DATA SHEET

74LVT32374
3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

Product specification
Supersedes data of 2002 Mar 20

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

FEATURES

- 32-bit edge-triggered flip-flop
- 3-state buffers
- Output capability: +64 mA/-32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up reset
- Power-up 3-state
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA in accordance with JEDEC std 17
- ESD protection exceeds 2000 V in accordance with MIL STD 883 method 3015 and 200 V in accordance with machine model.

DESCRIPTION

The 74LVT32374 is a high-performance BICMOS product designed for V_{CC} operation at 3.3 V .

The 74LVT32374 is a 32-bit edge-triggered D-type flip-flop featuring non-inverting 3 -state outputs. The device can be used as four 8-bit flip-flops, or two 16-bit flip-flops or one 32-bit flip-flop. On the positive transition of the clock (CP), the Q outputs of the flip-flop take on the logic levels set-up at the D inputs.

QUICK REFERENCE DATA

GND $=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.

SYMBOL	PARAMETER	CONDITIONS	TYPICAL	UNIT
t $_{\text {PHL }} / t_{\text {PLH }}$	propagation delay nCP to nQ_{n}	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	2.9	ns
C_{I}	input capacitance	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or 3.0 V	3	pF
C_{O}	output capacitance	outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or 3.0 V	9	pF
$\mathrm{I}_{\mathrm{CCZ}}$	total supply current	output disabled; $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$	140	$\mu \mathrm{~A}$

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

FUNCTION TABLE

See note 1.

OPERATING MODE	INPUT			INTERNAL REGISTER	$\begin{gathered} \hline \text { OUTPUT } \\ \hline n Q_{n} \end{gathered}$
	nOE	nCP	$n \mathrm{D}_{\mathrm{n}}$		
Load and read register	L	\uparrow	I	L	L
	L	\uparrow	h	H	H
Hold	L	\uparrow	X	NC	NC
Disable outputs	H	\uparrow	X	NC	Z
	H	\uparrow	$n \mathrm{D}_{\mathrm{n}}$	$n \mathrm{D}_{\mathrm{n}}$	Z

Note

1. $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$h=$ HIGH voltage level one set-up time prior to the HIGH-to-LOW OE transition;
L = LOW voltage level;
I = LOW voltage level one set-up time prior to the HIGH-to-LOW OE transition;
NC = not connected;
X = don't care;
Z = high-impedance OFF-state;
$\uparrow=$ LOW-to-HIGH CP transition;
$\wedge=$ not a LOW-to-HIGH CP transition.

ORDERING INFORMATION

TYPE NUMBER	TEMPERATURE RANGE	PACKAGE			
		PINS	PACKAGE	MATERIAL	CODE
74 LVT32374EC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	96	LFBGA96	plastic	SOT536-1

PINNING

SYMBOL	DESCRIPTION
$n D_{n}$	data input
nCP	clock input
$\mathrm{nQ} \mathrm{Q}_{\mathrm{n}}$	flip-flop output
GND	ground (0 V)
nOE	output enable input (active LOW)
V_{CC}	supply voltage

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

Fig. 1 Pin configuration.

Fig. 2 Logic symbol.

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{CC}	supply voltage		2.7	+3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage	note 1	0	5.5	V
$\mathrm{~V}_{\mathrm{IH}}$	HIGH-level input voltage		2.0	-	V
V_{IL}	LOW-level input voltage		-	0.8	V
I_{OH}	HIGH-level output current		-	-32	mA
I_{OL}	LOW-level output current		-	32	mA
		current duty cycle $\leq 50 \% ; \mathrm{f} \geq 1 \mathrm{kHz}$	-	64	mA
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise or fall times	outputs enabled	-	10	$\mathrm{~ns} / \mathrm{V}$
$\mathrm{T}_{\text {amb }}$	ambient temperature		-40	+85	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	power dissipation per package	note 2	-	1000	mW

Notes

1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
2. Above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $1.8 \mathrm{~mW} / \mathrm{K}$.

