HEF4013B

Dual D-type flip-flop Rev. 9 — 10 December 2015

Product data sheet

1. **General description**

The HEF4013B is a dual D-type flip-flop that features independent set-direct input (SD), clear-direct input (CD), clock input (CP) and outputs (Q, Q). Data is accepted when CP is LOW and is transferred to the output on the positive-going edge of the clock. The active HIGH asynchronous CD and SD inputs are independent and override the D or CP inputs. The outputs are buffered for best system performance. The clock input's Schmitt-trigger action makes the circuit highly tolerant of slower clock rise and fall times.

It operates over a recommended V_{DD} power supply range of 3 V to 15 V referenced to V_{SS} (usually ground). Unused inputs must be connected to V_{DD}, V_{SS}, or another input.

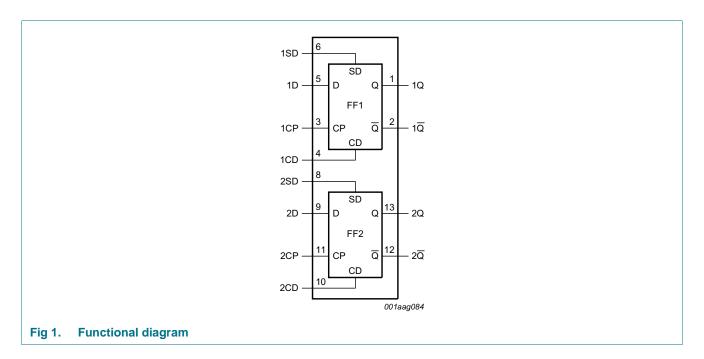
Features and benefits 2.

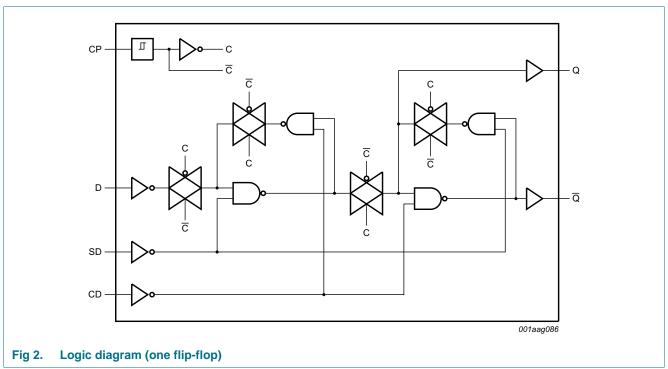
- Tolerant of slow clock rise and fall times
- Fully static operation
- 5 V, 10 V, and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Specified from –40 °C to +125 °C
- Complies with JEDEC standard JESD 13-B

Applications 3.

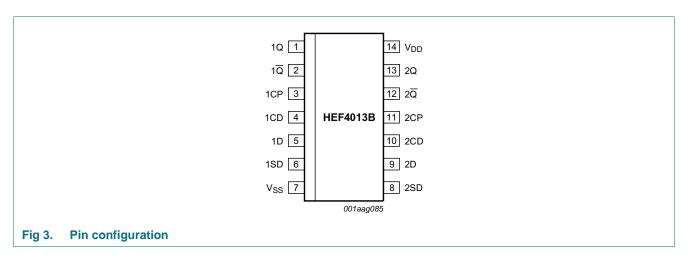
- Counters and dividers
- Registers
- Toggle flip-flops

Ordering information


Ordering information


All types operate from -40 °C to +125 °C

Type number Package							
	Name	Name Description					
HEF4013BT	SO14	plastic small outline package; 14 leads; body width 3.9 mm	SOT108-1				
HEF4013BTT	TSSOP14	TSSOP14 plastic thin shrink small outline package; 14 leads; body width 4.4 mm					


5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
1Q, 2Q	1, 13	true output
1Q, 2Q	2, 12	complement output
1CP, 2CP	3, 11	clock input (LOW to HIGH edge-triggered)
1CD, 2CD	4, 10	asynchronous clear-direct input (active HIGH)
1D, 2D	5, 9	data input
1SD, 2SD	6, 8	asynchronous set-direct input (active HIGH)
V _{SS}	7	ground (0 V)
V_{DD}	14	supply voltage

7. Functional description

Table 3. Function table[1]

Control			Input	Output		
nSD	nCD	nCP	nD	nQ	nQ	
Н	L	X	X	Н	L	
L	Н	X	X	L	Н	
Н	Н	X	X	Н	Н	
L	L	\uparrow	L	L	Н	
L	L	\uparrow	Н	Н	L	

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; $\uparrow = LOW \text{-to-HIGH clock transition}$.

8. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to V_{SS} = 0 V (ground).

Symbol	Parameter	Conditions		Min	Max	Unit
V_{DD}	supply voltage			-0.5	+18	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{DD} + 0.5 \text{ V}$		-	±10	mA
VI	input voltage			-0.5	V _{DD} + 0.5	V
I _{OK}	output clamping current	$V_{O} < -0.5 \text{ V or } V_{O} > V_{DD} + 0.5 \text{ V}$		-	±10	mA
I _{I/O}	input/output current			-	±10	mA
I _{DD}	supply current			-	50	mA
T _{stg}	storage temperature			-65	+150	°C
T _{amb}	ambient temperature			-40	+125	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$				
		SO14	<u>[1]</u>	-	500	mW
		TSSOP14	[2]	-	500	mW
Р	power dissipation	per output		-	100	mW

^[1] For SO14 packages: above T_{amb} = 70 °C, P_{tot} derates linearly with 8 mW/K.

9. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DD}	supply voltage		3	15	V
VI	input voltage		0	V_{DD}	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{DD} = 5 V$	-	3.75	μs/V
		V _{DD} = 10 V	-	0.5	μs/V
		V _{DD} = 15 V	-	0.08	μs/V

^[2] For TSSOP14 packages: above T_{amb} = 60 °C, P_{tot} derates linearly with 5.5 mW/K.

Nexperia HEF4013B

Dual D-type flip-flop

10. Static characteristics

Table 6. Static characteristics

 $V_{SS} = 0$ V; $V_I = V_{SS}$ or V_{DD} ; unless otherwise specified.

Symbol	Parameter	Conditions	V_{DD}	$T_{amb} = -40$ °C		T _{amb} = +25 °C		T _{amb} = +85 °C		T _{amb} = +125 °C		Unit
				Min	Max	Min	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	I _O < 1 μA	5 V	3.5	-	3.5	-	3.5	-	3.5	-	V
	input voltage		10 V	7.0	-	7.0	-	7.0	-	7.0	-	V
			15 V	11.0	-	11.0	-	11.0	-	11.0	-	V
V_{IL}	LOW-level	I _O < 1 μA	5 V	-	1.5	-	1.5	-	1.5	-	1.5	V
	input voltage		10 V	-	3.0	-	3.0	-	3.0	-	3.0	V
			15 V	-	4.0	-	4.0	-	4.0	-	4.0	V
V _{OH}	HIGH-level	I _O < 1 μA	5 V	4.95	-	4.95	-	4.95	-	4.95	-	V
output voltage	output voltage		10 V	9.95	-	9.95	-	9.95	-	9.95	-	V
			15 V	14.95	-	14.95	-	14.95	-	14.95	-	V
V _{OL}	LOW-level output voltage		5 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			10 V	-	0.05	-	0.05	-	0.05	-	0.05	V
			15 V	-	0.05	-	0.05	-	0.05	-	0.05	V
I _{OH}	HIGH-level output current	V _O = 2.5 V	5 V	-	-1.7	-	-1.4	-	-1.1	-	-1.1	mA
		V _O = 4.6 V	5 V	-	-0.64	-	-0.5	-	-0.36	-	-0.36	mA
		$V_0 = 9.5 \text{ V}$	10 V	-	-1.6	-	-1.3	-	-0.9	-	-0.9	mA
		V _O = 13.5 V	15 V	-	-4.2	-	-3.4	-	-2.4	-	-2.4	mA
I _{OL}	LOW-level	$V_0 = 0.4 \text{ V}$	5 V	0.64	-	0.5	-	0.36	-	0.36	-	mA
	output current	$V_{O} = 0.5 \text{ V}$	10 V	1.6	-	1.3	-	0.9	-	0.9	-	mA
		V _O = 1.5 V	15 V	4.2	-	3.4	-	2.4	-	2.4	-	mA
I _I	input leakage current		15 V	-	±0.1	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{DD}	supply current	all valid input	5 V	-	1.0	-	1.0	-	30	-	30	μΑ
		combinations;	10 V	-	2.0	-	2.0	-	60	-	60	μΑ
		$ I_O = 0 A$	15 V	-	4.0	-	4.0	-	120	-	120	μΑ
C _I	input capacitance		-	-	-	-	7.5	-	-	-	-	pF

Nexperia HEF4013B

Dual D-type flip-flop

11. Dynamic characteristics

Table 7. Dynamic characteristics

 $T_{amb} = 25$ °C; unless otherwise specified. For test circuit see <u>Figure 6</u>.

Symbol	Parameter	Conditions	V_{DD}		Extrapolation formula	Min	Тур	Max	Unit
t _{PHL}	HIGH to LOW	nCP to nQ, $n\overline{Q}$;	5 V	[1]	83 + 0.55 × C _L	-	110	220	ns
	propagation delay	see Figure 4	10 V		34 + 0.23 × C _L	-	45	90	ns
			15 V		22 + 0.16 × C _L	-	30	60	ns
		nSD to nQ	5 V	[1]	73 + 0.55 × C _L	-	100	200	ns
		10 V		29 + 0.23 × C _L	-	40	80	ns	
			15 V		22 + 0.16 × C _L	-	30	60	ns
		nCD to nQ	5 V	[1]	73 + 0.55 × C _L	-	100	200	ns
			10 V		29 + 0.23 × C _L	-	40	80	ns
			15 V		22 + 0.16 × C _L	-	30	60	ns
t _{PLH}		nCP to nQ, $n\overline{Q}$;	5 V	[1]	68 + 0.55 × C _L	-	95	190	ns
	propagation delay	see Figure 4	10 V		29 + 0.23 × C _L	-	40	80	ns
			15 V		22 + 0.16 × C _L	-	30	60	ns
		nSD to nQ	5 V	[1]	48 + 0.55 × C _L	-	75	150	ns
			10 V		24 + 0.23 × C _L	-	35	70	ns
			15 V		17 + 0.16 × C _L	-	25	50	ns
		nCD to nQ	5 V	[1]	33 + 0.55 × C _L	-	60	120	ns
			10 V		19 + 0.23 × C _L	-	30	60	ns
			15 V		12 + 0.16 × C _L	-	20	40	ns
t _t	transition time	see Figure 4	5 V	[1]	10 + 1.00 × C _L	-	60	120	ns
			10 V		9 + 0.42 × C _L	-	30	60	ns
			15 V		6 + 0.28 × C _L	-	20	40	ns
su	set-up time	nD to nCP;	5 V			40	20	-	ns
		see Figure 4	10 V			25	10	-	ns
			15 V			15	5	-	ns
h	hold time	nD to nCP;	5 V			20	0	-	ns
		see Figure 4	10 V			20	0	-	ns
			15 V			15	0	-	ns
·W	pulse width	nCP input LOW;	5 V			60	30	-	ns
		see Figure 4	10 V			30	15	-	ns
			15 V			20	10	-	ns
		nSD input HIGH;	5 V			50	25	-	ns
		see Figure 5	10 V			24	12	-	ns
			15 V			20	10	-	ns
		nCD input HIGH;	5 V			50	25	-	ns
		see Figure 5	10 V			24	12	-	ns
			15 V			20	10	_	ns

 Table 7.
 Dynamic characteristics ...continued

 $T_{amb} = 25$ °C; unless otherwise specified. For test circuit see <u>Figure 6</u>.

Symbol	Parameter	Conditions	V_{DD}	Extrapolation formula	Min	Тур	Max	Unit
t _{rec}	recovery time	nSD input;	5 V		+15	-5	-	ns
		see Figure 5	10 V		15	0	-	ns
		15 V		15	0	-	ns	
		nCD input;	5 V		40	25	-	ns
		see Figure 5	10 V		25	10	-	ns
			15 V		25	10	-	ns
f _{clk(max)}	maximum clock	see Figure 4	5 V		7	14	-	MHz
frequency	frequency	у	10 V		14	28	-	MHz
			15 V		20	40	-	MHz

