = 200\text{mV}_{\text{pp}} \\ \\ \text{Gain value} \ (\text{R}_{\text{in}} \text{ in k}\Omega) \\ \\ \text{Pulse width modulator base frequency} \\ \\ \text{Signal to noise ratio (A-weighting)} \\ \\ \\ \text{Pout} = 0.3\text{W, R}_{L} = 8\Omega \\ \\ \text{Wake-up time} \\ \\ \\ \text{5} \\ \\ \text{Signal to noise ratio (A-weighting)} \\ \\ \text{Pout} = 0.3\text{W, R}_{L} = 8\Omega \\ \\ \text{Wake-up time} \\ \\ \\ \text{5} \\ \\ \text{10} \\ \\ $	No input signal, no load $ \begin{array}{c} 1.7 & 2.4 \\ \text{Standby current } (1) \\ \text{No input signal, V}_{STBY} = \text{GND} \\ \\ \text{Output offset voltage} \\ \text{No input signal, R}_L = 8\Omega \\ \\ \text{Output power, G=6dB} \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 4\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 8\Omega \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 10\% \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 10\% \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 10\% \\ \text{THD} = 10\% \text{ Max, f} = 1\text{kHz, R}_L = 10\% \\ TH$

TS4961T Electrical characteristics

Table 10. Electrical characteristics at V_{CC} = +2.5 V with GND = 0 V, V_{icm} = 1.25 V, T_{amb} = 25° C (unless otherwise specified) (continued)

0			Max.	Unit
Output voltage noise f = 20Hz to 20kHz, G = 6dB				
Unweighted $R_L=4\Omega$ A-weighted $R_L=4\Omega$		85 60		
Unweighted $R_L=8\Omega$ A-weighted $R_L=8\Omega$		86 62		
Unweighted R _L = 4Ω + 15μ H A-weighted R _L = 4Ω + 15μ H		76 56		
Unweighted R _L = 4Ω + 30μ H A-weighted R _L = 4Ω + 30μ H		82 60	1/2	μν' _{RMS}
Unweighted R _L = 8Ω + 30μ H A-weighted R _L = 8Ω + 30μ H		67 53	7.Cr	
Unweighted $R_L = 4\Omega + Filter$ A-weighted $R_L = 4\Omega + Filter$ Unweighted $R_L = 4\Omega + Filter$	PI	78 57 74		
	Unweighted $R_L=4\Omega$ A-weighted $R_L=8\Omega$ Unweighted $R_L=8\Omega$ A-weighted $R_L=8\Omega$ Unweighted $R_L=4\Omega+15\mu H$ A-weighted $R_L=4\Omega+15\mu H$ Unweighted $R_L=4\Omega+30\mu H$ Unweighted $R_L=4\Omega+30\mu H$ Unweighted $R_L=8\Omega+30\mu H$ Unweighted $R_L=4\Omega+Filter$ A-weighted $R_L=4\Omega+Filter$	Unweighted $R_L=4\Omega$ A-weighted $R_L=8\Omega$ Unweighted $R_L=8\Omega$ A-weighted $R_L=8\Omega$ Unweighted $R_L=8\Omega$ Unweighted $R_L=4\Omega+15\mu H$ A-weighted $R_L=4\Omega+30\mu H$ Unweighted $R_L=4\Omega+30\mu H$ Unweighted $R_L=8\Omega+30\mu H$ Unweighted $R_L=8\Omega+30\mu H$ Unweighted $R_L=8\Omega+30\mu H$ Unweighted $R_L=8\Omega+30\mu H$ Unweighted $R_L=4\Omega+Filter$ A-weighted $R_L=4\Omega+Filter$ Unweighted $R_L=4\Omega+Filter$ Unweighted $R_L=4\Omega+Filter$ Unweighted $R_L=4\Omega+Filter$	Unweighted $R_L = 4\Omega$ 85 A-weighted $R_L = 4\Omega$ 86 Unweighted $R_L = 8\Omega$ 86 A-weighted $R_L = 8\Omega$ 62 Unweighted $R_L = 4\Omega + 15\mu H$ 76 A-weighted $R_L = 4\Omega + 15\mu H$ 56 Unweighted $R_L = 4\Omega + 30\mu H$ 82 A-weighted $R_L = 4\Omega + 30\mu H$ 60 Unweighted $R_L = 4\Omega + 30\mu H$ 67 Unweighted $R_L = 8\Omega + 30\mu H$ 67 A-weighted $R_L = 8\Omega + 30\mu H$ 53 Unweighted $R_L = 4\Omega + Filter$ 78 A-weighted $R_L = 4\Omega + Filter$ 57 Unweighted $R_L = 4\Omega + Filter$ 57	$\begin{array}{llllllllllllllllllllllllllllllllllll$

^{1.} Standby mode is active when V_{STBY} is tied to GND.

^{2.} Dynamic measurements - 20*log(rms(V_{out})/rms('r_{fip le'})). V_{ripple} is the superimposed sinusoidal signal to V_{CC} at f = 217 Hz.

Table 11. Electrical characteristics at V_{CC} +2.4 V with GND = 0 V, V_{icm} = 1.2 V, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
I _{CC}	Supply current No input signal, no load		1.7		mA
I _{STBY}	Standby current ⁽¹⁾ No input signal, V _{STBY} = GND		10		nA
V _{oo}	Output offset voltage No input signal, $R_L = 8\Omega$		3		mV
P _{out}	Output power, G=6dB THD = 1% Max, f = 1kHz, $R_L = 4\Omega$ THD = 10% Max, f = 1kHz, $R_L = 4\Omega$ THD = 1% Max, f = 1kHz, $R_L = 8\Omega$ THD = 10% Max, f = 1kHz, $R_L = 8\Omega$		0.42 0.61 0.3 0.33	octl	Sw'
THD + N	Total harmonic distortion + noise $P_{out} = 150 \text{ mW}_{RMS}, G = 6\text{dB}, 20\text{Hz} < f < 20\text{kHz}$ $R_L = 8\Omega + 15\mu\text{H}, BW < 30\text{kHz}$	P	0		%
Efficiency	Efficiency $P_{out} = 0.38 \; W_{RMS}, \; R_L = 4\Omega + \geq 15 \mu H$ $P_{out} = 0.25 \; W_{RMS}, \; R_L = 8\Omega + \geq 15 \mu' 1$		77 86		%
CMRR	Common mode rejection ratio $f = 217Hz$, $R_L = 8\Omega$, $G = 6dE$, $\Delta V_{ic} = 200mV_{pp}$		54		dB
Gain	Gain value (R _{in} ir κO)	<u>273kΩ</u> R _{in}	300kΩ R _{in}	<u>327kΩ</u> R _{in}	V/V
R _{STBY}	Internal recistance from standby to GND	273	300	327	kΩ
F _{PWM}	Pulce vidth modulator base frequency		280		kHz
SNR	Signal to noise ratio (A-weighting) $P_{out} = 0.25W, R_L = 8\Omega$		80		dB
† _{WU}	Wake-up time		5		ms
t _{STBY}	Standby time		5		ms

TS4961T **Electrical characteristics**

Electrical characteristics at V_{CC} +2.4 V with GND = 0 V, V_{icm} = 1.2 V, T_{amb} = 25° C (unless otherwise specified) (continued) Table 11.

