INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 December 1990

- Wide analog input voltage range: ± 5 V
- Low "ON" resistance: 80 Ω (typ.) at V_{CC} – V_{EE} = 4.5 V 70 Ω (typ.) at V_{CC} – V_{EE} = 6.0 V 60 Ω (typ.) at V_{CC} – V_{EE} = 9.0 V
- Logic level translation: to enable 5 V logic to communicate with ± 5 V analog signals
- Typical "break before make" built in
- Address latches provided
- · Output capability: non-standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

QUICK REFERENCE DATA

The 74HC/HCT4353 are high-speed Si-gate CMOS devices. They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT4353 are triple 2-channel analog multiplexers/demultiplexers with two common enable inputs (E_1 and E_2) and a latch enable input (LE). Each

 $V_{EE} = GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

74HC/HCT4353

Each multiplexer/demultiplexer contains two bidirectional analog switches, each with one side connected to an independent input/output (nY_0 and nY_1) and the other side connected to a common input/output (nZ).

With \overline{E}_1 LOW and E_2 HIGH, one of the two switches is selected (low impedance ON-state) by S₁ to S₃. The data at the select inputs may be latched by using the active LOW latch enable input (LE). When LE is HIGH, the latch is transparent. When either of the two enable inputs, \overline{E}_1 (active LOW) and E_2 (active HIGH), is inactive, all analog switches are turned off.

V_{CC} and GND are the supply voltage pins for the digital control inputs (S₁ to S₃, \overline{LE} , \overline{E}_1 and E_2). The V_{CC} to GND ranges are 2.0 to 10.0 V for HC and 4.5 to 5.5 V for HCT. The analog inputs/outputs (nY_0 and nY_1 , and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} - V_{EE} may not exceed 10.0 V.

For operation as a digital multiplexer/demultiplexer, V_{FF} is connected to GND (typically ground).

CVMDO		CONDITIONS	ТҮР	UNIT		
SYMBOL	PARAMETER	CONDITIONS	НС	нст		
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 , E_2 or S_n to V_{os}	$C_L = 50 \text{ pF}; R_L = 1 \text{ k}\Omega;$	29	21	ns	
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 , E_2 or S_n to V_{os}	$V_{CC} = 5 V$	20	22	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per switch	notes 1 and 2	23	23	pF	
Cs	max. switch capacitance					
	independent (Y)		5	5	pF	
	common (Z)		8	8	pF	

Notes

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} =$

 $C_{PD} \times V_{CC}^2 \times f_i + \sum \{(C_L + C_S) \times V_{CC}^2 \times f_o\}$ where: f_i = input frequency in MHz

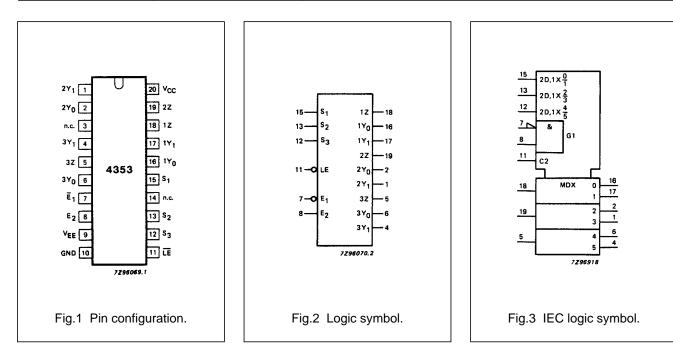
C_L = output load capacitance in pF

fo = output frequency in MHz

C_S = max. switch capacitance in pF

 $\Sigma \{ (C_L \times C_S) \times V_{CC}^2 \times f_o \} =$ sum of outputs V_{CC} = supply voltage in V

