

STB70NH03L

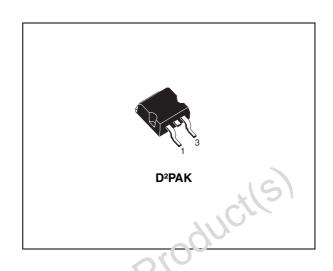
N-channel 60V - 0.0075Ω - 70A - D²PAK STripFET™ III Power MOSFET for DC-DC conversion

General features

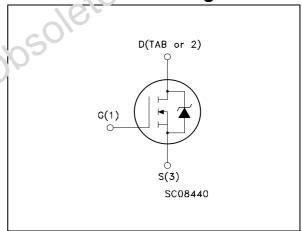
Туре	V _{DSS}	R _{DS(on)}	I _D
STB70NH03L	30V	< 0.009Ω	60A ⁽¹⁾

- R_{DS(on)} x Qg industry benchmark
- Conduction losses reduced
- Switching losses reduced
- Low threshold device

Description


The device utilizes the latest advanced design rules of ST's proprietary STripFET™ technology. It is ideal in high performance DC-DC converter applications where efficiency is to be achieved at very high output currents.

Applications


Switching application

Switching application

Reproductive

Internal schematic diagram

Order codes

Part number	er Marking Package		Packaging	
STB70NH03LT4	B70NH03L	D ² PAK	Tape & reel	

Contents STB70NH03L

Contents

1	Electrical ratings 3
2	Electrical characteristics
3	Test circuit8
4	Package mechanical data
5	Packaging mechanical data11
6	Appendix A12
7	Revision history
005	Electrical characteristics (curves) 6 Test circuit 8 Package mechanical data 9 Packaging mechanical data 11 Appendix A 12 Revision history 14

STB70NH03L **Electrical ratings**

Electrical ratings 1

Table 1. **Absolute maximum ratings**

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source Voltage (V _{GS} = 0)	30	V
V _{DGR}	Drain-gate Voltage ($R_{GS} = 20 \text{ k}\Omega$)	30	V
V _{GS}	Gate- source Voltage	± 20	V
I _D ⁽¹⁾	Drain Current (continuous) at T _C = 25°C	60	Α
I _D ⁽¹⁾	Drain Current (continuous) at T _C = 100°C	43	Α
I _{DM} ⁽²⁾	Drain Current (pulsed)	240	Α
P _{TOT}	Total Dissipation at T _C = 25°C	858	W
	Derating Factor	4	W/°C
E _{AS} (3)	Single Pulse Avalanche Energy	300	mJ
T _{stg}	Storage Temperature	-55 to 175	°C
T _J	Operating Junction Temperature	-55 10 175	

- 1. Value limited by wire bonding
- 2. Pulse width limited by safe oper`ting area
- 3. Starting $T_J = 25$ °C, ID = 30A, $V_{DD} = 20V$

Table 2. Thermal data

	T_J	Operating Junction Temperature	00 10 170				
	Value limited by wire bonding						
	Pulse width limited by safe oper`ting area						
	Starting T_J	$= 25 {}^{\circ}\text{C}, \text{ID} = 30\text{A}, \text{V}_{\text{DD}} = 20\text{V}$	* 8				
		16					
	Table 2.	Thermal data					
	Symbol	Parameter	Value	Unit			
	R _{thJC}	Thermal resistance junction-case max	1.87	°C/W			
	R _{thJA}	Thermal resistance junction-ambient max	62.5	°C/W			
	T _I	Maximum lead temperature for soldering purpose	300	°C			
Obsole	tePr	OO					

Electrical characteristics STB70NH03L

2 **Electrical characteristics**

(T_{CASE} = 25°C unless otherwise specified)

On/off states Table 3.