	Parameter	Min.	Тур.	Max.	Unit
	Output voltage noise f = 20Hz to 20kHz, G = 6dB				
	Unweighted $R_L = 4\Omega$		85		
	A-weighted $R_L = 4\Omega$ Unweighted $R_L = 8\Omega$		60 86		
	A-weighted $H_L = 8\Omega$		62		
	Unweighted R _L = 4Ω + 15 μ H A-weighted R _L = 4Ω + 15 μ H		76 56		
V _N	Unweighted R _L = 4Ω + 30μ H A-weighted R _L = 4Ω + 30μ H		82 60	*	ans, and
	Unweighted $R_L = 8\Omega + 30\mu H$		67	$^{\prime}C_{r}$	
	A-weighted $R_L = 8\Omega + 30\mu H$ Unweighted $R_L = 4\Omega + Filter$	0 1	53 78		
	A-weighted $H_L = 4\Omega + \text{Filter}$	(8)	57		
	Unweighted $R_L = 4\Omega + Filter$ A-weighted $R_L = 4\Omega + Filter$	3	74 54		
ate P'	oducile				

2.2 Analog switch section

Table 12. DC specifications

				Value				-		
Symbol	Parameter	V _{CC} (V)	Test conditions	T _{an}	T _{amb} = 25 °C		Unit			
				Min	Тур	Max	Min	Max		
		2.5		1.2			1.2			
V	High level input voltage	2.7 –3.0		1.3			1.3		V	
V _{IH}	Trigit level iriput voltage	3.3 –3.6		1.4			1.4		V	
		4.3		1.5			1.5	10		
		2.5				0.25		ી.∠ે5	,	
V _{IL}	Low level input voltage	2.7 –3.0				0.25		0.25	V	
V IL	Zow ioto: input tollage	3.3 –3.6				0.30).	0.30	V	
		4.3				0.40		0.40		
	S _{PEAK} , Switch T _n ON resistance	4.3		X	1.10	1.3		1.5		
R _{PEAK} ,		3.6	$V_S = 0 V \text{ to } V_{CC}$		1.15	1.4		1.6	Ω	
Tn		3.0	I _S = 100 mA		1.25	1.5		1.8	22	
		2.7	Oh,		1.35	1.6		1.9		
		4.3			10					
ΔR _{ON,}	ON resistance match	3.6	ν _S at R _{PEAK}		14				mΩ	
Tn	between Tn channels ⁽¹⁾	3.1	I _S = 100 mA		14				11122	
	<u> </u>	2.7			15					
	2100	4.3			0.45	0.50		0.55		
R _{FLAT,}	ON resistar ce flatness	3.6	$V_S = 0$ to V_{CC}		0.45	0.50		0.55	δ	
Tn	for [™] ก channels ⁽²⁾	3.0	I _S = 100 mA		0.50	0.55		0.60	22	
		2.7			0.55	0.60		0.70		
OFF	OFF state leakage current (Tn), (Dn)	4.3	V _S = 0.3 or 4 V			±0.1		±1	μΑ	
I _{SEL}	SEL leakage current	0 -4.3	V _{SEL} = 0 to 4.3 V			±0.05		±1	μΑ	
I _{CC}	Quiescent supply current	2.4 –4.3	V _{SEL} = V _{CC} or GND			±0.05		±0.2	μΑ	
	Quiescent supply		V _{SEL} = 1.65 V		±37	±50		±100		
I _{CCLV}	current low voltage	4.3	V _{SEL} = 1.80 V		±33	±40		±50	μΑ	
	driving		V _{SEL} = 2.60 V		±12	±20		±30		

^{1.} $\Delta R_{ON} = R_{ON(max)} - R_{ON(min)}$.

^{2.} Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

Table 13. AC electrical characteristics (C_L = 35 pF, R_L = 50 Ω , $t_r = t_f \le 5$ ns)

						Value	!			
Symbol	Parameter	V _{CC} (V)	Test conditions	Tai	T _{amb} = 25 °C		T _{amb} = 25 °C -40 to 85 °C		-40 to 85 °C	
				Min	Тур	Max	Min	Max		
		2.5 —2.7			0.45					
t _{PLH,} t _{PHL}	Propagation delay	3.0 —3.3			0.30				ns	
		3.6 -4.3			0.30					
		2.5 —2.7			65	85		90		
t_{ON}	Turn-ON time	3.0 -3.3	V _S = 1.5 V		42	55		65	ns	
		3.6 -4.3			40	55		65	51	
		2.5 —2.7			18	30		4)		
t_{OFF}	Turn-OFF time	3.0 —3.3	V _S = 1.5 V		16	30	70,	40	ns	
		3.6 -4.3			15	3L		40		
		2.5 —2.7	C _L = 100 pF		51					
Q	Charge injection	3.0 —3.3	$R_L = 1 M\Omega$ $V_{GEN} = 0 V$	10	51				р(
		3.6 -4.3	$R_{GEN} = 0 \Omega$		49					
	lete Pro	(3)							

Table 14. Analog switch characteristics (C_L = 5 pF, R_L = 50 Ω , T_{amb} = 25 °C)

OIRH _{Tn} swift	Parameter isolation for tch T1,T2	V _{CC} (V)	Test conditions $V_S{=}1\ V_{rms},$ $F{=}1\ MHz,$ $R_L = 50\ \Omega$	T _{an} Min	Typ -80	°C Max	-40 to Min	85 °C Max	Ur
VtalkTn Cro		2.5 -4.3	F=1 MHz,	Min		Max	Min	Max	
VtalkTn Cro		2.5 —4.3	F=1 MHz,		-80				
VtalkTp Cro	tch T1,T2	2.5 —4.3		1					d
			$V_S=1 V_{rms}$, F = 10 MHz, $R_L = 50 \Omega$		-60				u
Λιαικ I I T1 :	esstalk between	2.5 — 4.3	V _S =1 V _{rms} , F = 1 MHz		-85				o d
	and T2	2.5 — 4.5	V _S =1 V _{rms} , F = 10 MHz		-74		9/		
	dB bandwidth for tch T1, T2	2.5 —4.3	$R_L = 50 \Omega$ Signal = 0 dBm		58	5//			M
	ntrol pin input pacitance		V _{CC} = 0 V	16	9				р
C _{ON.Tn} whe	port capacitance en the switch is abled	3.3	F = 1 MH.2		113				р
C _{OFF,Tn} whe	port capacitance en the switch is abled		F:: 1 MHz		85				þ

3 Electrical characteristics curves

3.1 Audio amplifier section

The graphs included in this section use the following abbreviations:

- $R_L + 15 \mu H$ or 30 μH = pure resistor + very low series resistance inductor.
- Filter = LC output filter (1 μ F+30 μ H for 4 Ω and 0.5 μ F+6 0 μ H for 8 Ω).
- All measurements done with $C_{s1} = 1 \mu F$ and $C_{s2} = 100 nF$ except for PSRR where C_{s1} is removed