2. For HC the condition is $V_1 = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 V$


ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Product specification

PIN DESCRIPTION

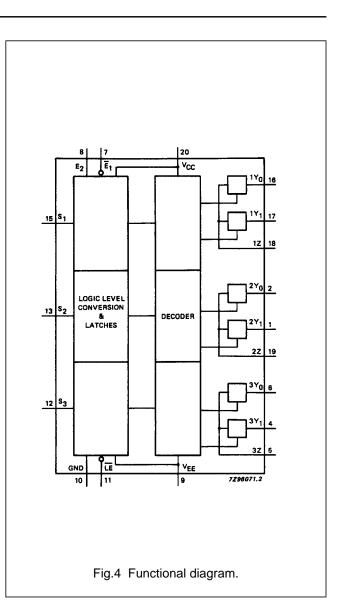
PIN NO.	SYMBOL	NAME AND FUNCTION
2, 1	2Y ₀ , 2Y ₁	independent inputs/outputs
5	3Z	common input/output
6, 4	3Y ₀ , 3Y ₁	independent inputs/outputs
3, 14	n.c.	not connected
7	Ē ₁	enable input (active LOW)
8	E ₂	enable input (active HIGH)
9	V _{EE}	negative supply voltage
10	GND	ground (0 V)
11	LE	latch enable input (active LOW)
15, 13, 12	S ₁ to S ₃	select inputs
16, 17	1Y ₀ , 1Y ₁	independent inputs/outputs
18	1Z	common input/output
19	2Z	common input/output
20	V _{CC}	positive supply voltage

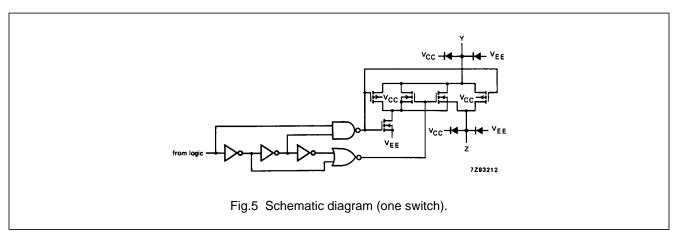
74HC/HCT4353

FUNCTION TABLE

	INPL	CHANNEL		
Ē ₁	E ₂	LE	Sn	ON
Н	Н	Х	Х	none
X	L	Х	Х	none
L	н	н	L	nY0 – nZ
L	Н	Н	н	nY ₁ – nZ
L	н	L	Х	(1)
Х	Х	\rightarrow	Х	(2)

Notes


- 1. Last selected channel "ON".
- 2. Selected channels latched.


H = HIGH voltage level

- L = LOW voltage level
- X = don't care
- \downarrow = HIGH-to-LOW $\overline{\text{LE}}$ transition

APPLICATIONS

- Analog multiplexing and demultiplexing
- Digital multiplexing and demultiplexing
- Signal gating

74HC/HCT4353

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Voltages are referenced to V_{EE} = GND (ground = 0 V)

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
V _{CC}	DC supply voltage	-0.5	+11.0	V	
±I _{IK}	DC digital input diode current		20	mA	for V _I < –0.5 V or V _I > V _{CC} + 0.5 V
±I _{SK}	DC switch diode current		20	mA	for V_S < -0.5 V or V_S > V_{CC} + 0.5 V
±ls	DC switch current		25	mA	for –0.5 V < V_S < V_{CC} + 0.5 V
±I _{EE}	DC V _{EE} current		20	mA	
±I _{CC} ; ±I _{GND}	DC V _{CC} or GND current		50	mA	
T _{stg}	storage temperature range	-65	+150	°C	
P _{tot}	power dissipation per package				for temperature range: -40 to +125 °C 74HC/HCT
	plastic DIL		750	mW	above +70 °C: derate linearly with 12 mW/K
	plastic mini-pack (SO)		500	mW	above +70 °C: derate linearly with 8 mW/K
Ps	power dissipation per switch		100	mW	

Note to ratings

1. To avoid drawing V_{CC} current out of terminals nZ, when switch current flows in terminals nY_n, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminals nZ, no V_{CC} current will flow out of terminals nY_n. In this case there is no limit for the voltage drop across the switch, but the voltages at nY_n and nZ may not exceed V_{CC} or V_{EE}.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER		74HC	•		74HC1	г	UNIT	CONDITIONS
STMBOL	FARAINETER	min.	typ.	max.	min.	typ.	max.	UNIT	CONDITIONS
V _{CC}	DC supply voltage V _{CC} –GND	2.0	5.0	10.0	4.5	5.0	5.5	V	see Figs 6 and 7
V _{CC}	DC supply voltage V _{CC} –V _{EE}	2.0	5.0	10.0	2.0	5.0	10.0	V	see Figs 6 and 7
VI	DC input voltage range	GND		V _{CC}	GND		V _{CC}	V	
Vs	DC switch voltage range	V _{EE}		V _{CC}	V_{EE}		V _{CC}	V	
T _{amb}	operating ambient temperature range	-40		+85	-40		+85	°C	see DC and AC
T _{amb}	operating ambient temperature range	-40		+125	-40		+125	°C	CHARACTER- ISTICS
t _r , t _f	input rise and fall times		6.0	1000 500 400 250		6.0	500	ns	$V_{CC} = 2.0 V V_{CC} = 4.5 V V_{CC} = 6.0 V V_{CC} = 10.0 V $

