

## 74ABT651 <br> Octal transceiver/register, inverting (3-State)

Product data
Supersedes data of 1995 Sep 06

## FEATURES

- Independent registers for $A$ and $B$ buses
- The 74ABT651 is the inverting version of the 74ABT652
- Multiplexed real-time and stored data
- 3-State outputs
- Live insertion/extraction permitted.
- Power-up 3-State
- Power-up reset
- Output capability: +64 mA / -32 mA
- Latch-up protection exceeds 500 mA per Jedec Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model


## DESCRIPTION

The 74ABT651 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive.

The 74ABT651 transceiver/register consists of bus transceiver circuits with 3-State outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the input bus or the internal registers. Data on the A or B bus will be clocked into the registers as the appropriate clock pin goes HIGH. Output Enable (OEAB, OEBA) and Select (SAB, SBA) pins are provided for bus management.

The following examples demonstrate the four fundamental bus-management functions that can be performed with the 74ABT651.

The select pins determine whether data is stored or transferred through the device in real time.
The output enable pins determine the direction of the data flow.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{GND}=0 \mathrm{~V}$ | TYPICAL | UNIT |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \hline t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$ | Propagation delay CPBA to An or CPAB to Bn | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | $\begin{aligned} & 3.8 \\ & 4.4 \end{aligned}$ | ns |
| $\mathrm{C}_{\text {IN }}$ | Input capacitance | $\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$ | 4 | pF |
| $\mathrm{C}_{\text {//O }}$ | I/O capacitance | Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 7 | pF |
| ICCz | Total supply current | Outputs disabled; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | 110 | $\mu \mathrm{A}$ |

## ORDERING INFORMATION

| PACKAGES | TEMPERATURE RANGE | PART NUMBER | DWG NUMBER |
| :--- | :---: | :---: | :---: |
| 24-Pin Plastic DIP | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ABT651N}$ | SOT222-1 |
| 24-Pin plastic SO | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ABT651D}$ | SOT137-1 |
| 24-Pin Plastic TSSOP Type I | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $74 \mathrm{ABT651PW}$ | SOT355-1 |

PIN CONFIGURATION


PIN DESCRIPTION

| PIN <br> NUMBER | SYMBOL | FUNCTION |
| :---: | :---: | :--- |
| 1,23 | CPAB / <br> CPBA | A to B clock input / <br> B to A clock input |
| 2,22 | SAB / <br> SBA | A to B select input / <br> B to A select input |
| 3,21 | OEAB / <br> OEBA | A to B Output Enable input / <br> B to A Output Enable input <br> (active-LOW) |
| $4,5,6,7,8$, <br> $9,10,11$ | A0 - A7 | Data inputs/outputs (A side) |
| $20,19,18$, <br> $17,16,15$, <br> 14,13 | B0 - B7 | Data inputs/outputs (B side) |
| 12 | GND | Ground (0 V) |
| 24 | VCC | Positive supply voltage |

