74LVC74ADual D-type flip-flop with set and reset; positive-edge triggerRev. 7 - 20 November 2012Product data sheet

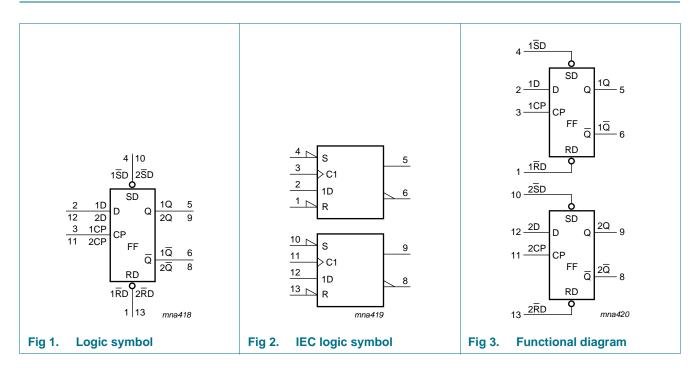
1. General description

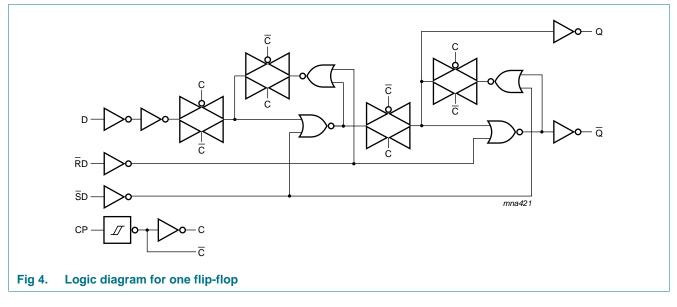
The 74LVC74A is a dual edge triggered D-type flip-flop with individual data (nD) inputs, clock (nCP) inputs, set (nSD) and (nRD) inputs, and complementary nQ and nQ outputs.

The set and reset are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the nQ output on the LOW-to-HIGH transition of the clock pulse. The nD inputs must be stable one set-up time prior to the LOW-to-HIGH clock transition, for predictable operation.

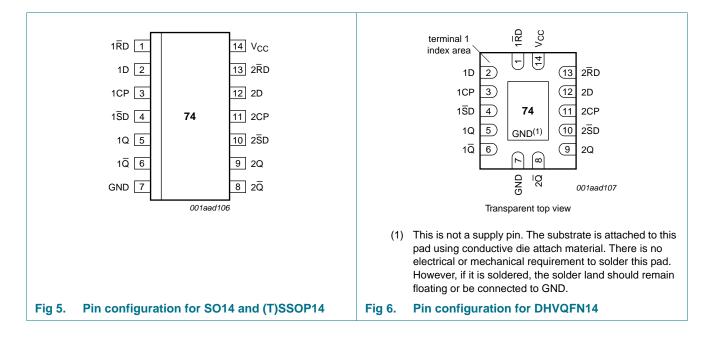
Schmitt trigger action at all inputs makes the circuit highly tolerant of slower input rise and fall times.

2. Features and benefits


- 5 V tolerant inputs for interlacing with 5 V logic
- Wide supply voltage range from 1.2 V to 3.6 V
- CMOS low power consumption
- Direct interface with TTL levels
- Complies with JEDEC standard:
 - ◆ JESD8-7A (1.65 V to 1.95 V)
 - JESD8-5A (2.3 V to 2.7 V)
 - JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from –40 °C to +85 °C and –40 °C to +125 °C


3. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC74AD	–40 °C to +125 °C	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1
74LVC74ADB	–40 °C to +125 °C	SSOP14	plastic shrink small outline package; 14 leads; body width 5.3 mm	SOT337-1
74LVC74APW	–40 °C to +125 °C	TSSOP14	plastic thin shrink small outline package; 14 leads; body width 4.4 mm	SOT402-1
74LVC74ABQ	–40 °C to +125 °C	DHVQFN14	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body $2.5 \times 3 \times 0.85$ mm	SOT762-1