7293214.1

6

5

4

3

2

1

0 L

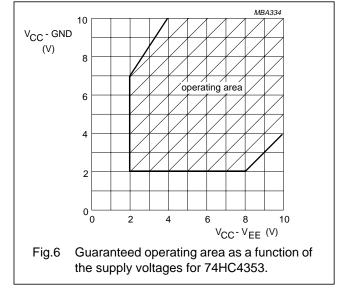
Fig.7

2

4

the supply voltages for 74HCT4353.

6


Guaranteed operating area as a function of

8

V_{CC}-V_{EE} (V)

10

V_{CC}-GND (V)

DC CHARACTERISTICS FOR 74HC/HCT

For 74HC: V_{CC} – GND or V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V For 74HCT: V_{CC} – GND = 4.5 and 5.5 V; V_{CC} – V_{EE} = 2.0, 4.5, 6.0 and 9.0 V

				7	Г _{ать} (°	C)					TEST	COND		S
SYMBOL	PARAMETER		74HC/HCT											
STMBOL		+25		-40 to +85		-40 to +12		UNIT	V _{CC} (V)	V _{EE} (V)	Ι _S (μΑ)	Vis	VI	
		min.	typ.	max.	min.	max.	min.	max.				(p. 1)		
R _{ON}	ON resistance (peak)		- 100 90 70	- 180 160 130		- 225 200 165		- 270 240 195	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC} to V _{EE}	V _{IN} or V _{IL}
R _{ON}	ON resistance (rail)		150 80 70 60	- 140 120 105		- 175 150 130		- 210 180 160	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{EE}	V _{IH} or V _{IL}
R _{ON}	ON resistance		150 90 80 65	- 160 140 120		- 200 175 150		- 240 210 180	Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5	100 1000 1000 1000	V _{CC}	V _{IH} or V _{IL}
ΔR _{ON}	maximum ∆ON resistance between any two channels		- 9 8 6						Ω Ω Ω Ω	2.0 4.5 6.0 4.5	0 0 0 -4.5		V _{CC} to V _{EE}	V _{IH} or V _{IL}

Notes to DC characteristics

- 1. At supply voltages (V_{CC} V_{EE}) approaching 2.0 V the analog switch ON-resistance becomes extremely non-linear. There it is recommended that these devices be used to transmit digital signals only, when using these supply voltages.
- 2. For test circuit measuring R_{ON} see Fig.8.

DC CHARACTERISTICS FOR 74HC

Voltages are referenced to GND (ground = 0 V)

	PARAMETER				T _{amb} ((°C)				TEST CONDITIONS				
					74H	С								
SYMBOL		+25		-40	-40 to +85		-40 to +125		V _{CC} (V)	V _{EE} (V)	VI	OTHER		
		min.	typ.	max.	min.	max.	min.	max.	1					
V _{IH}	HIGH level input voltage	1.5 3.15 4.2 6.3	1.2 2.4 3.2 4.7		1.5 3.15 4.2 6.3		1.5 3.15 4.2 6.3		V	2.0 4.5 6.0 9.0				
V _{IL}	LOW level input voltage		0.8 2.1 2.8 4.3	0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7		0.5 1.35 1.8 2.7	V	2.0 4.5 6.0 9.0				
±lı	input leakage current			0.1 0.2		1.0 2.0		1.0 2.0	μA	6.0 10.0	0 0	V _{CC} or GND		
±ls	analog switch OFF-state current per channel			0.1		1.0		1.0	μΑ	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} – V _{EE} (see Fig.10)	
±ls	analog switch OFF-state current all channels			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	V _S = V _{CC} – V _{EE} (see Fig.10)	
±I _S	analog switch ON-state current			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	V _S	
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	6.0 10.0	0 0	V _{CC} or GND	$V_{is} = V_{EE} \text{ or}$ $V_{CC}; V_{os} =$ $V_{CC} \text{ or } V_{EE}$	