Figure 1. Test diagram for audio amplifier measurements

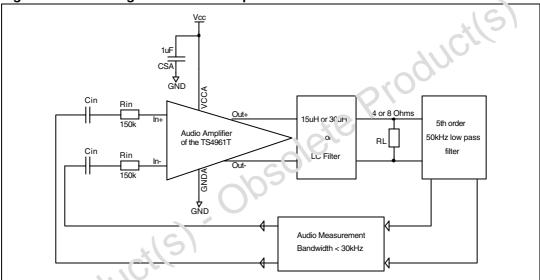


Figure 2. Test diagram for audio amplifier PSRR measurements

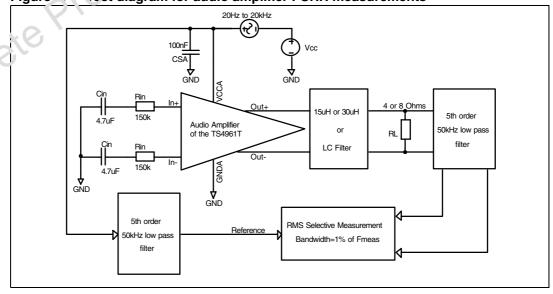


Figure 3. Current consumption vs. power supply voltage

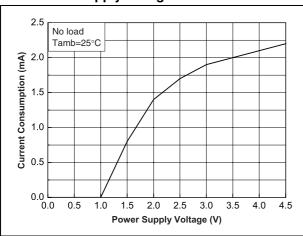


Figure 4. Current consumption vs. standby voltage

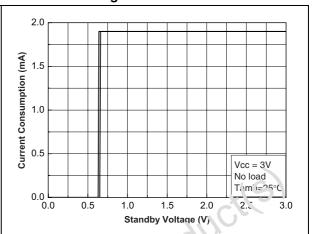


Figure 5. Output offset voltage vs. common mode input voltage

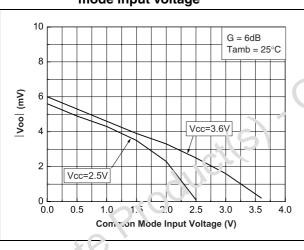


Figure 6. Efficiency vs. output power

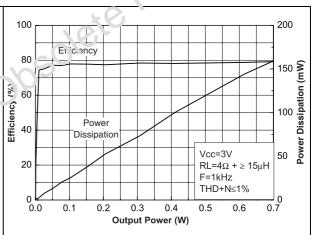
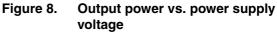
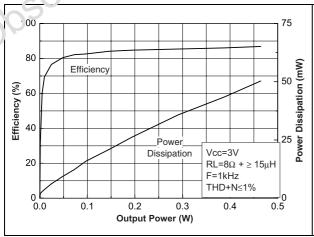




Figure 7. Efficiency vs. output power

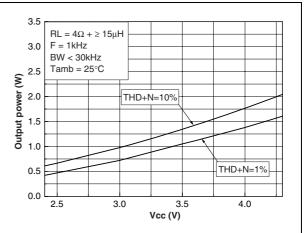
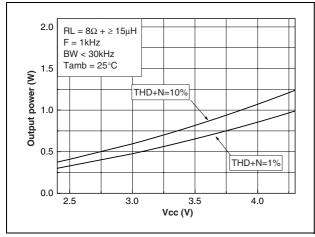



Figure 9. Output power vs. power supply voltage

Figure 10. PSSR vs. frequency

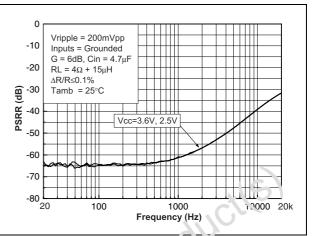
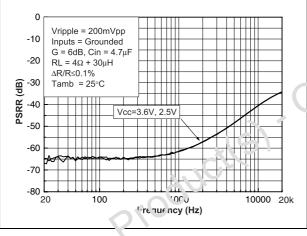



Figure 11. PSSR vs. frequency

Figure 12. PSSR vs. frequency

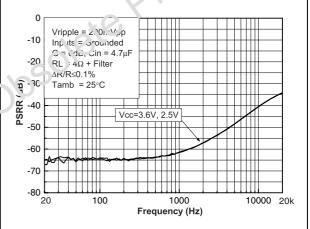
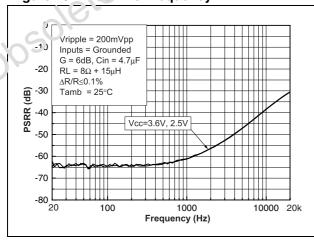



Figure 13. POSR vs. frequency

Figure 14. PSSR vs. frequency

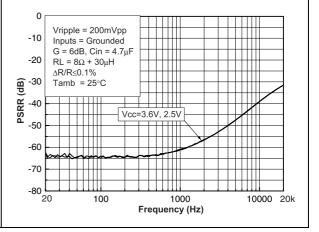
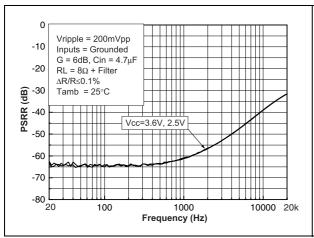



Figure 15. PSSR vs. frequency

Figure 16. PSSR vs. common mode input voltage

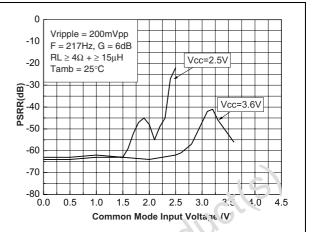
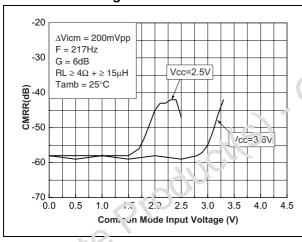



Figure 17. CMRR vs. common mode input voltage

Figure 18. CMRR vs. f.equancy

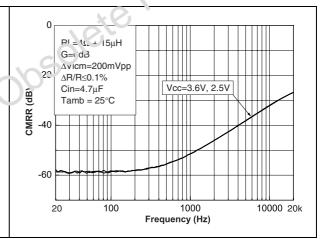
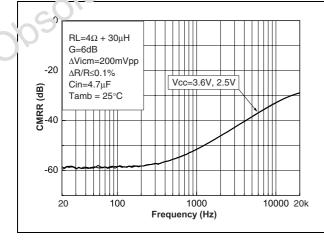



Figure 19 CMRR vs. frequency

Figure 20. CMRR vs. frequency

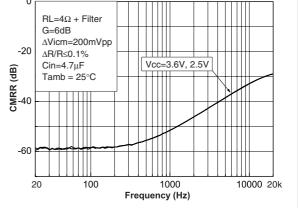


Figure 21. CMRR vs. frequency

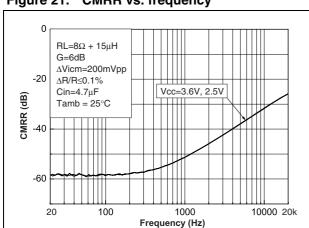


Figure 22. CMRR vs. frequency

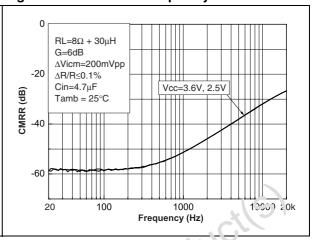


Figure 23. CMRR vs. frequency

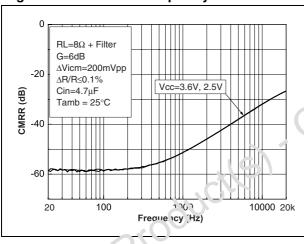


Figure 24. THD+N vs. output cower

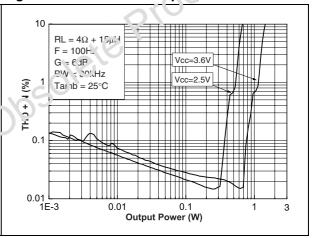


Figure 25. THD+N vs. output power

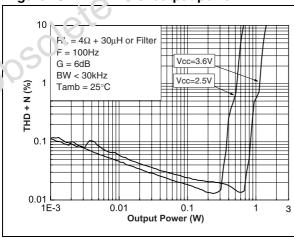


Figure 26. THD+N vs. output power

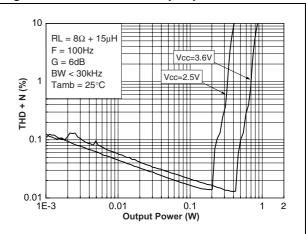


Figure 27. THD+N vs. output power

10 $RL = 8\Omega + 30 \mu H$ or Filter Vcc=3.6V F = 100Hz G = 6dBBW < 30kHzVcc=2.5V (%) N + QH1 Tamb = 25°C 0.1 0.01 L 1E-3

