OP165, OP166 Series

Features:

- T-1 (3 mm) package style
- Choice of narrow or wide irradiance pattern
- Choice of dome lens or flat lens
- Mechanically and spectrally matched to other OPTEK devices
- Higher power output than GaAs at equivalent drive currents

Description:

Each device in the **OP165** and **OP166** series is a high intensity gallium arsenide infrared emitting diode (GaAIAs) that is molded in an IR transmissive clear epoxy package with either a dome or flat lens. Devices feature narrow and wide irradiance patterns and a variety of electrical characteristics. The small T-1 package style makes these devices ideal for space -limited applications.

OP165 and OP166 devices are mechanically and spectrally matched to the OP505 and OP535 series devices.

Please refer to Application Bulletins 208 and 210 for additional design information and reliability (degradation) data.

Applications:

- Space-limited applications
- Applications requiring coupling efficiency

Ordering Information									
Part Number	LED Peak Wavelength	Output Power (mW/cm ²) Min / Max	I _F (mA) Typ / Max	Total Beam Angle	Lead Length				
OP165A	-	1.95 / NA	20 / 50	18°	0.50"				
OP165B		1.40 / 2.20							
OP165C		0.85 / 1.60							
OP165D	025	0.28 / NA							
OP165W	935 nm	0.50 / NA		90°					
OP166A		1.95 / NA		18°					
OP166B		1.40 / 2.20							
OP166W		0.50 / NA		90°					

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

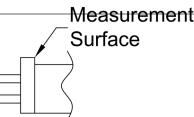
OP165, OP166 Series

OP165 (A, B, C, D) **OP165W** [3.05±0.13] Ø.120±.005 [3.05±0.13] .120±.005 [3.94±0.13] [0.89±0.13] .035±.005 [5.72±0.25] .155±.005 .225±.01 0.89±0.13 1 .035±.005 SEE NOTE 3 * MAX UNDERFILL ALLOWED IS .015". SEE NOTE 3 * MAX UNDERFILL ALLOWED IS .015". [17.15±0.64] .675±.025 NOTES NOTES [17.15±0] .675±.000 1. OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700 <u>CLEAR</u>. 1. OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700 CLEAR. 2. THIS LED IS BUILT WITH A 0.011 X 0.011 GaAs CHIP. THIS LED IS BUILT WITH A 0.0011 X 0.011 GaAs CHIP. 2. MAX ALLOWABLE EPOXY MINISCUS IS 0.030. MAX ALLOWABLE EPOXY MINISCUS FOR IDENTIFICATION PURPOSES, ANODE LEAD IS .065 ± .035 LONGER THAN THE CATHODE LEAD. FOR IDENTIFICATION PURPOSES, ANODE LEAD IS .065 ± .035 LONGER THAN THE CATHODE LEAD. 4 SEE NOTE 4 SEE NOTE 4 DISCRETE PIN-OUT [3.94±0.13] Ø.155±.005 DISCRETE PIN-OUT [3.94±0.13] Ø.155±.005 1 CATHODE 1 CATHODE 2 ANODE 2 ANODE m [0.51±0.13] 0.51±0.13 .020±.005 .020±.005 SQ. TYP SQ. TYP [1.27±0.25] .050±.01 [1.27±0.25] .050±.01 DIMENSIONS ARE IN: [MILLIMETERS] INCHES **OP166W OP166 (A, B)** * MAX UNDERFILL ALLOWED IS .015". ** ELBOW OF LEADFRAME NOT MORE THAN .005" FROM FLANGE. * MAX UNDERFILL ALLOWED IS .015". ** ELBOW OF LEADFRAME NOT MORE THAN .005" FROM FLANGE. [3.05±0.13] [3.05±0.13] Ø.120±.005 .120±.005 [0.89±0.13] .035±.005 [3.94±0.13] [0.89±0.13] .035±.005 155±.005 [5.72±0.25] .225±.01 SEE NOTE 3 SEE NOTE 3 [1.27] .050 TYP [12.70] .500 MIN [1.27] .050 TYP NOTES: [12.70] OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700 <u>CLEAR</u>. .500 1. MIN THIS LED IS BUILT WITH A 0.011 X 0.011 GaAs CHIP. 2. NOTES MAX ALLOWABLE EPOXY MINISCUS IS 0.030. 1. з. OUTSIDE DISCRETE SHELL IS POLYSULFONE P1700 CLEAR. SEE NOTE 4 FOR IDENTIFICATION PURPOSES, ANODE LEAD IS .050 MIN. LONGER THAN THE CATHODE LEAD. THIS LED IS BUILT WITH A 0.0011 X 0.011 GaAs CHIP. SEE NOTE 4 4 з. MAX ALLOWABLE EPOXY MINISCUS IS 0.030. 2 FOR IDENTIFICATION PURPOSES, ANODE LEAD IS .050 MIN. LONGER THAN THE CATHODE LEAD. [3.94±0.13] Ø.155±.005 **DISCRETE PIN-OUT** 4 [3.94±0.13] Ø.155±.005 1 CATHODE 2 ANODE DISCRETE PIN-OUT Pin # LED 1 CATHODE 2 ANODE TΤ Cathode [0.51±0.13] [0.51±0.13] .020±.005 SQ. TYP 2 Anode .020±.005 SQ. TYP [2.54±0.25] .100±.01 [2.54±0.25] .100±.01 CONTAINS POLYSULFONE To avoid stress cracking, we suggest using ND Industries' Vibra-Tite for thread-locking. Vibra-Tite evaporates fast without causing structural failure in OPTEK'S molded plastics.