4. Functional diagram

Dual D-type flip-flop with set and reset; positive-edge trigger

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
1RD	1	asynchronous reset-direct input (active LOW)
1D	2	data input
1CP	3	clock input (LOW-to-HIGH, edge-triggered)
1 <mark>S</mark> D	4	asynchronous set-direct input (active LOW)
1Q	5	true output
1 Q	6	complement output
GND	7	ground (0 V)
2 <mark>Q</mark>	8	complement output
2Q	9	true output
2 <mark>S</mark> D	10	asynchronous set-direct input (active LOW)
2CP	11	clock input (LOW-to-HIGH, edge-triggered)
2D	12	data input
2RD	13	asynchronous reset-direct input (active LOW)
V _{CC}	14	supply voltage

6. Functional description

Table 3. Function table^[1]

Input		Output			
n <mark>S</mark> D	nRD	nCP	nD	nQ	nQ
L	Н	Х	Х	Н	L
Н	L	Х	Х	L	Н
L	L	Х	Х	Н	Н

[1] H = HIGH voltage level

L = LOW voltage level

X = don't care

Table 4. Function table^[1]

Input				Output		
nSD	nRD	nCP	nD	nQ _{n+1}	nQ _{n+1}	
Н	Н	^	L	L	Н	
Н	Н	↑	Н	Н	L	

[1] H = HIGH voltage level

L = LOW voltage level

 \uparrow = LOW-to-HIGH transition

 Q_{n+1} = state after the next LOW-to-HIGH CP transition

X = don't care

7. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage		[2] -0.5	$V_{CC} + 0.5$	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	[3]	500	mW

[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

[2] The output voltage ratings may be exceeded if the output current ratings are observed.

For SO14 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.
 For (T)SSOP14 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.
 For DHVQFN14 packages: above 60 °C the value of P_{tot} derates linearly with 4.5 mW/K.

8. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	for maximum speed performance	1.65	-	3.6	V
		for low-voltage applications	1.2	-	3.6	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature		-40	-	+125	°C
Δt/ΔV	input transition rise and	V_{CC} = 1.65 V to 2.7 V	0	-	20	ns/V
	fall rate	$V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	0	-	10	ns/V

9. Static characteristics

Table 7. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	o +125 ℃	Unit	
			Min	Typ <mark>[1]</mark>	Мах	Min	Max		
VIH	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V	
	input voltage	V_{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	V	
		V_{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V	
		$V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	2.0	-	V	
VIL	LOW-level	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V	
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V	
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V	
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V	
V _{OH}	HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$							
	output voltage	$I_{O} = -100 \ \mu A;$ $V_{CC} = 1.65 \ V \text{ to } 3.6 \ V$	$V_{CC}-0.2$	-	-	$V_{CC}-0.3$	-	V	
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V	
		$I_{O} = -8$ mA; $V_{CC} = 2.3$ V	1.8	-	-	1.65	-	V	
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V	
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	V	
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	-	-	2.0	-	V	
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$							
	output voltage	$I_{O} = 100 \ \mu A;$ $V_{CC} = 1.65 \ V \text{ to } 3.6 \ V$	-	-	0.2	-	0.3	V	
		$I_{O} = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.65	V	
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	0.8	V	
		$I_0 = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	-	0.4	-	0.6	V	
		$I_0 = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.8	V	
I	input leakage current	V_{CC} = 3.6 V; V_{I} = 5.5 V or GND	-	±0.1	±5	-	±20	μA	
lcc	supply current	$\label{eq:VCC} \begin{array}{l} V_{CC} = 3.6 \ \text{V}; \ \text{V}_{\text{I}} = \text{V}_{CC} \ \text{or GND}; \\ \text{I}_{O} = 0 \ \text{A} \end{array}$	-	0.1	10	-	40	μΑ	
∆l _{CC}	additional supply current	per input pin; $V_{CC} = 2.7 V \text{ to } 3.6 V;$ $V_I = V_{CC} - 0.6 V; I_O = 0 A$	-	5	500	-	5000	μA	
CI	input capacitance	$V_{CC} = 0 V$ to 3.6 V; V _I = GND to V _{CC}	-	4.0	-	-	-	pF	

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

10. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 9.

