74AVCH16T245

16-bit dual supply translating transceiver with configurable voltage translation; 3-state

Rev. 02 — 29 March 2010

Product data sheet

1. General description

The 74AVCH16T245 is a 16-bit transceiver with bidirectional level voltage translation and 3-state outputs. The device can be used as two 8-bit transceivers or as a 16-bit transceiver. It has dual supplies ($V_{CC(A)}$ and $V_{CC(B)}$) for voltage translation and two 8-bit input-output ports (nAn, nBn) each with its own output enable ($n\overline{OE}$) and send/receive (nDIR) input for direction control. $V_{CC(A)}$ and $V_{CC(B)}$ can be independently supplied at any voltage between 0.8 V and 3.6 V making the device suitable for low voltage translation between any of the following voltages: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V. A HIGH on nDIR selects transmission from nAn to nBn while a LOW on nDIR selects transmission from nBn to nAn. A HIGH on $n\overline{OE}$ causes the outputs to assume a high-impedance OFF-state

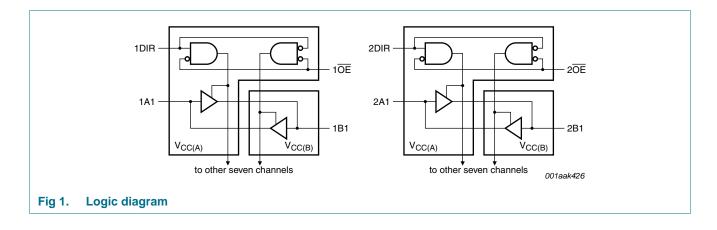
The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A and B outputs are in the high-impedance OFF-state. The bus-hold circuitry on the powered-up side always stays active.

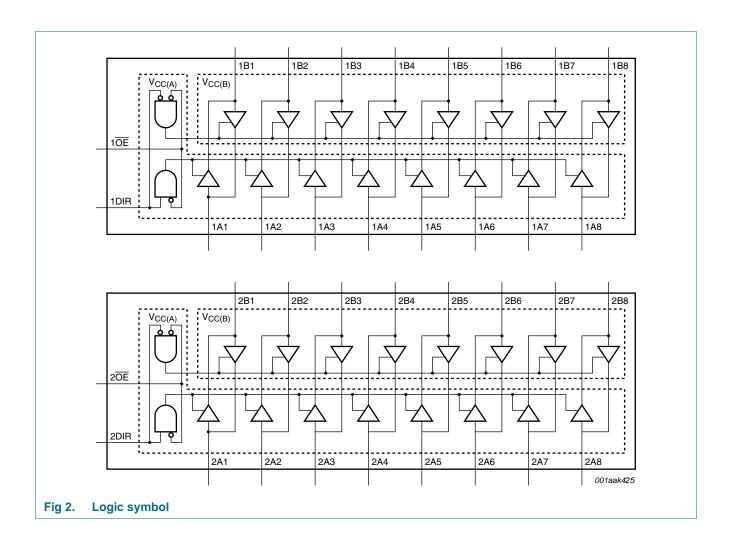
The 74AVCH16T245 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

2. Features and benefits

- Wide supply voltage range:
 - ◆ V_{CC(A)}: 0.8 V to 3.6 V
 - ◆ V_{CC(B)}: 0.8 V to 3.6 V
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - ◆ JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F Class 3B exceeds 8000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101D exceeds 1000 V
- Maximum data rates:
 - ◆ 380 Mbit/s (≥ 1.8 V to 3.3 V translation)

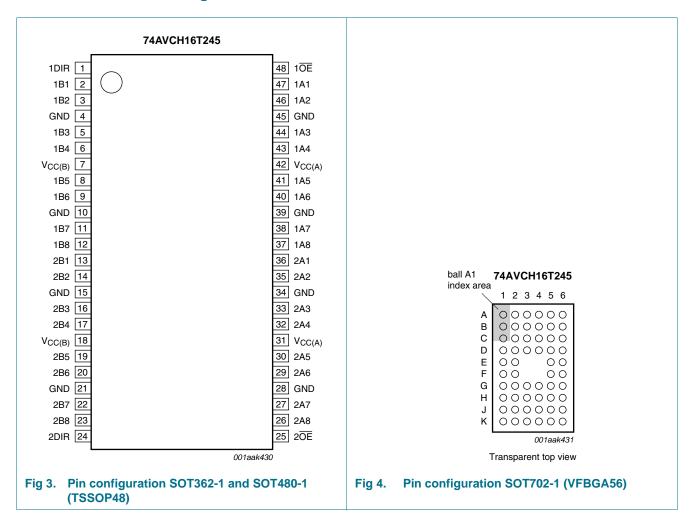
- ◆ 200 Mbit/s (≥ 1.1 V to 3.3 V translation)
- ◆ 200 Mbit/s (≥ 1.1 V to 2.5 V translation)
- ◆ 200 Mbit/s (≥ 1.1 V to 1.8 V translation)
- ◆ 150 Mbit/s (≥ 1.1 V to 1.5 V translation)
- ◆ 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Bus hold on data inputs
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C


3. Ordering information


Table 1. Ordering information

Type number	Package							
	Temperature range	Name	Description	Version				
74AVCH16T245DGG	−40 °C to +125 °C	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1				
74AVCH16T245DGV	–40 °C to +125 °C	TSSOP48[1]	plastic thin shrink small outline package; 48 leads; body width 4.4 mm; lead pitch 0.4 mm	SOT480-1				
74AVCH16T245EV	–40 °C to +125 °C	VFBGA56	plastic very thin fine-pitch ball grid array package; 56 balls; body 4.5 \times 7 \times 0.65 mm	SOT702-1				
74AVCH16T245BQ	–40 °C to +125 °C	HXQFN60U	plastic thermal enhanced extremely thin quad flat package; no leads; 60 terminals; UTLP based; body $4\times6\times0.5$ mm	SOT1134-1				

^[1] Also known as TVSOP48.


4. Functional diagram

5. Pinning information

5.1 Pinning

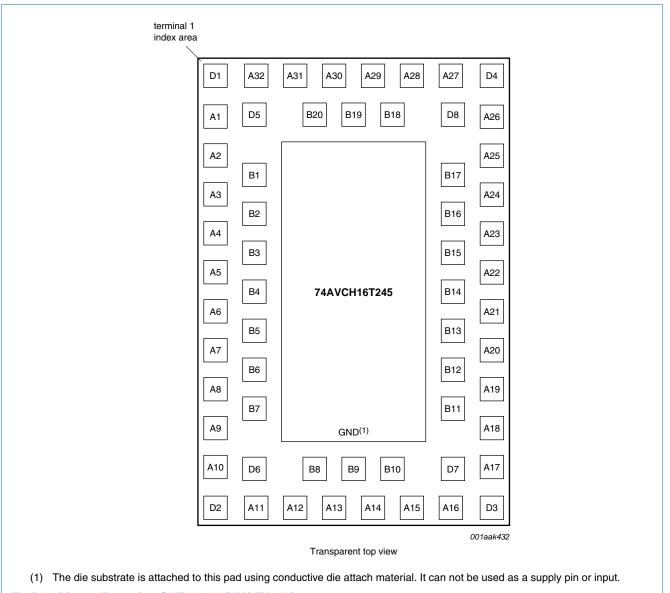


Fig 5. Pin configuration SOT1134-1 (HXQFN60U)

5.2 Pin description

Table 2. Pin description

Symbol	Pin			Description
	SOT362-1 and SOT480-1	SOT702-1	SOT1134-1	
1DIR, 2DIR	1, 24	A1, K1	A30, A13	direction control
1B1 to 1B8	2, 3, 5, 6, 8, 9, 11, 12	B2, B1, C2, C1, D2, D1, E2, E1	B20, A31, D5, D1, A2, B2, B3, A5	data input or output
2B1 to 2B8	13, 14, 16, 17, 19, 20, 22, 23	F1, F2, G1, G2, H1, H2, J1, J2	A6, B5, B6, A9, D2, D6, A12, B8	data input or output
GND <mark>¹¹</mark>	4, 10, 15, 21, 28, 34, 39, 45	B3, D3, G3, J3, J4, G4, D4, B4	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)
$V_{CC(B)}$	7, 18	C3, H3	A1, A10	supply voltage B (nBn inputs are referenced to $V_{\text{CC(B)}}$)
10E, 20E	48, 25	A6, K6	A29, A14	output enable input (active LOW)
1A1 to 1A8	47, 46, 44, 43, 41, 40, 38, 37	B5, B6, C5, C6, D5, D6, E5, E6	B18, A28, D8, D4, A25, B16, B15, A22	data input or output
2A1 to 2A8	36, 35, 33, 32, 30, 29, 27, 26	F6, F5, G6, G5, H6, H5, J6, J5	A21, B13, B12, A18, D3, D7, A15, B10	data input or output
V _{CC(A)}	31, 42	C4, H4	A17, A26	supply voltage A (nAn, n $\overline{\text{OE}}$ and nDIR inputs are referenced to $V_{\text{CC(A)}}$)
n.c.	-	A2, A3, A4, A5, K2, K3, K4, K5	A4, A7, A20, A23, B1, B4, B7, B9, B11, B14, B17, B19	not connected

^[1] All GND pins must be connected to ground (0 V).

6. Functional description

Table 3. Function table[1]

Supply voltage	Input	Input I		Input/output[3]		
V _{CC(A)} , V _{CC(B)}	nOE[2]	nDIR[2]	nAn[2]	nBn[2]		
0.8 V to 3.6 V	L	L	nAn = nBn	input		
0.8 V to 3.6 V	L	Н	input	nBn = nAn		
0.8 V to 3.6 V	Н	Χ	Z	Z		
GND[3]	Χ	Χ	Z	Z		

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

^[2] The nAn, nDIR and n $\overline{\text{OE}}$ input circuit is referenced to $V_{\text{CC(A)}}$; The nBn input circuit is referenced to $V_{\text{CC(B)}}$.

^[3] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		-0.5	+4.6	V
V _{CC(B)}	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	–50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode	[1][2][3] -0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	[2] _	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		–65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C};$			
		TSSOP48 package	<u>[4]</u> _	500	mW
		VFBGA56 package	<u>[5]</u> _	1000	mW
		HXQFN60U package	<u>[5]</u> _	1000	mW

^[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		0.8	3.6	V
$V_{CC(B)}$	supply voltage B		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	<u>[1]</u> 0	V_{CCO}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CCI} = 0.8 \text{ V to } 3.6 \text{ V}$	[2] _	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

^[2] V_{CCO} is the supply voltage associated with the output port.

^[3] $V_{CCO} + 0.5 \text{ V}$ should not exceed 4.6 V.

^[4] Above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

^[5] Above 70 °C the value of P_{tot} derates linearly with 1.8 mW/K.

^[2] V_{CCI} is the supply voltage associated with the input port.

9. Static characteristics

Table 6. Typical static characteristics at $T_{amb} = 25 \, ^{\circ}C_{-}^{[1][2]}$

