74LVC646A

Octal bus transceiver/register; 3-state

Rev. 5 — 28 March 2013

Product data sheet

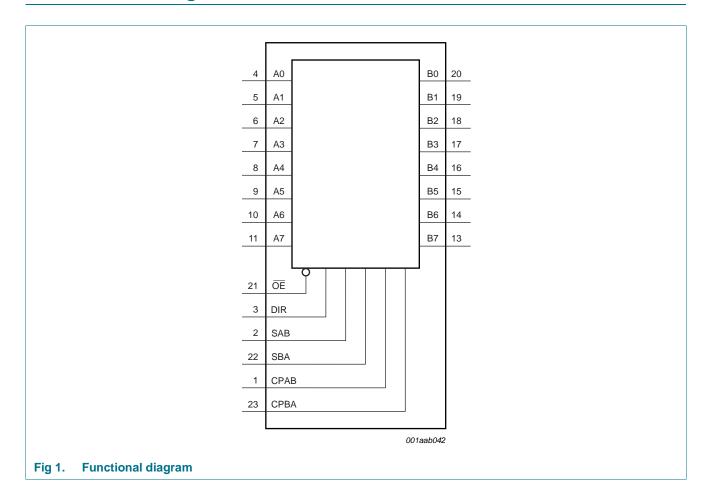
1. General description

The 74LVC646A consists of non-inverting bus transceiver circuits with 3-state outputs, D-type flip-flops and control circuitry arranged for multiplexed transmission of data directly from the internal registers. Data on the A or B bus is clocked in the internal registers, as the appropriate clock (CPAB or CPBA) goes to a HIGH logic level. Output enable (\overline{OE}) and direction (DIR) inputs are provided to control the transceiver function. In the transceiver mode, data present at the high-impedance port may be stored in either the A or B register, or in both. With the select source inputs (SAB and SBA), stored and real-time (transparent mode) data can be multiplexed. The direction (DIR) input determines which bus receives data when \overline{OE} is active (LOW). In the isolation mode (\overline{OE} = HIGH), A data may be stored in the B register and/or B data may be stored in the A register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses A or B may be driven at a time.

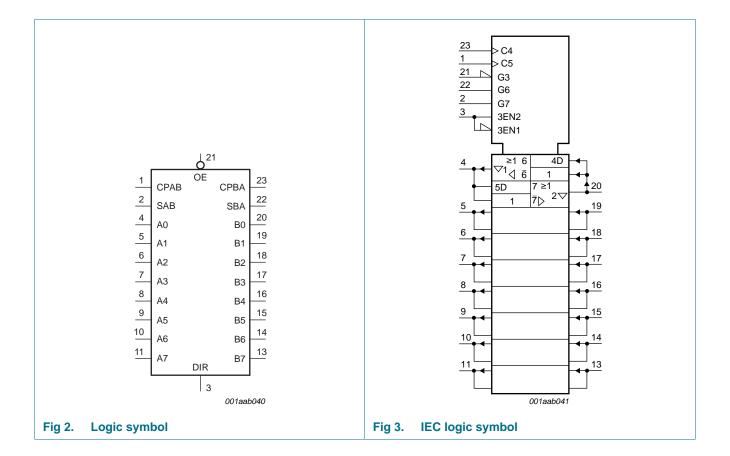
Inputs can be driven from either 3.3 V or 5 V devices. When disabled, up to 5.5 V can be applied to the outputs. These features allow the use of these devices as translators in mixed 3.3 V and 5 V applications.