0.1

Output Power (W)

Figure 28. THD+N vs. output power

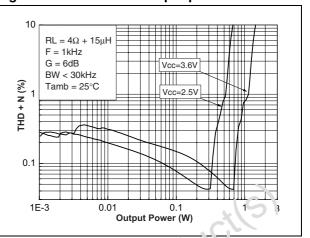


Figure 29. THD+N vs. output power

0.01

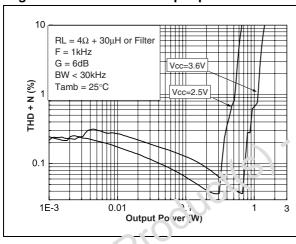


Figure 30. THD+N vs. output Dower

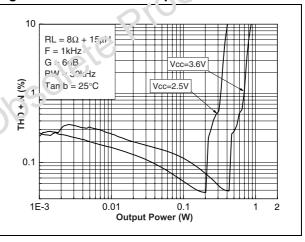


Figure 31. THD+N vs. output power

Figure 32. THD+N vs. frequency

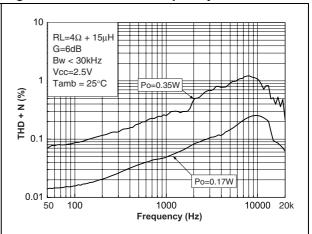


Figure 33. THD+N vs. frequency

10
RL=4Ω + 30μH or Filter
G=6dB
Bw < 30kHz
Vcc=2.5V
Tamb = 25°C

1
1
0.01
50
100
1000
10000
10000
20k
Frequency (Hz)

Figure 34. THD+N vs. frequency

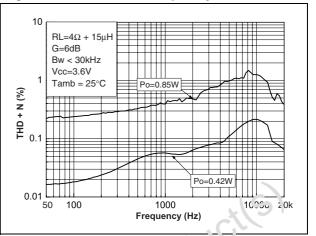


Figure 35. THD+N vs. frequency

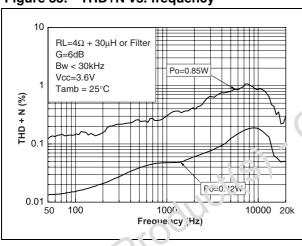


Figure 36. THD+N vs. frequency

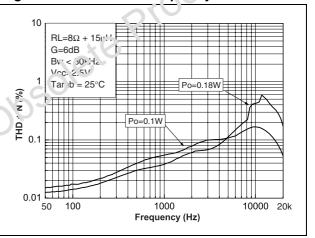


Figure 37. THD+N vs. frequency

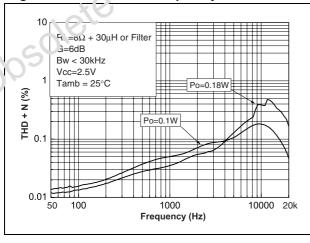


Figure 38. THD+N vs. frequency

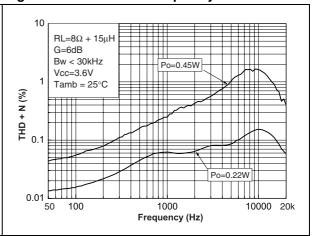


Figure 39. THD+N vs. frequency

Frequency (Hz)

Figure 40. Gain vs. frequency

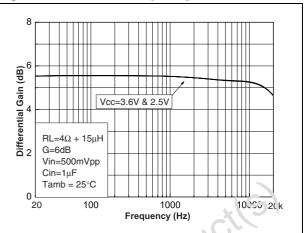


Figure 41. Gain vs. frequency

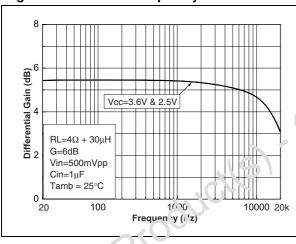


Figure 42. Gain vs. frequency

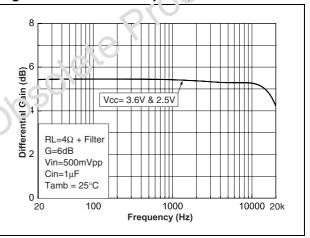


Figure 43. Gain vo. frequency

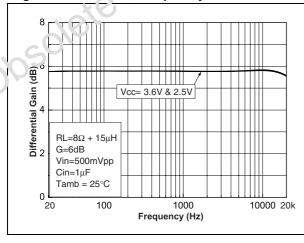


Figure 44. Gain vs. frequency

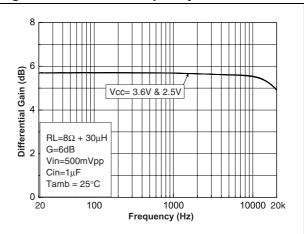


Figure 45. Gain vs. frequency

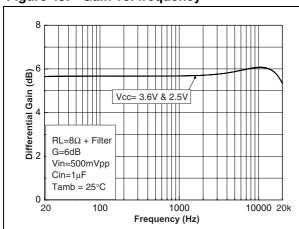


Figure 46. Gain vs. frequency

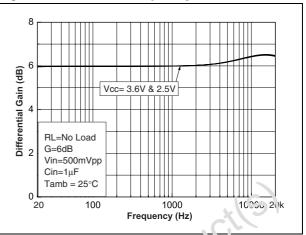
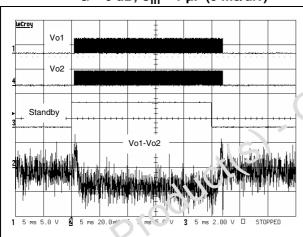



Figure 47. Startup & shutdown time $V_{CC}=3$ V, Figure 48. Startup & shutdown time $V_{CC}=3$ V, G=6 dB, $C_{in}=1$ μF (5 ms/div) G=6 dP, $C_{in}=1$ 00 nF (5 ms/div)

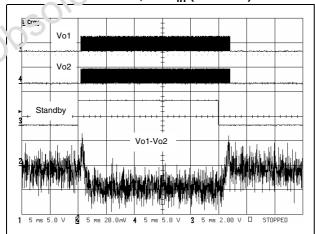



Figure 49. Startup & shutdown time $V_{CC} = 3 \text{ V}$, G = 6 dB, no C_{in} (5 ms/div)

3.2 Analog switch section

The graphs included in this section use the following abbreviations.

- $R_1 + 15 \mu H$ or 30 μH = pure resistor + very low series resistance inductor.
- Filter = LC output filter (1 μ F + 30 μ H for 4 Ω and 0.5 μ F + 6 0 μ H for 8 Ω).
- All measurements done with $C_{s1} = 1 \mu F$ and $C_{s2} = 100 nF$ except for PSRR where C_{s1} is removed.

Figure 50. Test diagram for switch measurements

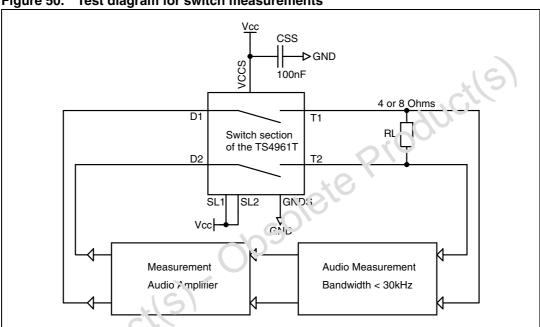
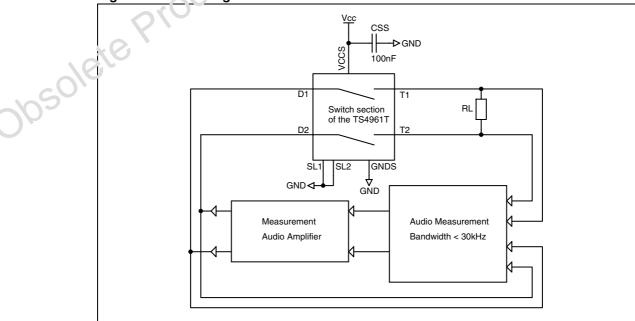



Figure 51. Test diagram for isolation switch measurements

5//

Figure 52. ON resistance

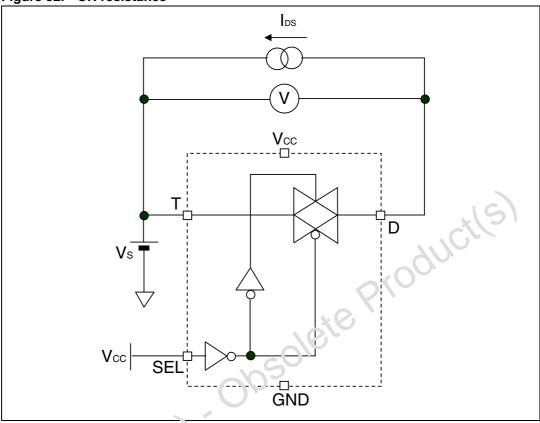


Figure 53. OFF leakage

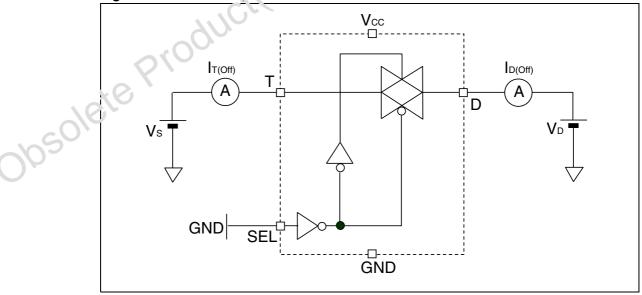


Figure 54. OFF isolation

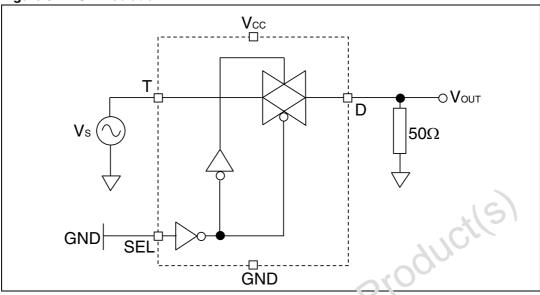
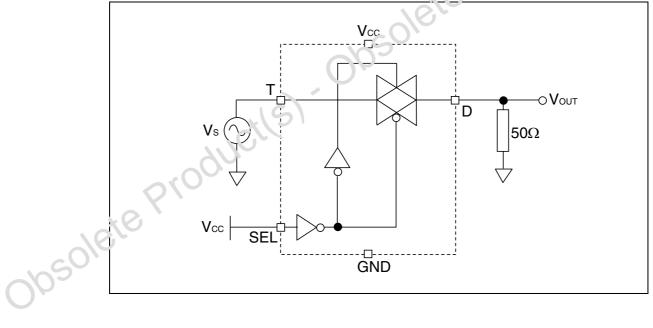



Figure 55. Bandwidth

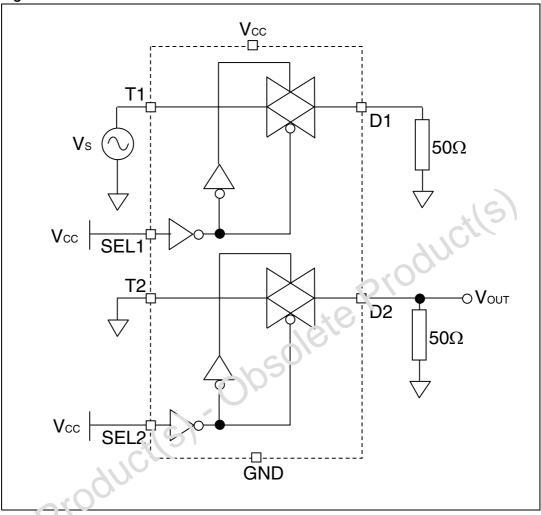
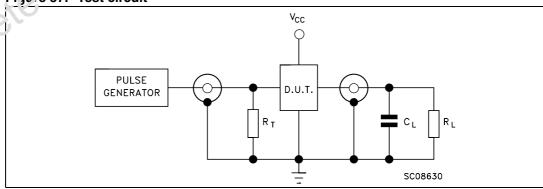



Figure 56. Switch-to-switch crosstalk

Note: 1 $C_L = 5/35 \text{ pF}$ or equivalent (includes jig and probe capacitance).

- 2 $R_L = 50 \Omega$ or equivalent.
- 3 $R_T = Z_{OUT}$ of pulse generator (typically 50 Ω).

5//

Figure 58. Switching time and charge injection Figure 59. Switching time and charge injection test circuit schematics

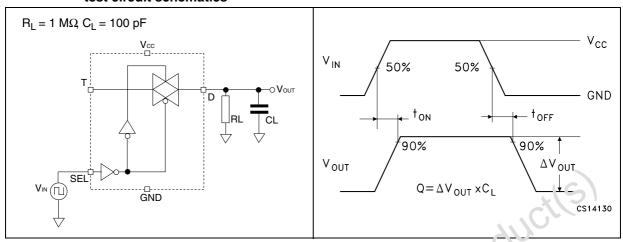


Figure 60. Turn on, turn off time test circuit schematics

Figure 61. Turn on turn of time

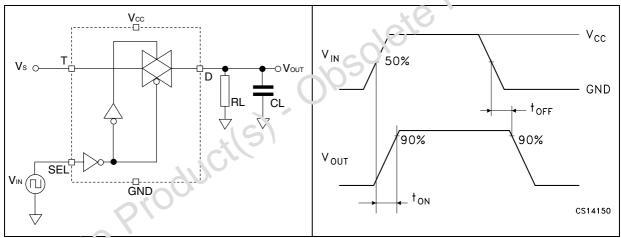


Figure \$2 THD+N vs. output power

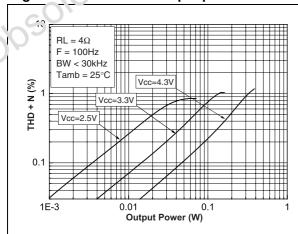


Figure 63. THD+N vs. output power

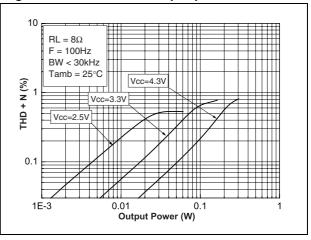


Figure 64. THD+N vs. output power

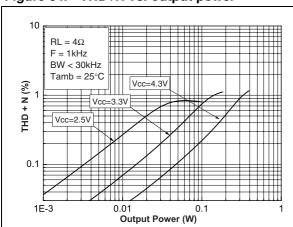


Figure 65. THD+N vs. output power

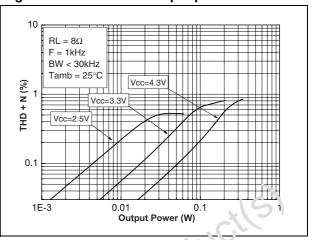


Figure 66. THD+N vs. output power

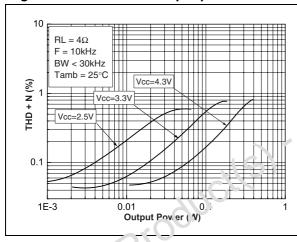


Figure 67. THD+N vs. output cower

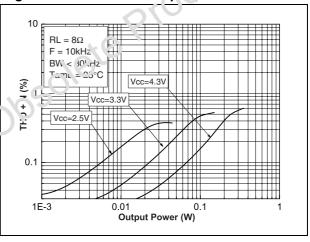


Figure 68. THD+N vs. frequency

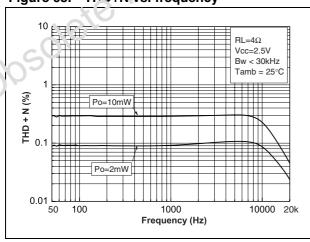


Figure 69. THD+N vs. frequency

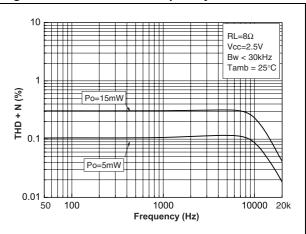


Figure 70. THD+N vs. frequency

RL=4Ω Vcc=3.3V $\mathsf{Bw} < 30 \mathsf{kHz}$ Tamb = 25°C (%) N + QHL Po=35mW

1000

Frequency (Hz)

10000 20k

Figure 71. THD+N vs. frequency

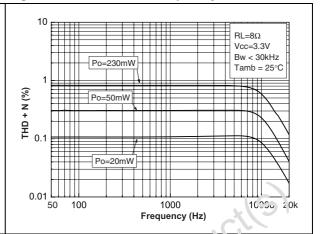


Figure 72. THD+N vs. frequency

Po=10mW

0.1

0.01

50 100

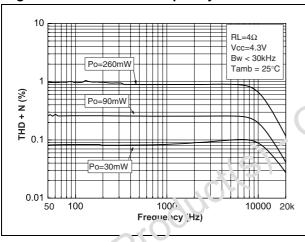


Figure 73. THD+N vs. frequency

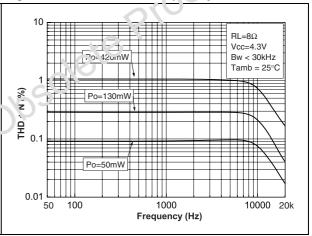
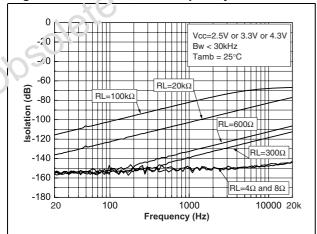
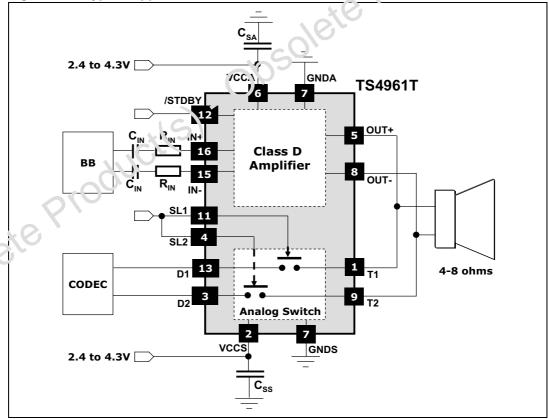



Figure 74. Isolation vs. frequency



4 Application component information

Table 15. Component information

Component	Functional description
C _{SA}	Bypass supply capacitor. Install as close as possible to the VCCA pin of the TS4961T to minimize high-frequency ripple. A 1 uF ceramic capacitor should be added to enhance power supply filtering at high frequencies (see below).
C _{SS}	Bypass supply capacitor. Install as close as possible to the VCCS pin of the TS4961T to minimize high-frequency ripple. A 100 nF ceramic capacitor should be added to enhance power supply filtering at high frequencies.
R _{IN}	Input resistor to program the TS4961T differential gain (gain = 300 kΩ/ P_{IN} w.th P_{IN} in kΩ).
C _{IN}	Because common mode feedback is implemented, these input capacitors are optional. However, they can be added to form with R_{IN} a 15% order high pass filter with a -3 dB cut-off frequency = $1/(2^*\pi^*R_{IN}^*C_{IN})$.

Figure 75. Typical application schematics

4.1 Common mode feedback loop limitations

The common mode feedback loop allows the output DC bias voltage to be averaged at $V_{\rm CC}/2$ for any DC common mode bias input voltage.

However, because of the V_{icm} limitation in the input stage (see *Table 2: Operating conditions for audio amplifier section on page 3*), the common mode feedback loop can only fulfill its role within a defined range. This range depends upon the values of V_{CC} and R_{in} (Av). To obtain a good estimation of the V_{icm} value, the following formula can be used (no tolerance on R_{in}):

$$V_{icm} = \frac{V_{CC} \times R_{in} + 2 \times V_{IC} \times 150 k\Omega}{2 \times (R_{in} + 150 k\Omega)}$$
 (V)

with

$$V_{IC} = \frac{In^+ + In^-}{2} \qquad (V)$$

and the result of the calculation must be in the range:

$$0.5V \le V_{icm} \le V_{CO} - 0.8V$$

Due to the +/-9% tolerance on the 150 k Ω resistor, it is also important to check V_{icm} in these conditions:

$$\frac{V_{CC} \times R_{in} + 2 \times V_{IC} < 133.5 \text{k}\Omega}{2 \times (R_{in} + 136.5 \text{k}\Omega)} \leq V_{icm} \leq \frac{V_{CC} \times R_{in} + 2 \times V_{IC} \times 163.5 \text{k}\Omega}{2 \times (R_{in} + 163.5 \text{k}\Omega)}$$

If the result of the V_{icm} calculation is not in the previous range, input coupling capacitors must be used (with $V_{i.C}$ trong 2.4 V to 2.5 V, input coupling capacitors are mandatory).

For example:

With $V_{CC}=3$ v, $R_{in}=150$ k Ω and $V_{IC}=2.5$ V, we typically find $V_{icm}=2$ V and this is lower than 3 \checkmark - 0.8 V = 2.2 V. With 136.5 k Ω we find 1.97 V, and with 163.5 k Ω we have 2.02 V. Therefore, no input coupling capacitors are required.

oducils

4.2 Low frequency response

If a low frequency bandwidth limitation is required, it is possible to use input coupling capacitors.

In the low frequency region, C_{in} (input coupling capacitor) starts to have an effect. C_{in} forms, with R_{in} , a first order high-pass filter with a -3 dB cut-off frequency:

$$F_{CL} = \frac{1}{2\pi \times R_{in} \times C_{in}}$$
 (Hz)

Therefore, for a desired cut-off frequency F_{CL}, C_{in} is calculated as follows:

$$C_{in} = \frac{1}{2\pi \times R_{in} \times F_{CL}} \qquad (F_{in})$$

with R_{in} in Ω and F_{CI} in Hz.

4.3 Decoupling of the circuit

A power supply capacitor, referred to as C_S , is necessary to correctly bypass the class D part of the TS4961T.

