ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

65 V, 100 mA NPN general-purpose transistors

Rev. 9 — 25 September 2012

Product data sheet

1. Product profile

1.1 General description

NPN general-purpose transistors in Surface-Mounted Device (SMD) plastic packages.

Table 1. Product overview

Type number ^[1]	Package	Package		
	NXP	JEITA	JEDEC	
BC846	SOT23	-	TO-236AB	BC856
BC846W	SOT323	SC-70	-	BC856W
BC846T	SOT416	SC-75	-	BC856T

[1] Valid for all available selection groups.

1.2 Features and benefits

- General-purpose transistors
- SMD plastic packages
- Two different gain selections

1.3 Applications

General-purpose switching and amplification

1.4 Quick reference data

Table 2.	Quick reference data					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CEO}	collector-emitter voltage	open base	-	-	65	V
I _C	collector current		-	-	100	mA
h _{FE}	DC current gain	V_{CE} = 5 V; I_C = 2 mA	110	-	450	
	h _{FE} group A		110	180	220	
	h _{FE} group B		200	290	450	

65 V, 100 mA NPN general-purpose transistors

2. Pinning information

Table 3.	Pinning		
Pin	Description	Simplified outline	Graphic symbol
SOT23, S	SOT323, SOT416		
1	base		
2	emitter	3	3
3	collector		1
		1 2 006aaa144	2 sym021

3. Ordering information

Table 4. Order	ring inforn	nation	
Type number ^[1]			
	Name	Description	Version
BC846	-	plastic surface-mounted package; 3 leads	SOT23
BC846W	SC-70	plastic surface-mounted package; 3 leads	SOT323
BC846T	SC-75	plastic surface-mounted package; 3 leads	SOT416

[1] Valid for all available selection groups.

4. Marking

Table 5. Marking codes Type number Marking code^[1] BC846 1D* 1A* BC846A BC846B 1B* BC846W 1D* BC846AW 1A* BC846BW 1B* BC846T 1M BC846AT 1A BC846BT 1B

[1] * = placeholder for manufacturing site code

65 V, 100 mA NPN general-purpose transistors

5. Limiting values

Table 6. In accorda	Limiting values nce with the Absolute Maximur	m Rating System (IEC	C 60134).		
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CBO}	collector-base voltage	open emitter	-	80	V
V _{CEO}	collector-emitter voltage	open base	-	65	V
V _{EBO}	emitter-base voltage	open collector	-	6	V
I _C	collector current		-	100	mA
I _{CM}	peak collector current	single pulse; t _p ≤ 1 ms	-	200	mA
I _{BM}	peak base current	single pulse; $t_p \leq 1 ms$	-	200	mA
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	<u>[1]</u>		
	SOT23		-	250	mW
	SOT323		-	200	mW
	SOT416		-	150	mW
Tj	junction temperature		-	150	°C
T _{amb}	ambient temperature		-65	+150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, tin-plated and standard footprint.