2. Features and benefits

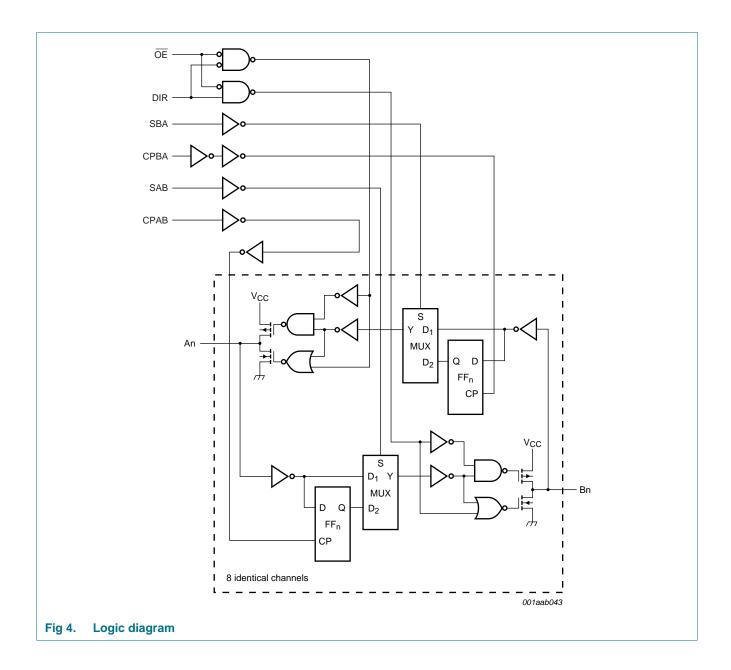
- 5 V tolerant inputs/outputs for interfacing with 5 V logic
- Supply voltage range from 1.2 V to 3.6 V
- CMOS low-power consumption
- Direct interface with TTL levels
- 8-bit octal transceiver with D-type latch
- Back-to-back registers for storage
- Separate controls for data flow in each direction
- Supports partial power-down applications; inputs/outputs are high-impedance when V_{CC} = 0 V
- Complies with JEDEC standard:
 - ◆ JESD8-7A (1.65 V to 1.95 V)
 - ◆ JESD8-5A (2.3 V to 2.7 V)
 - ◆ JESD8-C/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - ◆ MM JESD22-A115-B exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Specified from -40 °C to +85 °C and -40 °C to +125 °C.


Octal bus transceiver/register; 3-state

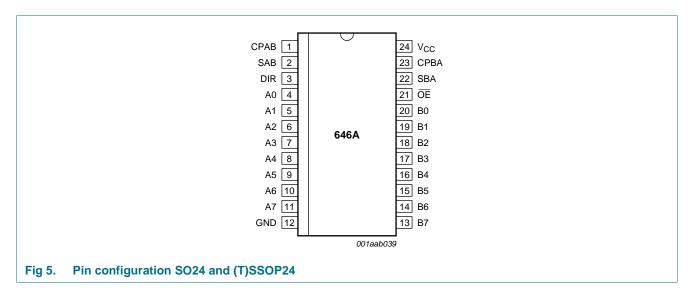
3. Ordering information


Table 1. Ordering information

Type number	Package	Package									
	Temperature range	Name	Description	Version							
74LVC646AD	–40 °C to +125 °C	SO24	plastic small outline package; 24 leads; body width 7.5 mm	SOT137-1							
74LVC646ADB	–40 °C to +125 °C	SSOP24	plastic shrink small outline package; 24 leads; body width 5.3 mm	SOT340-1							
74LVC646APW	–40 °C to +125 °C	TSSOP24	plastic thin shrink small outline package; 24 leads; body width 4.4 mm	SOT355-1							


4. Functional diagram

Octal bus transceiver/register; 3-state


Octal bus transceiver/register; 3-state

Octal bus transceiver/register; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

	•	
Symbol	Pin	Description
CPAB	1	A to B clock input (LOW to HIGH; edge-triggered)
SAB	2	A to B select source input
SBA	22	B to A select source input
DIR	3	direction control input
A[0:7]	4, 5, 6, 7, 8, 9, 10, 11	A data input/output
B[0:7]	20, 19, 18, 17, 16, 15, 14, 13	B data input/output
ŌĒ	21	output enable input (active LOW)
СРВА	23	B to A clock input (LOW to HIGH, edge-triggered)
GND	12	ground (0 V)
V _{CC}	24	supply voltage

Octal bus transceiver/register; 3-state

6. Functional description

Table 3. Function table[1]

Input						Data I/O		Function
OE	DIR	CPAB	СРВА	SAB	SBA	A0 to A7	B0 to B7	
X	X	\uparrow	Χ	X	X	input	unspecified[2]	store A and B unspecified
X	Χ	Χ	\uparrow	Χ	Χ	unspecified[2]	input	store B and A unspecified
Н	Χ	↑	↑	Χ	X	input	input	store A and B data
Н	Χ	H or L	H or L	Χ	Χ	input	input	hold storage; isolation
L	L	Χ	Χ	Χ	L	output	input	real-time B data to A bus
L	L	Χ	H or L	Χ	Н	output	input	stored B data to A bus
L	Н	Χ	Χ	L	X	input	output	real-time A data to B bus
L	Н	H or L	Χ	Н	Χ	input	output	stored A data to B bus

^[1] H = HIGH voltage level

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
V_{I}	input voltage		[<u>1</u>] -0.5	+6.5	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0 V$	-	±50	mA
V _O	output voltage	output HIGH or LOW state	[2] -0.5	$V_{CC} + 0.5$	V
		output 3-state	[2] -0.5	+6.5	V
Io	output current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[3] _	500	mW

^[1] The minimum input voltage ratings may be exceeded if the input current ratings are observed.