Product specification

74HC/HCT4353

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

		T _{amb} (°C)								TE	sт со	NDITIONS
SYMBOL	PARAMETER				74HC	;						
SYMBOL			+25		_40 t	o +85	-40 to	o +125		V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.				
t _{PHL} / t _{PLH}	propagation delay V_{is} to V_{os}		14 5 4 4	60 12 10 8		75 15 13 10		90 18 15 12	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = \infty;$ $C_L = 50 \text{ pF}$ (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 ; E_2 to V_{os}		61 22 18 18	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time TE to V _{os}		55 20 16 17	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		61 22 18 17	225 45 38 40		280 56 48 50		340 68 58 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 ; E_2 to V_{os}		66 24 19 19	250 50 43 40		315 63 54 50		375 75 64 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time S_n to V_{os} ; \overline{LE} to V_{os}		55 20 16 19	200 40 34 40		250 50 43 50		300 60 51 60	ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{su}	set-up time S_n to \overline{LE}	60 12 10 18	17 6 5 8		75 15 13 23		90 18 15 27		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.20)
t _h	hold time S_n to \overline{LE}	5 5 5 5	-6 -2 -2 -3		5 5 5 5		5 5 5 5		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.20)
t _W	LE minimum pulse width HIGH	80 16 14 16	11 4 3 6		100 20 17 20		120 24 20 24		ns	2.0 4.5 6.0 4.5	0 0 0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.20)

DC CHARACTERISTICS FOR 74HCT

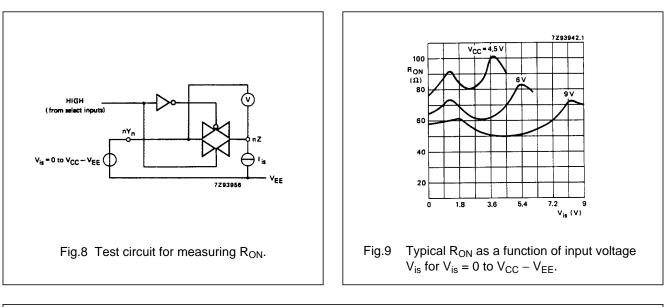
Voltages are referenced to GND (ground = 0 V)

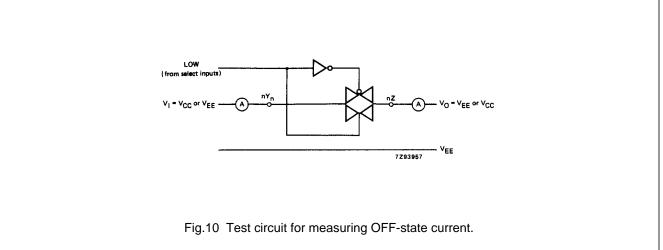
					T _{amb} (°C)					TEST	COND	ITIONS
SYMBOL	PARAMETER				74HC	т							
STNIBOL	FARAMETER		+25		-40 to +85		-40 to +125			V _{CC} (V)	V _{EE} (V)	VI	OTHER
		min.	typ.	max.	min.	max.	min.	max.					
V _{IH}	HIGH level input voltage	2.0	1.6		2.0		2.0		V	4.5 to 5.5			
V _{IL}	LOW level input voltage		1.2	0.8		0.8		0.8	V	4.5 to 5.5			
±lı	input leakage current			0.1		1.0		1.0	μA	5.5	0	V _{CC} or GND	
±I _S	analog switch OFF-state current per channel			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	$ V_S =$ $V_{CC} - V_{EE}$ Fig.10
±ls	analog switch OFF-state current all channels			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	│V _S │
±I _S	analog switch ON-state current			0.1		1.0		1.0	μA	10.0	0	V _{IH} or V _{IL}	│V _S │ = V _{CC} – V _{EE} Fig.11
I _{CC}	quiescent supply current			8.0 16.0		80.0 160.0		160.0 320.0	μA	5.5 5.0	0 -5.0	V _{CC} or GND	$V_{is} = V_{EE}$ or V_{CC} ; $V_{os} =$ V_{CC} or V_{EE}
Δl _{CC}	additional quiescent supply current per input pin for unit load coefficient is 1 (note 1)		100	360		450		490	μΑ	4.5 to 5.5	0	V _{CC} -2.1 V	other inputs at V _{CC} or GND