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 60134); note 1.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V_{CC}	supply voltage		-0.5	-	+4.6	V
I_{IK}	input diode current	$\mathrm{V}_{\mathrm{I}}<0 \mathrm{~V}$	-	-50	-	mA
V_{I}	input voltage	note 2	-0.5	-	+7.0	V
I_{OK}	output diode current		-	-50	-	mA
V_{O}	output voltage	output in OFF or HIGH state; note 2	-0.5	-	+7.0	V
I_{O}	output current	output in LOW state	-	128	-	mA
		output in HIGH state	-	-64	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	-	+150	${ }^{\circ} \mathrm{C}$

Notes

1. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
2. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

DC CHARACTERISTICS

Over recommended operating conditions; voltages are referenced to GND (ground = 0 V).

SYMBOL	PARAMETER	TEST CONDITIONS		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		OTHER	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$							
$\mathrm{V}_{\text {IK }}$	input clamp voltage	$\mathrm{I}_{\mathrm{IK}}=-18 \mathrm{~mA}$	2.7	-	-0.85	-1.2	V
V_{OH}	HIGH-level output voltage	$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	3.0	2.0	2.3	-	V
V_{OL}	LOW-level output voltage	$\mathrm{I}_{\text {OL }}=64 \mathrm{~mA}$	3.0	-	0.4	0.55	V
$\mathrm{V}_{\text {RST }}$	power-up output LOW voltage	$\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ;$ note 2	3.6	-	0.1	0.55	V
l LI	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND; control pins	3.6	-	0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=5.5 \mathrm{~V}$	0 or 3.6	-	0.4	10	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$; data pins; note 3	3.6	-	0.1	1	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=0 \mathrm{~V}$; data pins; note 3	3.6	-	-0.4	-5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$	output OFF current	V_{1} or $\mathrm{V}_{0}=0 \mathrm{~V}$ to 4.5 V	0	-	0.1	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {hold }}$	bus hold current D inputs	$\mathrm{V}_{1}=0.8 \mathrm{~V}$; note 4	3.0	75	135	-	$\mu \mathrm{A}$
		$\mathrm{V}_{1}=2.0 \mathrm{~V}$; note 4	3.0	-75	-135	-	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$; note 4	0 to 3.6	± 500	-	-	$\mu \mathrm{A}$
l_{EX}	current into an output in the HIGH state when $V_{O}>V_{C C}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V}$	3.0	-	50	125	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{pu} / \mathrm{pd}}$	power-up/down 3-state output current	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{OE}}=\mathrm{don} \text { 't } \\ & \text { care } ; \text { note } 5 \end{aligned}$	$\leq 1.2 \mathrm{~V}$	-	1	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	3-state output HIGH current	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	3.6	-	0.5	5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OzL }}$	3-state output LOW current	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	3.6	-	+0.5	-5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	quiescent supply current	outputs HIGH; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	3.6	-	0.14	0.24	mA
$\mathrm{I}_{\text {CCL }}$	quiescent supply current	outputs LOW; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	3.6	-	8	12	mA
I CCZ	quiescent supply current	outputs disabled; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}; note 6	3.6	-	0.14	0.24	mA
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current per input pin	one input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$; other inputs at GND or V_{CC}; note 7	3.0 to 3.6	-	0.1	0.2	$\mu \mathrm{A}$

Notes

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
3. Unused pins at V_{CC} or GND.
4. This is the bus hold overdrive current required to force the input to the opposite logic state.
5. This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 ms . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{~s}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
6. $I_{C C Z}$ is measured with outputs pulled to $V_{C C}$ or GND.
7. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND .

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

AC CHARACTERISTICS

$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$.

