

www.vishay.com

Vishay Semiconductors

High Speed Infrared Emitting Diode, 850 nm, **Surface Emitter Technology**

FEATURES

· Package type: surface mount

• Package form: PLCC-2

• Dimensions (L x W x H in mm): 3.5 x 2.8 x 1.75

Peak wavelength: λ_p = 850 nm

· High reliability

High radiant power

· High radiant intensity

• Angle of half intensity: $\varphi = \pm 60^{\circ}$

· Suitable for high pulse current operation

• Floor life: 168 h, MSL 3, acc. J-STD-020

· Lead (Pb)-free reflow soldering

· Material categorization: For definitions of compliance

please see www.vishay.com/doc?99912

DESCRIPTION

As part of the SurfLight portfolio, the VSMY3850 is an infrared, 850 nm emitting diode based on surface emitter technology with high radiant intensity, high optical power and high speed, molded in a PLCC-2 package for surface mounting (SMD).

RELEASED FOR APPLICATIONS

Infrared radiation source for operation with CMOS cameras (illumination)

- · High speed IR data transmission
- IR touch panels
- 3D TV
- · Light curtain

PRODUCT SUMMARY					
COMPONENT	I _e (mW/sr)	φ (deg)	λ _P (nm)	t _r (ns)	
VSMY3850	17	± 60	850	10	

Note

Test conditions see table "Basic Characteristics"

ORDERING INFORMATION					
ORDERING CODE	PACKAGING	PACKAGING REMARKS PAC			
VSMY3850-GS08	Tape and reel	MOQ: 7500 pcs, 1500 pcs/reel	PLCC-2		
VSMY3850-GS18	Tape and reel	MOQ: 8000 pcs, 8000 pcs/reel	PLCC-2		

Note

· MOQ: minimum order quantity

Vishay Semiconductors

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		I _F	100	mA	
Pulse peak forward current	$t_p/T = 0.5, t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	1	Α	
Power dissipation		P _V	200	mW	
Junction temperature		T _j	100	°C	
Operating temperature range		T _{amb}	-40 to +85	°C	
Storage temperature range		T _{stg}	-40 to +100	°C	
Soldering temperature	acc. figure 7, J-STD-020	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, soldered on PCB	R _{thJA}	250	K/W	

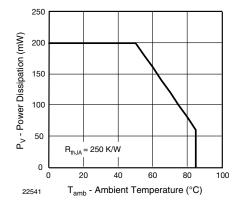


Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

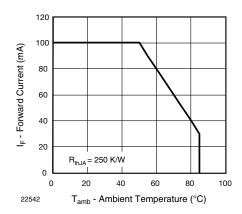


Fig. 2 - Forward Current Limit vs. Ambient Temperature

BASIC CHARACTERISTICS (T _{amb} = 25 °C, unless otherwise specified)						
PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.6	2.0	V
	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	V _F		2.9		V
Temperature coefficient of V _F	I _F = 1 mA	TK _{VF}		-1.45		mV/K
	I _F = 10 mA	TK _{VF}		-1.2		mV/K
Reverse current		I _R	not designed for reverse operation			μΑ
Junction capacitance	V _R = 0 V, f = 1 MHz, E = 0	Cj		125		pF
B. II	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	12	17	25	mW/sr
Radiant intensity	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	l _e		150		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фe		55		mW
Temperature coefficient of φ _e	I _F = 100 mA	TKφ _e		-0.35		%/K
Angle of half intensity		φ		± 60		deg
Peak wavelength	I _F = 100 mA	λ_{p}	840	850	870	nm
Spectral bandwidth	I _F = 30 mA	Δλ		30		nm
Temperature coefficient of λ _p	I _F = 100 mA	TKλ _p		0.25		nm/K
Rise time	I _F = 100 mA	t _r		10		ns
Fall time	I _F = 100 mA	t _f		10		ns
Virtual source diameter		d		0.44		mm