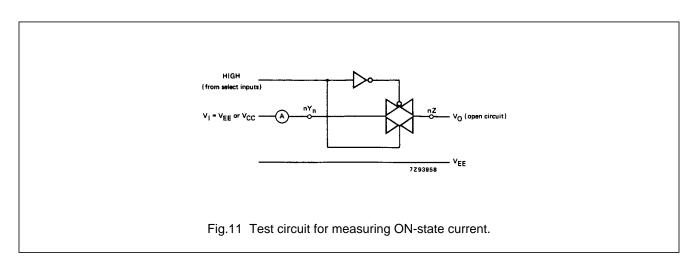
Note to HCT types

1. The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given here. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
\overline{E}_1, E_2	0.50
<u>Sn</u>	0.50
LE	1.5


Product specification


74HC/HCT4353


AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

		T _{amb} (°C)							TEST CONDITIONS			
0.445.01					74HC	т			1			
SYMBOL	PARAMETER		+25		- 40 t	to +85	-40 to	0 +125		V _{CC} (V)	V _{EE} (V)	OTHER
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay V_{is} to V_{os}		5 4	12 8		15 10		18 12	ns	4.5 4.5	0 -4.5	R _L = ∞; C _L = 50 pF (see Fig.18)
t _{PZH} / t _{PZL}	turn "ON" time \overline{E}_1 to V _{os}		26 22	55 45		69 56		83 68	ns	4.5 4.5	0 -4.5	$\label{eq:RL} \begin{split} R_L &= 1 \; k\Omega; \\ C_L &= 50 \; pF \\ (see Fig.19) \end{split}$
t _{PZH} / t _{PZL}	turn "ON" time E ₂ to V _{os}		22 18	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_{L} = 1 k\Omega;$ $C_{L} = 50 pF$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time TE to V _{os}		21 17	45 40		56 50		68 60	ns	4.5 4.5	0 -4.5	$R_L = 1 kΩ;$ $C_L = 50 pF$ (see Fig.19)
t _{PZH} / t _{PZL}	turn "ON" time S _n to V _{os}		25 19	50 45		63 56		75 68	ns	4.5 4.5	0 -4.5	$\label{eq:RL} \begin{array}{l} R_L = 1 \; k\Omega; \\ C_L = 50 \; pF \\ (see Fig.19) \end{array}$
t _{PHZ} / t _{PLZ}	turn "OFF" time \overline{E}_1 to V _{os}		23 19	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$\label{eq:RL} \begin{split} R_L &= 1 \ k\Omega; \\ C_L &= 50 \ pF \\ (\text{see Fig.19}) \end{split}$
t _{PHZ} / t _{PLZ}	turn "OFF" time E_2 to V_{os}		27 23	50 40		63 50		75 60	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time $\overline{\text{LE}}$ to V _{os}		19 19	40 40		50 50		60 60	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{PHZ} / t _{PLZ}	turn "OFF" time S _n to V _{os}		22 22	45 45		56 56		68 68	ns	4.5 4.5	0 -4.5	$R_L = 1 k\Omega;$ $C_L = 50 pF$ (see Fig.19)
t _{su}	set-up time S _n to LE	12 15	7 9		15 19		18 22		ns	4.5 4.5	0 -4.5	$\label{eq:RL} \begin{split} R_L &= 1 \; k\Omega; \\ C_L &= 50 \; pF \\ (see Fig.20) \end{split}$
t _h	hold time S _n to LE	5 5	0 -2		5 5		5 5		ns	4.5 4.5	0 -4.5	$\begin{array}{l} R_{L} = 1 \ k\Omega; \\ C_{L} = 50 \ pF \\ (see \ Fig.20) \end{array}$
t _W	LE minimum pulse width HIGH	16 16	3 5		20 20		24 24		ns	4.5 4.5	0 -4.5	$\begin{array}{l} R_{L} = 1 \ k\Omega; \\ C_{L} = 50 \ pF \\ (see \ Fig.20) \end{array}$