The TS4961T has a typical switching frequency at 250 kHz and an output fall and rise time at approximately 5 ns. Because of these very test transients, careful decoupling is mandatory.

A 1 μ F ceramic capacitor is enough, but it must be located very close to the TS4961T in order to avoid any extra parasitic inductance created by a long track wire. In relation with dl/dt, this parasitic inductance in roduces an overvoltage that decreases the global efficiency and, if it is too high, may cause a breakdown of the device.

In addition, even if a ceramic capacitor has an adequate high frequency ESR value, its current capability is also important. A 0603 size is a good compromise, particularly when a 4 Ω load is used.

Another important parameter is the rated voltage of the capacitor. A 1 μ F/6.3 V capacitor Ls. d at 5 V, loses about 50% of its value. In fact, with a 5 V power supply voltage, the elecoupling value is about 0.5 μ F instead of 1 μ F. Since C_S has a particular influence on the THD+N in the medium-high frequency region, this capacitor variation becomes decisive. In addition, less decoupling means higher overshoots, which can be problematic if they reach the power supply AMR value (6 V).

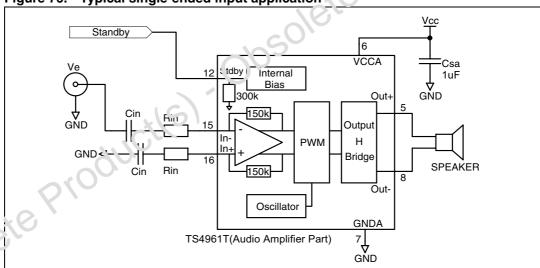
4.4 Wake-up time (t_{WU})

There is a wait of approximately 5 ms when standby is released to set the device ON. The TS4961T has an internal digital delay that mutes the outputs and releases them after this time in order to avoid any pop noise.

4.5 Shutdown time (t_{STBY})

When the standby command is set, the time required to put the two output stages into high impedance and to put the internal circuitry in standby mode, is about 5 ms. This time is used to decrease the gain and avoid any pop noise during shutdown.

4.6 Consumption in standby mode

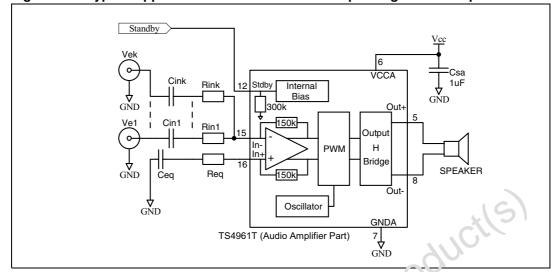

Between the shutdown pin and GND there is an internal 300 k Ω resistor. This resistor forces the TS4961T to switch to standby mode when the standby input is left floating.

However, this resistor also introduces additional power consumption if the standby pin voltage is not 0 V.

4.7 Single-ended input configuration

The TS4961Tcan be used in a single-ended input configuration, but it coupling capacitors are necessary. *Figure 76* shows a typical single-ended input application.

Figure 76. Typical single-ended input application


All formulas are identical except for the gain (with R_{in} in $k\Omega$):

$$A_{V_{single}} = \frac{V_e}{Out^+ - Out^-} = \frac{300}{R_{in}}$$

Due to the internal resistor tolerance, A_{Vsingle} is in the range of:

$$\frac{273}{R_{in}} \le A_{V_{single}} \le \frac{327}{R_{in}}$$

In the event that multiple single-ended inputs are summed, it is important that the impedance on both TS4961 inputs (In⁻ and In⁺) be equal.

Typical application schematics with multiple single-ended inputs

We have the following equations.

$$Out^{+} - Out^{-} = V_{e1} \times \frac{300}{R_{in1}} + ... + V_{ek} \times \frac{300}{R_{ink}}$$
 (V)

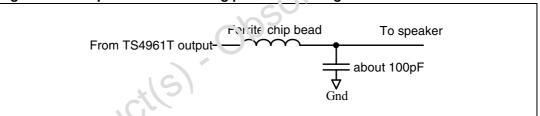
$$C_{eq} = \sum_{j=1}^{K} C_{inj}$$

$$C_{inj} = \frac{1}{2 \times \pi \times R_{inj} \times F_{CLi}} \qquad (F)$$

$$R_{eq} = \frac{1}{\sum_{j=1}^{k} \frac{1}{R_{in_{j}}}}$$

Josolete Product(s) In general, for mixed situations (single-ended and differential inputs), the same rule must be used, that is, to equalize impedance on both TS4961T inputs.

4.8 Output filter considerations

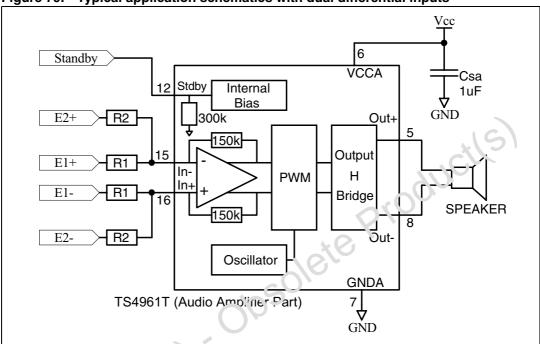

The TS4961T is designed to operate without an output filter. However, due to very sharp transients on the TS4961T output, EMI radiated emissions may cause some standard compliance issues.

These EMI standard compliance issues can appear if the distance between the TS4961T outputs and loudspeaker terminal are long (typically more than 50 mm, or 100 mm in both directions, to the speaker terminals). Since the PCB layout and internal equipment device are different for each configuration, it is difficult to provide a one-size-fits-all solution.

However, to decrease the probability of EMI issues, there are several simple rules to follow.

- Reduce, as much as possible, the distance between the TS4961T output pins and the speaker terminals.
- Use ground planes for shielding sensitive wires.
- Place, as close as possible to the TS4961T and in series with each output, a ferrite bead with a rated current of 2.5 A minimum, and impedance greater them 50 Ω at frequencies above 30 MHz. If, after testing, these ferrite beads are represented in the property of them by a short circuit.
- Allow enough footprint to place, if necessary, a capacitor 'o short perturbations to ground as shown in *Figure 78*.

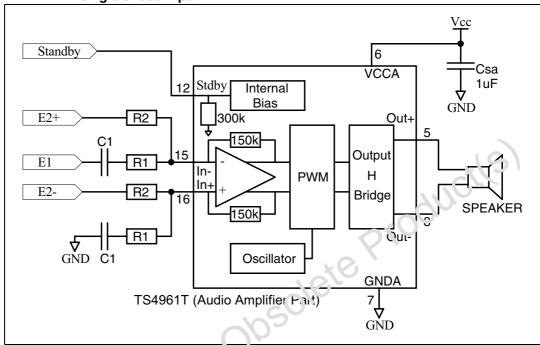
Figure 78. Output filter for shorting pertubations to ground


In the case where the distance between the TS4961T outputs and speaker terminals is high, it is possible to have low frequency EMI issues due to the fact that the typical operating frequency is 250 kHz.

In this configuration, it is recommended to use an output filter. It should be placed as close as possible to the TS4961T.

Examples with summed inputs 4.9

4.9.1 **Example 1: dual differential inputs**


Figure 79. Typical application schematics with dual differential inputs

With (Ri in kΩ):
$$A_{V_1} = \frac{Out^+ - Out^-}{E_1^+ - E_1^-} = \frac{300}{R_1}$$

$$A_{V_2} = \frac{Out^+ - Out^-}{E_2^+ - E_2^-} = \frac{300}{R_2}$$

$$0.5V \le \frac{V_{CC} \times R_1 \times R_2 + 300 \times (V_{IC1} \times R_2 + V_{IC2} \times R_1)}{300 \times (R_1 + R_2) + 2 \times R_1 \times R_2} \le V_{CC} - 0.8V$$

$$V_{IC_1} = \frac{E_1^+ + E_1^-}{2} \text{ and } V_{IC_2} = \frac{E_2^+ + E_2^-}{2}$$

4.9.2 Example 2: one differential input plus one single-ended input

Figure 80. Typical application schematics with one differential input plus one single-ended input

With (Ri in kΩ):

$$A_{V_1} = \frac{Out^+ - Out^-}{E_1^+} = \frac{300}{R_1}$$

$$A_{V_2} = \frac{Out^+ - Out^-}{E_2^+ - E_2^-} = \frac{300}{R_2}$$

$$C_1 = \frac{1}{2\pi \times R_1 \times F_{CL}} \quad (F)$$

Using the audio amplifier and switch on the same speaker 4.10

The TS4961T can be used to supply a speaker with two different sources. The typical application is shown in Figure 81.

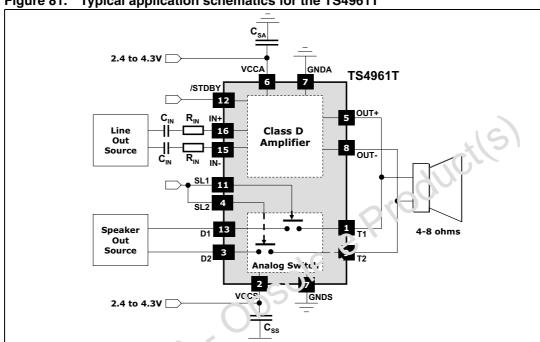


Figure 81. Typical application schematics for the TS4961T

The first source is a line-out signal provided by the baseband and the second is a speaker-out signal coming from the CODEC. Switching is done through the standby pin (/STDBY) of the audin amplifier and through the SLn pins of the switch.

Note that, as shown in Figure 82, all pins should not be switched at the same time because this carr ause damage to the TS4961T audio amplifier and to the external audio amplifier that provides the speaker-out signal. Jbsolet

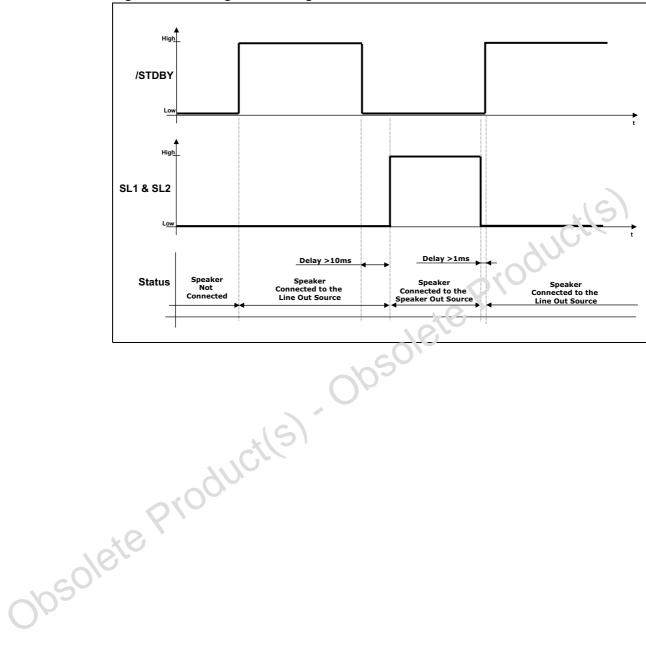


Figure 82. Timing of switching between two audio sources

TS4961T Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in ECOPACK[®] packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Obsolete Product(s). Obsolete Product(s)

45/49

Package information TS4961T

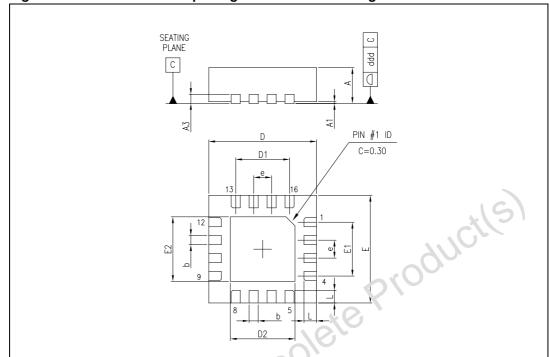


Figure 83. QFN16 3 x 3 mm package mechanical drawing

Note:

For enhanced thermal performance the expused pad must be soldered to a copper area on the PCB, acting as a heatsink. This capper area can be electrically connected to pins 7 and 10 or left floating.

Table 16. QFN16 3 x 3 n... package mechanical data

		Dimensions					
	Ref.	70,0	Millimeters			Inches	
	6//	Min.	Тур.	Max.	Min.	Тур.	Max.
	A	0.80	0.90	1.00	0.031	0.035	0.039
7/6	A1		0.02	0.05		0.001	0.002
1250.	A3		0.20			0.008	
Oh	b	0.18	0.25	0.30	0.007	0.01	0.012
	D	2.85	3.00	3.15	0.112	0.118	0.124
	D1		1.50			0.059	
	D2	1.70	1.80	1.90	0.067	0.071	0.075
	Е	2.85	3.00	3.15	0.112	0.118	0.124
	E1		1.50			0.059	
	E2	1.70	1.80	1.90	0.067	0.071	0.075
	е	0.45	0.50	0.55	0.018	0.020	0.022
	L	0.30	0.40	0.50	0.012	0.016	0.020
	ddd			0.08			0.003

TS4961T **Package information**

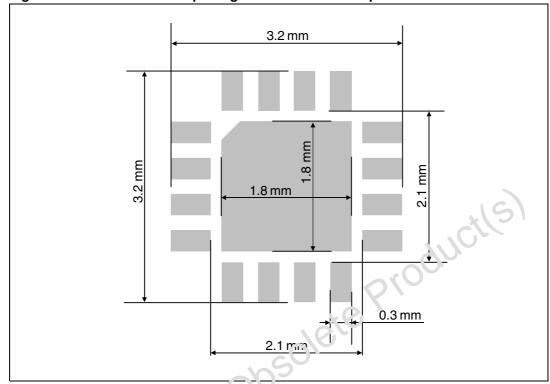


Figure 84. QFN16 3 x 3 mm package recommended footprint

Note:

The substrate pad should be tied to the FCB GND. Obsolete Productls

Ordering information TS4961T

Ordering information 6

Table 17. **Order codes**

Order code	Temperature range	Package	Packing	Marking
TS4961TIQT	-40°C to +85°C	QFN16	Tape & reel	K61T

Revision history 7

Table 18. **Document revision history**

DateRevisionChanges16-Sep-20081Initial release.	es	Changes		
0,40	100	Changes	Revision	Date
		Initial release.	1	16-Sep-2008
Obsolete Product(s) Obsolete \		Obsolete Pr	l	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiated (ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and senuces described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and solvices described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property Liq. is s granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained in a line in any manner whatsoever of such third party products or services or any intellectual property contained in a line in any manner whatsoever of such third party products or services or any intellectual property contained in a line in a lin

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE ANCION SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNE'SE FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN VIRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCT'S OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PF OP ENTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of S. p. or ucts with provisions different from the statements and/or technical features set forth in this document shall immediately void any war and granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liabi. f. C.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

