CMOS Digital Integrated Circuits Silicon Monolithic

# TC7LX1104WBG

#### 1. Functional Description

· Low-Voltage, Low-Power 4-Bit Dual-Supply Bus Transceiver with Auto Direction Sensing

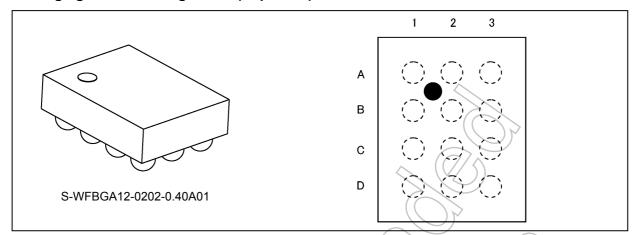
#### 2. General

The TC7LX1104WBG is an advanced high-speed dual-supply 4-bit bus transceiver fabricated with silicon-gate CMOS technology.

The TC7LX1104WBG is designed for use as an interface between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage systems.

The voltage translator automatically senses the direction of data transmission, eliminating the need for a direction control input. When the Output Enable (OE) input is low, the device is disabled, effectively isolating the buses. All inputs and outputs of the TC7LX1104WBG can tolerate overvoltage conditions up to 3.6 V.

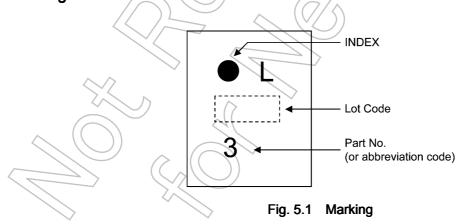
#### 3. Features


- (1) Voltage translation between arbitrary voltage levels from 1.2 V to 3.6 V.
- (2) High-speed operation:  $t_{pd}$  = 5.7 ns (max) ( $V_{CCA}$  = 1.8  $\pm$  0.15 V,  $V_{CCB}$  = 3.3  $\pm$  0.3 V)
- (3) Latch-up performance: ±300 mA
- (4) ESD performance:

Machine model  $\geq \pm 200$  V, Human body model  $\geq \pm 2000$  V

- (5) Ultra-small package: WCSP12
- (6) The A-bus and B-bus are allowed to float. (when OE = Low)
- (7) 3.6-V tolerant function and power-down protection provided on all inputs and outputs.
- (8) All output ports are disabled when either  $V_{CC}$  is switched off  $(V_{CCA/B} \neq 0V)$




# 4. Packaging and Pin Assignment (Top View)



### 4.1. Pin Assignment

| Pin No. | Pin Name         |
|---------|------------------|
| A1      | B1               |
| B1      | B2               |
| C1      | В3               |
| D1      | B4               |
| A2      | V <sub>CCB</sub> |
| B2      | V <sub>CCA</sub> |
| C2      | OE               |
| D2      | GND              |
| A3      | (A1))            |
| В3      | A2               |
| C3      | (A3              |
| D3      | A4               |

# 5. Marking



#### 6. Block Diagram

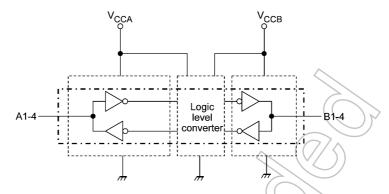



Fig. 6.1 Block Diagram

### 7. Internal Equivalent Circuit

The TC7LX1104WBG does not have a control signal that controls the direction of data flow between A and B. In a DC state, the output circuit holds either High or Low level, but since it is designed to have a weak drive strength (with a typical output resistance of  $5.5~\mathrm{k}\Omega$ ), an overdrive signal from the external driver can change the direction of data flow.

The output one-shot circuits detect either a rising or falling edge on the A or B port. During the rise time, the output one-shot circuit associated with the PMOS transistors turns it on for a certain period to speed up a transition from Low to High. Likewise, during the fall time, the output one-shot circuit associated with the NMOS transistors turns it on to speed up a transition from High to Low.

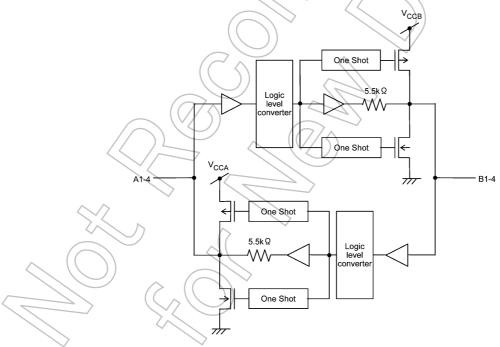



Fig. 7.1 Internal Equivalent Circuit

### 8. Principle of Operation

### 8.1. Truth Table

| Input<br>OE | Function        |
|-------------|-----------------|
| Н           | A port = B port |
| L           | Disconnect      |



#### 9. Absolute Maximum Ratings (Note)

| Characteristics                                | Symbol            | Note     | Rating                        | Unit |
|------------------------------------------------|-------------------|----------|-------------------------------|------|
| Supply voltage                                 | V <sub>CCA</sub>  |          | -0.5 to 4.6                   | V    |
|                                                | V <sub>CCB</sub>  |          | -0.5 to 4.6                   |      |
| Input voltage (OE)                             | V <sub>IN</sub>   |          | -0.5 to 4.6                   | 1    |
| Bus I/O voltage                                | V <sub>I/OA</sub> | (Note 1) | -0.5 to 4.6                   |      |
|                                                |                   | (Note 2) | -0.5 to V <sub>CCA</sub> +0.5 |      |
|                                                | V <sub>I/OB</sub> | (Note 1) | -0.5 to 4.6                   | 1    |
|                                                |                   | (Note 2) | -0.5 to V <sub>CCB</sub> +0.5 | 1    |
| Input diode current                            | I <sub>IK</sub>   |          | -50                           | mA   |
| I/O diode current                              | I <sub>I/OK</sub> | (Note 3) | ±50                           | 1    |
| Output current                                 | I <sub>OUTA</sub> |          | ±25                           | 1    |
|                                                | I <sub>OUTB</sub> |          | ±25                           |      |
| V <sub>CC</sub> /ground current per supply pin | I <sub>CCA</sub>  |          | ±50                           | 1    |
|                                                | I <sub>CCB</sub>  |          | ±50                           | 1    |
| Power dissipation                              | P <sub>D</sub>    | (()      | 150                           | mW   |
| Storage temperature                            | T <sub>stg</sub>  |          | -65 to 150                    | °C   |

Note: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 1: Output in OFF state.

Note 2: High or low state. IOUT absolute maximum rating must be observed.