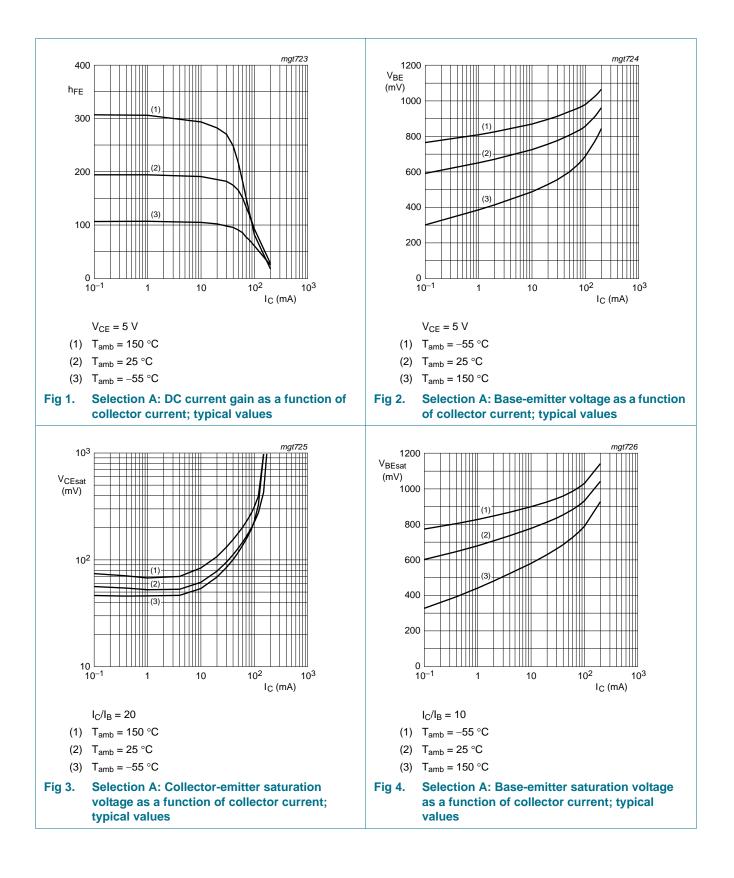
6. Thermal characteristics

Table 7.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
R _{th(j-a)}	thermal resistance from junction to ambient	in free air	<u>[1]</u>			
	SOT23		-	-	500	K/W
	SOT323		-	-	625	K/W
	SOT416		-	-	833	K/W
-						

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

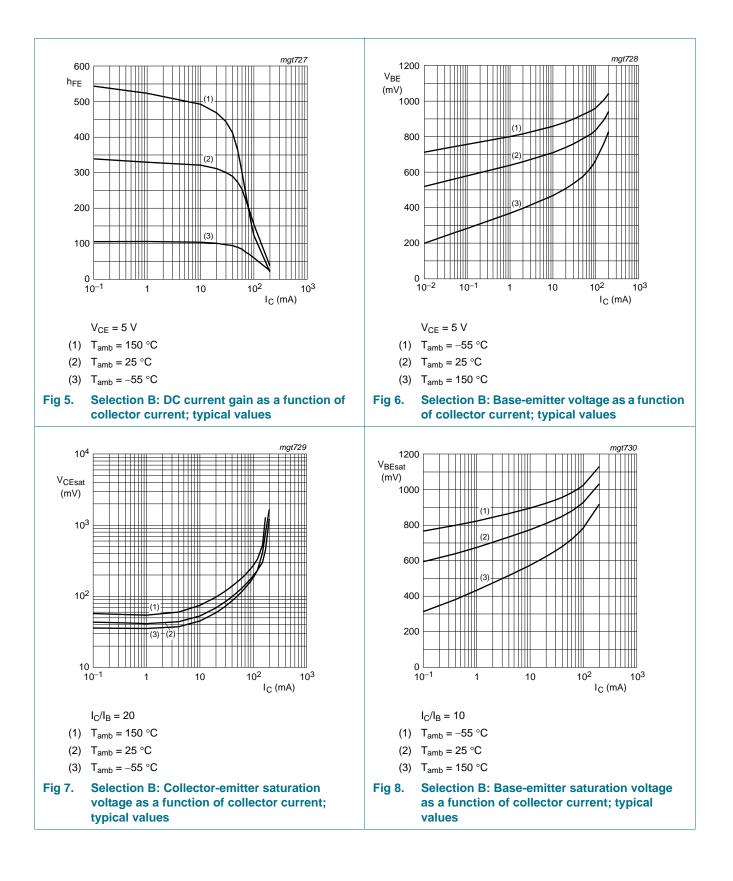
65 V, 100 mA NPN general-purpose transistors