L = LOW voltage level

X = don't care

^{↑ =} LOW to HIGH level transition

^[2] The data output functions are enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled, i.e. data at the bus inputs are stored on every LOW to HIGH transition on the clock inputs.

^[2] The output voltage ratings may be exceeded if the output current ratings are observed.

^[3] For SO24 packages: above 70 °C the value of P_{tot} derates linearly with 8 mW/K. For (T)SSOP24 packages: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

Octal bus transceiver/register; 3-state

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.65	-	3.6	V
		functional	1.2	-	-	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	HIGH or LOW state	0	-	V_{CC}	V
		3-state	0	-	5.5	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.65 \text{ V to } 2.7 \text{ V}$	0	-	20	ns/V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	0	-	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	–40 °C to	Unit	
			Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level	V _{CC} = 1.2 V	1.08	-	-	1.08	-	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$	-	-	$0.65 \times V_{CC}$	-	V
		V _{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	-	-	2.0	-	V
V _{IL}	LOW-level	V _{CC} = 1.2 V	-	-	0.12	-	0.12	V
	input voltage	V _{CC} = 1.65 V to 1.95 V	-	-	$0.35 \times V_{CC}$	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	-	0.8	-	0.8	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}						
output voltage	$I_O = -100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$	V _{CC} – 0.2	-	-	V _{CC} – 0.3	-	V	
		$I_{O} = -4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.2	-	-	1.05	-	V
		$I_{O} = -8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	-	-	1.65	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	2.05	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	-	-	2.25	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	-	-	2.0	-	V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}						
	output voltage	$I_O = 100 \mu A;$ $V_{CC} = 1.65 \text{ V to } 3.6 \text{ V}$	-	-	0.2	-	0.3	V
		I _O = 4 mA; V _{CC} = 1.65 V	-	-	0.45	-	0.65	V
		$I_{O} = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.6	-	8.0	V
		I_{O} = 12 mA; V_{CC} = 2.7 V	-	-	0.4	-	0.6	V
		I_{O} = 24 mA; V_{CC} = 3.0 V	-	-	0.55	-	8.0	V
I _I	input leakage current	$V_{CC} = 3.6 \text{ V};$ $V_{I} = 5.5 \text{ V or GND}$	-	±0.1	±5	-	±20	μА

Octal bus transceiver/register; 3-state

 Table 6.
 Static characteristics ...continued

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

	•	· ·			. •	,			
Symbol	Parameter	Conditions		-40	°C to +85	5 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
I _{OZ}	OFF-state output current	$V_I = V_{IH}$ or V_{IL} ; $V_{CC} = 3.6 \text{ V}$; $V_O = 5.5 \text{ V}$ or GND;	<u>2]</u>	-	0.1	±10	-	±20	μΑ
l _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}$; $V_{I} \text{ or } V_{O} = 5.5 \text{ V}$		-	0.1	±10	-	±20	μА
I _{CC}	supply current	$V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}; I_O = 0 \text{ A}$		-	0.1	10	-	40	μА
ΔI_{CC}	additional supply current	per input pin; $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V};$ $V_I = V_{CC} - 0.6 \text{ V};$ $I_O = 0 \text{ A}$		-	5	500	-	5000	μА
Cı	input capacitance	$V_{CC} = 0 \text{ V to } 3.6 \text{ V};$ $V_{I} = \text{GND to } V_{CC}$		-	5.0	-	-	-	pF
C _{I/O}	input/output capacitance	$V_{CC} = 0 \text{ V to } 3.6 \text{ V};$ $V_I = \text{GND to } V_{CC}$		-	10.0	-	-	-	pF

^[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

10. Dynamic characteristics

Table 7. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 11.