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	–40 °C to +125 °C	
				Typ <mark>[1]</mark>	Max	Min	Мах	-
t _{pd}	propagation	nCP to nQ, n \overline{Q} ; see Figure 7 [2]			1			
	delay	V _{CC} = 1.2 V	-	15	-	-	-	ns
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	1.0	5.0	10.3	1.0	11.9	ns
		V_{CC} = 2.3 V to 2.7 V	1.8	2.9	5.8	1.8	6.7	ns
		$V_{CC} = 2.7 V$	1.0	2.7	6.0	1.0	7.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.6	5.2	1.0	6.5	ns
		nSD to nQ, nQ; see Figure 8						
		V _{CC} = 1.2 V	-	15	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V	0.5	4.0	10.6	0.5	12.2	ns
		V_{CC} = 2.3 V to 2.7 V	1.0	2.4	6.1	1.0	7.1	ns
		$V_{CC} = 2.7 V$	1.0	2.9	6.4	1.0	8.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.2	5.4	1.0	7.0	ns
		$n\overline{R}D$ to nQ , $n\overline{Q}$; see <u>Figure 8</u>						
		V _{CC} = 1.2 V	-	15	-	-	-	ns
		V_{CC} = 1.65 V to 1.95 V	0.5	4.1	10.7	0.5	12.4	ns
		V_{CC} = 2.3 V to 2.7 V	1.0	2.4	6.1	1.0	7.1	ns
		$V_{CC} = 2.7 V$	1.0	3.0	6.4	1.0	8.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.0	2.2	5.4	1.0	7.0	ns
t _W	pulse width	clock HIGH or LOW; see Figure 7						
		V_{CC} = 1.65 V to 1.95 V	5.0	-	-	5.0	-	ns
		V_{CC} = 2.3 V to 2.7 V	4.0	-	-	4.0	-	ns
		$V_{CC} = 2.7 V$	3.3	-	-	4.5	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	3.3	1.3	-	4.5	-	ns
		set or reset LOW; see Figure 8						
		V_{CC} = 1.65 V to 1.95 V	5.0	-	-	5.0	-	ns
		V_{CC} = 2.3 V to 2.7 V	4.0	-	-	4.0	-	ns
		$V_{CC} = 2.7 V$	3.3	-	-	4.5	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	3.3	1.7	-	4.5	-	ns
t _{rec}	recovery time	set or reset; see Figure 8						
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$	1.5	-	-	1.5	-	ns
		V_{CC} = 2.3 V to 2.7 V	1.5	-	-	1.5	-	ns
		$V_{CC} = 2.7 V$	1.5	-	-	1.0	-	ns
		V_{CC} = 3.0 V to 3.6 V	+1.0	-3.0	-	1.0	-	ns

Dual D-type flip-flop with set and reset; positive-edge trigger

Symbol	Parameter	Conditions		-40	°C to +8	5 °C	-40 °C to	o +125 ℃	Unit
			-	Min	Typ[1]	Max	Min	Max	-
t _{su}	set-up time	nD to nCP; see <u>Figure 7</u>						1	
		V_{CC} = 1.65 V to 1.95 V		3.0	-	-	3.0	-	ns
		V_{CC} = 2.3 V to 2.7 V		2.5	-	-	2.5	-	ns
		$V_{CC} = 2.7 V$		2.2	-	-	2.2	-	ns
	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		2.0	0.8	-	2.0	-	ns	
t _h hold time		nD to nCP; see <u>Figure 7</u>							
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V		2.0	-	-	2.0	-	ns
		V_{CC} = 2.3 V to 2.7 V		1.5	-	-	1.5	-	ns
		$V_{CC} = 2.7 V$		1.0	-	-	1.0	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		+1.0	-0.2	-	1.0	-	ns
max	maximum	nCP; see <u>Figure 7</u>							
	frequency	$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		100	-	-	80	-	MHz
		V_{CC} = 2.3 V to 2.7 V		125	-	-	100	-	MHz
		$V_{CC} = 2.7 V$		150	-	-	120	-	MHz
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		150	250	-	120	-	MHz
sk(o)	output skew time	$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	[3]	-	-	1.0	-	1.5	ns
C _{PD} power	power	per flip-flop; $V_I = GND$ to V_{CC}	<u>[4]</u>						
	dissipation	V_{CC} = 1.65 V to 1.95 V		-	12.4	-	-	-	pF
	capacitance	V_{CC} = 2.3 V to 2.7 V		-	16.0	-	-	-	pF
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		-	19.1	-	-	-	pF

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see <u>Figure 9</u>.