7. Characteristics

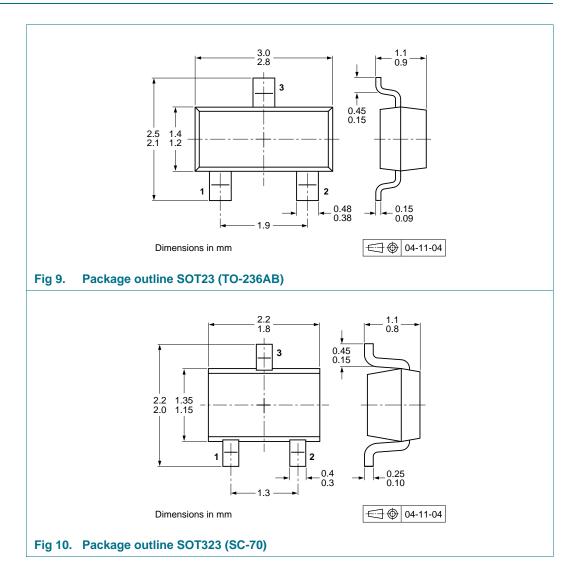

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
I _{CBO}	collector-base cut-off	$V_{CB} = 30 \text{ V}; I_E = 0 \text{ A}$		-	-	15	nA
	current	$\label{eq:VCB} \begin{array}{l} V_{CB} = 30 \; V; \; I_{E} = 0 \; A; \\ T_{j} = 150 \; ^{\circ}C \end{array}$		-	-	5	μΑ
I _{EBO}	emitter-base cut-off current	$V_{EB} = 5 \text{ V}; I_{C} = 0 \text{ A}$		-	-	100	nA
h _{FE}	DC current gain	V_{CE} = 5 V; I_{C} = 10 μ A					
	h _{FE} group A			-	180	-	
	h _{FE} group B			-	290	-	
	$\begin{array}{c} h_{FE} \text{ group B} \\ \hline DC \text{ current gain} \\ h_{FE} \text{ group A} \\ \hline h_{FE} \text{ group B} \\ \hline \text{collector-emitter} \\ \text{saturation voltage} \\ \hline base-emitter \\ \text{orduration voltage} \\ \end{array} \begin{array}{c} I_C = 10 \text{ mA; } I_B = 0.5 \text{ m} \\ I_C = 10 \text{ mA; } I_B = 5 \text{ m} \\ I_C = 10 \text{ mA; } I_B = 0.5 \text{ m} \\ \hline I_C = 10 \text{ mA; } I_B = 0.5 \text{ m} \\$	$V_{CE} = 5 \text{ V}; I_{C} = 2 \text{ mA}$		110	-	450	
	h _{FE} group A			110	180	220	
	h _{FE} group B			200	290	450	
V _{CEsat}		I_{C} = 10 mA; I_{B} = 0.5 mA		-	90	200	220 450 200 mV 400 mV - mV
	h _{FE} group B collector-emitter saturation voltage base-emitter	$I_C = 100 \text{ mA}; I_B = 5 \text{ mA}$	<u>[1]</u>	-	200	400	mV
V _{BEsat}		I_{C} = 10 mA; I_{B} = 0.5 mA	[2]	-	760	-	mV
	saturation voltage	$I_{C} = 100 \text{ mA}; I_{B} = 5 \text{ mA}$	[2]	-	900	-	mV
V _{BE}	base-emitter voltage	$I_C = 2 \text{ mA}; V_{CE} = 5 \text{ V}$	[3]	580	660	700	mV
		I_C = 10 mA; V_{CE} = 5 V	[3]	-	-	770	mV
f _T	transition frequency	$V_{CE} = 5 \text{ V}; I_{C} = 10 \text{ mA};$ f = 100 MHz		100	-	-	MHz
C _c	collector capacitance	$\label{eq:VCB} \begin{array}{l} V_{CB} = 10 \text{ V}; \text{I}_{E} = \text{i}_{e} = 0 \text{ A}; \\ \text{f} = 1 \text{ MHz} \end{array}$		-	2	3	pF
C _e	emitter capacitance	$V_{EB} = 0.5 \text{ V}; I_{C} = i_{c} = 0 \text{ A};$ f = 1 MHz		-	11	-	pF
NF	noise figure	$I_C = 200 \ \mu$ A; V _{CE} = 5 V; R _S = 2 kΩ; f = 1 kHz; B = 200 Hz		-	2	10	dB

[2] V_{BEsat} decreases by approximately 1.7 mV/K with increasing temperature.