Symbol	Parameter	Conditions		T _{amb} =	–40 °C to	+85 °C	-40 °C to	Unit	
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation	An, Bn to Bn, An; see Figure 6	[2]						
	delay	$V_{CC} = 1.2 \text{ V}$		-	17	-	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		1.8	6.9	15.8	1.8	18.2	ns
		V_{CC} = 2.3 V to 2.7 V		1.5	3.7	8.2	1.5	9.4	ns
		$V_{CC} = 2.7 \text{ V}$		1.5	3.6	7.8	1.5	10.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.1	6.8	1.0	8.0	ns
		CPAB, CPBA to Bn, An; see Figure 7	[2]						
		V _{CC} = 1.2 V		-	19	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		2.4	8.6	17.8	2.4	20.5	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.7	4.5	9.1	1.7	10.5	ns
		$V_{CC} = 2.7 \text{ V}$		1.5	4.1	8.6	1.5	11.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.8	7.6	1.0	9.5	ns
		SAB, SBA to Bn, An; see Figure 8	[2]						
		V _{CC} = 1.2 V		-	19	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		1.5	7.6	19.8	1.5	22.9	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.5	4.0	10.2	1.5	11.8	ns
		$V_{CC} = 2.7 \text{ V}$		1.5	4.0	9.5	1.5	12.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.4	8.5	1.0	11.0	ns

74LVC646A

All information provided in this document is subject to legal disclaimers.

^[2] For transceivers, the parameter $I_{\mbox{\scriptsize OZ}}$ includes the input leakage current.

Octal bus transceiver/register; 3-state

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 11.

Symbol	Parameter	Conditions		T _{amb} =	–40 °C to	+85 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _{en}	enable time	OE to An and Bn; see Figure 9	[2]						
		V _{CC} = 1.2 V		-	20	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		2.4	7.2	17.8	2.4	20.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.0	4.1	9.8	2.0	11.3	ns
		V _{CC} = 2.7 V		1.5	4.2	8.8	1.5	11.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.3	7.8	1.0	10.0	ns
		DIR to An and Bn; see Figure 10	[2]						
		V _{CC} = 1.2 V		-	20	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		2.9	8.0	18.1	2.9	20.9	ns
		V _{CC} = 2.3 V to 2.7 V		2.4	4.5	9.9	2.4	11.5	ns
		V _{CC} = 2.7 V		1.5	4.2	8.9	1.5	11.5	ns
		V _{CC} = 3.0 V to 3.6 V		1.0	3.6	7.9	1.0	10.0	ns
t _{dis}	disable time	OE to An and Bn; see Figure 9	[2]						
		V _{CC} = 1.2 V		-	10	-	-	-	ns
		V _{CC} = 1.65 V to 1.95 V		3.6	5.0	10.4	3.6	12.0	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	2.8	5.9	1.0	6.8	ns
		$V_{CC} = 2.7 V$		1.5	3.6	7.1	1.5	9.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	3.3	6.1	1.0	8.0	ns
		DIR to An and Bn; see Figure 10	[2]						
		V _{CC} = 1.2 V		-	10	-	-	-	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$		2.9	3.9	10.1	2.9	11.7	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		1.0	2.1	5.7	1.0	6.6	ns
		$V_{CC} = 2.7 V$		1.5	3.5	7.0	1.5	9.0	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.0	2.8	6.0	1.0	7.5	ns
t_{W}	pulse width	clock HIGH or LOW of CPAB or CPBA; see Figure 7							
		V _{CC} = 1.65 V to 1.95 V		5.0	-	-	5.0	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		4.0	-	-	4.0	-	ns
		V _{CC} = 2.7 V		3.3	-	-	3.3	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		3.3	1.9	-	3.3	-	ns
t _{su}	set-up time	An, Bn to CPAB, CPBA; see Figure 7							
		V _{CC} = 1.65 V to 1.95 V		3.5	-	-	3.5	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.5	-	-	2.5	-	ns
		V _{CC} = 2.7 V		1.6	-	-	1.6	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		1.5	0.35	-	1.5	-	ns

Octal bus transceiver/register; 3-state

 Table 7.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 11.

Symbol	Parameter	Conditions		T _{amb} =	–40 °C to	+85 °C	-40 °C to	+125 °C	Unit
				Min	Typ[1]	Max	Min	Max	
t _h	hold time	An, Bn to CPAB, CPBA; see Figure 7							
		V _{CC} = 1.65 V to 1.95 V		3.0	-	-	3.0	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		2.0	-	-	2.0	-	ns
	V _{CC} = 2.7 V		1.0	-	-	1.0	-	ns	
	V _{CC} = 3.0 V to 3.6 V		1.0	-0.3	-	1.0	-	ns	
f _{max} maximum		see Figure 7							
	frequency	V _{CC} = 1.65 V to 1.95 V		100	-	-	80	-	MHz
		V _{CC} = 2.3 V to 2.7 V		125	-	-	100	-	MHz
		V _{CC} = 2.7 V		150	-	-	120	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		150	250	-	120	-	MHz
t _{sk(o)}	output skew time	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[3]	-	-	1.0	-	1.5	ns
C_{PD}	power	per input; $V_I = GND$ to V_{CC}	[4]						
	dissipation	V _{CC} = 1.65 V to 1.95 V		-	8.0	-	-	-	pF
	capacitance	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		-	11.7	-	-	-	pF
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$		-	15.0	-	-	-	pF

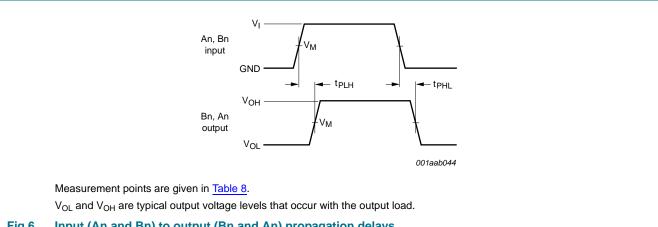
- [1] Typical values are measured at $T_{amb} = 25$ °C and $V_{CC} = 1.2$ V, 1.8 V, 2.5 V, 2.7 V and 3.3 V respectively.
- $\begin{array}{ll} [2] & t_{pd} \text{ is the same as } t_{PLH} \text{ and } t_{PHL}. \\ & t_{en} \text{ is the same as } t_{PZL} \text{ and } t_{PZH}. \\ & t_{dis} \text{ is the same as } t_{PLZ} \text{ and } t_{PHZ}. \end{array}$
- [3] Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$$
 where:

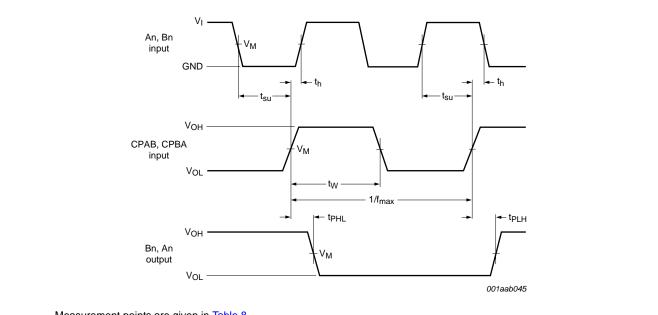
f_i = input frequency in MHz; f_o = output frequency in MHz

 C_1 = output load capacitance in pF

V_{CC} = supply voltage in Volts


N = number of inputs switching

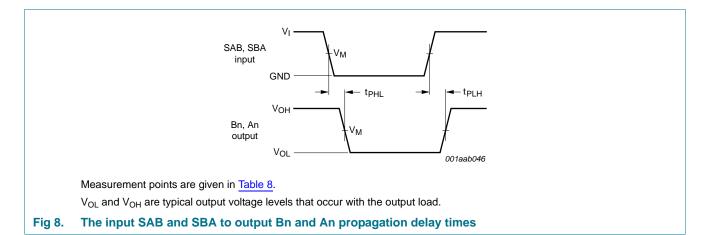
 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs


74LVC646A **NXP Semiconductors**

Octal bus transceiver/register; 3-state

11. Waveforms

Input (An and Bn) to output (Bn and An) propagation delays Fig 6.



Measurement points are given in Table 8.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

The An, Bn to CPAB, CPBA set-up and hold times, clock CPAB and CPBA pulse width, maximum Fig 7. frequency, and the CPAB, CPBA to output Bn, An propagation delays

Octal bus transceiver/register; 3-state

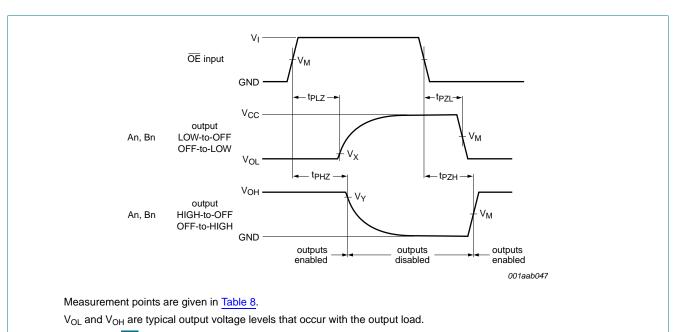


Fig 9. The input OE to output An and Bn 3-state enable and disable times

Octal bus transceiver/register; 3-state

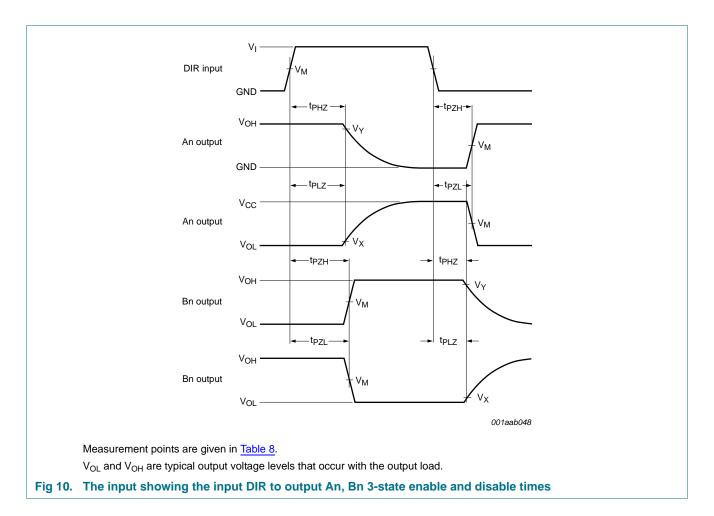
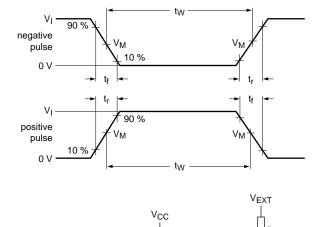
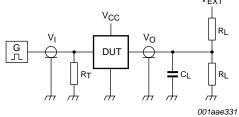




Table 8. Measurement points

Supply voltage	Input		Output						
V _{CC}	VI	V _M	V _M	V _X	V _Y				
1.2 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	$V_{OH}-0.15~V$				
1.65 V to 1.95 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V				
2.3 V to 2.7 V	V _{CC}	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V				
2.7 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH} - 0.3 V$				
3.0 V to 3.6 V	2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	$V_{OH}-0.3\ V$				

Octal bus transceiver/register; 3-state

Test data is given in Table 9.

Definitions for test circuit:

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

V_{EXT} = External voltage for measuring switching times.

Fig 11. Load circuitry for switching times

Table 9. Test data

Supply voltage	Input	Input		Load		V _{EXT}		
	VI	t _r , t _f	CL	R_L	t _{PLH} , t _{PHL}	t_{PLZ}, t_{PZL}	t _{PHZ} , t _{PZH}	
1.2 V	V_{CC}	≤ 2 ns	30 pF	1 k Ω	open	$2\times V_{CC}$	GND	
1.65 V to 1.95 V	V_{CC}	≤ 2 ns	30 pF	1 kΩ	open	$2\times V_{CC}$	GND	
2.3 V to 2.7 V	V_{CC}	≤ 2 ns	30 pF	500Ω	open	$2\times V_{CC}$	GND	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	$2\times V_{CC}$	GND	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	$2\times V_{CC}$	GND	

Octal bus transceiver/register; 3-state

12. Application information

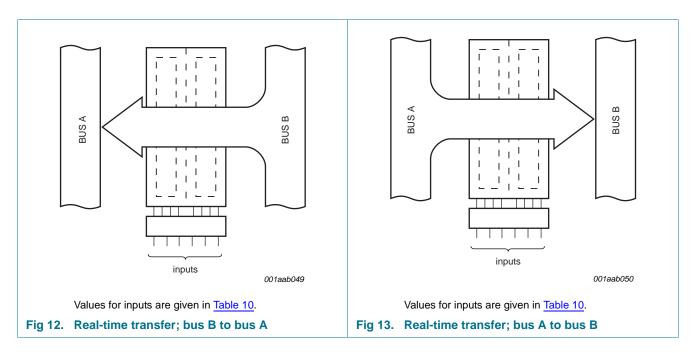


Table 10. Real-time transfer[1]

Direction	Input					
	OE	DIR	СРАВ	СРВА	SAB	SBA
Bus B to bus A	L	L	X	X	X	L
Bus A to bus B	L	Н	Χ	X	L	Х

^[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care

Octal bus transceiver/register; 3-state

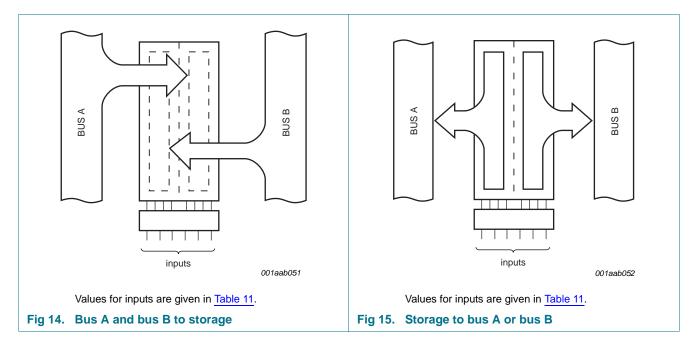
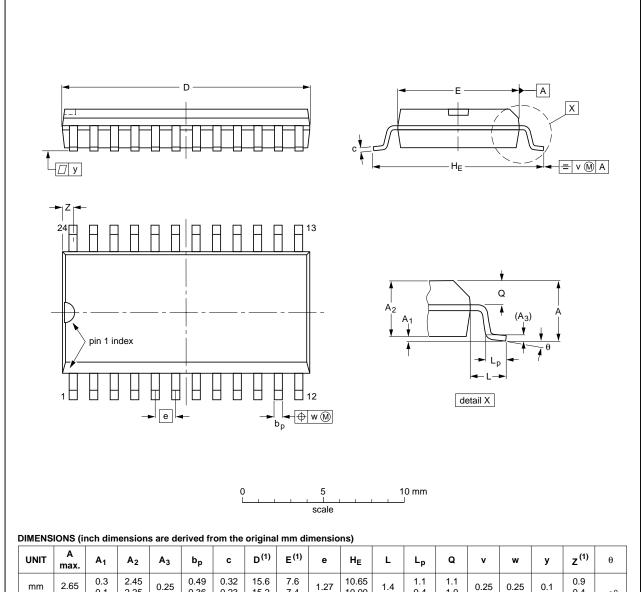


Table 11. Storage transfer[1]

Function	Input					
	OE	DIR	СРАВ	СРВА	SAB	SBA
Bus A to storage	X	Χ	↑	Χ	Χ	X
Bus B to storage	Χ	Χ	X	↑	Χ	X
Bus A and B to storage	Н	Χ	↑	↑	Χ	Х
Storage to bus A	L	L	Х	H or L	Χ	Н
Storage to bus B	L	Н	H or L	X	Н	X

[1] H = HIGH voltage level

L = LOW voltage level


X = don't care

 \uparrow = LOW to HIGH level transition

13. Package outline

SO24: plastic small outline package; 24 leads; body width 7.5 mm

SOT137-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	ø	v	w	у	z ⁽¹⁾	θ
mm	2.65	0.3 0.1	2.45 2.25	0.25	0.49 0.36	0.32 0.23	15.6 15.2	7.6 7.4	1.27	10.65 10.00	1.4	1.1 0.4	1.1 1.0	0.25	0.25	0.1	0.9 0.4	8°
inches	0.1	0.012 0.004	0.096 0.089	0.01	0.019 0.014	0.013 0.009	0.61 0.60	0.30 0.29	0.05	0.419 0.394	0.055	0.043 0.016	0.043 0.039	0.01	0.01	0.004	0.035 0.016	0°