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.2 V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

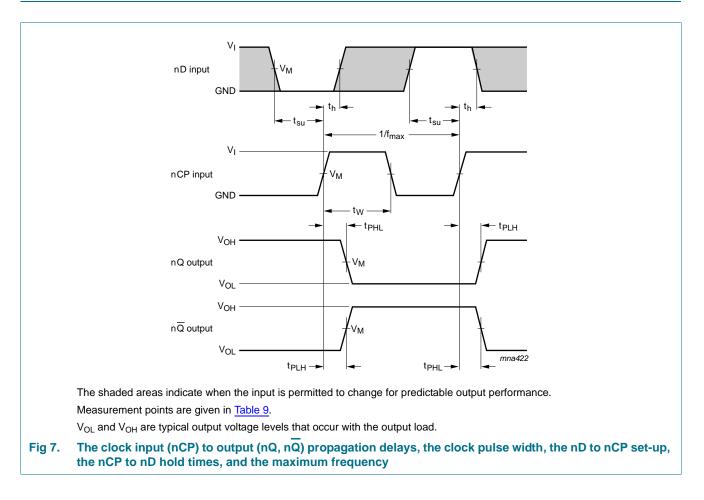
[3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.

[4] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF


V_{CC} = supply voltage in Volts

N = number of inputs switching

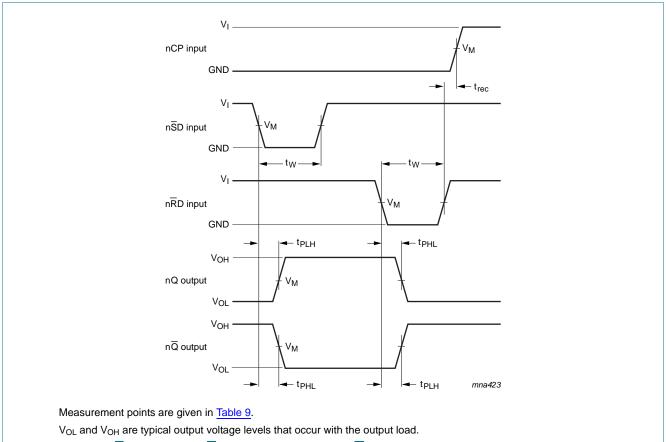
 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs

Dual D-type flip-flop with set and reset; positive-edge trigger

11. AC waveforms

74LVC74A

Dual D-type flip-flop with set and reset; positive-edge trigger



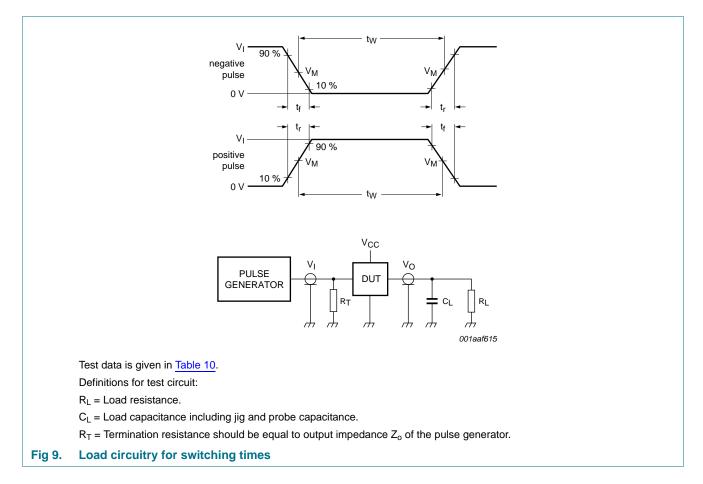

Fig 8. The set (nSD) and reset (nRD) input to output (nQ, nQ) propagation delays, the set and reset pulse widths, and the nRD to nCP recovery time

Table 9.Measurement points

Supply voltage	Input		Output	
V _{cc}	VI	V _M	V _M	
1.2 V	V _{CC}	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	
1.65 V to 1.95 V	V _{CC}	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	
2.3 V to 2.7 V	V _{CC}	$0.5 imes V_{CC}$	$0.5 imes V_{CC}$	
2.7 V	2.7 V	1.5 V	1.5 V	
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	

