Triple 750 MHz Voltage Feedback Op Amp with Enable Feature

NCS2540 is a triple 750 MHz voltage feedback monolithic operational amplifier featuring high slew rate and low differential gain and phase error. The voltage feedback architecture allows for a superior bandwidth and low power consumption. This device features an enable pin.

Features

- -3.0 dB Small Signal $\mathrm{BW}\left(\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right) 750 \mathrm{MHz}$ Typ
- Slew Rate 1700 V/us
- Supply Current $13 \mathrm{~mA} / \mathrm{amp}$
- Input Referred Voltage Noise $5.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- THD -64 dBc (f = 5.0 MHz, $\left.\mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\right)$
- Output Current 100 mA
- Enable Pin Available
- These are $\mathrm{Pb}-$ Free Devices

Applications

- Line Drivers
- Radar/Communication Receivers

Figure 1. Frequency Response: Gain (dB) vs. Frequency $A v=+2.0$

ON Semiconductor ${ }^{\circledR}$

http://onsemi.com

TSSOP-16 PINOUT

ORDERING INFORMATION

Device	Package	Shipping ${ }^{\dagger}$
NCS2540DTBG	TSSOP-16 (Pb-Free)	96 Units / Rail
NCS2540DTBR2G	TSSOP-16 (Pb-Free)	 Reel

\dagger For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

PIN FUNCTION DESCRIPTION

Pin	Symbol	Function	Equivalent Circuit
10, 12, 15	OUTx	Output	
3, 6, 9	$\mathrm{V}_{\text {EE }}$	Negative Power Supply	
2, 5, 8	+INx	Non-inverted Input	
1, 4, 7	-INx	Inverted Input	See Above
11, 13, 16	V_{CC}	Positive Power Supply	
14	EN	Enable	

ENABLE PIN TRUTH TABLE

	High	Low*
Enable	Disabled	Enabled

*Default open state

Figure 2. Simplified Device Schematic

ATTRIBUTES

Characteristics	Value
ESD	
Human Body Model	2.0 kV
Machine Model	200 V
Charged Device Model	1.0 kV
Moisture Sensitivity (Note 1)	Level 1
Flammability Rating Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in

1. For additional information, see Application Note AND8003/D.

MAXIMUM RATINGS

Parameter	Symbol	Rating	Unit
Power Supply Voltage	V_{S}	11	Vdc
Input Voltage Range	V_{I}	$\leq \mathrm{V}_{\mathrm{S}}$	Vdc
Input Differential Voltage Range	V_{ID}	V_{S}	Vdc
Output Current	I_{O}	100	mA
Maximum Junction Temperature (Note 2)	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation	P_{D}	$($ See Graph$)$	mW^{C}
Thermal Resistance, Junction-to-Air	$\mathrm{R}_{\theta \mathrm{JJA}}$	179	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.
2. Power dissipation must be considered to ensure maximum junction temperature $\left(T_{J}\right)$ is not exceeded.

MAXIMUM POWER DISSIPATION

The maximum power that can be safely dissipated is limited by the associated rise in junction temperature. For the plastic packages, the maximum safe junction temperature is $150^{\circ} \mathrm{C}$. If the maximum is exceeded momentarily, proper circuit operation will be restored as soon as the die temperature is reduced. Leaving the device in the "overheated" condition for an extended period can result in device damage.

Figure 3. Power Dissipation vs. Temperature

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $G N D, \mathrm{R}_{\mathrm{F}}=150 \Omega$, $A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

FREQUENCY DOMAIN PERFORMANCE

BW	Bandwidth 3.0 dB Small Signal 3.0 dB Large Signal	$\begin{aligned} & A_{V}=+2.0, V_{O}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	$\begin{aligned} & 750 \\ & 350 \end{aligned}$	MHz
$\mathrm{GF}_{0.1 \mathrm{~dB}}$	0.1 dB Gain Flatness Bandwidth	$A_{V}=+2.0$	40	MHz
dG	Differential Gain	$\mathrm{A}_{V}=+2.0, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	0.07	\%
dP	Differential Phase	$\mathrm{A}_{V}=+2.0, \mathrm{R}_{\mathrm{L}}=150 \Omega, \mathrm{f}=3.58 \mathrm{MHz}$	0.01	-

TIME DOMAIN RESPONSE

SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=2.0 \mathrm{~V}$		1700		$\mathrm{~V} / \mathrm{us}$
t_{s}	Settling Time 0.1%	$\mathrm{~A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=2.0 \mathrm{~V}$		10		ns
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time	$(10 \%-90 \%) \mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=2.0 \mathrm{~V}$		2.0		ns
t_{ON}	Turn-on Time			20		ns
$\mathrm{t}_{\text {OFF }}$	Turn-off Time			40	ns	

HARMONIC/NOISE PERFORMANCE

THD	Total Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-64	dB
HD 2	2nd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-65	dBc
HD 3	3rd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-75	
IP3	Third-Order Intercept	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		40	dBc
SFDR	Spurious-Free Dynamic Range	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=2.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		65	dBm
e_{N}	Input Referred Voltage Noise	$\mathrm{f}=1.0 \mathrm{MHz}$	dBc		
i_{N}	Input Referred Current Noise	$\mathrm{f}=1.0 \mathrm{MHz}$	5.0		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{F}}=150 \Omega$,
$A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

DC PERFORMANCE

V_{IO}	Input Offset Voltage (Note 3)	-10	0	+10	mV	
$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$	Input Offset Voltage Temperature Coefficient	V	6.0		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$	
I_{IB}	Input Bias Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$				
$\Delta \mathrm{I}_{\mathrm{IB}} / \Delta \mathrm{T}$	Input Bias Current Temperature Coefficient			± 3.2	± 20	$\mu \mathrm{~A}$
$\mathrm{~V}_{\mathrm{IH}}$	Input High Voltage (Enable) (Note 3)					$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
V_{IL}	Input Low Voltage (Enable) (Note 3)			1.0	V	

INPUT CHARACTERISTICS

V_{CM}	Input Common Mode Voltage Range (Note 3)	(See Graph)	± 3.0	± 3.2	V
CMRR	Common Mode Rejection Ratio (Note 3)	40	50		dB
R_{IN}	Input Resistance			4.5	$\mathrm{M} \Omega$
C_{IN}	Differential Input Capacitance		1.0	pF	

OUTPUT CHARACTERISTICS

$R_{\text {OUT }}$	Output Resistance			0.1		Ω
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Range		± 3.0	± 4.0		V
I_{O}	Output Current		± 50	± 100		mA

POWER SUPPLY

V_{S}	Operating Voltage Supply			10		V
$\mathrm{I}_{\mathrm{S}, \mathrm{ON}}$	Power Supply Current - Enabled per amplifier (Note 3)		5.0	13	17	mA
$\mathrm{I}_{\mathrm{S}, \text { OFF }}$	Power Supply Current - Disabled per amplifier	(See Graph)	0.1	0.3	mA	
PSRR	Power Supply Rejection Ratio (Note 3)	40	56		dB	
	Crosstalk	Channel to Channel, $\mathrm{f}=5 \mathrm{MHz}$		85		dB

3. Guaranteed by design and/or characterization.

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $G N D, \mathrm{R}_{\mathrm{F}}=150 \Omega$, $A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

FREQUENCY DOMAIN PERFORMANCE

$\left.\begin{array}{|c|c|c|c|c|c|c|}\hline \text { BW } & \begin{array}{c}\text { Bandwidth } \\ 3.0 \mathrm{~dB} \text { Small Signal } \\ 3.0 \mathrm{~dB} \text { Large Signal }\end{array} & \begin{array}{c}\mathrm{A}_{V}=+2.0, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ \mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}\end{array} & & 550 \\ 200\end{array}\right)$

TIME DOMAIN RESPONSE

SR	Slew Rate	$\mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=1.0 \mathrm{~V}$		900		$\mathrm{~V} / \mathrm{us}$
t_{s}	Settling Time 0.1%	$\mathrm{~A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=1.0 \mathrm{~V}$		10		ns
$\mathrm{t}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Rise and Fall Time	$(10 \%-90 \%) \mathrm{A}_{\mathrm{V}}=+2.0, \mathrm{~V}_{\text {step }}=1.0 \mathrm{~V}$		1.7		ns
t_{ON}	Turn-on Time			20		ns
$\mathrm{t}_{\text {OFF }}$	Turn-off Time			40	ns	

HARMONIC/NOISE PERFORMANCE

THD	Total Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-60	dB
HD 2	2nd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-65	dBc
HD 3	3rd Harmonic Distortion	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		-63	
IP3	Third-Order Intercept	$\mathrm{f}=10 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		35	dBc
SFDR	Spurious-Free Dynamic Range	$\mathrm{f}=5.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{O}}=1.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$		63	dBm
e_{N}	Input Referred Voltage Noise	$\mathrm{f}=1.0 \mathrm{MHz}$	dBc		
i_{N}	Input Referred Current Noise	$\mathrm{f}=1.0 \mathrm{MHz}$	5.0		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$

DC ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=+2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=150 \Omega$ to $\mathrm{GND}, \mathrm{R}_{\mathrm{F}}=150 \Omega$,
$A_{V}=+2.0$, Enable is left open, unless otherwise specified).

Symbol	Characteristic	Conditions	Min	Typ	Max	Unit

DC PERFORMANCE

V_{IO}	Input Offset Voltage (Note 4)	-10	0	+10	mV	
$\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{T}$	Input Offset Voltage Temperature Coefficient	V		6.0		$\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
I_{IB}	Input Bias Current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		± 3.2	± 20	$\mu \mathrm{~A}$
$\Delta \mathrm{I}_{\mathrm{IB}} / \Delta \mathrm{T}$	Input Bias Current Temperature Coefficient		1.5			$\mathrm{nA} /{ }^{\circ} \mathrm{C}$
V_{IH}	Input High Voltage (Enable) (Note 4)				0.5	V
$\mathrm{~V}_{\mathrm{IL}}$	Input Low Voltage (Enable) (Note 4)					