Vishay Semiconductors

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

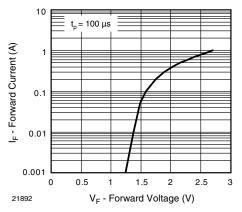


Fig. 3 - Forward Current vs. Forward Voltage

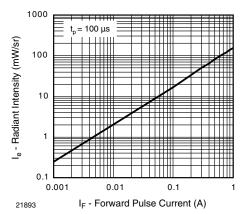


Fig. 4 - Radiant Intensity vs. Forward Current

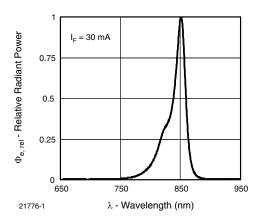


Fig. 5 - Relative Radiant Power vs. Wavelength

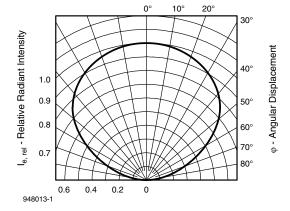
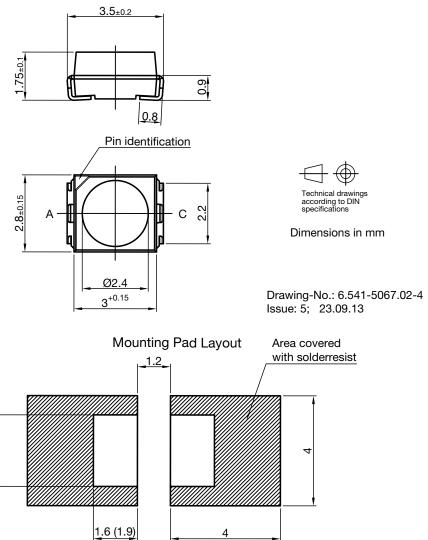
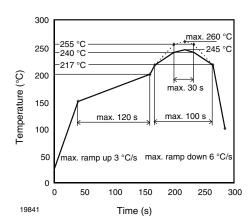



Fig. 6 - Relative Radiant Intensity vs. Angular Displacement



PACKAGE DIMENSIONS in millimeters

Dimensions: Reflow and vapor phase (wave soldering)

SOLDER PROFILE

2.6 (2.8)

Fig. 7 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Floor life (time between soldering and removing from MBB) must not exceed the time indicated on MBB label:

Floor life: 168 h

Conditions: T_{amb} < 30 °C, RH < 60 %

Moisture sensitivity level 3, acc. to J-STD-020.

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 $^{\circ}$ M.

TAPE AND REEL

PLCC-2 components are packed in antistatic blister tape (DIN IEC (CO) 564) for automatic component insertion. Cavities of blister tape are covered with adhesive tape.

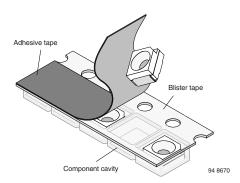


Fig. 8 - Blister Tape

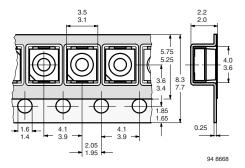


Fig. 9 - Tape Dimensions in mm for PLCC-2

MISSING DEVICES

A maximum of 0.5 % of the total number of components per reel may be missing, exclusively missing components at the beginning and at the end of the reel. A maximum of three consecutive components may be missing, provided this gap is followed by six consecutive components.

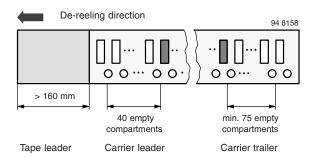


Fig. 10 - Beginning and End of Reel

Vishay Semiconductors

The tape leader is at least 160 mm and is followed by a carrier tape leader with at least 40 empty compartments. The tape leader may include the carrier tape as long as the cover tape is not connected to the carrier tape. The least component is followed by a carrier tape trailer with a least 75 empty compartments and sealed with cover tape.

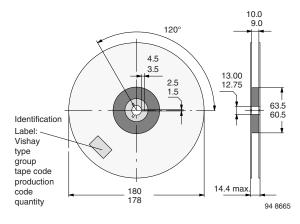


Fig. 11 - Dimensions of Reel-GS08

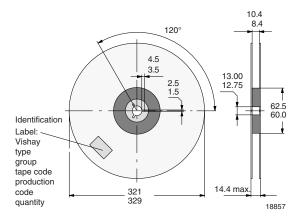


Fig. 12 - Dimensions of Reel-GS18

COVER TAPE REMOVAL FORCE

The removal force lies between 0.1 N and 1.0 N at a removal speed of 5 mm/s. In order to prevent components from popping out of the blisters, the cover tape must be pulled off at an angle of 180° with regard to the feed direction.

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.