74LVC74A

Dual D-type flip-flop with set and reset; positive-edge trigger

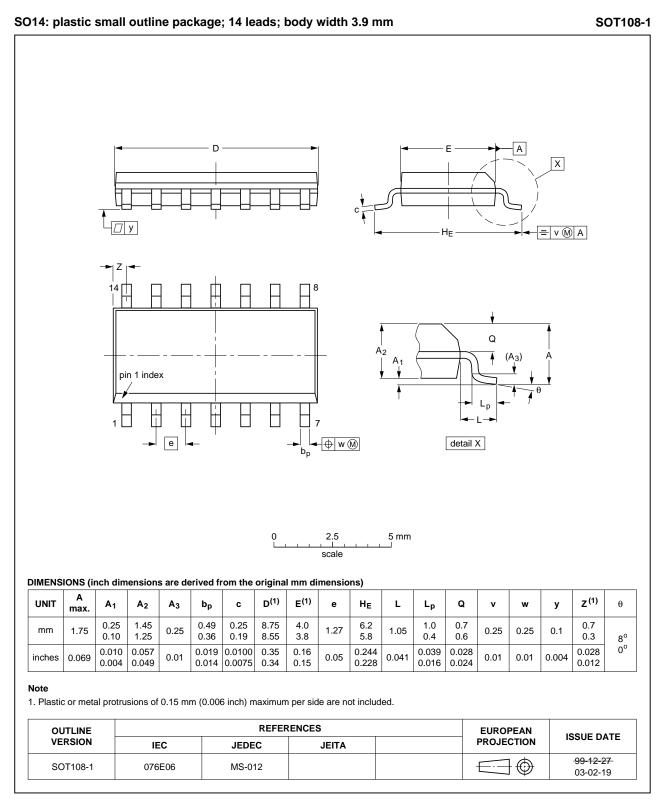


Table 10. Test data

Supply voltage	Input		Load	Load		V _{EXT}		
V _{cc}	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
1.2 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2 \times V_{CC}$	GND	
1.65 V to 1.95 V	V _{CC}	\leq 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND	
2.3 V to 2.7 V	V _{CC}	\leq 2 ns	30 pF	500 Ω	open	$2\times V_{CC}$	GND	
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND	
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open	$2\times V_{CC}$	GND	

Dual D-type flip-flop with set and reset; positive-edge trigger

12. Package outline

Fig 10. Package outline SOT108-1 (SO14)

All information provided in this document is subject to legal disclaimers.

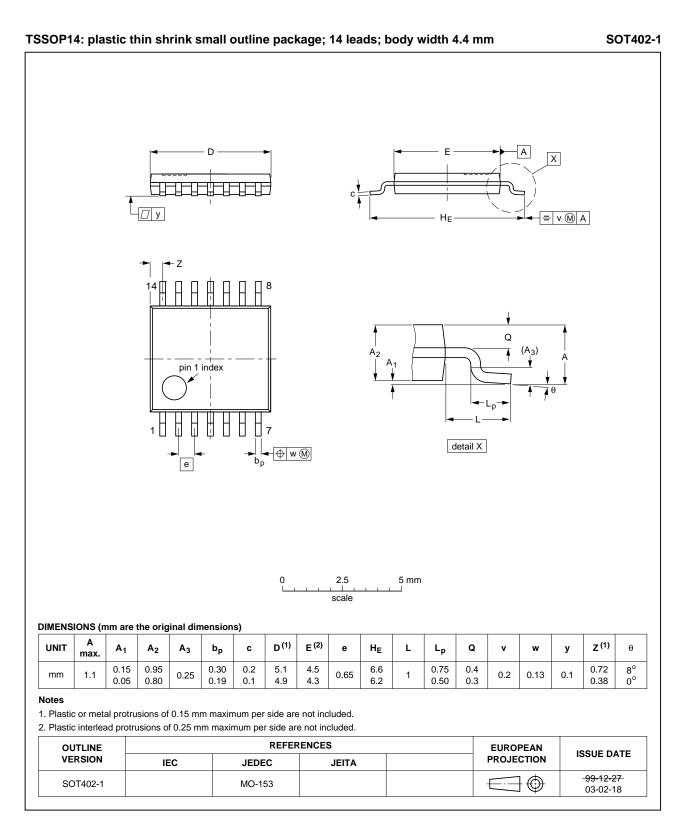

Dual D-type flip-flop with set and reset; positive-edge trigger

Fig 11. Package outline SOT337-1 (SSOP14)

All information provided in this document is subject to legal disclaimers.

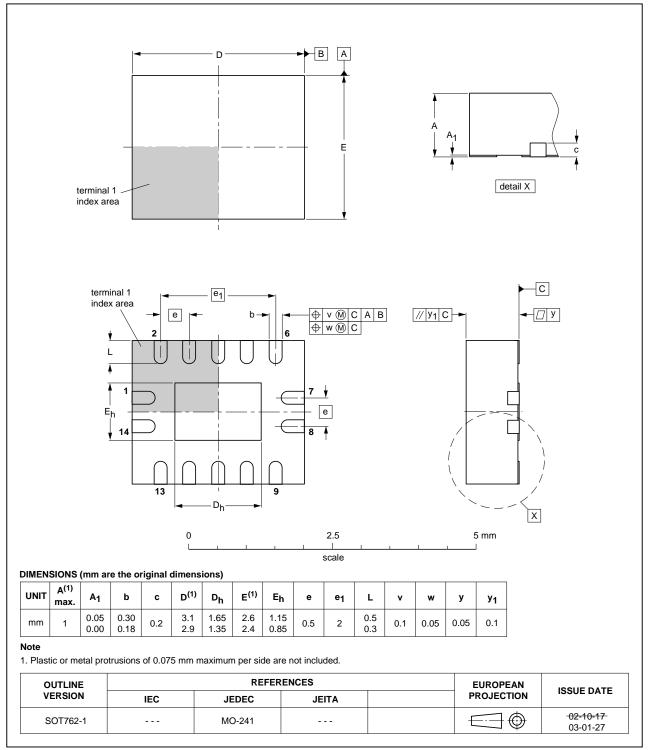

Dual D-type flip-flop with set and reset; positive-edge trigger

Fig 12. Package outline SOT402-1 (TSSOP14)

All information provided in this document is subject to legal disclaimers.

Dual D-type flip-flop with set and reset; positive-edge trigger

DHVQFN14: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 14 terminals; body 2.5 x 3 x 0.85 mm SOT762-1

Fig 13. Package outline SOT762-1 (DHVQFN14)

All information provided in this document is subject to legal disclaimers.

13. Abbreviations

Table 11. Abb	reviations	
Acronym	Description	
CDM	Charged Device Model	
DUT	Device Under Test	
ESD	ElectroStatic Discharge	
HBM	Human Body Model	
MM	Machine Model	
TTL	Transistor-Transistor Logic	

14. Revision history

Table 12. Revision history					
Document ID	Release date	Data sheet status	Change notice	Supersedes	
74LVC74A v.7	20121120	Product data sheet	-	74LVC74A v.6	
Modifications:	• Table 6, Table	7, Table 8, Table 9 and Table	e 10: values added for	lower voltage ranges.	
74LVC74A v.6	20070604	Product data sheet	-	74LVC74A v.5	
74LVC74A v.5	20070525	Product data sheet	-	74LVC74A v.4	
74LVC74A v.4	20030526	Product specification	-	74LVC74A v.3	
74LVC74A v.3	20020618	Product specification	-	74LVC74A v.2	
74LVC74A v.2	19980617	Product specification	-	74LVC74A v.1	
74LVC74A v.1	19980617	Product specification	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any

representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

15.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC74A

Dual D-type flip-flop with set and reset; positive-edge trigger

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of

non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the

product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

74LVC74A

Dual D-type flip-flop with set and reset; positive-edge trigger

17. Contents

General description 1
Features and benefits 1
Ordering information 2
Functional diagram 2
Pinning information 3
Pinning
Pin description 4
Functional description 4
Limiting values 5
Recommended operating conditions 5
Static characteristics 6
Dynamic characteristics 7
AC waveforms 9
Package outline 12
Abbreviations 16
Revision history 16
Legal information 17
Data sheet status 17
Definitions 17
Disclaimers
Trademarks 18
Contact information 18
Contents 19