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OP165, OP166 Series

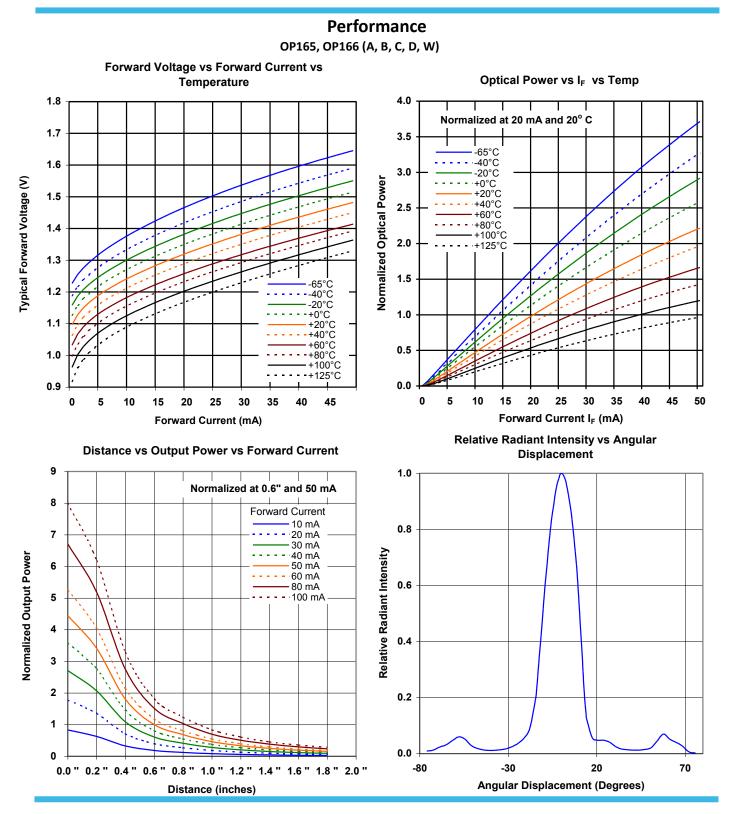

Electrical Specifications

Absolute Maximum Ratings (T _A = 25° C unless otherwise noted)	
Storage and Operating Temperature Range	-40° C to +100° C
Reverse Voltage	2.0 V
Continuous Forward Current	50 mA
Peak Forward Current (1 μs pulse width, 300 pps)	3.0 A
Lead Soldering Temperature [1/16 inch (1.6 mm) from case for 5 seconds with soldering iron]	260° C
Power Dissipation	100 mW ⁽¹⁾

SYMBOL	PARAMETER	MIN	ТҮР	МАХ	UNITS	TEST CONDITIONS	
Input Diode	3						
E _{E (APT)}	Apertured Radiant Incidence OP165A, OP166A		-	-	mW/cm ²	$I_{\rm F} = 20 {\rm mA}^{(2)}$	
Po	Radiant Power Output OP165W, OP166W	0.50	-	-	mW	I _F = 20 mA	
V _F	Forward Voltage	-	-	1.60	V	I _F = 20 mA	
I _R	Reverse Current	-	-	100	μΑ	V _R = 2 V	
λ_{P}	Wavelength at Peak Emission	-	935	-	nm	I _F = 10 mA	
В	Spectral Bandwidth between Half Power Points	-	50	-	nm	I _F = 10 mA	
$\Delta\lambda_{P}/\Delta T$	Spectral Shift with Temperature OP165, OP166 (A, B, C, D) OP165W, OP166W	-	- ±0.30	-	nm/°C	I _F = Constant	
θ_{HP}	Emission Angle at Half Power Points OP165, OP166 (A, B, C, D) OP165W, OP166W	-	18 90		Degree	I _F = 20 mA	
tr	Output Rise Time	-	1000	-	ns		
Notes:	Output Fall Time	-	500	-	ns	I _{F(PK)} =100 mA, PW=10 μs, D.C.=10.0% Measureme	

1. Derate linearly 1.33 mW/°C above 25°C

2. $E_{E(APT)}$ is a measurement of the average apertured rediant incidence ipon a sensing area 0.081" (2.06 mm) in diameter, perpendicular to and centered on the mechanical axis of the lens, and 0.590" (14.99 mm) from the measurement surface. $E_{E(APT)}$ is not necessarily uniform within the measured areas.



General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.

OP165, OP166 Series

General Note

TT Electronics reserves the right to make changes in product specification without notice or liability. All information is subject to TT Electronics' own data and is considered accurate at time of going to print.