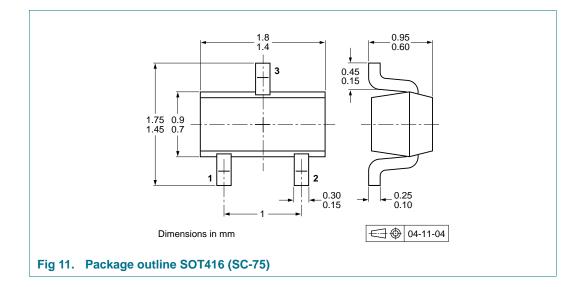
[3] V_{BE} decreases by approximately 2 mV/K with increasing temperature.


NXP Semiconductors

BC846 series


NXP Semiconductors

BC846 series


65 V, 100 mA NPN general-purpose transistors

8. Package outline

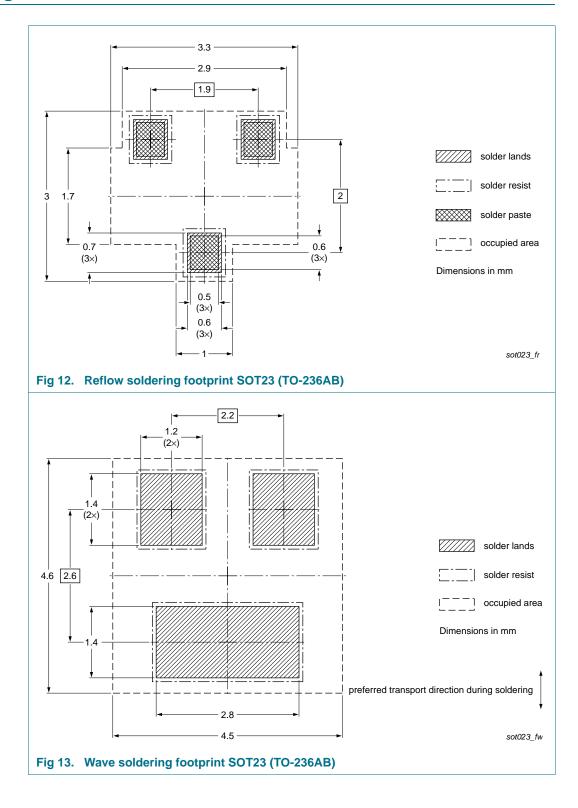
BC846_SER Product data sheet

65 V, 100 mA NPN general-purpose transistors

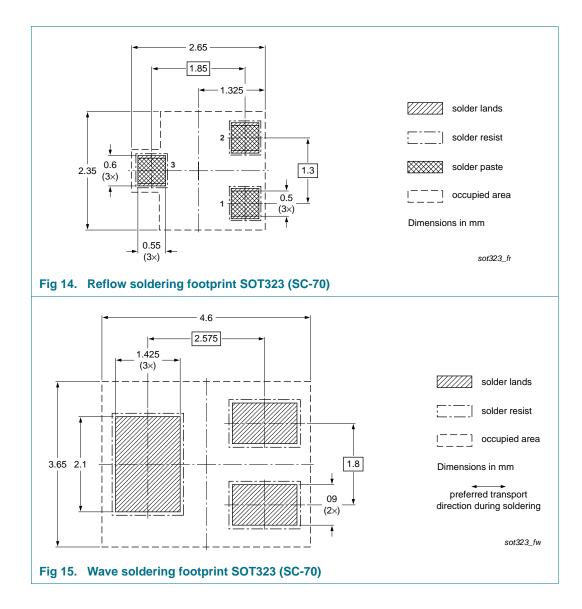
9. Packing information

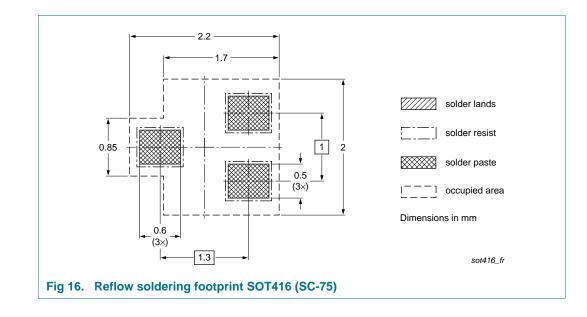
Table 9. Packing methods

The indicated -xxx are the last three digits of the 12NC ordering code.[1]


Туре	Package	Description	Packin	ig quant	ity
number ^[2]			1000	3000	4000
BC846	SOT23	4 mm pitch, 8 mm tape and reel	-215	-	-235
BC846W	SOT323	4 mm pitch, 8 mm tape and reel	-115	-	-135
BC846T	SOT416	4 mm pitch, 8 mm tape and reel	-115	-	-135

[1] For further information and the availability of packing methods, see <u>Section 13</u>.


[2] Valid for all available selection groups.


65 V, 100 mA NPN general-purpose transistors

10. Soldering

BC846_SER

65 V, 100 mA NPN general-purpose transistors

11. Revision history

Document IDRelease dateData sheet statusChange noticeSupersedesBC846_SER v.920120925Product data sheet-BC846_SER v.8Modifications:• Table 6 "Limiting values": Ptot values correctedBC846_BC546_SER v.7BC846_BC546_SER v.720091117Product data sheet-BC846_BC546_SER v.6BC846_BC546_SER v.620060207Product data sheet	Table 10. Revision history				
Modifications: Table 6 "Limiting values": P _{tot} values corrected BC846_SER v.8 20120424 Product data sheet BC846_BC546_SER v.7 BC846_BC546_SER v.7 20091117 Product data sheet PC846_BC546_SER v.6	Document ID	Release date	Data sheet status	Change notice	Supersedes