## LOGIC SYMBOL (IEEE/IEC)




## FUNCTION TABLE

| INPUTS |  |  |  |  |  | DATA I/O |  | OPERATING MODE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OEAB | OEBA | CPAB | CPBA | SAB | SBA | An | Bn |  |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\underset{\uparrow}{\mathrm{H}} \underset{\underset{\sim}{\mathrm{or}}}{ }$ | $\underset{\uparrow}{\mathrm{H} \underset{\uparrow}{\mathrm{or}}}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | Input | Input | Isolation <br> Store A and B data |
| $\begin{aligned} & \mathrm{X} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$ | $\underset{\uparrow}{\mathrm{H}} \underset{\uparrow}{\mathrm{or}}$ | ** | $\begin{aligned} & \mathrm{X} \\ & \mathrm{X} \end{aligned}$ | Input | Unspecified output* | Store A, Hold B Store A in both registers |
| $\begin{aligned} & \overline{\mathrm{L}} \\ & \mathrm{~L} \end{aligned}$ | $\begin{gathered} \bar{X} \\ L \end{gathered}$ | $\underset{\uparrow}{\mathrm{H}} \underset{\uparrow}{\mathrm{or}}$ | $\begin{aligned} & \uparrow \\ & \uparrow \end{aligned}$ | $\begin{aligned} & \hline X \\ & X \\ & \hline \end{aligned}$ | $\underset{* *}{\bar{x}}$ | Unspecified output* | Input | Hold A, Store B Store $B$ in both registers |
| $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{gathered} \text { X } \\ \text { H or L } \end{gathered}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$ | Output | Input | Real time $\bar{B}$ data to $A$ bus Stored $\bar{B}$ data to $A$ bus |
| $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | $\begin{gathered} \text { X } \\ \mathrm{H} \text { or } \mathrm{L} \end{gathered}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | $\begin{aligned} & \bar{L} \\ & \mathrm{H} \end{aligned}$ | $\begin{aligned} & \hline X \\ & X \end{aligned}$ | Input | Output | Real time $\bar{A}$ data to $B$ bus Store $\bar{A}$ data to $B$ bus |
| H | L | H or L | H or L | H | H | Output | Output | Stored $\bar{A}$ data to $B$ bus Stored $\bar{B}$ data to A bus |

H = HIGH voltage level
L = LOW voltage level
$X=$ Don't care
$\uparrow=$ LOW-to-HIGH clock transition
The data output function may be enabled or disabled by various signals at the OEBA and OEAB inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the clock.
** If both Select controls (SAB and SBA) are LOW, then clocks can occur simultaneously. If either Select control is HIGH, the clocks must be staggered in order to load both registers.

## LOGIC DIAGRAM



## ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

| SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | -0.5 to +7.0 | V |  |
| $\mathrm{I}_{\mathrm{IK}}$ | DC input diode current | $\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$ | -18 | mA |
| $\mathrm{~V}_{\mathrm{I}}$ | DC input voltage $^{3}$ |  | -1.2 to +7.0 | V |
| $\mathrm{I}_{\text {OK }}$ | DC output diode current | $\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$ | -50 | mA |
| $\mathrm{~V}_{\text {OUT }}$ | DC output voltage $^{3}$ | output in Off or HIGH state | -0.5 to +5.5 | V |
| $\mathrm{I}_{\text {OUT }}$ | DC output current | output in LOW state | 128 | mA |
| $\mathrm{~T}_{\text {stg }}$ | Storage temperature range |  | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER | LIMITS |  | UNIT |
| :---: | :--- | :---: | :---: | :---: |
|  |  | Min |  |  |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | 4.5 | 5.5 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | Input voltage | 0 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | 2.0 |  | V |
| $\mathrm{~V}_{\mathrm{IL}}$ | LOW-level Input voltage |  | 0.8 | V |
| $\mathrm{I}_{\mathrm{OH}}$ | HIGH-level output current |  | -32 | mA |
| $\mathrm{I}_{\mathrm{OL}}$ | LOW-level output current |  | 64 | mA |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | Input transition rise or fall rate | 0 | 10 | $\mathrm{~ns} / \mathrm{V}$ |
| $\mathrm{T}_{\mathrm{amb}}$ | Operating free-air temperature range | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

## DC ELECTRICAL CHARACTERISTICS

| SYMBOL | PARAMETER |  | TEST CONDITIONS | LIMITS |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$ | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \\ \text { to }+85^{\circ} \mathrm{C} \end{gathered}$ |  |  |
|  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{V}_{\text {IK }}$ | Input clamp vo | age |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$ |  | -0.9 | -1.2 |  | -1.2 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage |  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ | 2.5 | 3.2 |  | 2.5 |  | V |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ | 3.0 | 3.7 |  | 3.0 |  | V |
|  |  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ | 2.0 | 2.30 |  | 2.0 |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level out | t voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=64 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or $\mathrm{V}_{\mathrm{IH}}$ |  | 0.42 | 0.55 |  | 0.55 | V |
| $\mathrm{V}_{\mathrm{RST}}{ }^{3}$ | Power-up ou | low voltage | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 0.13 | 0.55 |  | 0.55 | V |
| 1 | Input leakage current | Control pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V |  | $\pm 0.01$ | $\pm 1.0$ |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
|  |  | Data pins | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=$ GND or 5.5 V |  | $\pm 5$ | $\pm 100$ |  | $\pm 100$ | $\mu \mathrm{A}$ |
| IOFF | Power-off leakage current |  | $\mathrm{V}_{\mathrm{CC}}=0.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}$ or $\mathrm{V}_{\mathrm{I}} \leq 4.5 \mathrm{~V}$ |  | $\pm 5.0$ | $\pm 100$ |  | $\pm 100$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{PU}} / \mathrm{l}_{\text {PD }}$ | Power-up/down 3-State output current ${ }^{4}$ |  | $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V} \overline{\mathrm{OE}}=$ Don't Care; $\mathrm{V}_{1}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | $\pm 5.0$ | $\pm 50$ |  | $\pm 50$ | $\mu \mathrm{A}$ |
| $I_{\text {IH }}+I_{\text {OZH }}$ | 3-State output HIGH current |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ |  | 5.0 | 50 |  | 50 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$ | 3-State output LOW current |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$ |  | -5.0 | -50 |  | -50 | $\mu \mathrm{A}$ |
| $I_{\text {CEX }}$ | Output High leakage current |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\text {I }}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 5.0 | 50 |  | 50 | $\mu \mathrm{A}$ |
| IO | Output current ${ }^{1}$ |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ | -40 | -65 | -180 | -40 | -180 | mA |
| ICCH | Quiescent supply current |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 110 | 250 |  | 250 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\text {CCL }}$ |  |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}$ |  | 20 | 30 |  | 30 | mA |
| ICCZ |  |  | $\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; Outputs 3-State; } \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$ |  | 110 | 250 |  | 250 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\mathrm{CC}}$ | Additional supply current per input pin² |  | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; one input at 3.4 V , other inputs at $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ |  | 0.3 | 1.5 |  | 1.5 | mA |

## NOTES:

1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4 V .
3. For valid test results, data must not be loaded into the flip-flops (or latches) after applying the power.
4. This parameter is valid for any $\mathrm{V}_{\mathrm{CC}}$ between 0 V and 2.1 V , with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$, a transition time of up to $100 \mu \mathrm{sec}$ is permitted.

## AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{aligned} \mathrm{T}_{\mathrm{amb}} & =+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}} & =+5.0 \mathrm{~V} \end{aligned}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$ |  |  |
|  |  |  | Min | Typ | Max | Min | Max |  |
| $\mathrm{f}_{\text {MAX }}$ | Maximum clock frequency | 1 | 125 | 300 |  | 125 |  | MHz |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {tpHL }} \\ & \hline \end{aligned}$ | Propagation delay CPAB to Bn or CPBA to An | 1 | $\begin{aligned} & 2.2 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & \hline 3.8 \\ & 4.4 \end{aligned}$ | $\begin{aligned} & \hline 5.1 \\ & 5.1 \end{aligned}$ | $\begin{aligned} & 2.2 \\ & 1.7 \end{aligned}$ | $\begin{aligned} & 5.6 \\ & 5.6 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {PHLL }} \\ & \hline \end{aligned}$ | Propagation delay <br> An to Bn or Bn to An | 2 | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 3.2 \\ & 3.7 \end{aligned}$ | $\begin{aligned} & 5.1 \\ & 4.6 \end{aligned}$ | $\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 6.2 \\ & 5.4 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpLH } \\ & t_{\text {tpHL }} \end{aligned}$ | Propagation delay SAB to Bn or SBA to An | 3 | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \hline 3.8 \\ & 4.4 \end{aligned}$ | $\begin{aligned} & 5.1 \\ & 4.9 \end{aligned}$ | $\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 5.9 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpzH } \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$ | Output enable time OEBA to An | $\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.3 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 3.7 \\ & 4.7 \end{aligned}$ | $\begin{aligned} & \hline 4.6 \\ & 6.8 \end{aligned}$ | $\begin{aligned} & \hline 1.3 \\ & 2.5 \end{aligned}$ | $\begin{aligned} & 5.8 \\ & 8.5 \\ & \hline \end{aligned}$ | ns |
| $\begin{aligned} & \hline \text { tPHZ } \\ & \text { tpLZ } \\ & \hline \end{aligned}$ | Output disable time OEBA to An | $\begin{aligned} & 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 3.2 \end{aligned}$ | $\begin{aligned} & \hline 4.5 \\ & 3.8 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 5.0 \\ & 4.1 \end{aligned}$ | ns |
| $\begin{aligned} & \text { tpZH } \\ & t_{\text {PZLL }} \end{aligned}$ | Output enable time OEAB to Bn | $\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.8 \\ & 2.9 \end{aligned}$ | $\begin{aligned} & \hline 3.4 \\ & 4.5 \end{aligned}$ | $\begin{aligned} & \hline 6.1 \\ & 6.5 \end{aligned}$ | $\begin{aligned} & 1.8 \\ & 2.9 \end{aligned}$ | $\begin{aligned} & 6.5 \\ & 7.4 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{tpl}^{2} 7 \end{aligned}$ | Output disable time OEAB to Bn | $\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & \hline 3.8 \\ & 3.1 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 4.4 \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$ | $\begin{aligned} & 5.5 \\ & 5.1 \end{aligned}$ | ns |

## AC SET-UP REQUIREMENTS

GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$ |  | $\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C} \text { to }+85{ }^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{gathered}$ |  |
|  |  |  | Min | Typ | Min |  |
| $\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$ | Set-up time <br> An to CPAB, Bn to CPBA | 4 | $\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 0.8 \end{aligned}$ | $\begin{aligned} & \hline 3.0 \\ & 3.0 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{n}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$ | Hold time <br> An to CPAB, Bn to CPBA | 4 | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | $\begin{aligned} & \hline-0.8 \\ & -0.9 \end{aligned}$ | $\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$ | ns |
| $\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$ | Pulse width, HIGH or LOW CPAB or CPBA | 1 | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & 1.1 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$ | ns |

AC WAVEFORMS
$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V


Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock Frequency


Waveform 2. Propagation Delay, An to Bn or Bn to An


Waveform 3. Propagation Delay, SBA to An or SAB to Bn


Waveform 4. Data Set-up and Hold Times


Waveform 5. 3-State Output Enable Time to HIGH Level and Output Disable Time from HIGH Level


Waveform 6. 3-State Output Enable Time to LOW Level and Output Disable Time from LOW Level

## TEST CIRCUIT AND WAVEFORM




DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

| UNIT | $\underset{\max .}{\mathrm{A}}$ | $\mathrm{A}_{1}$ min. | $\mathrm{A}_{2}$ max. | b | $\mathrm{b}_{1}$ | c | $\mathrm{D}^{(1)}$ | $E^{(1)}$ | e | $\mathbf{e}_{1}$ | L | $\mathrm{M}_{\mathrm{E}}$ | $\mathrm{M}_{\mathrm{H}}$ | w | $\mathrm{Z}^{(1)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 4.70 | 0.38 | 3.94 | $\begin{aligned} & 1.63 \\ & 1.14 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.43 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 31.9 \\ & 31.5 \end{aligned}$ | $\begin{aligned} & 6.73 \\ & 6.25 \end{aligned}$ | 2.54 | 7.62 | $\begin{aligned} & 3.51 \\ & 3.05 \end{aligned}$ | $\begin{aligned} & 8.13 \\ & 7.62 \end{aligned}$ | $\begin{gathered} 10.03 \\ 7.62 \end{gathered}$ | 0.25 | 2.05 |
| inches | 0.185 | 0.015 | 0.155 | $\begin{aligned} & 0.064 \\ & 0.045 \end{aligned}$ | $\begin{aligned} & 0.022 \\ & 0.017 \end{aligned}$ | $\begin{aligned} & 0.014 \\ & 0.010 \end{aligned}$ | $\begin{aligned} & 1.256 \\ & 1.240 \end{aligned}$ | $\begin{aligned} & 0.265 \\ & 0.246 \end{aligned}$ | 0.100 | 0.300 | $\begin{aligned} & 0.138 \\ & 0.120 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.30 \end{aligned}$ | $\begin{aligned} & 0.395 \\ & 0.300 \end{aligned}$ | 0.01 | 0.081 |