Symbol	Parameter	Test cond	Min	Тур	Max	Unit	
V _{(BR)DSS}	Drain-source breakdown voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0$		30			V
I _{DSS}	Zero gate voltage Drain current (V _{GS} = 0)	V_{DS} = max rating V_{DS} = max rating T_{C} = 125°C				1 10	μA μA
I _{GSS}	Gate-body leakage Current (V _{DS} = 0)	V _{GS} = ± 20 V				±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$	I _D = 250 μA	1			٧
R _{DS(on)}	Static drain-source on resistance	V _{GS} = 10 V V _{GS} = 5 V	I _D = 30 A I _D = 30 A		0.0075 0.0135	0.0095 0.009	$\Omega \ \Omega$
Table 4.	Dynamic			~ t(2910		
					_		

Table 4. **Dynamic**

,					
Parameter	Test conditions	Min	Тур	Max	Unit
Forward transconductance	V _{DS} = 10 V I _D = 18 A		25		S
Input capacitance Output capacitance Reverse transfer capacitance	V _{DS} = 10V f = 1 MHz V _{GS} = 0		2200 380 49		pF pF pF
Gate Input Resistance	f = 1 MHz gate DC bias = 0 test signal level = 20 mV open drain		1.5		Ω
Turn-on delay time Rise time Turn-off delay Time Fall time	$V_{DD} = 15 \text{ V}$ $I_{D} = 30 \text{ A}$ $R_{G} = 4.7 \Omega$ $V_{GS} = 5 \text{ V}$		21 95 19 15		ns ns
Total gate charge Gate-source charge Gate-drain charge	V _{DD} = 15V I _D = 70A V _{GS} = 5V		15.7 8.3 3.4	21	nC nC nC
Third-quadrant gate charge	V _{DS} < 0 V V _{GS} = 10 V		15		nC
	Parameter Forward transconductance Input capacitance Output capacitance Reverse transfer capacitance Gate Input Resistance Turn-on delay time Rise time Turn-off delay Time Fall time Total gate charge Gate-source charge Gate-drain charge Third-quadrant gate	Forward transconductance $V_{DS} = 10 \text{ V} \qquad I_{D} = 18 \text{ A}$ Input capacitance Output capacitance Reverse transfer capacitance $Gate \text{ Input Resistance} \qquad I_{DS} = 10 \text{ V} \qquad I_{D} = 18 \text{ A}$ $V_{DS} = 10 \text{ V} \qquad I_{D} = 18 \text{ A}$ $V_{DS} = 10 \text{ V} \qquad I_{D} = 10 \text{ MHz} \qquad I_{DS} = 0 \text{ MHz} \qquad I_{$	Parameter Test conditions Min Forward transconductance $V_{DS} = 10 \text{ V}$ $I_D = 18 \text{ A}$ Input capacitance Output capacitance Reverse transfer capacitance $V_{DS} = 10 \text{ V}$ $I_D = 10 \text{ MHz}$ Gate Input Resistance $I_D = 10 \text{ MHz}$ $I_D = 10 \text{ MHz}$ Gate Input Resistance $I_D = 10 \text{ MHz}$ $I_D = 10 \text{ MHz}$ Fall time $I_D = 10 \text{ MHz}$ </td <td>Parameter Test conditions Min Typ Forward transconductance $V_{DS} = 10 \text{ V}$ $I_D = 18 \text{ A}$ 25 Input capacitance Output capacitance Reverse transfer capacitance $V_{DS} = 10 \text{ V}$ $I_{D} = 18 \text{ A}$ 2200 Gate Input Resistance $V_{DS} = 10 \text{ V}$ $I_{D} = 10 \text{ MHz}$ $I_{D} = 10 \text{ MHz}$</td> <td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td>	Parameter Test conditions Min Typ Forward transconductance $V_{DS} = 10 \text{ V}$ $I_D = 18 \text{ A}$ 25 Input capacitance Output capacitance Reverse transfer capacitance $V_{DS} = 10 \text{ V}$ $I_{D} = 18 \text{ A}$ 2200 Gate Input Resistance $V_{DS} = 10 \text{ V}$ $I_{D} = 10 \text{ MHz}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