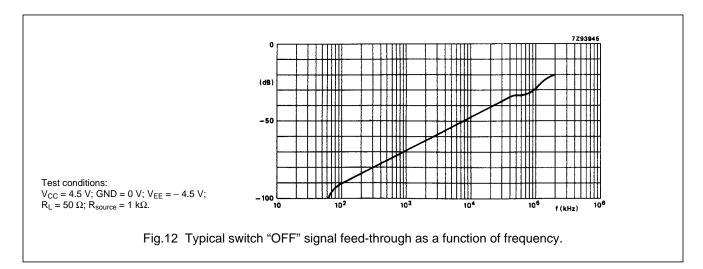
74HC/HCT4353

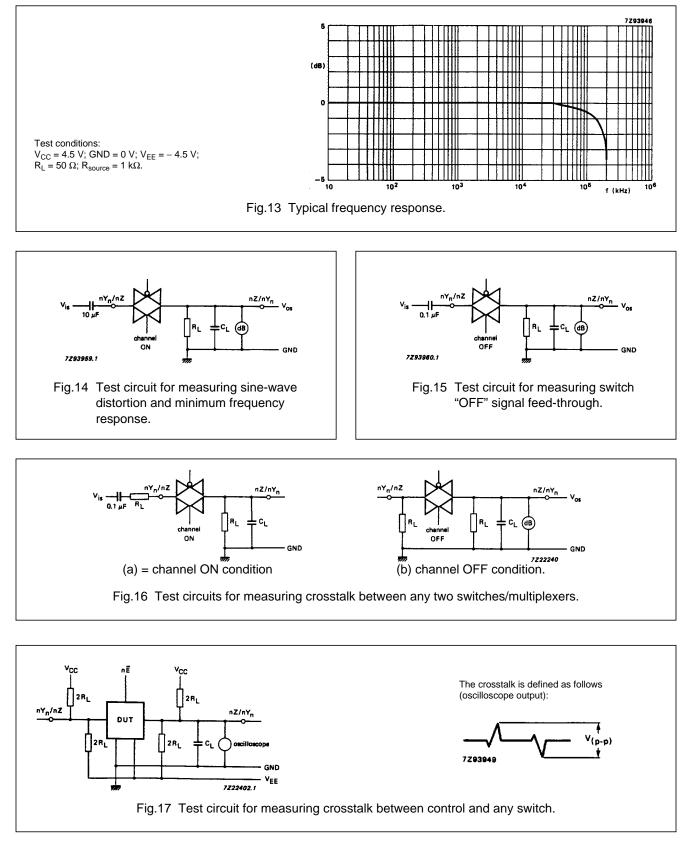
ADDITIONAL AC CHARACTERISTICS FOR 74HC/HCT

Recommended conditions and typical values

 $GND = 0 V; T_{amb} = 25 °C$

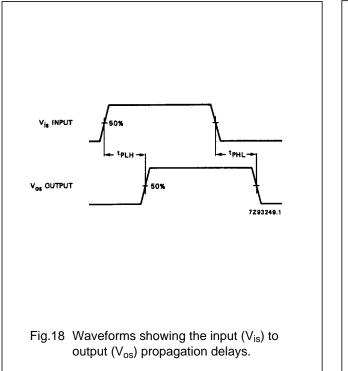
SYMBOL	PARAMETER	typ.	UNIT	V _{CC} (V)	V _{EE} (V)	V _{is(p-p)} (V)	CONDITIONS
	sine-wave distortion f = 1 kHz	0.04 0.02	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 \text{ k}\Omega; C_L = 50 \text{ pF}$ (see Fig.14)
	sine-wave distortion f = 10 kHz	0.12 0.06	% %	2.25 4.5	-2.25 -4.5	4.0 8.0	$R_L = 10 k\Omega$; $C_L = 50 pF$ (see Fig.14)
	switch "OFF" signal feed-through	-50 -50	dB dB	2.25 4.5	-2.25 -4.5	note 1	$R_L = 600 \Omega$; $C_L = 50 pF$ f = 1 MHz (see Figs 12 and 15)
	crosstalk between any two switches/ multiplexers	-60 -60	dB dB	2.25 4.5	-2.25 -4.5	note 1	$\label{eq:RL} \begin{split} R_L &= 600 \ \Omega; \ C_L = 50 \ pF; \\ f &= 1 \ MHz \ (see \ Fig.16) \end{split}$
V _(p-p)	crosstalk voltage between control and any switch (peak-to-peak value)	110 220	mV mV	4.5 4.5	0 -4.5		
f _{max}	minimum frequency response (–3dB)	160 170	MHz MHz	2.25 4.5	-2.25 -4.5	note 2	$R_L = 50 \Omega$; $C_L = 10 pF$ (see Figs 13 and 14)
C _S	maximum switch capacitance independent (Y) common (Z)	5 12	pF pF				