Note 3: V<sub>OUT</sub> < GND, V<sub>OUT</sub> > V<sub>CC</sub>

### 10. Operating Ranges (Note)

| Characteristics       | Symbol            | Note ((  | Test Condition                                            | Rating                | Unit |
|-----------------------|-------------------|----------|-----------------------------------------------------------|-----------------------|------|
| Supply voltage        | $V_{CCA}$         |          |                                                           | 1.2 to 3.6            | V    |
|                       | V <sub>CCB</sub>  |          |                                                           | 1.2 to 3.6            |      |
| Input voltage (OE)    | V <sub>IN</sub>   |          |                                                           | 0 to 3.6              |      |
| Bus I/O voltage       | V <sub>I/OA</sub> | (Note 1) |                                                           | 0 to 3.6              |      |
|                       | . (7              | (Note 2) |                                                           | 0 to V <sub>CCA</sub> |      |
|                       | V <sub>I/OB</sub> | (Note 1) |                                                           | 0 to 3.6              |      |
|                       |                   | (Note 2) |                                                           | 0 to V <sub>CCB</sub> |      |
| Input rise time       | (dt/dv)           |          | V <sub>IN</sub> = 0.8 to 2.0 V, V <sub>CCA</sub> = 2.5 V, | 0 to 10               | ns/V |
| Input fall time       |                   |          | V <sub>CCB</sub> = 3.0 V                                  | 0 to 10               |      |
| Operating temperature | $T_{opr}$         |          | _                                                         | -40 to 85             | °C   |

Note: The operating ranges must be maintained to ensure the normal operation of the device.

Unused inputs and bus inputs must be tied to either  $V_{CC}$  or GND. Please connect both bus inputs and the bus outputs with  $V_{CC}$  or GND when the I/O of the bus terminal changes by the function. In this case, please note that the output is not short-circuited.

Note 1: Output in OFF state.

Note 2: High or low state



### 11. Electrical Characteristics

# 11.1. DC Characteristics (Unless otherwise specified, $T_a = -40$ to 85°C)

| High-level input voltage  V <sub>IHA</sub> OE, An  1.2  1.2 to 3.6  1.10  — V  1.65  2.3  3.0  2.00  — 1.70  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.35  — 1.65  1.20  1.65  — 1.65  1.35  — 1.65  1.20  1.65  — 1.65  1.20  1.65  — 1.65  1.20  1.65  — 1.65  1.65  — 1.65  1.65  — 1.65  1.65  — 1.65  1.65  — 1.65  1.65  — 1.65  1.65  — 1.65  1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.65  — 1.6                          | Characteristics           | Symbol           | Test Condition                                            | V <sub>CCA</sub> (V) | V <sub>CCB</sub> (V) | Min                   | Max          | Unit |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------|-----------------------------------------------------------|----------------------|----------------------|-----------------------|--------------|------|
| 1.65   2.3   1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | High-level input voltage  | V <sub>IHA</sub> | OE, An                                                    | 1.2                  | 1.2 to 3.6           | 1.10                  | _            | V    |
| V <sub>IHB</sub>   Bn   1.2 to 3.6   1.2   1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |                  |                                                           | 1.4                  |                      | 1.20                  |              |      |
| Section   Sect                                    |                           |                  |                                                           | 1.65                 |                      | 1.35                  | _            |      |
| Section   Sec                                     |                           |                  |                                                           | 2.3                  |                      | 1.70                  |              |      |
| Virial Bn   1.2 to 3.6   1.2   1.10       1/4   1.20       1/65   1.35       2.3   1.70       3.0   2.00       3.6   2.20       3.6   2.20       1.2 to 3.6       1.2 to 3.6       1.2 to 3.6       1.2 to 3.6       1.2 to 3.6   1.2 to 3.6     1.2 to 3.6       1.3 to 3.6       1.4       1.5 to 3.6       1.5 to 3.6       1.6 to 3.0                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                  |                                                           | 3.0                  |                      | 2.00                  | _            |      |
| 1.4   1.20     1.65   1.35     1.65   1.35     1.65   1.35     1.65   1.35     1.20     1.20   3.6   2.20     1.20   3.6   2.20     1.20   3.6   2.20     1.20   3.6   2.20     1.20   3.6   2.20     1.20   3.6   2.20     1.20   3.6     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65     2.0   1.65   1.2 to 3.6     2.0   1.2 to 3.6   1.2 to 3.6     2.0   1.2 to 3.6   1.2 to 3.6                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                                                           | 3.6                  | ((///)               | 2.20                  |              |      |
| Low-level input voltage   V <sub>ILA</sub>   OE, An   1,2   1,2   0,3.6   2,20   -     0,20     1,65     0,30     2,00     0,20     1,65     0,30     2,3     0,50     0,50     3,6     -   0,50     3,6     -   0,50     3,6     -   0,50     3,6     -   0,70     3,6     -   0,70     3,6     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6   -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,70     3,6     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     3,0     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,50     -   0,                           |                           | V <sub>IHB</sub> | Bn                                                        | 1.2 to 3.6           | 1.2                  | 1.10                  |              |      |
| Low-level input voltage   V <sub>ILA</sub>   OE, An   1,2   1,2 to 3.6   2,20   -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |                  |                                                           | ((                   | 1.4                  | 1.20                  | _            |      |
| Low-level input voltage   V <sub>ILA</sub>   OE, An   1,2   1,2 to 3.6   2,20   −                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                           |                  |                                                           |                      | 1.65                 | 1.35                  |              |      |
| Low-level input voltage   V <sub>ILA</sub>   OE, An   1,2   1,2 to 3.6   -0.10   0.20   1.65   -0.30   0.50   0.70   0.50   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.60   0.70   0.70   0.60   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70   0.70                           |                           |                  |                                                           |                      | 2.3                  | 1.70                  |              |      |
| Low-level input voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                  |                                                           |                      | 3.0                  | 2.00                  | $\checkmark$ |      |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                                                           |                      | 3.6                  | 2.20                  | <u> </u>     |      |
| 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Low-level input voltage   | V <sub>ILA</sub> | OE, An                                                    | // 1,2)              | 1.2 to 3.6           |                       | 0.10         |      |