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

	, ,				
Parameter	Conditions	Min	Тур	Max	Unit
HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
	$I_{O} = -1.5 \text{ mA}; \ V_{CC(A)} = V_{CC(B)} = 0.8 \ V$	-	0.69	-	V
LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
	$I_O = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.07	-	V
input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±0.025	±0.25	μА
bus hold LOW current	A or B port; $V_I = 0.42 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[3]	26	-	μΑ
bus hold HIGH current	A or B port; $V_I = 0.78 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[4] _	-24	-	μΑ
bus hold LOW overdrive current	A or B port; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	<u>[5]</u> _	27	-	μА
bus hold HIGH overdrive current	A or B port; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	<u>[6]</u> _	-26	-	μА
OFF-state output current	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	<u>[7]</u> -	±0.5	±2.5	μА
	suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 3.6 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	<u>[7]</u> -	±0.5	±2.5	μА
	suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	<u>[7]</u> _	±0.5	±2.5	μΑ
power-off leakage current	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	±0.1	±1	μА
	B port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V	-	±0.1	±1	μА
input capacitance	nDIR, n \overline{OE} input; V _I = 0 V or 3.3 V; V _{CC(A)} = V _{CC(B)} = 3.3 V	-	2.0	-	pF
input/output capacitance	A and B port; $V_O = 3.3 \text{ V or } 0 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-	4.5	-	pF
	LOW-level output voltage input leakage current bus hold LOW current bus hold HIGH current bus hold LOW overdrive current bus hold HIGH overdrive current OFF-state output current power-off leakage current input capacitance	$\label{eq:high-level output voltage} HIGH-level output voltage \\ LOW-level output voltage \\ LOW-level output voltage \\ LOW-level output voltage \\ V_1 = V_{IH} \text{ or } V_{IL} \\ I_O = 1.5 \text{ mA; } V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V} \\ \text{input leakage current} \\ \text{nDIR, } \overline{\text{nOE}} \text{ input; } V_1 = 0 \text{ V or } 3.6 \text{ V; } \\ V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V} \\ \text{bus hold LOW current} \\ \text{A or B port; } V_1 = 0.42 \text{ V; } V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V} \\ \text{bus hold LOW overdrive current} \\ \text{bus hold HIGH overdrive current} \\ \text{DSF-state output current} \\ \text{OFF-state output current} \\ \text{OFF-state output current} \\ \text{A or B port; } V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V} \\ \text{suspend mode A port; } V_O = 0 \text{ V or } V_{CCO;} \\ V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V} \\ \text{suspend mode B port; } V_O = 0 \text{ V or } V_{CCO;} \\ V_{CC(A)} = 0 \text{ V; } V_{CC(B)} = 3.6 \text{ V} \\ \text{suspend mode B port; } V_O = 0 \text{ V or } V_{CCO;} \\ V_{CC(A)} = 0 \text{ V; } V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V;} \\ V_{CC(A)} = 0 \text{ V; } V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V;} \\ V_{CC(A)} = 0 \text{ V; } V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V;} \\ V_{CC(B)} = 0 \text{ V; } V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V;} \\ V_{CC(B)} = 0 \text{ V; } V_{CC(B)} = 3.3 \text{ V to } 3.3 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V to } 3.3 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V to } 0.8 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0.8 \text{ V;} \\ V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V or } 0$	$ \begin{tabular}{ll} HIGH-level output voltage & V_1 = V_{IH} \ or \ V_{IL} & I_0 = -1.5 \ mA; \ V_{CC(A)} = V_{CC(B)} = 0.8 \ V & - \\ \hline LOW-level output voltage & V_1 = V_{IH} \ or \ V_{IL} & I_0 = 1.5 \ mA; \ V_{CC(A)} = V_{CC(B)} = 0.8 \ V & - \\ \hline Input leakage current & nDIR, \ n\overline{OE} \ input; \ V_1 = 0 \ V \ or \ 3.6 \ V; \ V_{CC(A)} = V_{CC(B)} = 0.8 \ V \ to \ 3.6 \ V \\ \hline bus hold LOW current & A \ or B \ port; \ V_1 = 0.42 \ V; \ V_{CC(A)} = V_{CC(B)} = 1.2 \ V & 3 \ - \\ \hline bus hold HIGH \ current & A \ or B \ port; \ V_1 = 0.78 \ V; \ V_{CC(A)} = V_{CC(B)} = 1.2 \ V & 4 \ - \\ \hline bus hold LOW \ overdrive \ current & A \ or B \ port; \ V_{CC(A)} = V_{CC(B)} = 1.2 \ V & 5 \ - \\ \hline bus hold HIGH \ overdrive \ current & A \ or B \ port; \ V_{CC(A)} = V_{CC(B)} = 1.2 \ V & 5 \ - \\ \hline V_{CC(A)} = V_{CC(B)} = 3.6 \ V & 5 \ - \\ \hline V_{CC(A)} = V_{CC(B)} = 3.6 \ V & 5 \ - \\ \hline V_{CC(A)} = V_{CC(B)} = 3.6 \ V & 5 \ - \\ \hline V_{CC(A)} = 0 \ V; \ V_{CC(B)} = 0 \ V \ or V_{CCO}; & 7 \ - \\ \hline V_{CC(A)} = 0 \ V; \ V_{CC(B)} = 0.8 \ V \ to \ 3.6 \ V; & - \\ \hline V_{CC(A)} = 0 \ V; \ V_{CC(B)} = 0.8 \ V \ to \ 3.6 \ V; & - \\ \hline Input \ capacitance & DIR, \ n\overline{OE} \ input; \ V_1 = 0 \ V \ or \ 3.3 \ V; & - \\ \hline Input/output \ capacitance & A \ and \ B \ port; \ V_0 = 3.3 \ V \ or \ 0 \ V; & - \\ \hline \end{tabular}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$

^[1] V_{CCO} is the supply voltage associated with the output port.

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.

^[4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.

^[5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.

^[6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.

^[7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 7. Static characteristics [1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C t	o +85 °C	-40 °C to	+125 °C	Uni
			Min	Max	Min	Max	
/ _{IH}	HIGH-level	data input			1	1	
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	٧
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V _{CCI} = 2.3 V to 2.7 V	1.6	-	1.6	-	V
		V _{CCI} = 3.0 V to 3.6 V	2	-	2	-	V
		nDIR, nOE input					
		V _{CC(A)} = 0.8 V	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		V _{CC(A)} = 1.1 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
, IL	LOW-level	data input					
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
		nDIR, nOE input					
		V _{CC(A)} = 0.8 V	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		V _{CC(A)} = 1.1 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.7	-	0.7	V
		V _{CC(A)} = 3.0 V to 3.6 V	-	0.8	-	0.8	V
он	HIGH-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_O = -100 \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		$I_{O} = -3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	V
		$I_O = -6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	1.05	-	V
		$I_O = -8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	1.2	-	V
		$I_{O} = -9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	1.75	-	V
		$I_O = -12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	2.3	-	V
OL	LOW-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	I_{O} = 100 μ A; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	0.1	-	0.1	V
		$I_{O} = 3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	-	0.25	-	0.25	V
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	0.35	-	0.35	V
		$I_{O} = 8 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-	0.45	-	0.45	٧
		$I_O = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	0.55	-	0.55	٧
		$I_{O} = 12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	0.7	-	0.7	V
	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±1	-	±5	μΑ

74AVCH16T245_2

All information provided in this document is subject to legal disclaimers.

 Table 7.
 Static characteristics ...continueo

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
				Min	Max	Min	Max	
I _{BHL}	bus hold	A or B port	[3]					
	LOW current	$V_I = 0.49 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		15	-	15	-	μΑ
		$V_I = 0.58 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$		25	-	25	-	μΑ
		$V_{I} = 0.70 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		45	-	45	-	μΑ
		$V_{I} = 0.80 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		100	-	90	-	μΑ
I _{BHH}	bus hold	A or B port	<u>[4]</u>					
	HIGH current	$V_I = 0.91 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		-15	-	-15	-	μΑ
		$V_I = 1.07 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$		-25	-	–25	-	μΑ
		$V_I = 1.60 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		-45	-	-45	-	μΑ
		$V_I = 2.00 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		-100	-	-100	-	μΑ
I _{BHLO}	bus hold	A or B port	<u>[5]</u>					
	LOW overdrive	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$		125	-	125	-	μΑ
	current	$V_{CC(A)} = V_{CC(B)} = 1.95 \text{ V}$		200	-	200	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		300	-	300	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		500	-	500	-	μΑ
I_{BHHO}	bus hold	A or B port	[6]					
	HIGH overdrive	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$		-125	-	-125	-	μΑ
	current	$V_{CC(A)} = V_{CC(B)} = 1.95 \text{ V}$		-200	-	-200	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		-300	-	-300	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		-500	-	-500	-	μΑ
l _{OZ}	OFF-state output	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	<u>[7]</u>	-	±5	-	±30	μА
	current	suspend mode A port; $V_O = 0 \text{ V or } V_{CC(A)}$; $V_{CC(B)} = 3.6 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	<u>[7]</u>	-	±5	-	±30	μΑ
		suspend mode B port; $V_O = 0 \text{ V or } V_{CC(A)}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	[7]	-	±5	-	±30	μА
I _{OFF}	power-off leakage	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V		-	±5	-	±30	μΑ
	current	B port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V		-	±5	-	±30	μΑ

Table 7. Static characteristics ...continued[1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C t	o +85 °C	–40 °C to	+125 °C	Unit	
			Min	Max	Min	Max		
I _{CC}	supply	A port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$	'		1			
	current	$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	30	-	125	μА	
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	25	-	100	μА	
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	25	-	100	μΑ	
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 3.6 \text{ V}$	-5	-	-20	-	μΑ	
		B port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$						
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	30	-	125	μА	
				$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	25	-	100
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-5	-	-20	-	μΑ	
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 3.6 \text{ V}$	-	25	-	100	μΑ	
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	55	-	185	μΑ	
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 1.1$ V to 3.6 V; $V_{CC(B)} = 1.1$ V to 3.6 V	-	45	-	150	μА	

- [1] V_{CCO} is the supply voltage associated with the output port.
- [2] V_{CCI} is the supply voltage associated with the data input port.
- [3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.
- [4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.
- [5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.
- [6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.
- [7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 8. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

V _{CC(A)}	V _{CC(B)}	V _{CC(B)}						
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μΑ
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μΑ
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μΑ
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μΑ
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μΑ
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μΑ
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μΑ

74AVCH16T245_2

Product data sheet

All information provided in this document is subject to legal disclaimers.

10. Dynamic characteristics

Table 9. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \, ^{\circ}C$ [1][2] Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			V _{CC(A)} =	V _{CC(B)}			Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C_{PD}	power dissipation capacitance	A port: (direction nAn to nBn); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction nAn to nBn); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction nBn to nAn); output enabled	9	9.7	9.8	10.3	11.7	13.7	pF
		A port: (direction nBn to nAn); output disabled	0.6	0.6	0.6	0.7	0.7	0.7	pF
		B port: (direction nAn to nBn); output enabled	9	9.7	9.8	10.3	11.7	13.7	pF
		B port: (direction nAn to nBn); output disabled	0.6	0.6	0.6	0.7	0.7	0.7	pF
		B port: (direction nBn to nAn); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		B port: (direction nBn to nAn); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

[2] f_i = 10 MHz; V_I = GND to V_{CC} ; t_f = t_f = 1 ns; C_L = 0 pF; R_L = ∞ Ω .

Table 10. Typical dynamic characteristics at $V_{CC(A)} = 0.8 \text{ V}$ and $T_{amb} = 25 ^{\circ}\text{C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Parameter	Conditions	V _{CC(B)}						Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t_{pd}	propagation delay	nAn to nBn	14.4	7.0	6.2	6.0	5.9	6.0	ns
	nBn to nAn	14.4	12.4	12.1	11.9	11.8	11.8	ns	
t _{dis}	disable time	nOE to nAn	16.2	16.2	16.2	16.2	16.2	16.2	ns
		nOE to nBn	17.6	10.0	9.0	9.1	8.7	9.3	ns
t _{en}	enable time	nOE to nAn	21.9	21.9	21.9	21.9	21.9	21.9	ns
		nOE to nBn	22.2	11.1	9.8	9.4	9.4	9.6	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 11. Typical dynamic characteristics at $V_{CC(B)} = 0.8 \text{ V}$ and $T_{amb} = 25 \,^{\circ}\text{C}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Symbol Parameter Conditions				V _{CC(A)}						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V			
t_{pd}	propagation delay	nAn to nBn	14.4	12.4	12.1	11.9	11.8	11.8	ns		
		nBn to nAn	14.4	7.0	6.2	6.0	5.9	6.0	ns		
t_{dis}	disable time	nOE to nAn	16.2	5.9	4.4	4.2	3.1	3.5	ns		
		nOE to nBn	17.6	14.2	13.7	13.6	13.3	13.1	ns		
t _{en}	enable time	nOE to nAn	21.9	6.4	4.4	3.5	2.6	2.3	ns		
		nOE to nBn	22.2	17.7	17.2	17.0	16.8	16.7	ns		

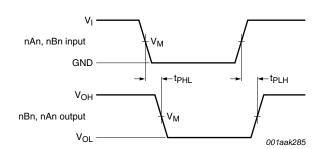
^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 12. Dynamic characteristics for temperature range $-40~^{\circ}\text{C}$ to $+85~^{\circ}\text{C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7.

Symbol	Parameter	Conditions					_	C(B)					Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	± 0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V	•						'					
t _{pd}	propagation	nAn to nBn	0.5	9.2	0.5	6.9	0.5	6.0	0.5	5.1	0.5	4.9	ns
	delay	nBn to nAn	0.5	9.2	0.5	8.7	0.5	8.5	0.5	8.2	0.5	8.0	ns
t _{dis}	disable time	nOE to nAn	1.5	11.6	1.5	11.6	1.5	11.6	1.5	11.6	1.5	11.6	ns
		n OE to nBn	1.5	12.5	1.5	9.7	1.5	9.5	1.0	8.1	1.0	8.9	ns
t _{en}	enable time	n OE to nAn	1.0	14.5	1.0	14.5	1.0	14.5	1.0	14.5	1.0	14.5	ns
		nOE to nBn	1.1	14.9	1.1	11.0	1.1	9.6	1.0	8.1	1.0	7.7	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	nAn to nBn	0.5	8.7	0.5	6.2	0.5	5.2	0.5	4.1	0.5	3.7	ns
	delay	nBn to nAn	0.5	6.9	0.5	6.2	0.5	5.9	0.5	5.6	0.5	5.5	ns
t _{dis}	disable time	nOE to nAn	1.5	9.1	1.5	9.1	1.5	9.1	1.5	9.1	1.5	9.1	ns
		nOE to nBn	1.5	11.4	1.5	8.7	1.5	7.5	1.0	6.5	1.0	6.3	ns
t _{en}	enable time	nOE to nAn	1.0	10.1	1.0	10.1	1.0	10.1	1.0	10.1	1.0	10.1	ns
		nOE to nBn	1.0	13.5	1.0	10.1	0.5	8.1	0.5	5.9	0.5	5.2	ns
V _{CC(A)} =	1.65 V to 1.95	V											
t _{pd}	propagation delay	nAn to nBn	0.5	8.5	0.5	5.9	0.5	4.8	0.5	3.7	0.5	3.3	ns
		nBn to nAn	0.5	6.0	0.5	5.2	0.5	4.8	0.5	4.5	0.5	4.4	ns
t_{dis}	disable time	nOE to nAn	1.5	7.7	1.5	7.7	1.5	7.7	1.5	7.7	1.5	7.7	ns
		nOE to nBn	1.5	11.1	1.5	8.4	1.5	7.1	1.0	5.9	1.0	5.7	ns
t _{en}	enable time	nOE to nAn	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	1.0	7.8	ns
		nOE to nBn	1.0	13.0	1.0	9.2	0.5	7.4	0.5	5.3	0.5	4.5	ns
$V_{CC(A)} =$	2.3 V to 2.7 V												
t_{pd}	propagation	nAn to nBn	0.5	8.2	0.5	5.6	0.5	4.6	0.5	3.3	0.5	2.8	ns
	delay	nBn to nAn	0.5	5.1	0.5	4.1	0.5	3.7	0.5	3.4	0.5	3.2	ns
t_{dis}	disable time	nOE to nAn	1.0	6.1	1.0	6.1	1.0	6.1	1.0	6.1	1.0	6.1	ns
		nOE to nBn	1.0	10.6	1.0	7.9	1.0	6.6	1.0	6.1	1.0	5.2	ns
t _{en}	enable time	nOE to nAn	0.5	5.3	0.5	5.3	0.5	5.3	0.5	5.3	0.5	5.3	ns
		nOE to nBn	0.5	12.5	0.5	9.4	0.5	7.3	0.5	5.1	0.5	4.5	ns
$V_{CC(A)} =$	3.0 V to 3.6 V												
t_{pd}	propagation	nAn to nBn	0.5	8.0	0.5	5.5	0.5	4.4	0.5	3.2	0.5	2.7	ns
	delay	nBn to nAn	0.5	4.9	0.5	3.7	0.5	3.3	0.5	2.9	0.5	2.7	ns
t_{dis}	disable time	nOE to nAn	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	0.5	5.0	ns
		nOE to nBn	1.0	10.3	1.0	7.7	1.0	6.5	1.0	5.2	0.5	5.0	ns
t _{en}	enable time	nOE to nAn	0.5	4.3	0.5	4.3	0.5	4.2	0.5	4.1	0.5	4.0	ns
		nOE to nBn	0.5	12.4	0.5	9.3	0.5	7.2	0.5	4.9	0.5	4.0	ns

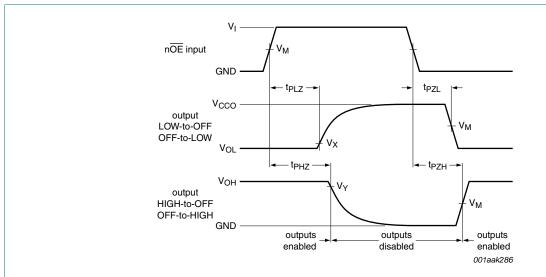
^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .


Table 13. Dynamic characteristics for temperature range $-40~^{\circ}\text{C}$ to $+125~^{\circ}\text{C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Parameter	Conditions					Vc	C(B)					Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	± 0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V	•	'	'	'	•	•	'			'	•	
t _{pd}	propagation	nAn to nBn	0.5	10.2	0.5	7.6	0.5	6.6	0.5	5.7	0.5	5.4	ns
	delay	nBn to nAn	0.5	10.2	0.5	9.6	0.5	9.4	0.5	9.1	0.5	8.8	ns
t _{dis}	disable time	n OE to nAn	1.5	12.8	1.5	12.8	1.5	12.8	1.5	12.8	1.5	12.8	ns
		$n\overline{OE}$ to nBn	1.5	13.8	1.5	10.7	1.5	10.5	1.0	9.0	1.5	9.8	ns
t _{en} enable tir	enable time	n OE to nAn	1.0	16.0	1.0	16.0	1.0	16.0	1.0	16.0	1.0	16.0	ns
		nOE to nBn	1.1	16.4	1.1	12.1	1.1	10.6	1.0	9.0	1.0	8.5	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	nAn to nBn	0.5	9.6	0.5	6.9	0.5	5.8	0.5	4.6	0.5	4.1	ns
	delay	nBn to nAn	0.5	7.6	0.5	6.9	0.5	6.5	0.5	6.2	0.5	6.1	ns
t _{dis}	disable time	nOE to nAn	1.5	10.1	1.5	10.1	1.5	10.1	1.5	10.1	1.5	10.1	ns
		nOE to nBn	1.5	12.6	1.5	9.6	1.5	8.3	1.0	7.2	1.0	7.0	ns
t _{en}	enable time	nOE to nAn	1.0	11.2	1.0	11.2	1.0	11.2	1.0	11.2	1.0	11.2	ns
		nOE to nBn	1.0	14.9	1.0	11.2	0.5	9.0	0.5	6.5	0.5	5.8	ns
$V_{CC(A)} =$	1.65 V to 1.95	V											
t_{pd}	propagation delay	nAn to nBn	0.5	9.4	0.5	6.5	0.5	5.3	0.5	4.1	0.5	3.7	ns
		nBn to nAn	0.5	6.6	0.5	5.8	0.5	5.3	0.5	5.0	0.5	4.9	ns
t_{dis}	disable time	nOE to nAn	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	1.5	8.5	ns
		nOE to nBn	1.5	12.3	1.5	9.3	1.5	7.9	1.0	6.5	1.0	6.3	ns
t _{en}	enable time	nOE to nAn	1.0	8.6	1.0	8.6	1.0	8.6	1.0	8.6	1.0	8.6	ns
		nOE to nBn	1.0	14.3	1.0	10.2	0.5	8.2	0.5	5.9	0.5	5.0	ns
$V_{CC(A)} =$	2.3 V to 2.7 V												
t_{pd}	propagation	nAn to nBn	0.5	9.1	0.5	6.2	0.5	5.1	0.5	3.7	0.5	3.1	ns
	delay	nBn to nAn	0.5	5.7	0.5	4.6	0.5	4.1	0.5	3.8	0.5	3.6	ns
t_{dis}	disable time	nOE to nAn	1.0	6.8	1.0	6.8	1.0	6.8	1.0	6.8	1.0	6.8	ns
		nOE to nBn	1.0	11.7	1.0	8.7	1.0	7.3	1.0	6.8	1.0	5.8	ns
t _{en}	enable time	nOE to nAn	0.5	5.9	0.5	5.9	0.5	5.9	0.5	5.9	0.5	5.9	ns
		nOE to nBn	0.5	13.8	0.5	10.4	0.5	8.1	0.5	5.7	0.5	5.0	ns
$V_{CC(A)} =$	3.0 V to 3.6 V												
t_{pd}	propagation	nAn to nBn	0.5	8.8	0.5	6.1	0.5	4.9	0.5	3.6	0.5	3.0	ns
	delay	nBn to nAn	0.5	5.4	0.5	4.1	0.5	3.7	0.5	3.2	0.5	3.0	ns
t _{dis}	disable time	nOE to nAn	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	0.5	5.5	ns
		nOE to nBn	1.0	11.4	1.0	8.5	1.0	7.2	1.0	5.8	0.5	5.5	ns
t _{en}	enable time	nOE to nAn	0.5	4.8	0.5	4.8	0.5	4.7	0.5	4.6	0.5	4.4	ns
		nOE to nBn	0.5	13.7	0.5	10.3	0.5	8.0	0.5	5.4	0.5	4.4	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .


11. Waveforms

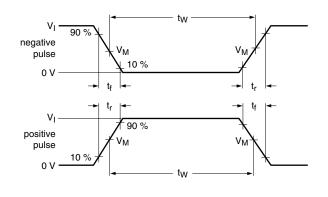
Measurement points are given in Table 14.

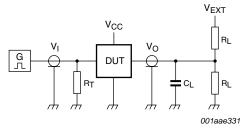
 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical output voltage levels that occur with the output load.

Fig 6. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times

Measurement points are given in Table 14.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Fig 7. Enable and disable times


Table 14. Measurement points

Supply voltage	Input ^[1]	Output ^[2]		
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	$V_{OH} - 0.1 V$
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

^[1] V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

Test data is given in Table 15.

R_L = Load resistance.

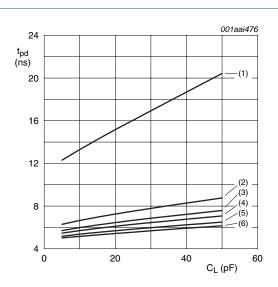
C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance.

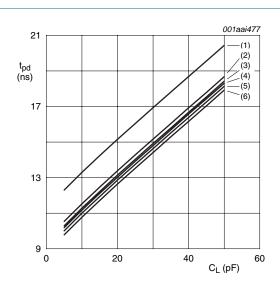
 V_{EXT} = External voltage for measuring switching times.

Fig 8. Load circuit for switching times

Table 15. Test data

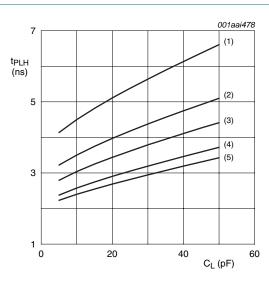

Supply voltage	Input		Load	Load		V _{EXT}		
$V_{CC(A)}, V_{CC(B)}$	V _I [1]	∆t/ ∆ V [2]	C _L	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]	
0.8 V to 1.6 V	V_{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
1.65 V to 2.7 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
3.0 V to 3.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	

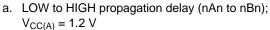
^[1] V_{CCI} is the supply voltage associated with the data input port.

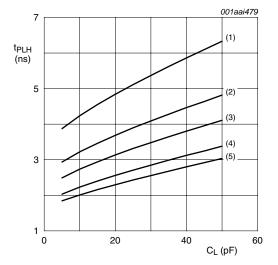

^[2] $dV/dt \ge 1.0 V/ns$

^[3] V_{CCO} is the supply voltage associated with the output port.

12. Typical propagation delay characteristics

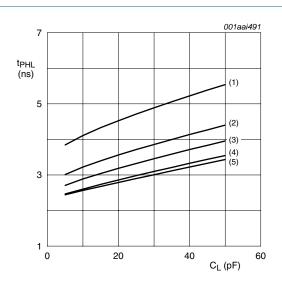



- a. Propagation delay (nAn to nBn); V_{CC(A)} = 0.8 V
- (1) $V_{CC(B)} = 0.8 \text{ V}.$
- (2) $V_{CC(B)} = 1.2 \text{ V}.$
- (3) $V_{CC(B)} = 1.5 \text{ V}.$
- (4) $V_{CC(B)} = 1.8 \text{ V}.$
- (5) $V_{CC(B)} = 2.5 \text{ V}.$
- (6) $V_{CC(B)} = 3.3 \text{ V}.$

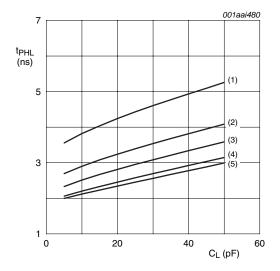


- b. Propagation delay (nAn to nBn); $V_{CC(B)} = 0.8 \text{ V}$
- (1) $V_{CC(A)} = 0.8 \text{ V}.$
- (2) $V_{CC(A)} = 1.2 \text{ V}.$
- (3) $V_{CC(A)} = 1.5 \text{ V}.$
- (4) $V_{CC(A)} = 1.8 \text{ V}.$
- (5) $V_{CC(A)} = 2.5 \text{ V}.$ (6) $V_{CC(A)} = 3.3 \text{ V}.$

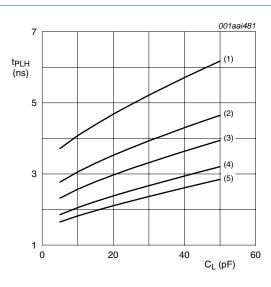
Fig 9. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

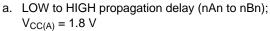


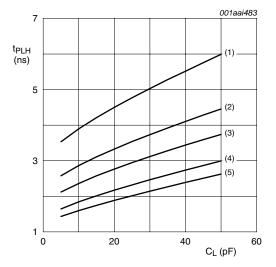
c. LOW to HIGH propagation delay (nAn to nBn); $V_{CC(A)} = 1.5 \text{ V}$



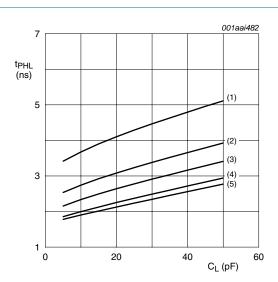
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$

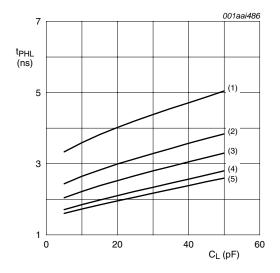

Fig 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C



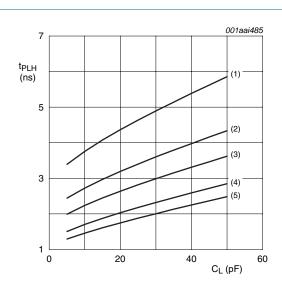

b. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 1.2 \text{ V}$

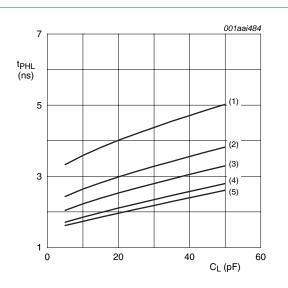
d. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 1.5 \text{ V}$




c. LOW to HIGH propagation delay (nAn to nBn); $V_{CC(A)} = 2.5 \text{ V}$

- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$




b. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 1.8 \text{ V}$

d. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 2.5 \text{ V}$

- a. LOW to HIGH propagation delay (nAn to nBn); $V_{\text{CC(A)}} = 3.3 \text{ V}$
- b. HIGH to LOW propagation delay (nAn to nBn); $V_{\text{CC(A)}} = 3.3 \text{ V}$

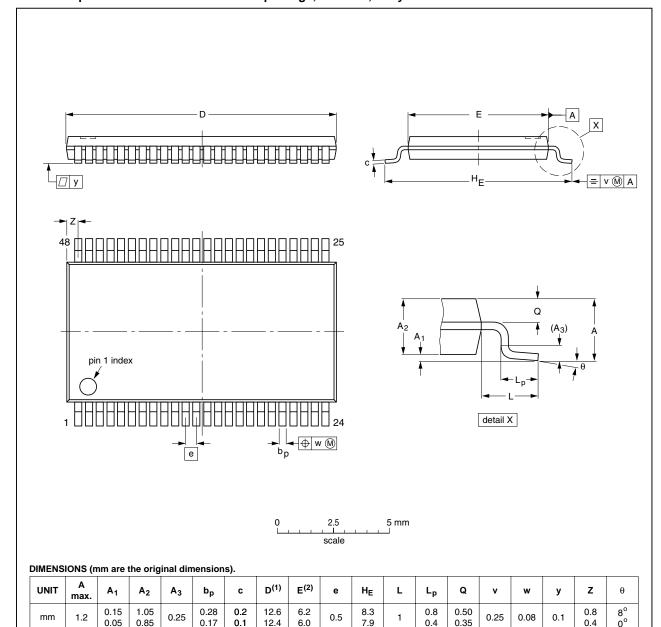

- (1) $V_{CC(B)} = 1.2 \text{ V}.$
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$

Fig 12. Typical propagation delay versus load capacitance; $T_{amb} = 25$ °C

13. Package outline

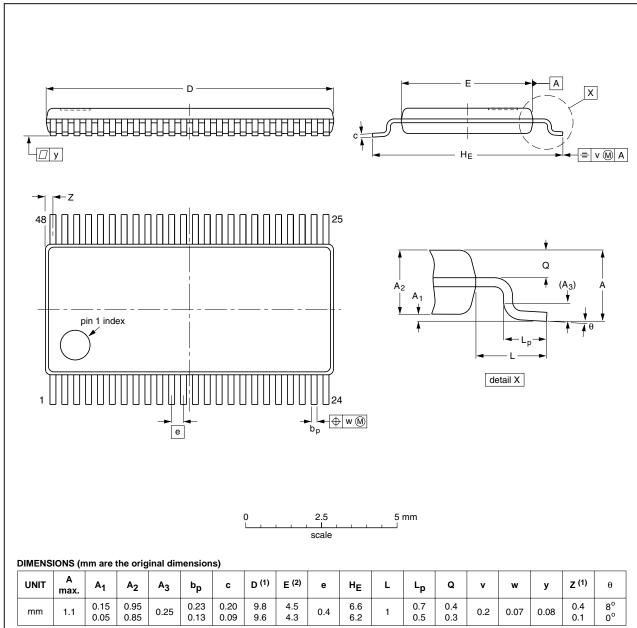
TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT362-1		MO-153			99-12-27 03-02-19	


Fig 13. Package outline SOT362-1 (TSSOP48)

74AVCH16T245_2

All information provided in this document is subject to legal disclaimers.