^{1.} Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

^{2.} Gate charge for synchronous operation . See Chapter 6: Appendix A

Table 5. Source drain diode

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{SD} (1)	Source-drain current Source-drain current (pulsed)				60 240	A A
V _{SD} ⁽²⁾	Forward on voltage	$I_{SD} = 30 \text{ A}$ $V_{GS} = 0$			1.3	V
t _{rr} Q _{rr} I _{RRM}	Reverse recovery time Reverse recovery charge Reverse recovery current	$I_{SD} = 60 \text{ A} \text{ di/dt} = 100 \text{A/µs}$ $V_{DD} = 20 \text{ V}$ $T_{J} = 150 ^{\circ}\text{C}$		32 51 3.2		ns nC A

- 1. Pulse width limited by safe operating area
- 2. Pulsed: Pulse duration = 300 μ s, duty cycle 1.5 %

Obsolete Product(s). Obsolete Product(s)

Electrical characteristics STB70NH03L

2.1 Electrical characteristics (curves)

Figure 1. Safe operating area

Figure 2. Thermal impedance

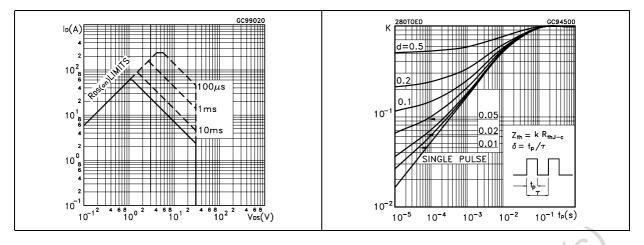


Figure 3. Output characterisics

Figure 4. Transfer characteristics

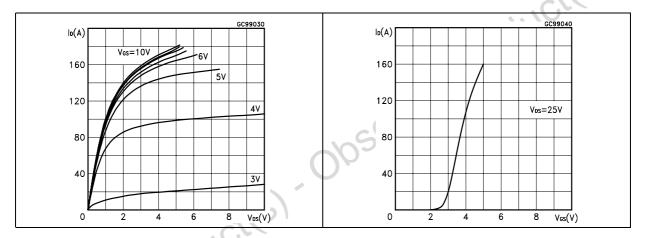


Figure 5. Transconductance

Figure 6. Static drain-source on resistance

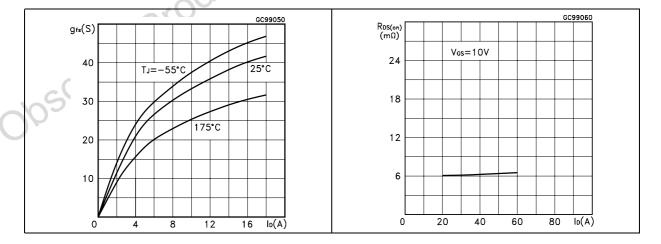


Figure 7. Gate charge vs gate-source voltage Figure 8. Capacitance variations

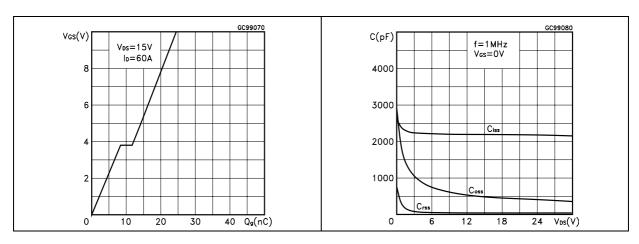


Figure 9. Normalized gate threshold voltage Figure 10. Normalized on resistance vs vs temperature temperature