| 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                                                           | 1.4                  |                      | 40                    | 0.20         |      |
| Solution                                     |                           |                  |                                                           | 1.65                 | 0                    |                       | 0.30         |      |
| Signature   Sig                                     |                           |                  | 4()                                                       | 2.3                  |                      | )) —                  | 0.50         |      |
| Vilb   Bn   1.2 to 3.6   1.2   -   0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           |                  |                                                           | 3.0                  | Q. C                 | 7 –                   | 0.70         |      |
| 1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           |                  |                                                           | 3.6                  | (// 5)               | _                     | 0.80         |      |
| 1.65     0.30   2.3     0.50   3.0     0.70   3.6     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80     0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                           | V <sub>ILB</sub> | Bn                                                        | 1.2 to 3.6           | 1.2                  | _                     | 0.10         |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           |                  |                                                           |                      | 1.4                  | _                     | 0.20         |      |
| High-level output voltage $V_{OHA}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OHA} = -20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ $V_{CCA} - 0.4$ $ V_{OHB}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OHB} = -20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ $V_{CCB} - 0.4$ $ -$ Low-level output voltage $V_{OLA}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OLA} = 20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$ $0.4$                                        |                           |                  |                                                           |                      | 1.65                 | _                     | 0.30         |      |
| High-level output voltage $V_{OHA} = V_{IN} = V_{IH} \text{ or } V_{IL}, \ I_{OHA} = -20 \ \mu\text{A}$ $V_{1.2} \text{ to } 3.6$ $V_{CCA} = 0.4$ $V_{OLA} = -0.4$ $V_{OHB} = V_{IN} = V_{IH} \text{ or } V_{IL}, \ I_{OHB} = -20 \ \mu\text{A}$ $V_{IL} = 0.36$ $V_{CCB} = 0.4$ $V_{OLB} = 0.4$ $V_{OLA} = 0.4$ $V_{IN} = V_{IH} \text{ or } V_{IL}, \ I_{OLA} = 20 \ \mu\text{A}$ $V_{IL} = 0.36$ $V_{IL} = 0.36$ $V_{IL} = 0.4$ $V_{OLB} = 0.4$ $V_{IL} $ |                           |                  |                                                           |                      | 2.3                  | _                     | 0.50         |      |
| High-level output voltage $V_{OHA}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OHA} = -20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ $V_{CCA} - 0.4$ — $V_{OHB}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OHB} = -20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ $V_{CCB} - 0.4$ — $V_{OLB}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OLA} \neq 20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ — $0.4$ $V_{OLB}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OLB} = 20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ — $0.4$ $V_{OLB}$ $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OLB} = 20$ μA $1.2$ to $3.6$ $1.2$ to $3.6$ — $0.4$ $1.2$ to $0.6$ $1.2$ to $0.6$ — $0.4$ — $0.4$ $1.2$ to $0.6$ —                            |                           |                  |                                                           | , i                  | 3.0                  | _                     | 0.70         |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                  |                                                           |                      | 3.6                  | _                     | 0.80         |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | High-level output voltage | V <sub>OHA</sub> | $V_{IN}$ = $V_{IH}$ or $V_{IL}$ , $I_{OHA}$ = -20 $\mu$ A | 1.2 to 3.6           | 1.2 to 3.6           | V <sub>CCA</sub> -0.4 |              |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | V <sub>ОНВ</sub> | $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OHB} = -20 \mu A$     | 1.2 to 3.6           | 1.2 to 3.6           | V <sub>CCB</sub> -0.4 | _            |      |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Low-level output voltage  | V <sub>OLA</sub> | $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OLA} = 20 \mu A$      | 1.2 to 3.6           | 1.2 to 3.6           | _                     | 0.4          |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | V <sub>OLB</sub> | $V_{IN} = V_{IH}$ or $V_{IL}$ , $I_{OLB} = 20 \mu A$      | 1.2 to 3.6           | 1.2 to 3.6           | _                     | 0.4          |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | loza             | $V_{IN} = V_{IH}$ or $V_{IL}$                             | 1.2 to 3.6           | 1.2 to 3.6           | _                     | ±2.0         | μΑ   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | leakage current           | loza             | $V_{OUT} = 0 \text{ to } 3.6 \text{ V}$                   | 1.2 to 3.6           | 1.2 to 3.6           | _                     | ±2.0         |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Output resistance         | R <sub>OUT</sub> | -                                                         | 1.2 to 3.6           | 1.2 to 3.6           | 3.85                  | 7.15         | kΩ   |
| Quiescent supply current $I_{CCA}$ $V_{INA} = V_{CCA}$ or GND $I_{CCB}$ 1.2 to 3.6 1.2 to 3.6 — 2.0 $I_{CCB}$ $I_{CCA}$ $I_{C$                                  | Input leakage current     | I <sub>IN</sub>  | $V_{IN} (OE) = 0 \text{ to } 3.6 \text{ V}$               | 1.2 to 3.6           | 1.2 to 3.6           | _                     | ±1.0         | μΑ   |
| $I_{CCB}$ $V_{INB} = V_{CCB}$ or GND $I_{CCA}$                                  | Power-OFF leakage current | I <sub>OFF</sub> | $V_{IN}$ , $V_{OUT} = 0$ to 3.6 V                         | 0                    | 0                    | _                     | 2.0          |      |
| I <sub>CCA</sub>   V <sub>CCA</sub> ≤ (V <sub>IN</sub> , V <sub>OUT</sub> ) ≤ 3.6 V   1.2 to 3.6   1.2 to 3.6   ±2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quiescent supply current  | I <sub>CCA</sub> |                                                           | 1.2 to 3.6           | 1.2 to 3.6           |                       | 2.0          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | ССВ              | $V_{INB} = V_{CCB}$ or GND                                | 1.2 to 3.6           | 1.2 to 3.6           |                       | 2.0          |      |
| $V_{\text{COP}} = V_{\text{COP}} = (V_{\text{NN}}, V_{\text{CUT}}) < 3.6  V$ 12 to 3.6 1.2 to 3.6 — +2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | Voca V           | $V_{CCA} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$         | 1.2 to 3.6           | 1.2 to 3.6           | _                     | ±2.0         |      |
| 1.2 to 0.0   1.2 to 0.0   -   12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | I <sub>CCB</sub> | $V_{CCB} \le (V_{IN}, V_{OUT}) \le 3.6 \text{ V}$         | 1.2 to 3.6           | 1.2 to 3.6           | _                     | ±2.0         |      |