SYMBOL	PARAMETER	CONDITIONS		MIN.	TYP. ${ }^{(1)}$	MAX.	UNIT
		WAVEFORMS	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$				
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$							
$\mathrm{t}_{\text {PLH }}$	propagation delay $n C P$ to nQ_{n}	see Fig. 5	2.7	-	-	6.2	ns
			3.0 to 3.6	1.5	3.0	5.3	ns
$\mathrm{t}_{\text {PHL }}$	propagation delay $n C P$ to $n Q_{n}$	see Fig. 5	2.7	-	-	5.1	ns
			3.0 to 3.6	1.5	3.0	4.9	ns
$\mathrm{t}_{\text {PZH }}$	output enable time to HIGH level	see Figs 7 and 8	2.7	-	-	6.9	ns
			3.0 to 3.6	1.5	3.5	5.6	ns
$t_{\text {PZL }}$	output enable time to LOW level	see Figs 7 and 8	2.7	-	-	6.0	ns
			3.0 to 3.6	1.5	3.2	4.9	ns
$t_{\text {PHZ }}$	output disable time from HIGH level	see Figs 7 and 8	2.7	-	-	5.7	ns
			3.0 to 3.6	1.5	3.5	5.4	ns
$\mathrm{t}_{\text {PLZ }}$	output disable time from LOW level	see Figs 7 and 8	2.7	1.5	3.2	5.1	ns
			3.0 to 3.6	1.5	3.2	5.0	ns
$\mathrm{t}_{\text {suH }}$	set-up time $n D_{n}$ HIGH to nCP	see Fig. 6	2.7	2.0	-	-	ns
			3.0 to 3.6	2.0	0.7	-	ns
$\mathrm{t}_{\text {suL }}$	set-up time $n D_{n}$ LOW to $n C P$	see Fig. 6	2.7	2.0	-	-	ns
			3.0 to 3.6	2.0	0.7	-	ns
t_{hH}	hold time $n D_{n}$ HIGH to $n C P$	see Fig. 6	2.7	0.1	-	-	ns
			3.0 to 3.6	0.8	0	-	ns
$t_{\text {hL }}$	hold time $n D_{n}$ LOW to $n C P$	see Fig. 6	2.7	0.1	-	-	ns
			3.0 to 3.6	0.8	0	-	ns
t_{WH}	nCP HIGH pulse width	see Fig. 6	2.7	1.5	-	-	ns
			3.0 to 3.6	1.5	0.6	-	ns
t_{WL}	nCP LOW pulse width	see Fig. 6	2.7	3.0	-	-	ns
			3.0 to 3.6	3.0	1.6	-	ns
$\mathrm{f}_{\text {max }}$	maximum clock pulse frequency	see Fig. 5	3.0 to 3.6	150	-	-	MHz

Note

1. All typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$;
$\mathrm{V}_{\mathrm{M}}=\mathrm{GND}$ to 3.0 V .

Fig. 5 Clock ($n C P$) to output $\left(\mathrm{nQ}_{\mathrm{n}}\right)$ propagation delays, the clock pulse width and the maximum clock pulse frequency.

The shaded areas indicate when the input is permitted to change for predicable output performance.
Fig. 6 Set-up and hold times for inputs ($n D_{n}$) to inputs ($n C P$).

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

Fig. 7 3-state output enable time to HIGH level and output disable time from HIGH level.

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

Fig. 9 Load circuitry for switching times.

INPUT PULSE REQUIREMENTS				
AMPLITUDE	PULSE RATE	$\mathbf{t}_{\mathbf{w}}$	$\mathbf{t}_{\mathbf{r}}$	$\mathbf{t}_{\mathbf{f}}$
2.7 V	$\leq 10 \mathrm{MHz}$	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

Fig. 10 Input pulse definition.

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

PACKAGE OUTLINE

LFBGA96: plastic low profile fine-pitch ball grid array package; 96 balls; body $13.5 \times 5.5 \times 1.05 \mathrm{~mm}$ SOT536-1

3.3 V 32-bit edge-triggered D-type flip-flop; 3-state

DATA SHEET STATUS

LEVEL	DATA SHEET STATUS ${ }^{(1)}$	PRODUCT STATUS ${ }^{(2)(3)}$	DEFINITION
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

Notes

1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

DEFINITIONS

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors - a worldwide company

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31 402724825 For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