Note

1. Plastic or metal protrusions of 0.01 inches maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT222-1 |  | MS-001 |  | - | $\begin{aligned} & -99-04-20 \\ & 99-12-27 \end{aligned}$ |



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $\mathrm{D}^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2.65 | $\begin{aligned} & 0.30 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 2.45 \\ & 2.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 15.6 \\ & 15.2 \end{aligned}$ | $\begin{aligned} & 7.6 \\ & 7.4 \end{aligned}$ | 1.27 | $\begin{aligned} & 10.65 \\ & 10.00 \end{aligned}$ | 1.4 | $\begin{aligned} & 1.1 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 1.1 \\ & 1.0 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.9 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.10 | $\begin{aligned} & 0.012 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.096 \\ & 0.089 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 0.61 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.30 \\ & 0.29 \end{aligned}$ | 0.050 | $\begin{aligned} & 0.419 \\ & 0.394 \end{aligned}$ | 0.055 | $\begin{aligned} & 0.043 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.043 \\ & 0.039 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$ |  |

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT137-1 | 075E05 | MS-013 |  | $\square$ ¢ | $\begin{aligned} & -97-05-27 \\ & 99-12-27 \end{aligned}$ |



DIMENSIONS ( mm are the original dimensions)

| UNIT | A max. | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $\mathrm{D}^{(1)}$ | $E^{(2)}$ | e | $\mathrm{HE}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.10 | $\begin{aligned} & 0.15 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 0.95 \\ & 0.80 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.30 \\ & 0.19 \end{aligned}$ | $\begin{aligned} & 0.2 \\ & 0.1 \end{aligned}$ | $\begin{aligned} & 7.9 \\ & 7.7 \end{aligned}$ | $\begin{aligned} & 4.5 \\ & 4.3 \end{aligned}$ | 0.65 | $\begin{aligned} & 6.6 \\ & 6.2 \end{aligned}$ | 1.0 | $\begin{aligned} & 0.75 \\ & 0.50 \end{aligned}$ | $\begin{aligned} & 0.4 \\ & 0.3 \end{aligned}$ | 0.2 | 0.13 | 0.1 | $\begin{aligned} & 0.5 \\ & 0.2 \end{aligned}$ | $8^{0}{ }^{\circ}$ |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT355-1 |  | MO-153 |  | - ( | $\begin{aligned} & -95-02-04 \\ & 99-12-27 \end{aligned}$ |

## REVISION HISTORY

| Rev | Date | Description |
| :--- | :--- | :--- |
| $\_^{2}$ | 20021216 | Product data (9397 750 10849); ECN 853-1783 29290 of 12 December 2002. <br> Supersedes data of 06 September 1995. <br> Modifications: <br> $\bullet$ Ordering information table: remove "North America" column; remove 74ABT651DB package offering. |
| $\_1$ | 19950906 | Product specification. ECN 853-1783 15703 of 06 September 1995. |

## Data sheet status

| Level | Data sheet status [1] | Product <br> status [2] [3] | Definitions |
| :--- | :--- | :--- | :--- |
| I | Objective data | Development | This data sheet contains data from the objective specification for product development. <br> Philips Semiconductors reserves the right to change the specification in any manner without notice. |
| II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published <br> at a later date. Philips Semiconductors reserves the right to change the specification without notice, in <br> order to improve the design and supply the best possible product. |
| III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the <br> right to make changes at any time in order to improve the design, manufacturing and supply. Relevant <br> changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

## Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## Contact information

For additional information please visit
http://www.semiconductors.philips.com.

Fax: +31 402724825
For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.
© Koninklijke Philips Electronics N.V. 2002
All rights reserved. Printed in U.S.A.
Date of release: 12-02
Document order number:
939775010849