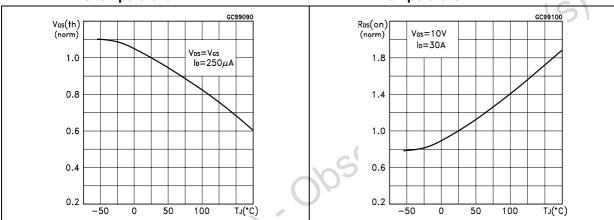
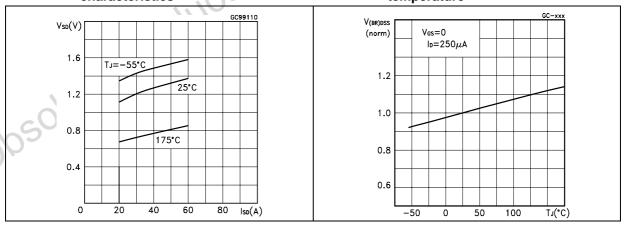



Figure 11. Source-drain diode forward characteristics

Figure 12. Normalized Breakdown vs temperature

Test circuit STB70NH03L

3 Test circuit

Figure 13. Switching times test circuit for resistive load

Figure 14. Gate charge test circuit

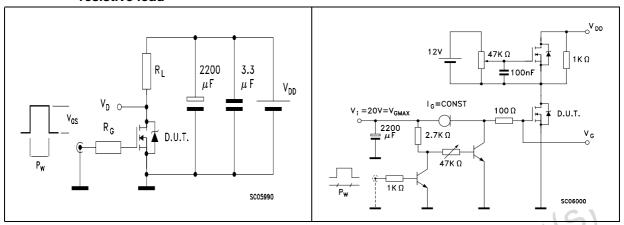


Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped Inductive load test circuit

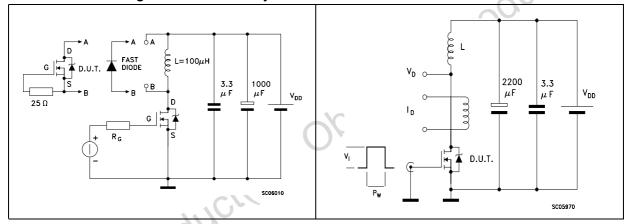
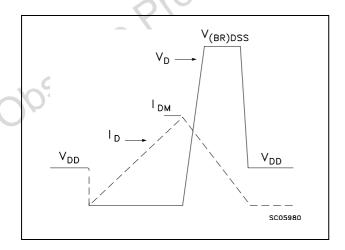
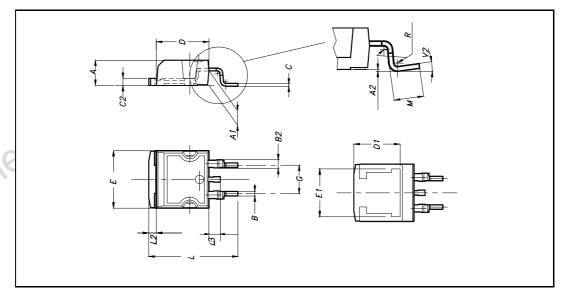



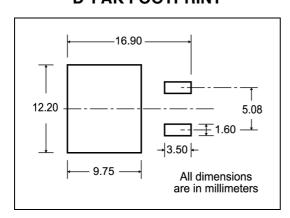
Figure 17. Unclamped inductive waveform

577

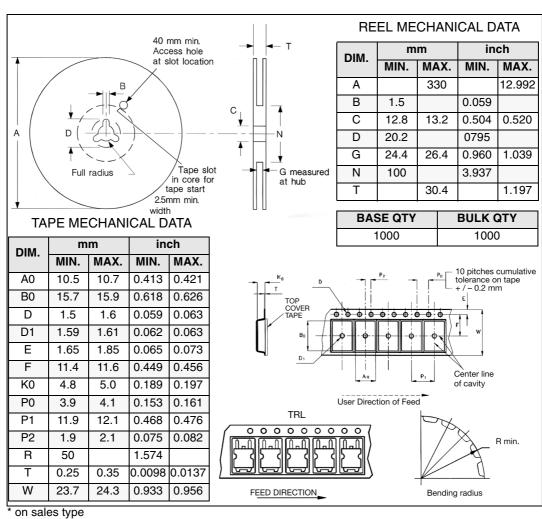
4 Package mechanical data


In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect . The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com

Obsolete Productis). Obsolete Productis)

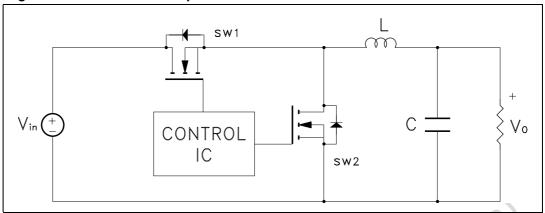

577

D²PAK MECHANICAL DATA


D.I.I.		mm.			inch	
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
Α	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
A2	0.03		0.23	0.001		0.009
В	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
С	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
D1		8			0.315	
Е	10		10.4	0.393		
E1		8.5			0.334	
G	4.88		5.28	0.192		0.208
L	15		15.85	0.590		0.625
L2	1.27		1.4	0.050		0.055
L3	1.4		1.75	0.055		0.068
М	2.4		3.2	0.094		0.126
R		0.4			0.015	
V2	0₀		4º			

5 Packaging mechanical data D²PAK FOOTPRINT

TAPE AND REEL SHIPMENT



Appendix A STB70NH03L

6 Appendix A

Figure 18. Buck converter: power losses estimation

The power losses associated with the FETs in a synchronous buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

- The low side (SW2) device requires:
- Very low R_{DS(on)} to reduce conduction losses
- Small Qgls to reduce the gate charge losses
- Small Coss to reduce losses due to output capacitance
- Small Qrr to reduce losses on SW1 during its turn-on
- The Cgd/Cgs ratio lower than Vth/Vgg ratio especially with low drain to source
- voltage to avoid the cross conduction phenomenon;
- The high side (SW1) device requires:
- Small Rg and Ls to allow higher gate current peak and to limit the voltage feedback on the gate
- Small Qg to have a faster commutation and to reduce gate charge losses
- Low R_{DS(on)} to reduce the conduction losses.

STB70NH03L Appendix A

Table 6. **Power losses calculation**

		High side switching (SW1)	Low side switch (SW2)		
Pconduction		$R_{_{\mathrm{DS(on)SW1}}}*I_{_{\mathrm{L}}}^{2}*\delta$	$R_{DS(on)SW2} * I_L^2 * (1 - \delta)$		
Pswitching		$V_{in} * (Q_{gsth(SW1)} + Q_{gd(SW1)}) * f * \frac{I_L}{I_g}$	Zero Voltage Switching		
Pdiode	Recovery (1)	Not applicable	$V_{in} * Q_{rr(SW2)} * f$		
ruioue	Conductio n	Not applicable	$V_{f(SW2)} * I_L * t_{deadtime} * f$		
Pgate	e(Q _G)	$Q_{g(SW1)} * V_{gg} * f$	$Q_{gls(SW2)} * V_{gg} * f$		
P_{Qoss}		$\frac{V_{in} *Q_{oss(SW1)} *f}{2}$	$\frac{V_{in} * Q_{oss(SW2)} * f}{2}$		
1. Dissipated	Dissipated by SW1 during turn-on				
Table 7.	Table 7. Paramiters meaning				
Param	Parameter Meaning				

^{1.} Dissipated by SW1 during turn-on

Paramiters meaning Table 7.

	Parameter	Meaning
	d	Duty-cycle
	Q _{gsth}	Post threshold gate charge
	Q_{gls}	Third quadrant gate charge
	Pconduction	On state losses
	Pswitching	On-off transition losses
	Pdiode	Conduction and reverse recovery diode losses
7/6	Pgate	Gate drive losses
1000	P_{Qoss}	Output capacitance losses
Oba		

Revision history STB70NH03L

7 Revision history

Table 8. Revision history

Date	Revision	Changes
21-Jun-2004	5	Complete document
20-Jul-2006	6	New template, no content change

Obsolete Product(s). Obsolete Product(s)

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