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 4.4 mm; lead pitch 0.4 mm

SOT480-1

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT480-1		MO-153				99-12-27 03-02-18

Fig 14. Package outline SOT480-1 (TSSOP48)

74AVCH16T245_2

All information provided in this document is subject to legal disclaimers.

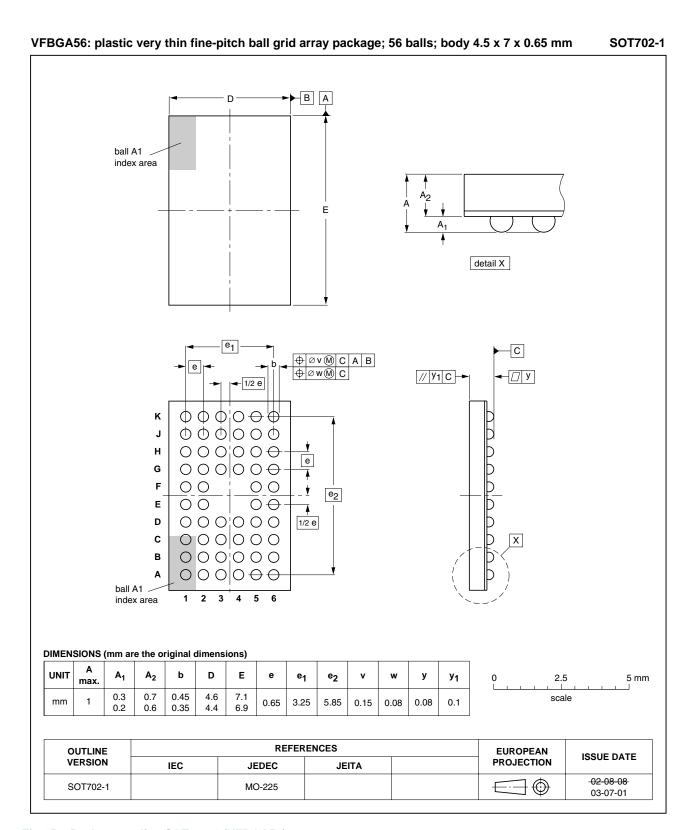


Fig 15. Package outline SOT702-1 (VFBGA56)

74AVCH16T245_2

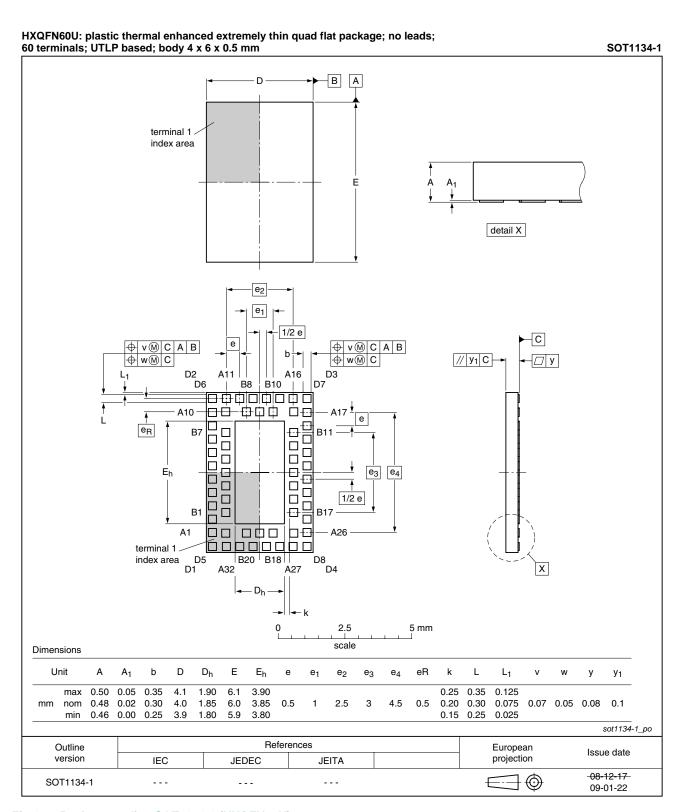


Fig 16. Package outline SOT1134-1 (HXQFN60U)

74AVCH16T245_2

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 16. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

15. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AVCH16T245_2	20100329	Product data sheet	-	74AVCH16T245_1
Modifications:	 74AVCH16T package. 	245BQ changed from HUQFN	N60U (SOT1025-1) to	HXQFN60U (SOT1134-1)
74AVCH16T245_1	20091014	Product data sheet	-	-

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be

suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on a weakness or default in the customer application/use or the application/use of customer's third party customer(s) (hereinafter both referred to as "Application"). It is customer's sole responsibility to check whether the NXP Semiconductors product is suitable and fit for the Application planned. Customer has to do all necessary testing for the Application in order to avoid a default of the Application and the product. NXP Semiconductors does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

74AVCH16T245_2

All information provided in this document is subject to legal disclaimers.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

18. Contents

Features and benefits		. 2 . 2 . 4
Functional diagram		. 2 . 4
5 Pinning information 5.1 Pinning		. 4 . 4
5.1 Pinning		. 4
3		
5.2 Pin description		. 6
6 Functional description		. 6
7 Limiting values		. 7
8 Recommended operating conditions		. 7
9 Static characteristics		. 8
10 Dynamic characteristics		12
11 Waveforms		
12 Typical propagation delay characteristi	ics	18
13 Package outline		22
14 Abbreviations		26
15 Revision history		26
16 Legal information		27
16.1 Data sheet status		
16.2 Definitions		27
16.3 Disclaimers		27
16.4 Trademarks		27
17 Contact information		28
18 Contents		29

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.