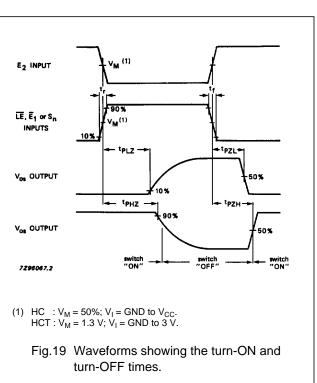

Notes to the AC characteristics

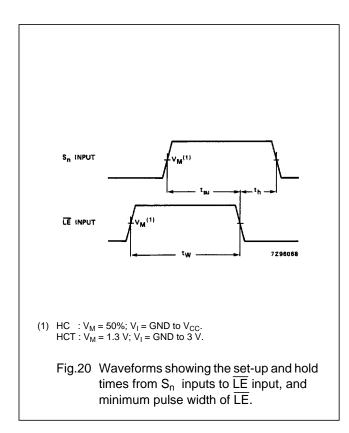

1. Adjust input voltage V_{is} to 0 dBm level (0 dBm = 1 mW into 600 Ω).

2. Adjust input voltage V_{is} to 0 dBm level at V_{os} for 1 MHz (0 dBm = 1 mW into 50 Ω).

General note

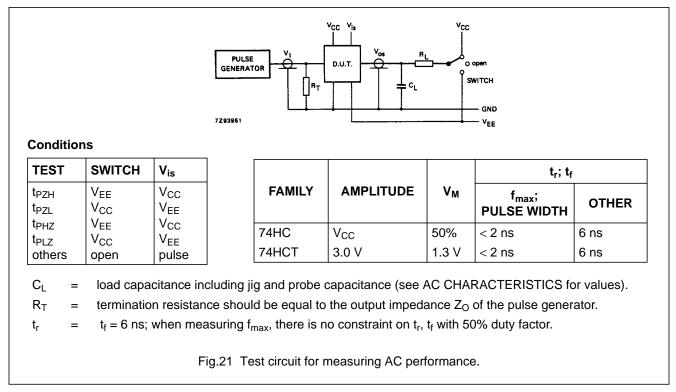

 V_{is} is the input voltage at an nY_n or nZ terminal, whichever is assigned as an input. V_{os} is the output voltage at an nY_n or nZ terminal, whichever is assigned as an output.





74HC/HCT4353

AC WAVEFORMS



74HC/HCT4353

TEST CIRCUIT AND WAVEFORMS

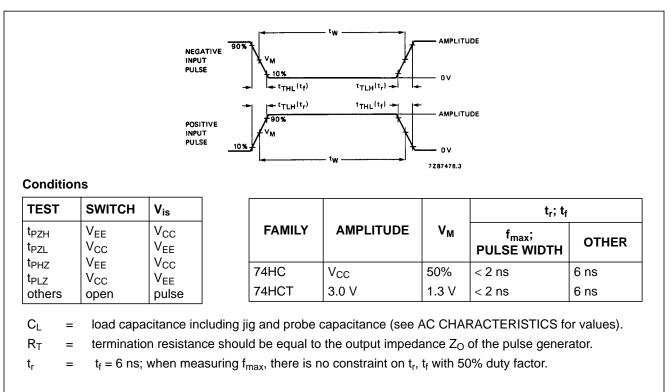


Fig.22 Input pulse definitions.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".