Sensitive Gate Silicon Controlled Rectifiers

Reverse Blocking Thyristors

Designed for high volume, low cost, industrial and consumer applications such as motor control; process control; temperature, light and speed control; CDI (Capacitive Discharge Ignition); and small engines.

Features

- Small Size
- Passivated Die for Reliability and Uniformity
- Low Level Triggering and Holding Characteristics
- Epoxy Meets UL 94 V-0 @ 0.125 in
- ESD Ratings: Human Body Model, 3B > 8000 V Machine Model, C > 400 V
- These are Pb–Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) (T _J = -40 to 110°C, Sine Wave, 50 Hz to 60 Hz) MCR12DSM MCR12DSN	V _{DRM,} V _{RRM}	600 800	V
On–State RMS Current (180° Conduction Angles; T _C = 75°C)	I _{T(RMS)}	12	Α
Average On–State Current (180° Conduction Angles; T _C = 75°C)	I _{T(AV)}	7.6	Α
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave 60 Hz, T _J = 110°C)	I _{TSM}	100	Α
Circuit Fusing Consideration (t = 8.3 msec)	l ² t	41	A ² sec
Forward Peak Gate Power (Pulse Width ≤ 10 μsec, T _C = 75°C)	P _{GM}	5.0	W
Forward Average Gate Power (t = 8.3 msec, T _C = 75°C)	P _{G(AV)}	0.5	W
Forward Peak Gate Current (Pulse Width \leq 10 μ sec, T_C = 75°C)	I _{GM}	2.0	Α
Operating Junction Temperature Range	TJ	-40 to 110	°C
Storage Temperature Range	T _{stg}	-40 to 150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

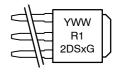
1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the device are exceeded.

ON Semiconductor®

http://onsemi.com

SCRs 12 AMPERES RMS 600 - 800 VOLTS

MARKING DIAGRAMS



DPAK CASE 369C STYLE 4

IPAK CASE 369D STYLE 4

PIN ASSIGNMENT				
1 Cathode				
2	Anode			
3	Gate			
4	Anode			

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS

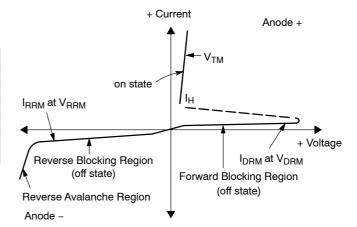
Characteristic	Symbol	Max	Unit
Thermal Resistance,- Junction-to-Case - Junction-to-Ambient - Junction-to-Ambient (Note 2)	$egin{aligned} R_{ hetaJC} \ R_{ hetaJA} \ R_{ hetaJA} \end{aligned}$	2.2 88 80	°C/W
Maximum Lead Temperature for Soldering Purposes (Note 3)	TL	260	°C

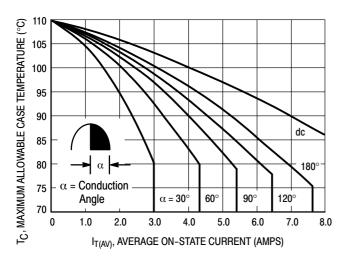
ELECTRICAL CHARACTERISTICS ($T_J = 25^{\circ}C$ unless otherwise noted)

Characteristics	Symbol	Min	Тур	Max	Unit	
OFF CHARACTERISTICS		•	•	•	•	•
Peak Repetitive Forward or Reverse Blocking Current (N $(V_{AK}$ = Rated V_{DRM} or V_{RRM} ; R_{GK} = 1.0 $K\Omega$)	ote 4) T _J = 25°C T _J = 110°C	I _{DRM} , IRRM	- -	- -	10 500	μΑ
ON CHARACTERISTICS						
Peak Reverse Gate Blocking Voltage, (I _{GR} = 10 μA)		V_{GRM}	10	12.5	18	V
Peak Reverse Gate Blocking Current, (V _{GR} = 10 V)		I _{GRM}	_	-	1.2	μΑ
Peak Forward On-State Voltage (Note 5), (I _{TM} = 20 A)		V _{TM}	-	1.3	1.9	V
Gate Trigger Current (Continuous dc) (Note 6) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	T _J = 25°C T _J = -40°C	l _{GT}	5.0 -	12 -	200 300	μΑ
Gate Trigger Voltage (Continuous dc) (Note 6) $(V_D = 12 \text{ V}, \text{ R}_L = 100 \Omega)$	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$ $T_J = 110^{\circ}C$	V _{GT}	0.45 - 0.2	0.65 - -	1.0 1.5 –	V
Holding Current (V_D = 12 V, Initiating Current = 200 mA, R_{GK} = 1 k Ω)	T _J = 25°C T _J = -40°C	lн	0.5 -	1.0 -	6.0 10	mA
Latching Current (V_D = 12 V, I_G = 2.0 mA, R_{GK} = 1 k Ω)	T _J = 25°C T _J = -40°C	IL	0.5 -	1.0	6.0 10	mA
Turn–On Time (Source Voltage = 12 V, R_S = 6.0 K Ω , I_T = 16 A(pk), R_C (V_D = Rated V_{DRM} , Rise Time = 20 ns, Pulse Width = 1	tgt	-	2.0	5.0	μS	
DYNAMIC CHARACTERISTICS						
Critical Rate of Rise of Off-State Voltage		dv/dt				V/μs