BC846_SER v.8 20120424 Product data sheet BC846_BC546_SER v.7 BC846_BC546_SER v.7 20091117 Product data sheet - BC846_BC546_SER v.6	BC846_SER v.9	20120925	Product data sheet	-	BC846_SER v.8
BC846_BC546_SER v.7 20091117 Product data sheet - BC846_BC546_SER v.6	Modifications:	• Table 6 "Lir	niting values": P _{tot} values c	orrected	
	BC846_SER v.8	20120424	Product data sheet		BC846_BC546_SER v.7
BC846_BC546_SER v.6 20060207 Product data sheet	BC846_BC546_SER v.7	20091117	Product data sheet	-	BC846_BC546_SER v.6
	BC846_BC546_SER v.6	20060207	Product data sheet	-	-

65 V, 100 mA NPN general-purpose transistors

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof. Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BC846_SER

© NXP B.V. 2012. All rights reserved.

65 V, 100 mA NPN general-purpose transistors

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

65 V, 100 mA NPN general-purpose transistors

14. Contents

1	Product profile	. 1
1.1	General description	. 1
1.2	Features and benefits	. 1
1.3	Applications	. 1
1.4	Quick reference data	. 1
2	Pinning information	2
3	Ordering information	2
4	Marking	. 2
5	Limiting values	3
6	Thermal characteristics	. 3
7	Characteristics	4
8	Package outline	. 7
9	Packing information	8
10	Soldering	9
11	Revision history	12
12	Legal information	13
12.1	Data sheet status	13
12.2	Definitions	13
12.3	Disclaimers	13
12.4	Trademarks	14
13	Contact information	14
14	Contents	15

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2012.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 25 September 2012 Document identifier: BC846_SER