### 11.2. AC Characteristics

# 11.2.1. V<sub>CCA</sub> = $3.3 \pm 0.3$ V (Unless otherwise specified, T<sub>a</sub> = -40 to 85°C, Input: $t_r$ = $t_f$ = 2.0 ns)

| Characteristics             | Symbol                               | Test Condition             | V <sub>CCB</sub> (V) | Min         | Max   | Unit |
|-----------------------------|--------------------------------------|----------------------------|----------------------|-------------|-------|------|
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | (1.2                 | 1.0         | 18.6  | ns   |
| $(Bn \rightarrow An)$       |                                      | Table 11.2.2               | 1.5 ± 0.1            | 1.0         | 9.2   |      |
|                             |                                      |                            | 1.8 ± 0.15           | 7.0         | 5.7   |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0         | 3.7   |      |
|                             |                                      | ^ (                        | 3.3 ± 0.3            | 1.0         | 3.0   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                  | 1.0         | 111.9 |      |
| $(OE \rightarrow An)$       |                                      | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1            | 1.0         | 105.3 |      |
|                             |                                      |                            | 1.8 ± 0.15           | 1.0         | 101.5 |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0         | 97.9  |      |
|                             |                                      |                            | 3.3 ± 0.3            | <b>(1.0</b> | 95.4  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   |                            | 1.2                  | 1.0         | 102.4 |      |
| $(OE \rightarrow An)$       |                                      | $( \checkmark / 5 )$       | 1.5 ± 0.1            | )).0        | 102.4 |      |
|                             |                                      |                            | 1.8 ± 0.15           | 40/         | 104.4 |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0         | 107.0 |      |
|                             |                                      | 2                          | 3.3 ± 0.3            | 1.0         | 107.0 |      |
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | 1.2                  | 1.0         | 8.5   |      |
| $(An \rightarrow Bn)$       |                                      | Table 11.2.2               | 1.5 ± 0.1            | 1.0         | 4.3   |      |
|                             |                                      |                            | 1.8 ± 0.15           | 1.0         | 3.8   |      |
|                             |                                      |                            | $2.5 \pm 0.2$        | 1.0         | 3.3   |      |
|                             |                                      |                            | $3.3 \pm 0.3$        | 1.0         | 3.1   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                  | 1.0         | 101.3 |      |
| $(OE \rightarrow Bn)$       |                                      | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1            | 1.0         | 101.8 |      |
|                             |                                      |                            | 1.8 ± 0.15           | 1.0         | 98.9  |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0         | 97.8  |      |
|                             | // 5)                                |                            | $3.3 \pm 0.3$        | 1.0         | 98.5  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   | . (7/4)                    | 1.2                  | 1.0         | 134.7 |      |
| $(OE \rightarrow Bn)$       | 7                                    |                            | 1.5 ± 0.1            | 1.0         | 110.0 |      |
|                             | _                                    |                            | 1.8 ± 0.15           | 1.0         | 121.2 |      |
|                             | \ \'\'                               |                            | 2.5 ± 0.2            | 1.0         | 83.5  |      |
| < <i></i> √ <i>↑</i>        |                                      |                            | 3.3 ± 0.3            | 1.0         | 107.6 |      |
| Output skew                 | t <sub>osLH</sub> /t <sub>osHL</sub> |                            | 1.2                  | _           | 0.5   |      |
| (Note 1)                    | $\mathcal{A}($                       |                            | 1.5 ± 0.1            | _           | 0.5   |      |
|                             |                                      |                            | $1.8 \pm 0.15$       | _           | 0.5   |      |
|                             |                                      |                            | 2.5 ± 0.2            | _           | 0.5   |      |
|                             |                                      |                            | $3.3\pm0.3$          | _           | 0.5   |      |

Note 1: Parameter guaranteed by design.

(tosLH = |tplHm - tplHn|, tosHL = |tpHLm - tpHLn|)



11.2.2. V<sub>CCA</sub> = 2.5  $\pm$  0.2 V (Unless otherwise specified, T<sub>a</sub> = -40 to 85°C, Input:  $t_{\rm f}$  =  $t_{\rm f}$  = 2.0 ns)

| Characteristics             | Symbol                               | Test Condition             | V <sub>CCB</sub> (V) | Min   | Max   | Unit |
|-----------------------------|--------------------------------------|----------------------------|----------------------|-------|-------|------|
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | 1.2                  | 1.0   | 18.1  | ns   |
| $(Bn \rightarrow An)$       |                                      | Table 11.2.2               | 1.5 ± 0.1            | 1.0   | 9.0   |      |
|                             |                                      |                            | 1.8 ± 0.15           | 1.0   | 5.7   |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0   | 3.8   |      |
|                             |                                      |                            | $3.3 \pm 0.3$        | ))1.0 | 3.2   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1,2                  | 1.0   | 111.7 |      |
| (OE → An)                   |                                      | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1            | 1.0   | 106.0 |      |
|                             |                                      |                            | $1.8 \pm 0.15$       | 1.0   | 101.0 |      |
|                             |                                      |                            | $2.5 \pm 0.2$        | 1.0   | 96.8  |      |
|                             |                                      |                            | $3.3 \pm 0.3$        | 1.0   | 95.4  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   | 4( >>                      | 1.2                  | 1.0   | 74.2  |      |
| $(OE \rightarrow An)$       |                                      |                            | 1.5 ± 0.1            | 1.0   | 77.7  |      |
|                             |                                      | (7/^                       | 1.8 ± 0.15           | 1.0   | 78.7  |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0   | 78.8  |      |
|                             |                                      |                            | $3.3 \pm 0.3$        | 1.0/  | 84.4  |      |
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | 1.2                  | 1.0   | 8.8   |      |
| $(An \rightarrow Bn)$       |                                      | Table 11.2.2               | 1.5 ± 0,1            | 1.0   | 4.8   |      |
|                             |                                      |                            | 1.8 ± 0.15           | 1.0   | 4.3   |      |
|                             |                                      |                            | 2.5 ± 0.2            | 1.0   | 3.8   |      |
|                             |                                      | 40                         | $3.3 \pm 0.3$        | 1.0   | 3.7   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                  | 1.0   | 104.8 |      |
| (OE → Bn)                   | ((                                   | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1            | 1.0   | 104.0 |      |
|                             |                                      |                            | $1.8 \pm 0.15$       | 1.0   | 101.7 |      |
|                             |                                      |                            | $2.5 \pm 0.2$        | 1.0   | 101.5 |      |
|                             |                                      |                            | $3.3 \pm 0.3$        | 1.0   | 101.4 |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   |                            | 1.2                  | 1.0   | 126.7 |      |
| (OE → Bn)                   |                                      |                            | 1.5 ± 0.1            | 1.0   | 102.7 |      |
|                             |                                      | $\langle ( // 5 ) \rangle$ | 1.8 ± 0.15           | 1.0   | 116.2 |      |
|                             | 7                                    |                            | 2.5 ± 0.2            | 1.0   | 74.9  |      |
|                             |                                      |                            | 3.3 ± 0.3            | 1.0   | 106.0 |      |
| Output skew                 | t <sub>osLH</sub> /t <sub>osHL</sub> | +                          | 1.2                  | _     | 0.5   |      |
| (Note 1)                    |                                      |                            | 1.5 ± 0.1            | _     | 0.5   |      |
|                             |                                      |                            | 1.8 ± 0.15           | _     | 0.5   |      |
|                             | de                                   |                            | 2.5 ± 0.2            | _     | 0.5   |      |
|                             |                                      |                            | 3.3 ± 0.3            | _     | 0.5   |      |

(toslH = |tplHm - tplHn|, tosHL = |tpHLm - tpHLn|)



11.2.3. V<sub>CCA</sub> = 1.8  $\pm$  0.15 V (Unless otherwise specified, T<sub>a</sub> = -40 to 85°C, Input:  $t_{\rm f}$  =  $t_{\rm f}$  = 2.0 ns)

| Characteristics             | Symbol                               | Test Condition                                  | V <sub>CCB</sub> (V) | Min   | Max    | Unit |
|-----------------------------|--------------------------------------|-------------------------------------------------|----------------------|-------|--------|------|
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,                       | 1.2                  | 1.0   | 18.2   | ns   |
| $(Bn \rightarrow An)$       |                                      | Table 11.2.2                                    | 1.5 ± 0.1            | 1.0   | 9.2    |      |
|                             |                                      |                                                 | 1.8 ± 0.15           | 1.0   | 5.9    |      |
|                             |                                      |                                                 | 2.5 ± 0.2            | 1.0   | 4.2    |      |
|                             |                                      |                                                 | $3.3 \pm 0.3$        | ))1.0 | 3.7    |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,                       | 1,2                  | 1.0   | 114.7  |      |
| $(OE \rightarrow An)$       |                                      | Table 11.2.1, Table 11.2.2                      | 1.5 ± 0.1            | 1.0   | 108.2  |      |
|                             |                                      |                                                 | $1.8 \pm 0.15$       | 1.0   | 103.5  |      |
|                             |                                      |                                                 | $2.5 \pm 0.2$        | 1.0   | 99.2   |      |
|                             |                                      |                                                 | $3.3 \pm 0.3$        | 1.0   | 97.1   |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   | $\angle($                                       | 1.2                  | 1.0   | 102.9  |      |
| $(OE \rightarrow An)$       |                                      |                                                 | 1.5 ± 0.1            | 1.0   | 102.9  |      |
|                             |                                      | (7/^                                            | 1.8 ± 0.15           | 1.0   | 7105.6 |      |
|                             |                                      |                                                 | 2.5 ± 0.2            | 110   | 112.2  |      |
|                             |                                      |                                                 | $3.3 \pm 0.3$        | 1.0/  | 113.5  |      |
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,                       | 1.2                  | 1.0   | 10.6   |      |
| $(An \rightarrow Bn)$       |                                      | Table 11.2.2                                    | 1.5 ± 0.1            | 1.0   | 6.7    |      |
|                             |                                      |                                                 | 1.8 ± 0.15           | 1.0   | 6.0    |      |
|                             |                                      |                                                 | 2.5 ± 0.2            | 1.0   | 5.7    |      |
|                             |                                      | 40                                              | $3.3 \pm 0.3$        | 1.0   | 5.7    |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,                       | 1.2                  | 1.0   | 110.9  |      |
| $(OE \rightarrow Bn)$       | ((                                   | Table 11.2.1, Table 11.2.2                      | 1.5 ± 0.1            | 1.0   | 106.8  |      |
|                             |                                      |                                                 | $1.8 \pm 0.15$       | 1.0   | 106.5  |      |
|                             | (C                                   |                                                 | $2.5\pm0.2$          | 1.0   | 105.0  |      |
|                             |                                      |                                                 | $3.3 \pm 0.3$        | 1.0   | 105.3  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   |                                                 | 1.2                  | 1.0   | 117.0  |      |
| (OE → Bn)                   |                                      |                                                 | 1.5 ± 0.1            | 1.0   | 94.8   |      |
| // )                        |                                      | $\langle ( //                                 $ | $1.8 \pm 0.15$       | 1.0   | 107.9  |      |
|                             |                                      |                                                 | $2.5\pm0.2$          | 1.0   | 72.4   |      |
|                             |                                      |                                                 | $3.3\pm0.3$          | 1.0   | 99.3   |      |
| Output skew                 | t <sub>osLH</sub> /t <sub>osHL</sub> | -                                               | 1.2                  | _     | 0.5    |      |
| (Note 1)                    | _                                    |                                                 | 1.5 ± 0.1            | _     | 0.5    |      |
|                             | (7                                   |                                                 | $1.8 \pm 0.15$       | _     | 0.5    |      |
|                             | 4                                    |                                                 | $2.5 \pm 0.2$        | _     | 0.5    |      |
|                             |                                      |                                                 | $3.3\pm0.3$          | _     | 0.5    |      |

(tosLH = |tpLHm - tpLHn|, tosHL = |tpHLm - tpHLn|)



11.2.4. V<sub>CCA</sub> = 1.5  $\pm$  0.1 V (Unless otherwise specified, T<sub>a</sub> = -40 to 85°C, Input:  $t_{\rm f}$  =  $t_{\rm f}$  = 2.0 ns)

| Characteristics             | Symbol                               | Test Condition             | V <sub>CCB</sub> (V)            | Min   | Max   | Unit |
|-----------------------------|--------------------------------------|----------------------------|---------------------------------|-------|-------|------|
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | 1.2                             | 1.0   | 19.1  | ns   |
| $(Bn \rightarrow An)$       |                                      | Table 11.2.2               | 1.5 ± 0.1                       | 1.0   | 9.9   |      |
|                             |                                      |                            | 1.8 ± 0.15                      | 1.0   | 6.7   |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.0   | 4.7   |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | ))1.0 | 4.3   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                             | 1.0   | 117.9 |      |
| $(OE \rightarrow An)$       |                                      | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1                       | 1.0   | 109.5 |      |
|                             |                                      |                            | $1.8 \pm 0.15$                  | 1.0   | 106.3 |      |
|                             |                                      |                            | $\textbf{2.5} \pm \textbf{0.2}$ | 1.0   | 101.7 |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0   | 99.4  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   | A( >                       | 1.2                             | 1.0   | 92.8  |      |
| $(OE \rightarrow An)$       |                                      |                            | 1.5 ± 0.1                       | 1.0   | 96.4  |      |
|                             |                                      | (7/^                       | 1.8 ± 0.15                      | 1.0   | 97.6  |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.00  | 102.6 |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0/  | 105.8 |      |
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | (1.2                            | 1.0   | 13.3  |      |
| $(An \rightarrow Bn)$       |                                      | Table 11.2.2               | 1.5 ± 0.1                       | 1.0   | 9.7   |      |
|                             |                                      |                            | 1.8 ± 0.15                      | 1.0   | 9.0   |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.0   | 8.7   |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0   | 8.8   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                             | 1.0   | 115.7 |      |
| $(OE \rightarrow Bn)$       | ((                                   | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1                       | 1.0   | 111.2 |      |
|                             |                                      |                            | $1.8 \pm 0.15$                  | 1.0   | 110.0 |      |
|                             |                                      |                            | $2.5 \pm 0.2$                   | 1.0   | 108.8 |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0   | 108.9 |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   |                            | 1.2                             | 1.0   | 120.4 |      |
| $(OE \rightarrow Bn)$       |                                      |                            | 1.5 ± 0.1                       | 1.0   | 94.9  |      |
|                             |                                      | ( $($ $)$ $)$              | 1.8 ± 0.15                      | 1.0   | 112.1 |      |
|                             |                                      |                            | $2.5 \pm 0.2$                   | 1.0   | 70.8  |      |
|                             |                                      |                            | $3.3\pm0.3$                     | 1.0   | 105.7 |      |
| Output skew                 | t <sub>osLH</sub> /t <sub>osHL</sub> | _                          | 1.2                             | _     | 0.5   |      |
| (Note 1)                    | _                                    | $\rightarrow$              | 1.5 ± 0.1                       | _     | 0.5   |      |
|                             | (7                                   |                            | 1.8 ± 0.15                      | _     | 0.5   |      |
|                             | (4)                                  |                            | 2.5 ± 0.2                       | _     | 0.5   |      |
|                             |                                      |                            | $3.3\pm0.3$                     | _     | 0.5   |      |

(toslH = |tplHm - tplHn|, tosHL = |tpHLm - tpHLn|)



11.2.5.  $V_{CCA}$  = 1.2 V (Unless otherwise specified,  $T_a$  = -40 to 85°C, Input:  $t_r$  =  $t_f$  = 2.0 ns)

| Characteristics             | Symbol                               | Test Condition             | V <sub>CCB</sub> (V)            | Min   | Max    | Unit |
|-----------------------------|--------------------------------------|----------------------------|---------------------------------|-------|--------|------|
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | 1.2                             | 1.0   | 21.8   | ns   |
| $(Bn \rightarrow An)$       |                                      | Table 11.2.2               | 1.5 ± 0.1                       | 1.0   | 12.5   |      |
|                             |                                      |                            | 1.8 ± 0.15                      | 1.0   | 9.8    |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.0   | 7.7    |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | ))1.0 | 7.2    |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                             | 1.0   | 129.6  |      |
| $(OE \rightarrow An)$       |                                      | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1                       | 1.0   | 114.9  |      |
|                             |                                      |                            | $1.8 \pm 0.15$                  | 1.0   | 110.7  |      |
|                             |                                      |                            | $\textbf{2.5} \pm \textbf{0.2}$ | 1.0   | 107.6  |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0   | 105.1  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   | A( >                       | 1.2                             | 1,0   | 109.7  |      |
| $(OE \rightarrow An)$       |                                      |                            | 1.5 ± 0.1                       | 1.0   | 115.8  |      |
|                             |                                      | (7/^                       | 1.8 ± 0.15                      | 1.0   | 7115.3 |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.0   | 124.8  |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0/  | 127.3  |      |
| Propagation delay time      | t <sub>PLH</sub> /t <sub>PHL</sub>   | Fig. 11.2.1, Fig. 11.2.3,  | 1.2                             | 1.0   | 21.2   |      |
| $(An \rightarrow Bn)$       |                                      | Table 11.2.2               | 1.5 ± 0.1                       | 1.0   | 17.9   |      |
|                             |                                      |                            | 1.8 ± 0.15                      | 1.0   | 17.0   |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.0   | 16.8   |      |
|                             |                                      | 40                         | $3.3 \pm 0.3$                   | 1.0   | 17.2   |      |
| 3-state output enable time  | t <sub>PZL</sub> /t <sub>PZH</sub>   | Fig. 11.2.2, Fig. 11.2.4,  | 1.2                             | 1.0   | 130.3  |      |
| $(OE \rightarrow Bn)$       | ((                                   | Table 11.2.1, Table 11.2.2 | 1.5 ± 0.1                       | 1.0   | 119.9  |      |
|                             |                                      |                            | $1.8 \pm 0.15$                  | 1.0   | 117.5  |      |
|                             |                                      |                            | $2.5\pm0.2$                     | 1.0   | 116.9  |      |
|                             |                                      |                            | $3.3 \pm 0.3$                   | 1.0   | 117.3  |      |
| 3-state output disable time | t <sub>PLZ</sub> /t <sub>PHZ</sub>   |                            | 1.2                             | 1.0   | 113.4  |      |
| $(OE \rightarrow Bn)$       |                                      |                            | 1.5 ± 0.1                       | 1.0   | 92.8   |      |
| (( ) ]                      | 7                                    | ( $($ $))$                 | 1.8 ± 0.15                      | 1.0   | 102.7  |      |
|                             |                                      |                            | 2.5 ± 0.2                       | 1.0   | 70.7   |      |
|                             |                                      |                            | $3.3\pm0.3$                     | 1.0   | 98.6   |      |
| Output skew                 | t <sub>osLH</sub> /t <sub>osHL</sub> |                            | 1.2                             | _     | 0.5    |      |
| (Note 1)                    | _                                    |                            | 1.5 ± 0.1                       | _     | 0.5    |      |
| v v                         | ()                                   |                            | $1.8 \pm 0.15$                  | _     | 0.5    |      |
|                             | (1)                                  |                            | 2.5 ± 0.2                       | _     | 0.5    |      |
|                             |                                      | <b>&gt;</b>                | $3.3 \pm 0.3$                   | _     | 0.5    |      |

 $(t_{OSLH} = |t_{PLHm} - t_{PLHn}|, t_{OSHL} = |t_{PHLm} - t_{PHLn}|)$ 



### 11.3. Timing Requirements

# 11.3.1. $V_{CCA}$ = 3.3 $\pm$ 0.3 V (Unless otherwise specified, $T_a$ = -40 to 85°C)

| Characteristics             | Symbol         | Test Condition | V <sub>CCB</sub> | Min | Max | Unit |
|-----------------------------|----------------|----------------|------------------|-----|-----|------|
| Pulse duration (data input) | t <sub>w</sub> | Fig. 11.2.1    | 1.2              | 29  | _   | ns   |
|                             |                |                | 1.5 ± 0.1        | 13  | _   |      |
|                             |                |                | 1.8 ± 0.15       | 9   |     |      |
|                             |                |                | 2.5 ± 0.2        | 6   |     |      |
|                             |                |                | 3.3 ± 0.3        | 5   | _   |      |
| Data rate                   | $f_D$          | _              | (/1.2)           | _   | 35  | Mbps |
|                             |                |                | 1.5 ± 0.1        | _   | 80  |      |
|                             |                |                | 1.8 ± 0.15       | _   | 120 |      |
|                             |                |                | 2.5 ± 0.2        | _   | 180 |      |
|                             |                |                | $3.3 \pm 0.3$    |     | 200 |      |

# 11.3.2. $V_{CCA}$ = 2.5 ± 0.2 V (Unless otherwise specified, $T_a$ = -40 to 85°C)

| Characteristics             | Symbol         | Test Condition | V <sub>ÇCB</sub> | Min | ) Max | Unit |
|-----------------------------|----------------|----------------|------------------|-----|-------|------|
| Pulse duration (data input) | t <sub>w</sub> | Fig. 11.2.1    | 1,2              | 29  | _     | ns   |
|                             |                |                | 1.5 ± 0.1        | 13  | _     |      |
|                             |                |                | 1.8 ± 0.15       | 9   | _     |      |
|                             |                |                | 2.5 ± 0.2        | 6   | _     |      |
|                             |                |                | 3.3 ± 0.3        | 6   | _     |      |
| Data rate                   | $f_D$          |                | 1.2              | _   | 35    | Mbps |
|                             |                |                | 1.5 ± 0.1        | _   | 80    |      |
|                             | ((             |                | $1.8 \pm 0.15$   | _   | 120   |      |
|                             |                |                | $2.5 \pm 0.2$    | _   | 180   |      |
|                             |                |                | $3.3 \pm 0.3$    | _   | 180   |      |