Critical Rate of Rise of Off-State Voltage	dv/dt				V/μs
$(V_D = 0.67 \text{ x Rated } V_{DRM}, \text{ Exponential Waveform, } R_{GK} = 1.0 \text{ K}\Omega, T_J = 110^{\circ}\text{C})$		2.0	10	-	
Critical Rate of Rise of On-State Current	di/dt				A/μs
$(I_{PK} = 50 \text{ A}, P_W = 40 \mu sec, diG/dt = 1 \text{ A/}\mu sec, I_{GT} = 10 \text{ mA})$		-	50	100	

^{2.} These ratings are applicable when surface mounted on the minimum pad sizes recommended.

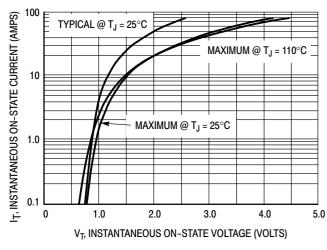

^{3. 1/8&}quot; from case for 10 seconds.


^{4.} Ratings apply for negative gate voltage or R_{GK} = 1.0 kΩ. Devices shall not have a positive gate voltage concurrently with a negative voltage on the anode. Devices should not be tested with a constant current source for forward and reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

^{5.} Pulse Test: Pulse Width \leq 2.0 msec, Duty Cycle \leq 2%. 6. R_{GK} current not included in measurement.

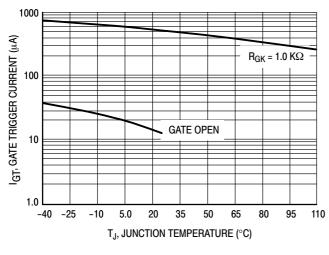
Voltage Current Characteristic of SCR

Symbol	Parameter
V _{DRM}	Peak Repetitive Off State Forward Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Off State Reverse Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Peak On State Voltage
I _H	Holding Current



P(AV), AVERAGE POWER DISSIPATION (WATTS) 16 180° 120° 14 90° 12 60° dc α = Conduction 10 Angle 8.0 α = 30° 6.0 4.0 2.0 0 3.0 4.0 5.0 6.0 7.0 8.0 $I_{T(AV)}$, AVERAGE ON-STATE CURRENT (AMPS)

Figure 1. Average Current Derating


Figure 2. On-State Power Dissipation

1.0 (NORWAL RESISTANCE (I) TRANSIENT THERMAL RESISTANCE (II) (NORWALZED) (NORWALZED) (NORWALZED) (NORWALZED) (NORWALZED) (II) (II) (III) (

Figure 3. On-State Characteristics

Figure 4. Transient Thermal Response

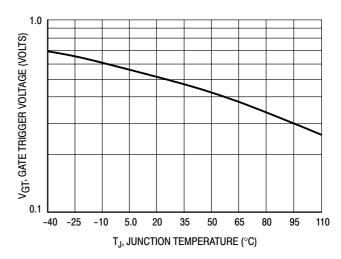
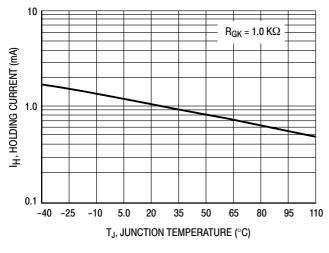



Figure 5. Typical Gate Trigger Current versus Junction Temperature

Figure 6. Typical Gate Trigger Voltage versus Junction Temperature

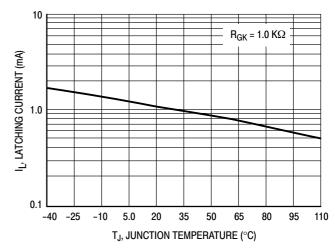


Figure 7. Typical Holding Current versus Junction Temperature

Figure 8. Typical Latching Current versus Junction Temperature

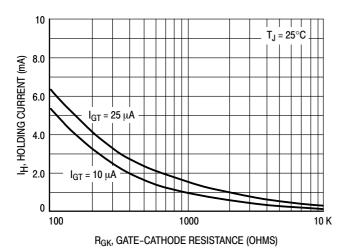
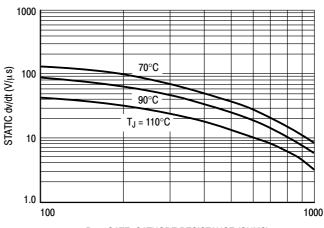