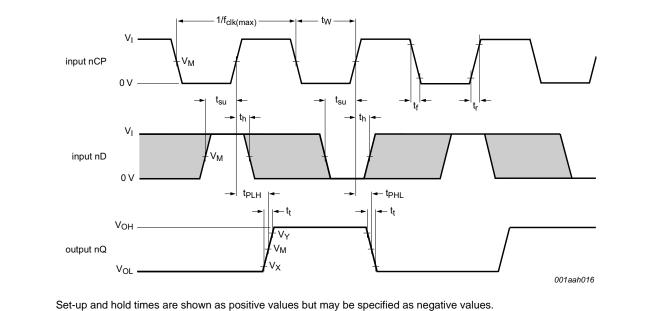
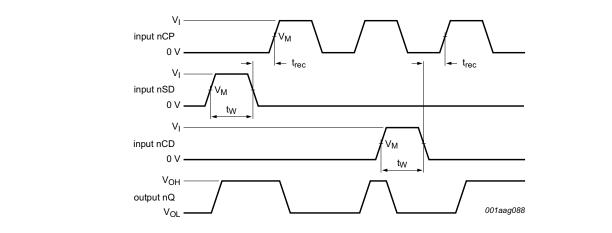

^[1] Typical values of the propagation delays and output transition times can be calculated with the extrapolation formulas. C_L is given in pF.

Table 8. Dynamic power dissipation

 $V_{SS} = 0$ V; $t_r = t_f \le 20$ ns; $T_{amb} = 25$ °C.

Symbol	Parameter	V_{DD}	Typical formula	Where
P_D	dynamic power dissipation	5 V	$P_D = 850 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 \mu W$	f _i = input frequency in MHz;
		10 V	$P_D = 3600 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 \mu W$	fo = output frequency in MHz;
		15 V	$P_D = 9000 \times f_i + \Sigma (f_o \times C_L) \times V_{DD}^2 \mu W$	C_L = output load capacitance in pF;
				$\Sigma(f_o \times C_L)$ = sum of the outputs;
				V_{DD} = supply voltage in V.

12. Waveforms



The shaded areas indicate when the input is permitted to change for predictable output performance.

Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Measurement points are given in Table 9.

Fig 4. Set-up time, hold time, minimum clock pulse width, propagation delays and transition times

Recovery times are shown as positive values but may be specified as negative values.

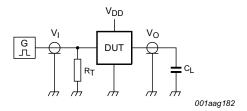
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Measurement points are given in Table 9.

Fig 5. nSD, nCD recovery time and pulse width

Table 9. **Measurement points**

Supply voltage	Input	Output				
V_{DD}	V _M	V _M	V _X	V _Y		
5 V to 15 V	0.5V _{DD}	0.5V _{DD}	0.1V _{DD}	0.9V _{DD}		


HEF4013B

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserved

Nexperia HEF4013B

Dual D-type flip-flop

Test and measurement data is given in Table 10;

Definitions test circuit:

DUT = Device Under Test.

 R_T = Termination resistance should be equal to output impedance Z_o of the pulse generator.

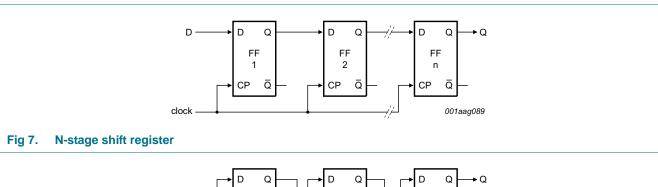

 C_L = Load capacitance including jig and probe capacitance.

Fig 6. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Input	Load	
V_{DD}	V _I	C _L	
5 V to 15 V	V _{SS} or V _{DD}	≤ 20 ns	50 pF

13. Application information

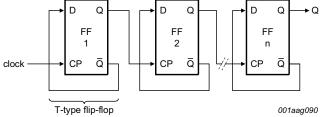


Fig 8. Binary ripple up-counter; divide-by-2ⁿ

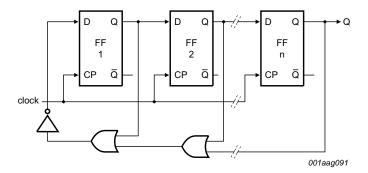
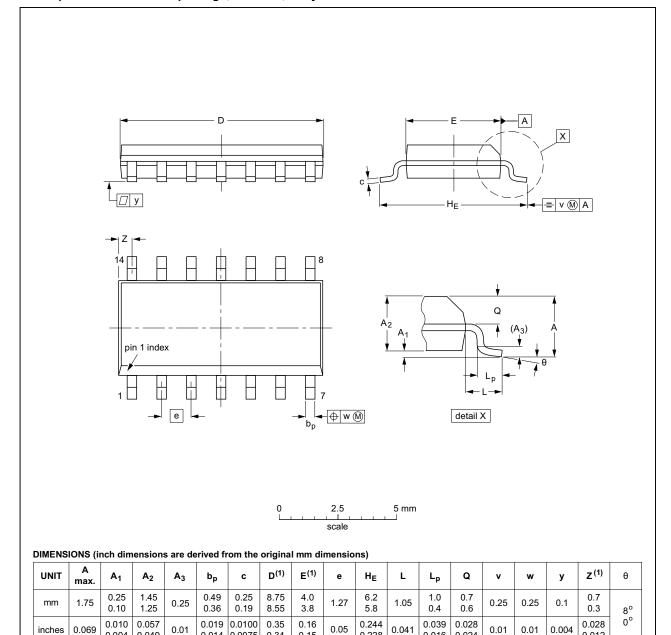



Fig 9. Modified ring counter; divide-by-(n + 1)

14. Package outline

SO14: plastic small outline package; 14 leads; body width 3.9 mm

SOT108-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

0.014 0.0075

0.34

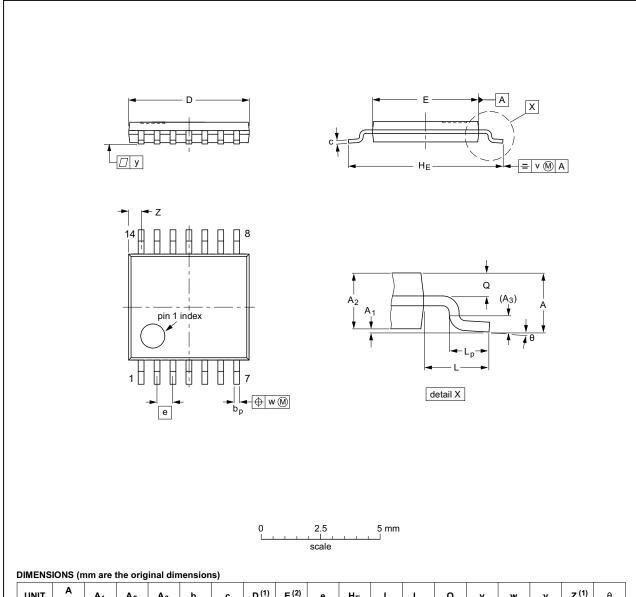
0.15

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012				99-12-27 03-02-19	

0.228

0.016

0.024


Fig 10. Package outline SOT108-1 (SO14)

0.004

0.049

TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm

SOT402-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E (2)	е	HE	L	Lp	Q	٧	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.72 0.38	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT402-1		MO-153				-99-12-27 03-02-18	
	VERSION	VERSION IEC	VERSION IEC JEDEC	VERSION IEC JEDEC JEITA	VERSION IEC JEDEC JEITA	VERSION IEC JEDEC JEITA PROJECTION	

Fig 11. Package outline SOT402-1 (TSSOP14)

HEF4013B

15. Abbreviations

Table 11. Abbreviations

Acronym	Description
DUT	Device Under Test

16. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
HEF4013B v.9	20151210	Product data sheet	-	HEF4013B v.8
Modifications:	Type number	r HEF4013BP (SOT27-1) remo	oved.	
HEF4013B v.8	20111121	Product data sheet	-	HEF4013B v.7
Modifications:	 Legal pages 	updated.		
	 Changes in 	"General description", "Feature	s and benefits" and	"Applications".
HEF4013B v.7	20110913	Product data sheet	-	HEF4013B v.6
HEF4013B v.6	20091027	Product data sheet	-	HEF4013B v.5
HEF4013B v.5	20090619	Product data sheet	-	HEF4013B v.4
HEF4013B v.4	20080515	Product data sheet	-	HEF4013B_CNV v.3
HEF4013B_CNV v.3	19950101	Product specification	-	HEF4013B_CNV v.2
HEF4013B_CNV v.2	19950101	Product specification	-	-

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition					
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.					
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.					
Product [short] data sheet	Production	This document contains the product specification.					

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

HEF4013B

All information provided in this document is subject to legal disclaimers.

Nexperia HEF4013B

Dual D-type flip-flop

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

HEF4013B

Dual D-type flip-flop

19. Contents

1	General description
2	Features and benefits
3	Applications
4	Ordering information 1
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms
13	Application information 10
14	Package outline
15	Abbreviations
16	Revision history
17	Legal information 14
17.1	Data sheet status
17.2	Definitions 14
17.3	Disclaimers
17.4	Trademarks15
18	Contact information
19	Contents 16