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

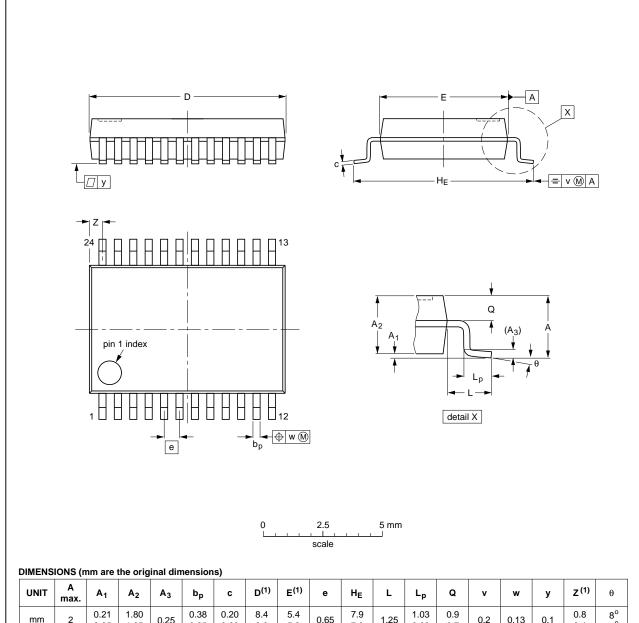

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT137-1	075E05	MS-013			99-12-27 03-02-19

Fig 16. Package outline SOT137-1 (SO24)

74LVC646A All information provided in this document is subject to legal disclaimers.

SSOP24: plastic shrink small outline package; 24 leads; body width 5.3 mm

SOT340-1

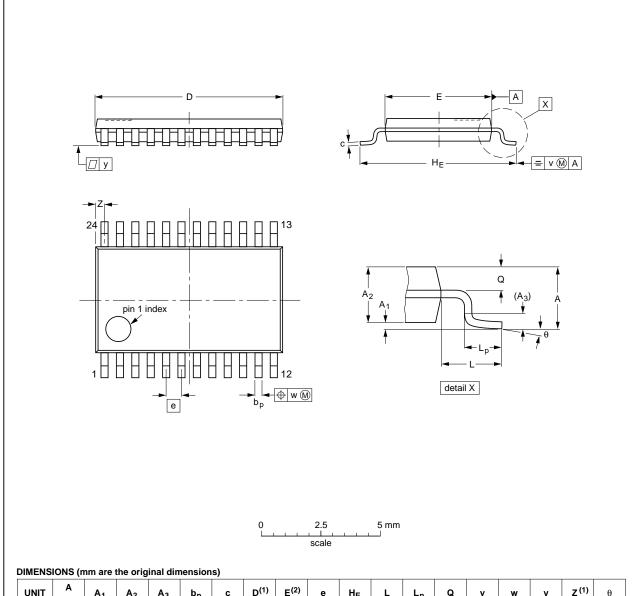
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2	0.21 0.05	1.80 1.65	0.25	0.38 0.25	0.20 0.09	8.4 8.0	5.4 5.2	0.65	7.9 7.6	1.25	1.03 0.63	0.9 0.7	0.2	0.13	0.1	0.8 0.4	8° 0°

Note

1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT340-1		MO-150			99-12-27 03-02-19

Fig 17. Package outline SOT340-1 (SSOP24)


74LVC646A

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm

SOT355-1

						٠,												
UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	7.9 7.7	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.5 0.2	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

				ISSUE DATE	
IEC JEDEC	JEITA	F	PROJECTION	ISSUE DATE	
MO-153		-{		99-12-27 03-02-19	

Fig 18. Package outline SOT355-1 (TSSOP24)

74LVC646A

All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

Octal bus transceiver/register; 3-state

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
TTL	Transistor-Transistor Logic
MM	Machine Model

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC646A v.5	20130328	Product data sheet	-	74LVC646A v.4
Modifications:	 The format of to of NXP Semice 		lesigned to comply with	the new identity guidelines
	 Legal texts have 	ve been adapted to the new	company name where	appropriate.
	• Table 4, Table	5, <u>Table 6</u> , <u>Table 7</u> , <u>Table 8</u>	and <u>Table 9</u> : values add	ded for lower voltage ranges
74LVC646A v.4	20040629	Product specification	-	74LVC646A v.3
74LVC646A v.3	20000621	Product specification	-	74LVC646A v.2
74LVC646A v.2	19980729	Product specification	-	74LVC646A v.1
74LVC646A v.1	19980325	Product specification	-	-

Octal bus transceiver/register; 3-state

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC646A

Octal bus transceiver/register; 3-state

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74LVC646A **NXP Semiconductors**

Octal bus transceiver/register; 3-state

18. Contents

 . 1 . 2 . 2 . 5 . 5
 . 2 . 5 . 5
 . 5 . 5 . 5
 . 5 . 5
 . 5 . 5
. 6
 . 6
 . 7
 . 7
 . 8
 11
 15
 17
 20
 20
 21
 21
 21
 22
 22
 23

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.