Figure 9. Holding Current versus

R_{GK}, GATE-CATHODE RESISTANCE (OHMS)

Gate-Cathode Resistance

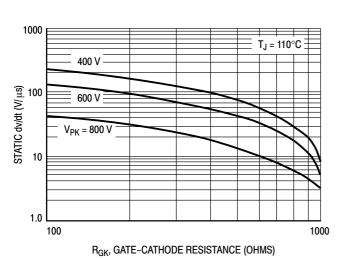
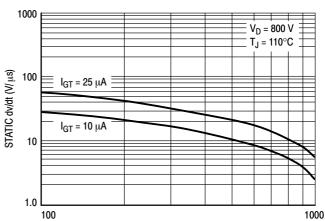



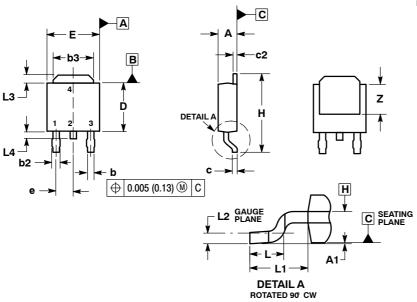
Figure 11. Exponential Static dv/dt versus Gate-Cathode Resistance and Peak Voltage

Figure 10. Exponential Static dv/dt versus **Gate-Cathode Resistance and Junction Temperature**

R_{GK}, GATE-CATHODE RESISTANCE (OHMS)

Figure 12. Exponential Static dv/dt versus **Gate-Cathode Resistance and Gate Trigger Current Sensitivity**

ORDERING INFORMATION


Device	Package Type	Package	Shipping [†]
MCR12DSMT4G	DPAK (Pb-Free)	369C	2500 / Tape & Reel
MCR12DSN-1G	IPAK (Pb-Free)	369D	75 Units / Rail
MCR12DSNT4G	DPAK (Pb-Free)	369C	2500 / Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

DPAK (SINGLE GAUGE)

CASE 369C ISSUE D

NOTES:

- NOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

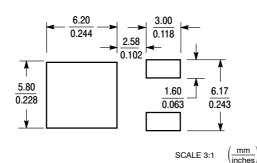
 2. CONTROLLING DIMENSION: INCHES.

 3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

 5. DIMENSIONS D AND F ARP DETERMINED AT THE
- NOT EXCEED 0.000 INCIRES PER SIDE.

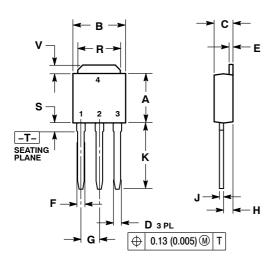
 5. DIMENSIONS D AND E ARE DETERMINED AT THE
 OUTERMOST EXTREMES OF THE PLASTIC BODY.

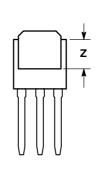

 6. DATUMS A AND B ARE DETERMINED AT DATUM
 PLANE H.

	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.086	0.094	2.18	2.38	
A1	0.000	0.005	0.00	0.13	
b	0.025	0.035	0.63	0.89	
b2	0.030	0.045	0.76	1.14	
b3	0.180	0.215	4.57	5.46	
С	0.018	0.024	0.46	0.61	
c2	0.018	0.024	0.46	0.61	
D	0.235	0.245	5.97	6.22	
E	0.250	0.265	6.35	6.73	
е	0.090 BSC		2.29	BSC	
Н	0.370	0.410	9.40	10.41	
L	0.055	0.070	1.40	1.78	
L1	0.108	REF	2.74 REF		
L2	0.020	BSC	0.51 BSC		
L3	0.035	0.050	0.89	1.27	
L4		0.040		1.01	
Z	0.155		3.93		

STYLE 4: PIN 1. CATHODE 2. ANODE 3. GATE

- 4. ANODE


SOLDERING FOOTPRINT*



^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

IPAK CASE 369D **ISSUE C**

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.235	0.245	5.97	6.35	
В	0.250	0.265	6.35	6.73	
C	0.086	0.094	2.19	2.38	
D	0.027	0.035	0.69	88.0	
Е	0.018	0.023	0.46	0.58	
F	0.037	0.045	0.94	1.14	
G	0.090	BSC	2.29	BSC	
Н	0.034	0.040	0.87	1.01	
J	0.018	0.023	0.46	0.58	
K	0.350	0.380	8.89	9.65	
R	0.180	0.215	4.45	5.45	
S	0.025	0.040	0.63	1.01	
٧	0.035	0.050	0.89	1.27	
7	0.155		3 93		

STYLE 4:

- PIN 1. CATHODE 2. ANODE

 - 3. GATE 4. ANODE

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, un semiconductor and are registered trademarks of Semiconductor Components industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent—Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical expents. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implest into the body or other applications intended to surgical implest into the failure of the SCILLC product could great a situation where surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative