74AVCH1T45-Q100

Dual-supply voltage level translator/transceiver; 3-stateRev. 3 — 6 January 2016Product date

Product data sheet

General description 1.

The 74AVCH1T45-Q100 is a single bit, dual supply transceiver that enables bidirectional level translation. It features two 1-bit input-output ports (A and B), a direction control input (DIR) and dual supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied with any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins A and DIR are referenced to $V_{CC(A)}$ and pin B is referenced to $V_{CC(B)}$. A HIGH on DIR allows transmission from A to B and a LOW on DIR allows transmission from B to A.

The device is fully specified for partial power-down applications using I_{OFF}. The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A and B are in the high-impedance OFF-state.

The 74AVCH1T45-Q100 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - Specified from –40 °C to +85 °C and from –40 °C to +125 °C
- Wide supply voltage range:
 - V_{CC(A)}: 0.8 V to 3.6 V
 - V_{CC(B)}: 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - JESD8-7 (1.2 V to 1.95 V)
 - JESD8-5 (1.8 V to 2.7 V)
 - JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - MIL-STD-883, method 3015 Class 3B exceeds 8000 V
 - HBM JESD22-A114E Class 3B exceeds 8000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

nexperia

- Maximum data rates:
 - ◆ 500 Mbit/s (1.8 V to 3.3 V translation)
 - 320 Mbit/s (< 1.8 V to 3.3 V translation)
 - ◆ 320 Mbit/s (translate to 2.5 V or 1.8 V)
 - 280 Mbit/s (translate to 1.5 V)
 - 240 Mbit/s (translate to 1.2 V)
- Suspend mode
- Bus hold on data inputs
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation

3. Ordering information

Table 1.Ordering information

Type number	Package	age						
	Temperature range	emperature range Name Description						
74AVCH1T45GW-Q100	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363				

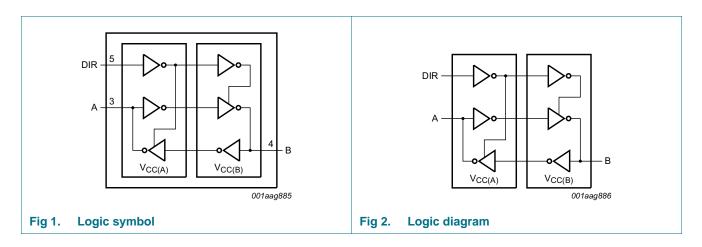
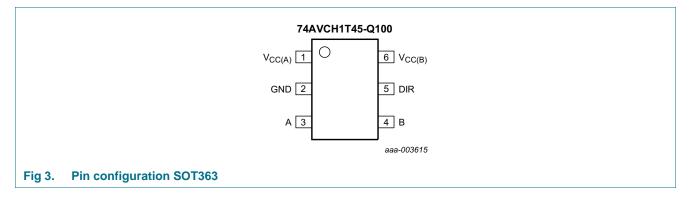

4. Marking

Table 2.Marking

Type number	Marking code ^[1]
74AVCH1T45GW-Q100	К5

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

Dual-supply voltage level translator/transceiver; 3-state

Pinning information 6.

Pinning 6.1

6.2 Pin description

Table 3.Pin description		
Symbol	Pin	Description
V _{CC(A)}	1	supply voltage port A and DIR
GND	2	ground (0 V)
A	3	data input or output
В	4	data input or output
DIR	5	direction control
V _{CC(B)}	6	supply voltage port B

Functional description 7.

Function table^[1] Table 4.

Supply voltage	Input	Input/output ^[2]			
V _{CC(A)} , V _{CC(B)}	DIR ^[3]	A B			
0.8 V to 3.6 V	L	A = B	input		
0.8 V to 3.6 V	Н	input	B = A		
GND ^[4]	Х	Z	Z		

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

The input circuit of the data I/O is always active. [2]

The DIR input circuit is referenced to V_{CC(A)}. [3]

If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into Suspend mode. [4]

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		-0.5	+4.6	V
V _{CC(B)}	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V	-50	-	mA
VI	input voltage	[1]	-0.5	+4.6	V
I _{ОК}	output clamping current	V _O < 0 V	-50	-	mA
Vo	output voltage	Active mode [1][2][3]	-0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	-0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CCO}	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ [4]	-	250	mW

[1] The minimum input voltage ratings and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] V_{CCO} is the supply voltage associated with the output port.

[3] V_{CCO} + 0.5 V should not exceed 4.6 V.

[4] For SC-88 packages: above 87.5 $^\circ$ C the value of P_{tot} derates linearly with 4.0 mW/K.

9. Recommended operating conditions

Cumhal	Devenueter	Conditions		N/1:	Max	11
Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			0.8	3.6	V
V _{CC(B)}	supply voltage B			0.8	3.6	V
VI	input voltage			0	3.6	V
Vo	output voltage	Active mode	<u>[1]</u>	0	V _{cco}	V
		Suspend or 3-state mode		0	3.6	V
T _{amb}	ambient temperature			-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CCI} = 0.8 V to 3.6 V	[2]	-	5	ns/V

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the input port.

10. Static characteristics

Table 7. Typical static characteristics at $T_{amb} = 25 \text{ °C} \frac{[1][2]}{2}$

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		$I_{O} = -1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$		-	0.69	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$					
		I_{O} = 1.5 mA; $V_{CC(A)} = V_{CC(B)} = 0.8 V$		-	0.07	-	V
lı	input leakage current			-	±0.025	±0.25	μA
I _{BHL}	bus hold LOW current	$V_{I} = 0.42 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[3]	-	26	-	μA
I _{BHH}	bus hold HIGH current	$V_{I} = 0.78 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	<u>[4]</u>	-	-24	-	μA
I _{BHLO}	bus hold LOW overdrive current	$V_I = GND$ to V_{CCI} ; $V_{CC(A)} = V_{CC(B)} = 1.2 V$	<u>[5]</u>	-	28	-	μA
I _{BHHO}	bus hold HIGH overdrive current	$V_I = GND$ to V_{CCI} ; $V_{CC(A)} = V_{CC(B)} = 1.2 V$	<u>[6]</u>	-	-26	-	μA
I _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	<u>[7]</u>	-	±0.5	±2.5	μA
I _{OFF}	power-off leakage current	A port; V ₁ or V ₀ = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V		-	±0.1	±1	μΑ
		$ \begin{array}{l} B \mbox{ port; } V_{I} \mbox{ or } V_{O} = 0 \mbox{ V to } 3.6 \mbox{ V;} \\ V_{CC(B)} = 0 \mbox{ V; } V_{CC(A)} = 0.8 \mbox{ V to } 3.6 \mbox{ V} \end{array} $		-	±0.1	±1	μA
CI	input capacitance	DIR input; $V_I = 0 V \text{ or } 3.3 V$; $V_{CC(A)} = V_{CC(B)} = 3.3 V$		-	1.0	-	pF

Table 7.Typical static characteristics at $T_{amb} = 25 \ ^{\circ}C^{[1][2]}$...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
C _{I/O}		A and B port; Suspend mode;	-	4.0	-	pF
		$V_{O} = V_{CCO} \text{ or GND}; V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$				

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

- [3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. Measure I_{BHL} after lowering V_I to GND and then raising it to V_{IL} max.
- [4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. Measure I_{BHH} after raising V_I to V_{CC} and then lowering it to V_{IH} min.
- [5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.
- [6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.
- [7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 8. Static characteristics [1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C te	o +85 °C	–40 °C to	Unit	
			Min	Max	Min	Max	
V _{IH}	HIGH-level	data input					
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		$V_{CCI} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2	-	2	-	V
		DIR input					
		V _{CC(A)} = 0.8 V	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		V _{CC(A)} = 1.1 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
V _{IL}	LOW-level	data input					
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		$V_{CCI} = 1.1 \text{ V to } 1.95 \text{ V}$	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		$V_{CCI} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	0.9	-	0.9	V
		DIR input					
		V _{CC(A)} = 0.8 V	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		V _{CC(A)} = 1.1 V to 1.95 V	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.7	-	0.7	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.9	-	0.9	V

Product data sheet

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C to	+85 °C	–40 °C to	+125 °C	Unit
			Min	Мах	Min	Max	
V _{он}	HIGH-level	$V_{I} = V_{IH}$ or V_{IL}					
	output voltage	$I_{O} = -100 \ \mu A;$ V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	V _{CCO} – 0.1	-	V _{CCO} – 0.1	-	V
		$I_{O} = -3 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	V
		$I_{O} = -6 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	1.05	-	V
		$\begin{split} I_{O} &= -8 \text{ mA}; \\ V_{CC(A)} &= V_{CC(B)} = 1.65 \text{ V} \end{split}$	1.2	-	1.2	-	V
		$ I_O = -9 \text{ mA}; \\ V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V} $	1.75	-	1.75	-	V
0L		$\label{eq:loss} \begin{array}{l} I_{O}=-12 \text{ mA};\\ V_{CC(A)}=V_{CC(B)}=3.0 \text{ V} \end{array}$	2.3	-	2.3	-	V
V _{OL}	LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$					
	output voltage	$I_{O} = 100 \ \mu\text{A}; \\ V_{CC(A)} = V_{CC(B)} = 0.8 \ \text{V to } 3.6 \ \text{V}$	-	0.1	-	0.1	V
		$I_{O} = 3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	-	0.25	-	0.25	V
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	0.35	-	0.35	V
		I _O = 8 mA; V _{CC(A)} = V _{CC(B)} = 1.65 V	-	0.45	-	0.45	V
		$I_{O} = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	0.55	-	0.55	V
		$I_O = 12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	0.7	-	0.7	V
l _i	input leakage current		-	±1	-	±1.5	μΑ
I _{BHL}	bus hold LOW	A or B port [3]					
	current	$V_{I} = 0.49 V;$ $V_{CC(A)} = V_{CC(B)} = 1.4 V$	15	-	15	-	μΑ
		$V_{I} = 0.58 V;$ $V_{CC(A)} = V_{CC(B)} = 1.65 V$	25	-	25	-	μA
		$V_{I} = 0.70 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	45	-	45	-	μA
		$V_{I} = 0.80 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	100	-	90	-	μA
I _{BHH}	bus hold HIGH	A or B port [4]					
	current	$V_{I} = 0.91 V;$ $V_{CC(A)} = V_{CC(B)} = 1.4 V$	-15	-	-15	-	μA
		$V_{I} = 1.07 V;$ $V_{CC(A)} = V_{CC(B)} = 1.65 V$	-25	-	-25	-	μA
		$V_{I} = 1.60 V;$ $V_{CC(A)} = V_{CC(B)} = 2.3 V$	-45	-	-45	-	μA
		$V_{I} = 2.00 V;$ $V_{CC(A)} = V_{CC(B)} = 3.0 V$	-100	-	-100	-	μA

Table 8. Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C t	o +85 °C	–40 °C to	• +125 °C	Unit
				Min	Max	Min	Max	
I _{BHLO}	bus hold LOW	A or B port	[5]					
	overdrive	$V_{CC(A)} = V_{CC(B)} = 1.6 V$		125	-	125	-	μA
	current	V _{CC(A)} = V _{CC(B)} = 1.95 V		200	-	200	-	μA
		$V_{CC(A)} = V_{CC(B)} = 2.7 V$		300	-	300	-	μA
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		500	-	500	-	μA
I _{BHHO}		A or B port	[6]					
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 V$		-125	-	-125	-	μA
	current	$V_{CC(A)} = V_{CC(B)} = 1.95 V$		-200	-	-200	-	μA
		$V_{CC(A)} = V_{CC(B)} = 2.7 V$		-300	-	-300	-	μA
		$V_{CC(A)} = V_{CC(B)} = 3.6 V$		-500	-	-500	-	μA
l _{oz}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	[7]	-	±5	-	±7.5	μΑ
I _{OFF}	power-off leakage	A port; V ₁ or V _O = 0 V to 3.6 V; V _{CC(A)} = 0 V; V _{CC(B)} = 0.8 V to 3.6 V		-	±5	-	±35	μA
	current	B port; V ₁ or V _O = 0 V to 3.6 V; V _{CC(B)} = 0 V; V _{CC(A)} = 0.8 V to 3.6 V		-	±5	-	±35	μA
I _{CC}	supply current	A port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A						
		$V_{CC(A)} = 0.8 V \text{ to } 3.6 V;$ $V_{CC(B)} = 0.8 V \text{ to } 3.6 V$		-	8	-	12	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-	8	-	12	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$		-2	-	-8	-	μA
		B port; $V_I = 0$ V or V_{CCI} ; $I_O = 0$ A						
		$V_{CC(A)} = 0.8 V \text{ to } 3.6 V;$ $V_{CC(B)} = 0.8 V \text{ to } 3.6 V$		-	8	-	12	μA
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$		-2	-	-8	-	μA
		$V_{CC(A)} = 0 V; V_{CC(B)} = 3.6 V$		-	8	-	12	μA
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0 A$; $V_I = 0 V \text{ or } V_{CCI}$; $V_{CC(A)} = 0.8 V \text{ to } 3.6 V$; $V_{CC(B)} = 0.8 V \text{ to } 3.6 V$		-	16	-	24	μA

[1] V_{CCO} is the supply voltage associated with the output port.

[2] V_{CCI} is the supply voltage associated with the data input port.

[3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. Measure I_{BHL} after lowering V_I to GND and then raising it to V_{IL} max.

- [4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. Measure I_{BHH} after raising V_I to V_{CC} and then lowering it to V_{IH} min.
- [5] An external driver must source at least $I_{\mbox{\scriptsize BHLO}}$ to switch this node from LOW to HIGH.
- [6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.
- [7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

11. Dynamic characteristics

Table 9. Typical dynamic characteristics at $V_{CC(A)} = 0.8$ V and $T_{amb} = 25$ °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>; for wave forms see <u>Figure 4</u> and <u>Figure 5</u>

Symbol	Parameter	Conditions	V _{CC(B)}						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	propagation delay	A to B	15.8	8.4	8.0	8.0	8.7	9.5	ns
		B to A	15.8	12.7	12.4	12.2	12.0	11.8	ns
t _{dis}	disable time	DIR to A	12.2	12.2	12.2	12.2	12.2	12.2	ns
		DIR to B	11.7	7.9	7.6	8.2	8.7	10.2	ns
t _{en}	enable time	DIR to A	27.5	20.6	20.0	20.4	20.7	22.0	ns
		DIR to B	28.0	20.6	20.2	20.2	20.9	21.7	ns

[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} . t_{en} is a calculated value using the formula shown in <u>Section 13.4 "Enable times"</u>

Table 10. Typical dynamic characteristics at $V_{CC(B)}$ = 0.8 V and T_{amb} = 25 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 6</u>; for wave forms see <u>Figure 4</u> and <u>Figure 5</u>

Symbol	Parameter	Conditions	V _{CC(A)}						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	_d propagation delay	A to B	15.8	12.7	12.4	12.2	12.0	11.8	ns
		B to A	15.8	8.4	8.0	8.0	8.7	9.5	ns
t _{dis}	disable time	DIR to A	12.2	4.9	3.8	3.7	2.8	3.4	ns
		DIR to B	11.7	9.2	9.0	8.8	8.7	8.6	ns
t _{en}	enable time	DIR to A	27.5	17.6	17.0	16.8	17.4	18.1	ns
		DIR to B	28.0	17.6	16.2	15.9	14.8	15.2	ns

[1] t_{pd} is the same as t_{PLH} and t_{PHL}; t_{dis} is the same as t_{PLZ} and t_{PHZ}; t_{en} is the same as t_{PZL} and t_{PZH}. t_{en} is a calculated value using the formula shown in Section 13.4 "Enable times"

Table 11. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \text{ °C } [1][2]$ Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	$V_{CC(A)}$ and $V_{CC(B)}$						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C _{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	1	2	2	2	2	2	pF
		A port: (direction B to A); B port: (direction A to B)	9	11	11	12	14	17	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

 f_o = output frequency in MHz;

 C_L = load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

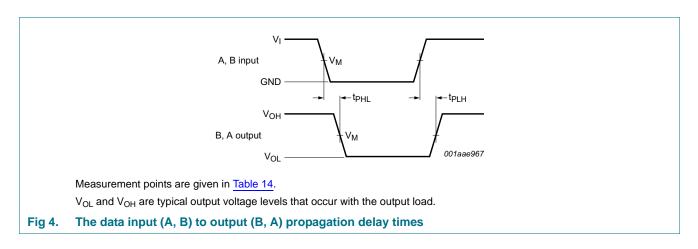
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

74AVCH1T45-Q100

Dual-supply voltage level translator/transceiver; 3-state

Symbol	Parameter	Conditions	V _{CC(B)}										Unit
				± 0.1 V	1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V												
t _{pd}	propagation	A to B	1.0	9.0	0.7	6.8	0.6	6.1	0.5	5.7	0.5	6.1	ns
	delay	B to A	1.0	9.0	0.8	8.0	0.7	7.7	0.6	7.2	0.5	7.1	ns
t _{dis}	disable time	DIR to A	2.2	8.8	2.2	8.8	2.2	8.8	2.2	8.8	2.2	8.8	ns
		DIR to B	2.2	8.4	1.8	6.7	2.0	6.9	1.7	6.2	2.4	7.2	ns
t _{en}	enable time	DIR to A	-	17.4	-	14.7	-	14.6	-	13.4	-	14.3	ns
		DIR to B	-	17.8	-	15.6	-	14.9	-	14.5	-	14.9	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	A to B	1.0	8.0	0.7	5.4	0.6	4.6	0.5	3.7	0.5	3.5	ns
	delay	B to A	1.0	6.8	0.8	5.4	0.7	5.1	0.6	4.7	0.5	4.5	ns
t _{dis}	disable time	DIR to A	1.6	6.3	1.6	6.3	1.6	6.3	1.6	6.3	1.6	6.3	ns
		DIR to B	2.0	7.6	1.8	5.9	1.6	6.0	1.2	4.8	1.7	5.5	ns
t _{en}	enable time	DIR to A	-	14.4	-	11.3	-	11.1	-	9.5	-	10.0	ns
		DIR to B	-	14.3	-	11.7	-	10.9	-	10.0	-	9.8	ns
$V_{CC(A)} =$	1.65 V to 1.95	V											
t _{pd}	propagation delay	A to B	1.0	7.7	0.6	5.1	0.5	4.3	0.5	3.4	0.5	3.1	ns
1.		B to A	1.0	6.1	0.7	4.6	0.5	4.4	0.5	3.9	0.5	3.7	ns
t _{dis}	disable time	DIR to A	1.6	5.5	1.6	5.5	1.6	5.5	1.6	5.5	1.6	5.5	ns
		DIR to B	1.8	7.8	1.8	5.7	1.4	5.8	1.0	4.5	1.5	5.2	ns
t _{en}	enable time	DIR to A	-	13.9	-	10.3	-	10.2	-	8.4	-	8.9	ns
		DIR to B	-	13.2	-	10.6	-	9.8	-	8.9	-	8.6	ns
$V_{CC(A)} =$	2.3 V to 2.7 V												
t _{pd}	propagation	A to B	1.0	7.2	0.5	4.7	0.5	3.9	0.5	3.0	0.5	2.6	ns
1.	delay	B to A	1.0	5.7	0.6	3.8	0.5	3.4	0.5	3.0	0.5	2.8	ns
t _{dis}	disable time	DIR to A	1.5	4.2	1.5	4.2	1.5	4.2	1.5	4.2	1.5	4.2	ns
		DIR to B	1.7	7.3	2.0	5.2	1.5	5.1	0.6	4.2	1.1	4.8	ns
t _{en}	enable time	DIR to A	-	13.0	-	9.0	-	8.5	-	7.2	-	7.6	ns
		DIR to B	-	11.4	-	8.9	-	8.1	-	7.2	-	6.8	ns
$V_{CC(A)} =$	3.0 V to 3.6 V												
t _{pd}	propagation	A to B	1.0	7.1	0.5	4.5	0.5	3.7	0.5	2.8	0.5	2.4	ns
	delay	B to A	1.0	6.1	0.6	3.6	0.5	3.1	0.5	2.6	0.5	2.4	ns
t _{dis}	disable time	DIR to A	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	ns
-		DIR to B	1.7	7.2	0.7	5.5	0.6	5.5	0.7	4.1	1.7	4.7	ns
t _{en}	enable time	DIR to A	-	13.3	-	9.1	-	8.6	-	6.7	-	7.1	ns
ten enable			1	1	1	1	1	1	1	1	1	1	1

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C [1]


 $[1] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; \ t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}; \ t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \\ t_{en} \text{ is a calculated value using the formula shown in } \underline{Section 13.4 "Enable times"}$

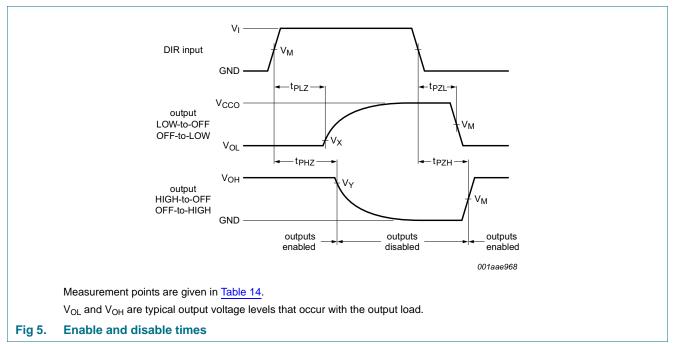

$ t_{pd} \qquad t_{dis} \qquad t_{dis} \qquad t_{dis} \qquad t_{en} \qquad t_{pd} \qquad t_{dis} \qquad t_{pd} \qquad t_{dis} \qquad t_{en} \qquad t_{en} \qquad t_{en} \qquad t_{en} \qquad t_{pd} \qquad t_{dis} \qquad t_{en} \qquad t_{pd} \qquad t_$.1 V to 1.3 V propagation delay disable time enable time .4 V to 1.6 V propagation delay disable time enable time	A to B B to A DIR to A DIR to B DIR to A DIR to B A to B B to A DIR to A	Vcc(B) 1.2 V = Min 1.0 1.0 2.2 2.2 - - 1.0 1.0 1.0	0.1 V Max 9.9 9.7 9.2 19.1 19.6 8.8	1.5 V : Min 0.7 0.8 2.2 1.8 - -	 0.1 V Max 7.5 8.8 9.7 7.4 16.2 17.2 	1.8 V ± Min 0.6 0.7 2.2 2.0 -	0.15 V Max 6.8 8.5 9.7 7.6 16.1	Min 0.5 0.6 2.2 1.7	 0.2 V Max 6.3 8.0 9.7 6.9 	3.3 V : Min 0.5 0.5 2.2 2.4	6.8 7.9 9.7 8.0	ns ns ns
$ t_{pd} \qquad t_{dis} \qquad t_{dis} \qquad t_{dis} \qquad t_{en} \qquad t_{pd} \qquad t_{dis} \qquad t_{pd} \qquad t_{dis} \qquad t_{en} \qquad t_{en} \qquad t_{en} \qquad t_{en} \qquad t_{pd} \qquad t_{dis} \qquad t_{pd} \qquad t_$	propagation delay disable time enable time .4 V to 1.6 V propagation delay disable time	B to A DIR to A DIR to B DIR to A DIR to B A to B B to A	1.0 1.0 2.2 2.2 - - 1.0	9.9 9.9 9.7 9.2 19.1 19.6	0.7 0.8 2.2 1.8 -	7.5 8.8 9.7 7.4 16.2	0.6 0.7 2.2 2.0 -	6.8 8.5 9.7 7.6	0.5 0.6 2.2 1.7	6.3 8.0 9.7	0.5 0.5 2.2	6.8 7.9 9.7	ns ns
t_{pd} t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd} t_{dis} t_{en} $V_{CC(A)} = 1.$ $V_{CC(A)} = 1.$ t_{pd}	propagation delay disable time enable time .4 V to 1.6 V propagation delay disable time	B to A DIR to A DIR to B DIR to A DIR to B A to B B to A	1.0 2.2 2.2 - - 1.0	9.9 9.7 9.2 19.1 19.6	0.8 2.2 1.8 -	8.8 9.7 7.4 16.2	0.7 2.2 2.0 -	8.5 9.7 7.6	0.6 2.2 1.7	8.0 9.7	0.5 2.2	7.9 9.7	ns ns
t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd} t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd} t_{dis} t_{en} $v_{CC(A)} = 1.$	delay disable time enable time .4 V to 1.6 V propagation delay disable time	B to A DIR to A DIR to B DIR to A DIR to B A to B B to A	1.0 2.2 2.2 - - 1.0	9.9 9.7 9.2 19.1 19.6	0.8 2.2 1.8 -	8.8 9.7 7.4 16.2	0.7 2.2 2.0 -	8.5 9.7 7.6	0.6 2.2 1.7	8.0 9.7	0.5 2.2	7.9 9.7	ns ns
t_disft_enfV_CC(A) = 1.t_pdft_disft_enfV_CC(A) = 1.t_pdf	disable time enable time .4 V to 1.6 V propagation delay disable time	DIR to A DIR to B DIR to A DIR to B A to B B to A	2.2 2.2 - 1.0	9.7 9.2 19.1 19.6	2.2 1.8 -	9.7 7.4 16.2	2.2 2.0 -	9.7 7.6	2.2 1.7	9.7	2.2	9.7	ns
$t_{en} \qquad e$ $V_{CC(A)} = 1.$ $t_{pd} \qquad e$ $t_{dis} \qquad e$ $t_{en} \qquad e$ $V_{CC(A)} = 1.$ $t_{pd} \qquad e$	enable time .4 V to 1.6 V propagation delay disable time	DIR to B DIR to A DIR to B A to B B to A	2.2 - - 1.0	9.2 19.1 19.6	1.8 -	7.4 16.2	2.0	7.6	1.7				
$V_{CC(A)} = 1.$ t_{pd} t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd}	.4 V to 1.6 V propagation delay disable time	DIR to A DIR to B A to B B to A	- - 1.0	19.1 19.6	-	16.2	-			6.9	2.4	8.0	n 2
$V_{CC(A)} = 1.$ t_{pd} t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd} t_{pd}	.4 V to 1.6 V propagation delay disable time	DIR to B A to B B to A	- 1.0	19.6				16.1					ns
$ t_{pd} \qquad f_{dis} \qquad f_{dis} \qquad f_{en} \qquad f_{cc(A)} = 1. $	propagation delay disable time	A to B B to A	1.0		-	17.2			-	14.9	-	15.9	ns
$ t_{pd} \qquad t_{dis} \qquad t_{dis} \qquad t_{en} \qquad t_{en} \qquad t_{pd} \qquad t_{pd}$	propagation delay disable time	B to A		8.8			-	16.5	-	16.0	-	16.5	ns
t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd}	delay disable time	B to A		8.8									1
t_{dis} t_{en} $V_{CC(A)} = 1.$ t_{pd}	disable time		10	0.0	0.7	6.0	0.6	5.1	0.5	4.1	0.5	3.9	ns
t_{en} t_{en} t_{en} t_{pd} t_{pd}		DIR to A	1.0	7.5	0.8	6.0	0.7	5.7	0.6	5.2	0.5	5.0	ns
t _{en} • V _{CC(A)} = 1. t _{pd} •	enable time	L	1.6	7.0	1.6	7.0	1.6	7.0	1.6	7.0	1.6	7.0	ns
V _{CC(A)} = 1.	enable time	DIR to B	2.0	8.3	1.8	6.5	1.6	6.6	1.2	5.3	1.7	6.1	ns
V _{CC(A)} = 1. t _{pd}		DIR to A	-	15.8	-	12.5	-	12.3	-	10.5	-	11.1	ns
t _{pd}		DIR to B	-	15.8	-	13.0	-	12.7	-	11.1	-	10.9	ns
t _{pd}	.65 V to 1.95	V											
	propagation	A to B	1.0	8.5	0.6	5.7	0.5	4.8	0.5	3.8	0.5	3.5	ns
	delay	B to A	1.0	6.8	0.7	5.1	0.5	4.9	0.5	4.3	0.5	4.1	ns
t _{dis} (disable time	DIR to A	1.6	6.1	1.6	6.1	1.6	6.1	1.6	6.1	1.6	6.1	ns
		DIR to B	1.8	8.6	1.8	6.3	1.4	6.4	1.0	5.0	1.5	5.8	ns
t _{en} e	enable time	DIR to A	-	15.4	-	11.4	-	11.3	-	9.3	-	9.9	ns
		DIR to B	-	14.6	-	11.8	-	10.9	-	9.9	-	9.6	ns
$V_{CC(A)} = 2$	2.3 V to 2.7 V												
	propagation	A to B	1.0	8.0	0.5	5.2	0.5	4.3	0.5	3.3	0.5	2.9	ns
	delay	B to A	1.0	6.3	0.6	4.2	0.5	3.8	0.5	3.3	0.5	3.1	ns
t _{dis} d	disable time	DIR to A	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	ns
alo		DIR to B	1.7	8.0	2.0	5.8	1.5	5.7	0.6	4.7	1.1	5.3	ns
t _{en} e	enable time	DIR to A	-	14.3	-	10.0	-	9.5	-	8.0	-	8.4	ns
		DIR to B	-	12.7	-	9.9	-	9.0	-	8.0	-	7.6	ns
$V_{CC(A)} = 3$	3.0 V to 3.6 V												1
	propagation	A to B	1.0	7.9	0.5	5.0	0.5	4.1	0.5	3.1	0.5	2.7	ns
	delay	B to A	1.0	6.8	0.6	4.0	0.5	3.5	0.5	2.9	0.5	2.7	ns
t _{dis} (disable time	DIR to A	1.5	5.2	1.5	5.2	1.5	5.2	1.5	5.2	1.5	5.2	ns
suis (DIR to B	1.7	7.9	0.7	6.0	0.6	6.1	0.7	4.6	1.7	5.2	ns
t _{en} e	enable time	DIR to B	-	14.7	-	10.1	-	9.6	-	7.5	-	7.9	ns
•en •		DIR to B	-	13.1	-	10.1	-	9.0	-	8.3	-	7.9	ns

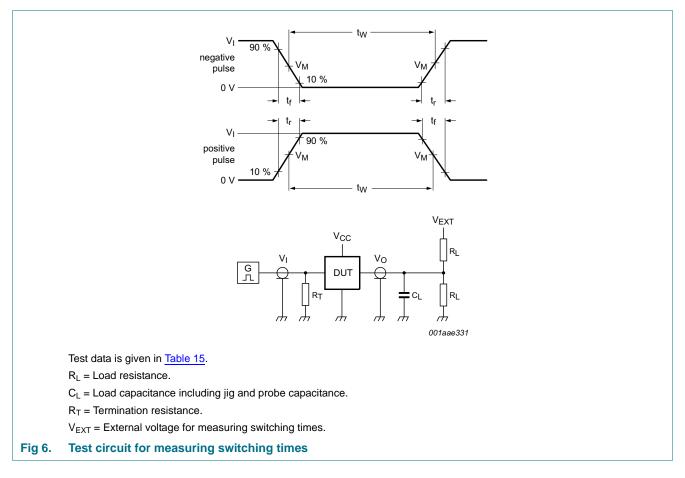
Table 13. Dynamic characteristics for temperature range -40 °C to +125 °C [1]

 $[1] \quad t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}; \ t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}; \ t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \\ t_{en} \text{ is a calculated value using the formula shown in } \underline{Section 13.4 "Enable times"}$

12. Waveforms

Table 14. Measurement points

Supply voltage	Input ^[1]	Output ^[2]					
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y			
1.1 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V			
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V			
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V			


[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

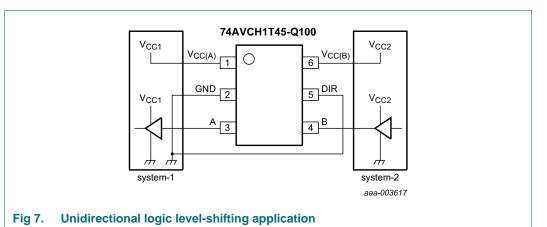
Nexperia

74AVCH1T45-Q100

Dual-supply voltage level translator/transceiver; 3-state

Table 15. Test data

Supply voltage	age Input		Load		V _{EXT}			
V _{CC(A)} , V _{CC(B)}	V _I [1]	∆t/∆V	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [2]	
1.1 V to 1.6 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
1.65 V to 2.7 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
3.0 V to 3.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	


[1] V_{CCI} is the supply voltage associated with the data input port.

[2] V_{CCO} is the supply voltage associated with the output port.

13. Application information

13.1 Unidirectional logic level-shifting application

The circuit given in <u>Figure 7</u> is an example of the 74AVCH1T45-Q100 being used in a unidirectional logic level-shifting application.

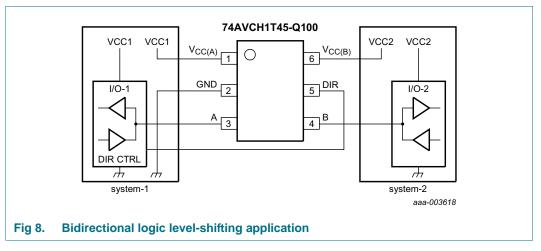


Table 16. Description unidirectional logic level-shifting application

-			
Pin	Name	Function	Description
1	V _{CC(A)}	V _{CC1}	supply voltage of system-1 (0.8 V to 3.6 V)
2	GND	GND	device GND
3	А	OUT	output level depends on V _{CC1} voltage
4	В	IN	input threshold value depends on V_{CC2} voltage
5	DIR	DIR	the GND (LOW level) determines B port to A port direction
6	V _{CC(B)}	V _{CC2}	supply voltage of system-2 (0.8 V to 3.6 V)

13.2 Bidirectional logic level-shifting application

Figure 8 shows the 74AVCH1T45-Q100 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions.

<u>Table 17</u> provides a sequence that illustrates data transmission from system-1 to system-2 and then from system-2 to system-1.

Table 17.	Description bidirectional logic levels	vel-shifting application ^[1]
-----------	--	---

State	DIR CTRL	I/O-1	I/O-2	Description
1	Н	output	input	system-1 data to system-2
2	Η	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold.
3	L	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 are still disabled. The bus-line state depends on bus hold.
4	L	input	output	system-2 data to system-1

[1] H = HIGH voltage level;

L = LOW voltage level;

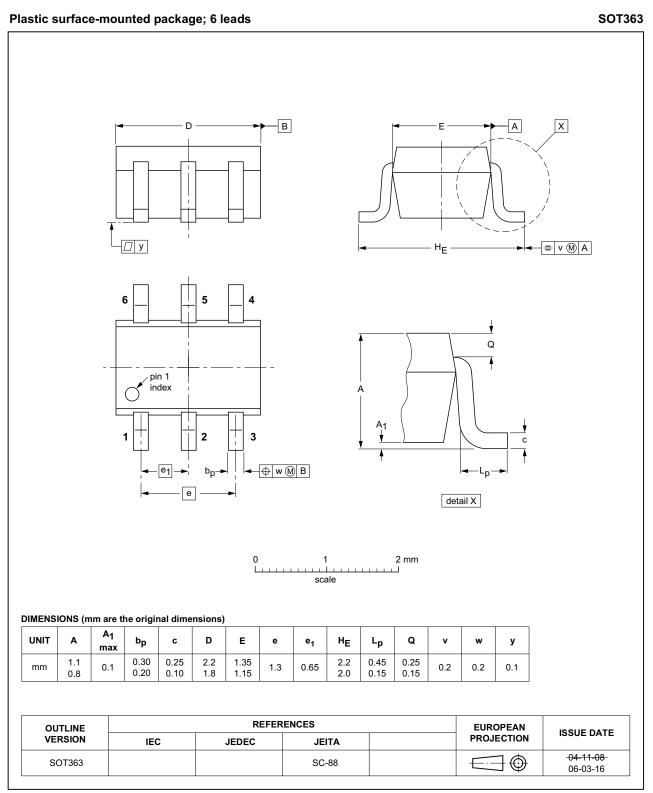
Z = high-impedance OFF-state.

13.3 Power-up considerations

The device is designed such that no special power-up sequence is required other than GND being applied first.

V _{CC(A)}	V _{CC(B)}										
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V				
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μA			
0.8 V	0.1	0.1	0.1	0.1	0.1	0.7	2.3	μA			
1.2 V	0.1	0.1	0.1	0.1	0.1	0.3	1.4	μA			
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.9	μA			
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.5	μA			
2.5 V	0.1	0.7	0.3	0.1	0.1	0.1	0.1	μA			
3.3 V	0.1	2.3	1.4	0.9	0.5	0.1	0.1	μA			

Table 18. Typical total supply current (I_{CC(A)} + I_{CC(B)})


13.4 Enable times

The enable times for the 74AVCH1T45-Q100 are calculated from the following formulas:

- t_{en} (DIR to A) = t_{dis} (DIR to B) + t_{pd} (B to A)
- t_{en} (DIR to B) = t_{dis} (DIR to A) + t_{pd} (A to B)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74AVCH1T45-Q100 is initially transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

14. Package outline

Fig 9. Package outline SOT363 (SC-88)

74AVCH1T45_Q100

15. Abbreviations

Table 19. Abbre	Table 19. Abbreviations							
Acronym	Description							
CDM	Charged Device Model							
CMOS	Complementary Metal Oxide Semiconductor							
DUT	Device Under Test							
ESD	ElectroStatic Discharge							
HBM	Human Body Model							
MM	Machine Model							
MIL	Military							

16. Revision history

Table 20. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74AVCH1T45_Q100 v.3	20160106	Product data sheet	-	74AVCH1T45_Q100 v.2				
Modifications:	• <u>Table 16</u> : Labels for pins 4 and 5 corrected.							
74AVCH1T45_Q100 v.2	20130409	Product data sheet	-	74AVCH1T45_Q100 v.1				
Modifications:	ons: • Type number 74AVCH1T45GM-Q100 has been removed.							
74AVCH1T45_Q100 v.1	20120807	Product data sheet	-	-				

17. Legal information

17.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and

customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

17.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This Nexperia product has been qualified for use in automotive

applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale - Nexperia

products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by customer.

74AVCH1T45_Q100

All information provided in this document is subject to legal disclaimers.

Product data sheet

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For more information, please visit: http://www.nexperia.com

For sales office addresses, please send an email to: salesaddresses@nexperia.com

19. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 5
10	Static characteristics 5
11	Dynamic characteristics 9
12	Waveforms 12
13	Application information
13.1	Unidirectional logic level-shifting application . 14
13.2	Bidirectional logic level-shifting application 15
13.3	Power-up considerations
13.4	Enable times 16
14	Package outline 17
15	Abbreviations 18
16	Revision history 18
17	Legal information 19
17.1	Data sheet status 19
17.2	Definitions
17.3	Disclaimers 19
17.4	Trademarks 20
18	Contact information 20
19	Contents 21