INPUT CHARACTERISTICS

V_{CM}	Input Common Mode Voltage Range (Note 4)	± 1.1	± 1.5	V	
CMRR	Common Mode Rejection Ratio (Note 4)	(See Graph)	40	50	
R_{IN}	Input Resistance			4.5	dB
C_{IN}	Differential Input Capacitance		1.0	$\mathrm{M} \Omega$	

OUTPUT CHARACTERISTICS

$\mathrm{R}_{\text {Out }}$	Output Resistance			0.1		Ω
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Range		± 1.1	± 1.5		V
I_{O}	Output Current		± 50	± 100		mA

POWER SUPPLY

V_{S}	Operating Voltage Supply			5.0		V
$\mathrm{I}_{\mathrm{S}, \mathrm{ON}}$	Power Supply Current - Enabled per amplifier		5.0	11	17	mA
$\mathrm{I}_{\mathrm{S}, \mathrm{OFF}}$	Power Supply Current - Disabled per amplifier		0.1	0.3	mA	
PSRR	Power Supply Rejection Ratio (Note 4)	(See Graph)	40	56		dB
	Crosstalk	Channel to Channel, $\mathrm{f}=5 \mathrm{MHz}$		85		dB

4. Guaranteed by design and/or characterization.

Figure 4. Typical Test Setup
$\left(A_{V}=+2.0, R_{F}=150 \mathrm{k} \Omega, R_{L}=150 \Omega\right)$

Figure 5. Frequency Response:
Gain (dB) vs. Frequency
$\mathrm{Av}=+\mathbf{2} .0$

Figure 7. Large Signal Frequency Response Gain (dB) vs. Frequency

Figure 9. Small Signal Step Response
Vertical: $\mathbf{2 0} \mathbf{~ m V / d i v}$
Horizontal: 3 ns/div

Figure 6. Frequency Response: Gain (dB) vs. Frequency $A v=+1.0$

Figure 8. Small Signal Frequency Response Gain (dB) vs. Frequency

Figure 10. Large Signal Step Response Vertical: $1 \mathrm{~V} / \mathrm{div}$
Horizontal: 3 ns/div

Figure 11. THD, HD2, HD3 vs. Frequency

Figure 13. Input Referred Voltage Noise vs. Frequency

Figure 15. PSRR vs. Frequency

Figure 12. THD, HD2, HD3 vs. Output Voltage

Figure 14. CMRR vs. Frequency

Figure 16. Differential Gain

Figure 17. Differential Phase

Figure 19. Supply Current Per Amplifier vs. Temperature (Disabled)

Figure 21. Output Resistance vs. Frequency

Figure 18. Supply Current Per Amplifier vs. Power Supply (Enabled)

Figure 20. Output Voltage Swing vs. Supply Voltage

Figure 22. Frequency Response vs. Capacitive Load

Figure 23. Turn ON Time Delay
 Horizontal: 5 ns/div

Figure 25. Crosstalk vs Frequency (Crosstalk measured on Channel 2 with input signal on Channel 1 and 3)

Figure 24. Turn OFF Time Delay
Vertical: $500 \mathrm{mV} / \mathrm{div}$ (Enable), $200 \mathrm{mV} / \mathrm{div}$ (Output) Horizontal: 10 ns/div

Figure 26. Channel Matching (dB) vs Frequency

Printed Circuit Board Layout Techniques

Proper high speed PCB design rules should be used for all wideband amplifiers as the PCB parasitics can affect the overall performance. Most important are stray capacitances at the output and inverting input nodes as it can effect peaking and bandwidth. A space ($3 / 16^{\prime \prime}$ is plenty) should be left around the signal lines to minimize coupling. Also, signal lines connecting the feedback and gain resistors should be short enough so that their associated inductance does not cause high frequency gain errors. Line lengths less than $1 / 4^{\prime \prime}$ are recommended.

Video Performance

This device designed to provide good performance with NTSC, PAL, and HDTV video signals. Best performance is obtained with back terminated loads as performance is degraded as the load is increased. The back termination reduces reflections from the transmission line and effectively masks transmission line and other parasitic capacitances from the amplifier output stage.

ESD Protection

All device pins have limited ESD protection using internal diodes to power supplies as specified in the attributes table (see Figure 27). These diodes provide moderate protection
to input overdrive voltages above the supplies. The ESD diodes can support high input currents with current limiting series resistors. Keep these resistor values as low as possible since high values degrade both noise performance and frequency response. Under closed-loop operation, the ESD diodes have no effect on circuit performance. However, under certain conditions the ESD diodes will be evident. If the device is driven into a slewing condition, the ESD diodes will clamp large differential voltages until the feedback loop restores closed-loop operation. Also, if the device is powered down and a large input signal is applied, the ESD diodes will conduct.

NOTE: Human Body Model for +IN and -IN pins are rated at 0.8 kV while all other pins are rated at 2.0 kV .

Figure 27. Internal ESD Protection

PACKAGE DIMENSIONS

TSSOP-16
CASE 948F-01
ISSUE B

SOLDERING FOOTPRINT*

*For additional information on our Pb -Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