# 11.3.3. $V_{CCA} = 1.8 \pm 0.15 V$ (Unless otherwise specified, $T_a = -40$ to 85°C)

| Characteristics             | Symbol              | Test Condition | V <sub>CCB</sub> | Min | Max | Unit |
|-----------------------------|---------------------|----------------|------------------|-----|-----|------|
| Pulse duration (data input) | $\overline{}$ $t_w$ | Fig. 11.2.1    | 1.2              | 29  | _   | ns   |
|                             |                     |                | 1.5 ± 0.1        | 13  |     |      |
| $\searrow$                  |                     |                | 1.8 ± 0.15       | 9   |     |      |
|                             |                     |                | $2.5 \pm 0.2$    | 9   | _   |      |
|                             | $\Diamond$          | *              | $3.3\pm0.3$      | 9   | _   |      |
| Data rate                   | (fp                 | _              | 1.2              |     | 35  | Mbps |
|                             |                     |                | 1.5 ± 0.1        | _   | 80  |      |
|                             |                     |                | 1.8 ± 0.15       | _   | 120 |      |
|                             |                     |                | 2.5 ± 0.2        | _   | 120 |      |
|                             |                     |                | 3.3 ± 0.3        | _   | 120 |      |

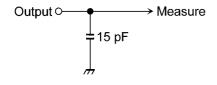


### 11.3.4. $V_{CCA}$ = 1.5 ± 0.1 V (Unless otherwise specified, $T_a$ = -40 to 85°C)

| Characteristics             | Symbol         | Test Condition | V <sub>CCB</sub> | Min         | Max | Unit |
|-----------------------------|----------------|----------------|------------------|-------------|-----|------|
| Pulse duration (data input) | t <sub>w</sub> | Fig. 11.2.1    | 1.2              | 29          |     | ns   |
|                             |                |                | 1.5 ± 0.1        | 13          |     |      |
|                             |                |                | 1.8 ± 0.15       | 13          |     |      |
|                             |                |                | 2.5 ± 0.2        | 13          | _   |      |
|                             |                |                | 3.3 ± 0.3        | 13          |     |      |
| Data rate                   | f <sub>D</sub> | _              | 1.2              | <i>V</i> /_ | 35  | Mbps |
|                             |                |                | 1.5 ± 0.1        | _           | 80  |      |
|                             |                |                | 1.8 ± 0.15       | _           | 80  |      |
|                             |                |                | $2.5 \pm 0.2$    | _           | 80  |      |
|                             |                |                | $3.3\pm0.3$      | _           | 80  |      |

# 11.3.5. $V_{CCA} = 1.2 \text{ V}$ (Unless otherwise specified, $T_a = -40 \text{ to } 85^{\circ}\text{C}$ )

| Characteristics             | Symbol         | Test Condition | V <sub>CCB</sub> | Min | Max | Unit |
|-----------------------------|----------------|----------------|------------------|-----|-----|------|
| Pulse duration (data input) | t <sub>w</sub> | Fig. 11.2.1    | <b>1.2</b>       | 29  | ) — | ns   |
|                             |                |                | 1.5 ± 0.1        | 29/ | _   |      |
|                             |                |                | 1.8 ± 0.15       | 29  |     |      |
|                             |                | 4( >>          | 2.5 ± 0.2        | 29  | _   |      |
|                             |                |                | 3.3 ± 0.3        | 29  | _   |      |
| Data rate                   | $f_D$          |                | 1.2              | _   | 35  | Mbps |
|                             |                | 4              | 1.5 ± 0.1        | _   | 35  |      |
|                             |                |                | $1.8 \pm 0.15$   | _   | 35  |      |
|                             |                |                | $2.5 \pm 0.2$    | _   | 35  |      |
|                             |                |                | $3.3 \pm 0.3$    | _   | 35  |      |


# 11.4. Capacitive Characteristics (Unless otherwise specified, Ta = 25°C)

| Characteristics                        | Symbol           | Test Condition                | V <sub>CCA</sub> (V) | V <sub>CCB</sub> (V) | Тур. | Unit |
|----------------------------------------|------------------|-------------------------------|----------------------|----------------------|------|------|
| Input capacitance                      | C <sub>IN</sub>  | OE ( // \                     | 2.5                  | 3.3                  | 8    | pF   |
| Bus I/O capacitance                    | C <sub>I/O</sub> | An, Bn                        |                      |                      | 8    |      |
| Power dissipation capacitance (Note 1) | C <sub>PDA</sub> | $OE = Low (A \rightarrow B)$  |                      |                      | 0.01 |      |
|                                        | 1                | $OE = Low (B \rightarrow A)$  |                      |                      | 0.01 |      |
| <-/r>                                  |                  | $QE = High (A \rightarrow B)$ |                      |                      | 19   |      |
| Z/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | $\wedge$         | OE = High (B → A)             |                      |                      | 27   |      |
|                                        | C <sub>PDB</sub> | OE = Low (A $\rightarrow$ B)  |                      |                      | 0.01 |      |
|                                        |                  | OE = Low (B $\rightarrow$ A)  |                      |                      | 0.01 |      |
|                                        |                  | OE = High (A → B)             |                      |                      | 29   |      |
|                                        |                  | OE = High (B $\rightarrow$ A) |                      |                      | 20   |      |

Note 1:  $C_{PD}$  is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.

Average operating current can be obtained by the equation.

 $I_{CC}(opr) = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/4$  (per bit)



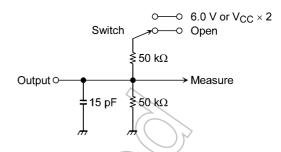



Fig. 11.2.1 AC Test Circuit

Fig. 11.2.2 AC Test Circuit

Table 11.2.1 Parameter for AC Test Circuit

| Parameter                           | Switch              | Test Condition                 |
|-------------------------------------|---------------------|--------------------------------|
| $t_{PLZ}$ , $t_{PZL}$               | 6.0 V               | $V_{CC}$ = 3.3 ± 0.3 V         |
|                                     | V <sub>CC</sub> × 2 | $V_{CC}$ = 2.5 ± 0.2 V         |
|                                     |                     | V <sub>CC</sub> = 1.8 ± 0.15 V |
|                                     |                     | $V_{CC}$ = 1.5 ± 0.1 V         |
|                                     |                     | V <sub>CC</sub> = 1.2 V        |
| t <sub>PHZ</sub> , t <sub>PZH</sub> | OPEN                | _                              |



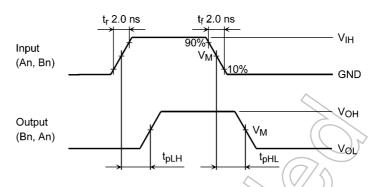
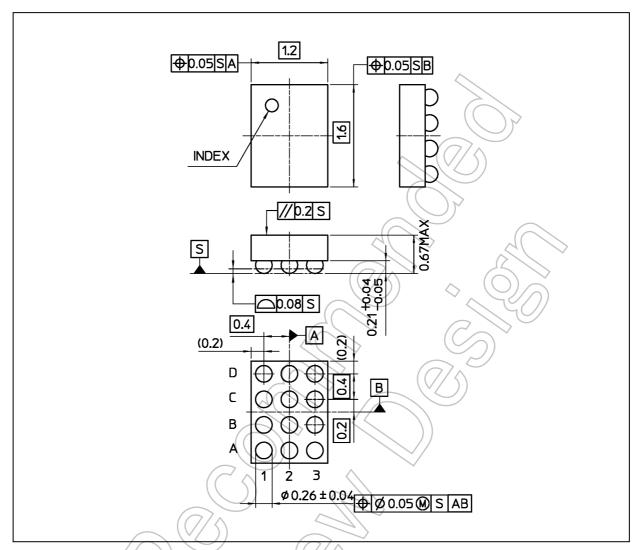



Fig. 11.2.3 AC Waveform of tplh, tphL




Fig. 11.2.4 AC Waveform of t<sub>PLZ</sub>, t<sub>PHZ</sub>, t<sub>PZL</sub>, t<sub>PZH</sub>
Table 11.2.2 AC Waveform Symbols

| Vee                   | Symbol             | Value                    |  |  |  |
|-----------------------|--------------------|--------------------------|--|--|--|
| 3.3 ± 0.3 V           | V <sub>IH</sub>    | 2.7 V                    |  |  |  |
|                       | (V <sub>M</sub> /\ | 1.5 V                    |  |  |  |
|                       | V <sub>X</sub>     | V <sub>OL</sub> + 0.3 V  |  |  |  |
|                       | Vy                 | V <sub>OH</sub> - 0.3 V  |  |  |  |
| $2.5\pm0.2\textrm{V}$ | ViH                | V <sub>CC</sub>          |  |  |  |
| 1.8 ± 0.15 V          | V <sub>M</sub>     | V <sub>CC</sub> /2       |  |  |  |
| $\wedge$              | V <sub>X</sub>     | V <sub>OL</sub> + 0.15 V |  |  |  |
| $\mathcal{A}$         | $V_{Y}$            | V <sub>OH</sub> - 0.15 V |  |  |  |
| 1.5 ± 0.1 V           | $V_{IH}$           | V <sub>CC</sub>          |  |  |  |
| 1.2V                  | V <sub>M</sub>     | V <sub>CC</sub> /2       |  |  |  |
|                       | V <sub>X</sub>     | V <sub>OL</sub> + 0.1 V  |  |  |  |
|                       | V <sub>Y</sub>     | V <sub>OH</sub> - 0.1 V  |  |  |  |



### **Package Dimensions**

Unit: mm



This resins used in this product include no flame retardants.

Weight: 0.0025 g (typ.)





#### RESTRICTIONS ON PRODUCT USE

- Toshiba Corporation, and its subsidiaries and affiliates (collectively "TOSHIBA"), reserve the right to make changes to the information in this document, and related hardware, software and systems (collectively "Product") without notice.
- This document and any information herein may not be reproduced without prior written permission from TOSHIBA. Even with TOSHIBA's written permission, reproduction is permissible only if reproduction is without alteration/omission.
- Though TOSHIBA works continually to improve Product's quality and reliability, Product can malfunction or fail. Customers are responsible for complying with safety standards and for providing adequate designs and safeguards for their hardware, software and systems which minimize risk and avoid situations in which a malfunction or failure of Product could cause loss of human life, bodily injury or damage to property, including data loss or corruption. Before customers use the Product, create designs including the Product, or incorporate the Product into their own applications, customers must also refer to and comply with (a) the latest versions of all relevant TOSHIBA information, including without limitation, this document, the specifications, the data sheets and application notes for Product and the precautions and conditions set forth in the "TOSHIBA Semiconductor Reliability Handbook" and (b) the instructions for the application with which the Product will be used with or for. Customers are solely responsible for all aspects of their own product design or applications, including but not limited to (a) determining the appropriateness of the use of this Product in such design or applications; (b) evaluating and determining the applicability of any information contained in this document, or in charts, diagrams, programs, algorithms, sample application circuits, or any other referenced documents; and (c) validating all operating parameters for such designs and applications. TOSHIBA ASSUMES NO LIABILITY FOR CUSTOMERS' PRODUCT DESIGN OR APPLICATIONS.
- Product is intended for use in general electronics applications (e.g., computers, personal equipment, office equipment, measuring equipment, industrial robots and home electronics appliances) or for specific applications as expressly stated in this document. Product is neither intended nor warranted for use in equipment or systems that require extraordinarily high levels of quality and/or a malfunction or failure of which may cause loss of human life, bodily injury, serious property damage or serious public impact ("Unintended Use"). Unintended Use includes, without limitation, equipment used in nuclear facilities, equipment used in the aerospace industry, medical equipment, equipment used for automobiles, trains, ships and other transportation, traffic signaling equipment, equipment used to control combustions or explosions, safety devices, elevators and escalators, devices related to electric power, and equipment used in finance-related fields. Do not use Product for Unintended Use unless specifically permitted in this document.
- · Do not disassemble, analyze, reverse-engineer, alter, modify, translate or copy Product, whether in whole or in part.
- Product shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any
  applicable laws or regulations.
- The information contained herein is presented only as guidance for Product use. No responsibility is assumed by TOSHIBA for any infringement of patents or any other intellectual property rights of third parties that may result from the use of Product. No license to any intellectual property right is granted by this document, whether express or implied, by estoppel or otherwise.
- ABSENT A WRITTEN SIGNED AGREEMENT, EXCEPT AS PROVIDED IN THE RELEVANT TERMS AND CONDITIONS OF SALE
  FOR PRODUCT, AND TO THE MAXIMUM EXTENT ALLOWABLE BY LAW, TOSHIBA (1) ASSUMES NO LIABILITY WHATSOEVER,
  INCLUDING WITHOUT LIMITATION, INDIRECT, CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OR LOSS, INCLUDING
  WITHOUT LIMITATION, LOSS OF PROFITS, LOSS OF OPPORTUNITIES, BUSINESS INTERRUPTION AND LOSS OF DATA, AND
  (2) DISCLAIMS ANY AND ALL EXPRESS OR IMPLIED WARRANTIES AND CONDITIONS RELATED TO SALE, USE OF PRODUCT,
  OR INFORMATION, INCLUDING WARRANTIES OR CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
  PURPOSE, ACCURACY OF INFORMATION, OR NONINFRINGEMENT.
- Do not use or otherwise make available Product or related software or technology for any military purposes, including without limitation, for the design, development, use, stockpiling or manufacturing of nuclear, chemical, or biological weapons or missile technology products (mass destruction weapons). Product and related software and technology may be controlled under the Japanese Foreign Exchange and Foreign Trade Law and the U.S. Export Administration Regulations. Export and re-export of Product or related software or technology are strictly prohibited except in compliance with all applicable export laws and regulations.
- Please contact your TOSHIBA sales representative for details as to environmental matters such as the RoHS compatibility of Product.
  Please use Product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. TOSHIBA assumes no liability for damages or losses occurring as a result of noncompliance with applicable laws and regulations.