

STFI11N60M2-EP

N-channel 600 V, 0.550 Ω typ., 7.5 A MDmesh™ M2 EP Power MOSFET in an I²PAKFP package

Datasheet - production data

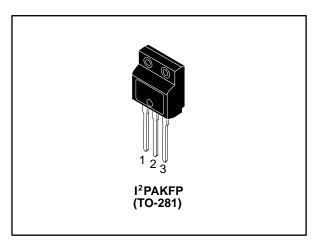
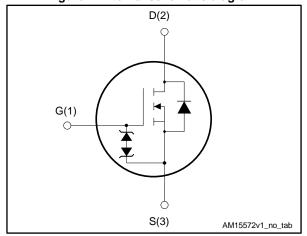



Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	ΙD
STFI11N60M2-EP	600 V	0.595 Ω	7.5 A

- Extremely low gate charge
- Excellent output capacitance (C_{OSS}) profile
- Very low turn-off switching losses
- 100% avalanche tested
- Zener-protected
- Fully insulated and low profile package with increased creepage path from pin to heatsink plate

Applications

Switching applications

Description

This device is an N-channel Power MOSFET developed using MDmesh™ M2 EP enhanced performance technology. Thanks to its strip layout and an improved vertical structure, the device exhibits low on-resistance, optimized switching characteristics with very low turn-off switching losses, rendering it suitable for the most demanding very high frequency converters.

Table 1: Device summary

Order code	Marking	Package	Packaging
STFI11N60M2-EP	11N60M2EP	I ² PAKFP (TO-281)	Tube

Contents STFI11N60M2-EP

Contents

1	Electric	al ratings	3
2	Electric	eal characteristics	4
	2.1	Electrical characteristics (curves)	6
3	Test cir	cuits	9
4	Packag	e mechanical data	10
	4.1	I ² PAKFP (TO-281) package information	10
5	Revisio	n history	12

STFI11N60M2-EP Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _G s	Gate-source voltage	± 25	V
I _D	Drain current (continuous) at T _C = 25 °C	7.5	Α
ΙD	Drain current (continuous) at T _C = 100 °C	4.7	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	30	Α
P _{TOT}	Total dissipation at T _C = 25 °C	25	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
V _{ISO}	Insulation withstand voltage (RMS) from all three leads to external heat sink (t = 1 s, T_C = 25 °C)	2.5	kV
T _{stg}	Storage temperature range	55 to 150	°C
Tj	Operating junction temperature range	- 55 to 150	

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient max	62.5	°C/W

Table 4: Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetetive or not repetetive (pulse width limited by T _{jmax})	2.4	А
Eas	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$; $V_{DD} = 50$ V)	115	mJ

⁽¹⁾Pulse width limited by safe operating area.

 $^{^{(2)}}I_{SD} \leq 7.5$ A, di/dt ≤ 400 A/µs; VDS peak < V(BR)DSS, VDD = 400 V.

 $^{^{(3)}}V_{DS} \le 480 \text{ V}$

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 5: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)DSS}$	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	Zoro goto voltago Drain	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V}$			1	μΑ
I _{DSS}	Zero gate voltage Drain current	$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_{C} = 125 ^{\circ}\text{C}$ (1)			100	μΑ
Igss	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on- resistance	V _G S = 10 V, I _D = 3.75 A		0.550	0.595	Ω

Notes:

Table 6: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	390	-	pF
Coss	Output capacitance	V _{DS} = 100 V, f = 1 MHz,	-	22	-	pF
Crss	Reverse transfer capacitance	$V_{GS} = 0 \text{ V}$	-	0.7	1	pF
Coss eq. (1)	Equivalent output capacitance	V _{DS} = 0 to 480 V, V _{GS} = 0 V	-	49	-	pF
Rg	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	6.5	-	Ω
Qg	Total gate charge	$V_{DD} = 480 \text{ V}, I_D = 7.5 \text{ A},$	-	12.4	-	nC
Qgs	Gate-source charge	V _{GS} = 10 V (see Figure 16: "Test circuit for gate charge	-	2.1	-	nC
Q_{gd}	Gate-drain charge	behavior")	-	7	-	nC

Notes:

⁽¹⁾Defined by design, not subject to production test.

 $^{^{(1)}}C_{oss~eq.}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Table 7: Switching energy

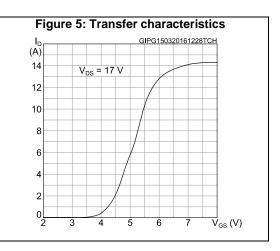
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
E _(off) Turn-off energy (from 90% V _{GS} to 0%	Turn-off energy	$V_{DD} = 400 \text{ V}, I_D = 1 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	2.5	1	μJ
	(from 90% V _{GS} to 0% I _D)	$V_{DD} = 400 \text{ V}, I_D = 3 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$	-	9	-	μJ

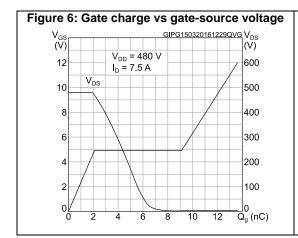
Table 8: Switching times

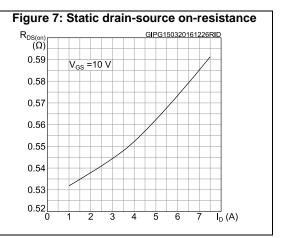
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 300 \text{ V}, I_D = 3.75 \text{ A},$	1	9	-	ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$ (see Figure 15: "Test circuit	-	5.5	-	ns
t _{d(off)}	Turn-off-delay time	for resistive load switching	-	26	-	ns
t _f	Fall time	times" and Figure 20: "Switching time waveform")	-	8	-	ns

Table 9: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		ı		7.5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		30	Α
V _{SD} (2)	Forward on voltage	V _{GS} = 0 V, I _{SD} = 7.5 A	ı		1.6	V
t _{rr}	Reverse recovery time	$I_{SD} = 7.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	192		ns
Qrr	Reverse recovery charge	V _{DD} = 60 V (see Figure 17: "Test circuit for inductive load	-	1.32		μC
I _{RRM}	Reverse recovery current	switching and diode recovery times")	1	13.8		Α
t _{rr}	Reverse recovery time	$I_{SD} = 7.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	262		ns
Qrr	Reverse recovery charge	$V_{DD} = 60 \text{ V}, T_j = 150 \text{ °C}$ (see Figure 17: "Test circuit	ı	1.74		μC
I _{RRM}	Reverse recovery current	for inductive load switching and diode recovery times")	-	13.3		Α


Notes:


⁽¹⁾Pulse width is limited by safe operating area


 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 2: Safe operating area 10 t₀=10 µs t₀=100 µs 10⁰ t =1 ms t₀=10 ms 10 T_j≤150 °C T = 25°C single pulse 10⁻² \bar{V}_{DS} (V) 10° 10¹ 10²

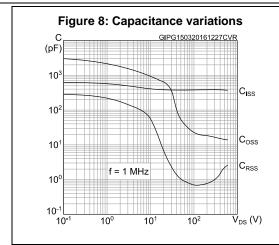
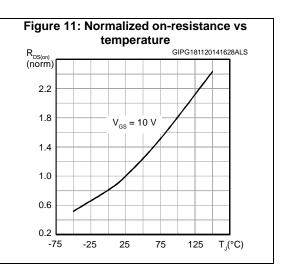


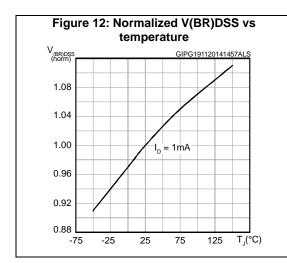
Figure 9: Turn-off switching energy vs drain current

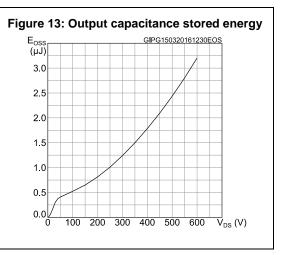
E_{off} GIPG160320160901ALS

[µJ] V_{DD} = 400 V

R_G = 4.7 Ω


V_{GS} = 10 V


10


5

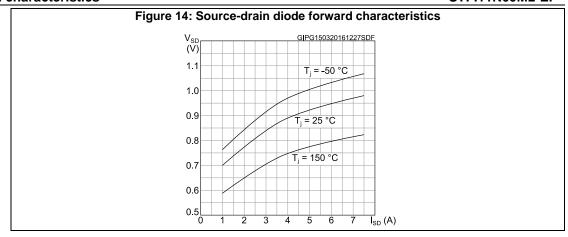

0
1 2 3 4 5 I_a[A]

Figure 10: Normalized gate threshold voltage vs temperature V_{GS(th)} (norm) GIPG181120141615ALS 1.1 I_D = 250 µA 1.0 0.9 0.8 0.7 0.6 T_J(°C) -75 -25 25 75 125

STFI11N60M2-EP Test circuits

3 Test circuits

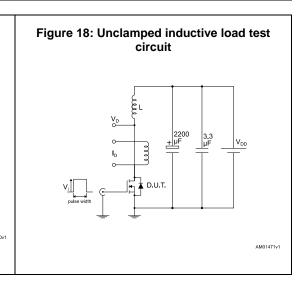
Figure 15: Test circuit for resistive load switching times

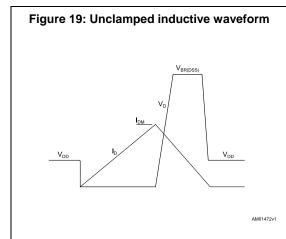
Figure 16: Test circuit for gate charge behavior

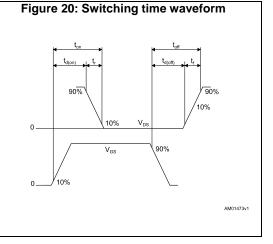
12 V 47 KΩ 11 KΩ

V_{GS} 11 KΩ

V_{GS} 12 V 147 KΩ


V_{GS} 12 V 147 KΩ


V_{GS} 147 KΩ


V_{GS} 147 KΩ

V_{GS} 148 V 14

Figure 17: Test circuit for inductive load switching and diode recovery times

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 I²PAKFP (TO-281) package information

Α В 97 D1 11 D 77 -F1 (x3) F(x3)Ε G 8291506 Re v. C

Figure 21: I²PAKFP (TO-281) package outline

Table 10: I²PAKFP (TO-281) mechanical data

Dim	,	mm	
Dim.	Min.	Тур.	Max.
А	4.40		4.60
В	2.50		2.70
D	2.50		2.75
D1	0.65		0.85
Е	0.45		0.70
F	0.75		1.00
F1			1.20
G	4.95		5.20
Н	10.00		10.40
L1	21.00		23.00
L2	13.20		14.10
L3	10.55		10.85
L4	2.70		3.20
L5	0.85		1.25
L6	7.50	7.60	7.70

Revision history STFI11N60M2-EP

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
12-Apr-2016	1	First release.
07-Oct-2016	2	Document status promoted from preliminary to production data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved