

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

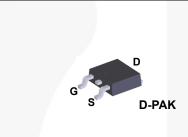
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

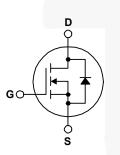
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

FAIRCHILD

SEMICONDUCTOR

January 2014


FQD12N20L **N-Channel QFET® MOSFET** 200 V, 9.0 A, 280 mΩ

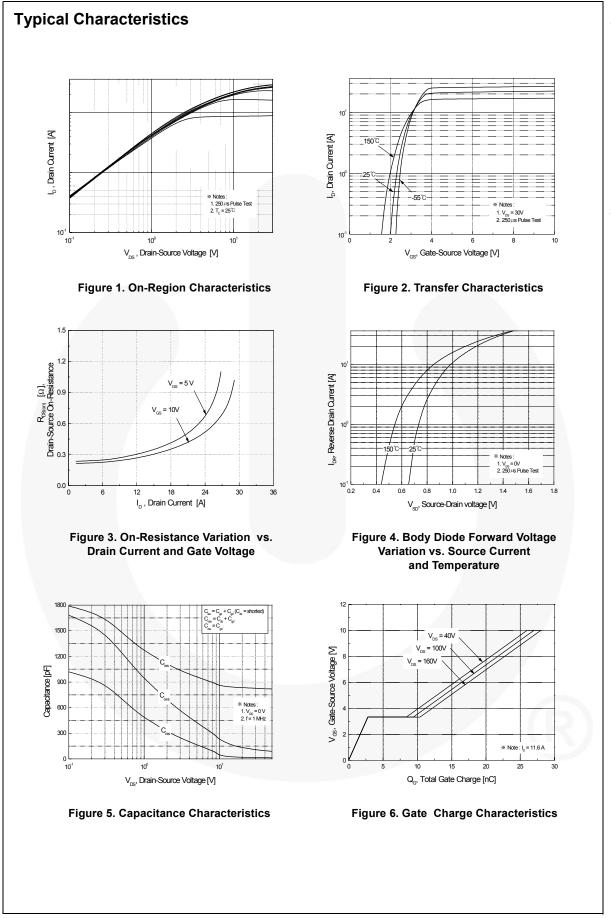

Description

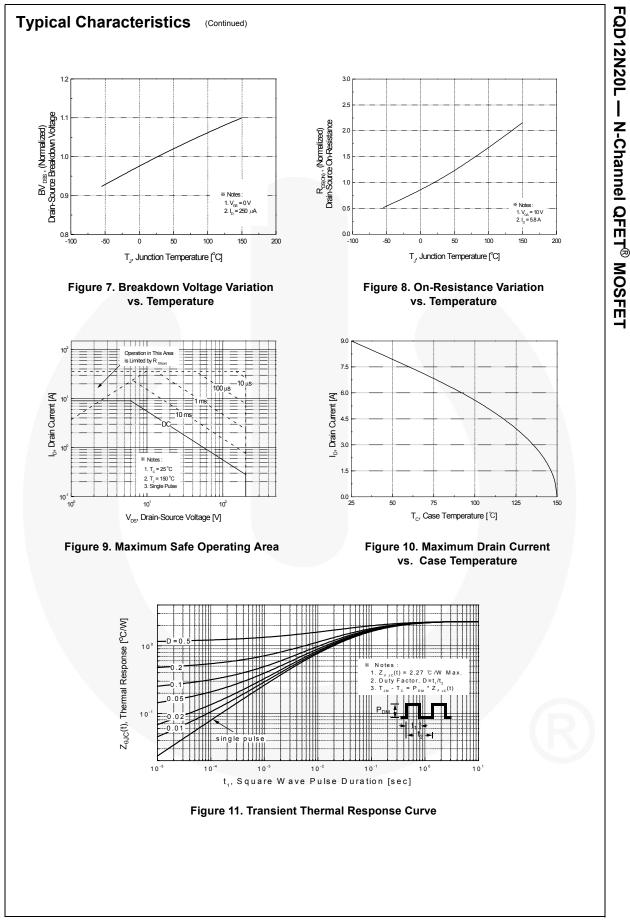
This N-Channel enhancement mode power MOSFET is produced using Fairchild Semiconductor's proprietary planar stripe and DMOS technology. This advanced MOSFET technology has been especially tailored to reduce on-state • Low Gate Charge (Typ. 16 nC) resistance, and to provide superior switching performance . Low Crss (Typ. 17 pF) and high avalanche energy strength. These devices are suitable for switched mode power supplies, active power • 100% Avalanche Tested factor correction (PFC), and electronic lamp ballasts.

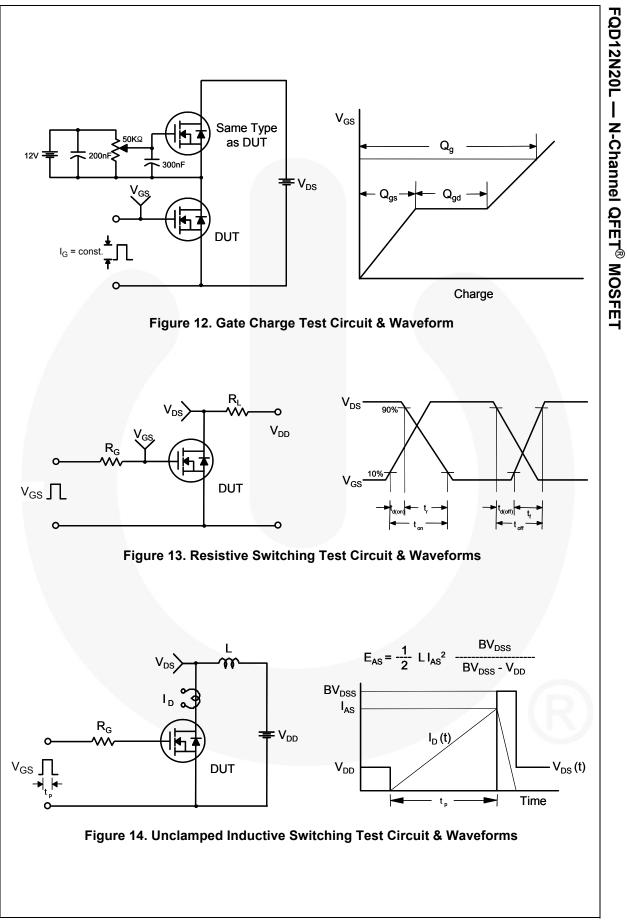
Features

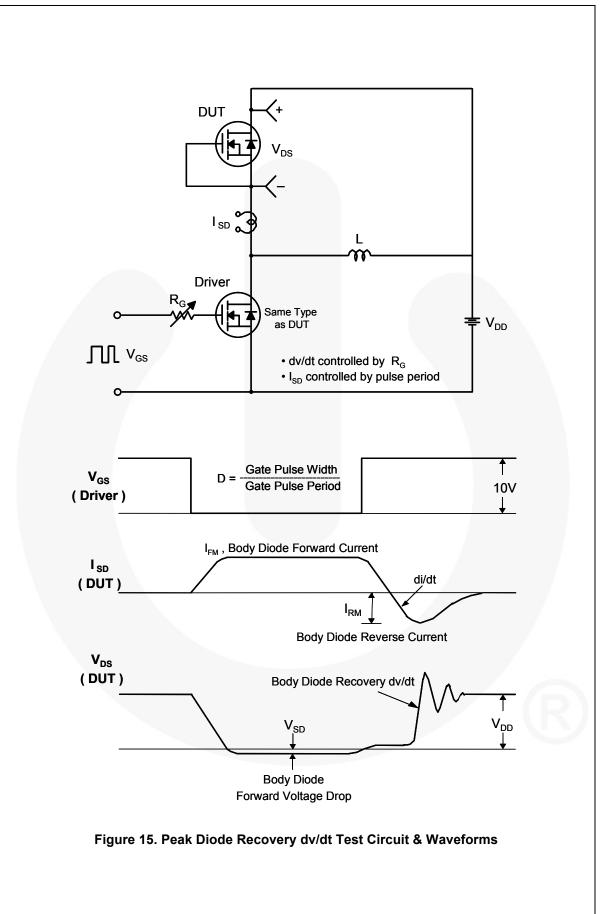
- 9.0 A, 200 V, R_{DS(on)} = 280 mΩ (Max.) @ V_{GS} = 10 V, I_D = 4.5 A

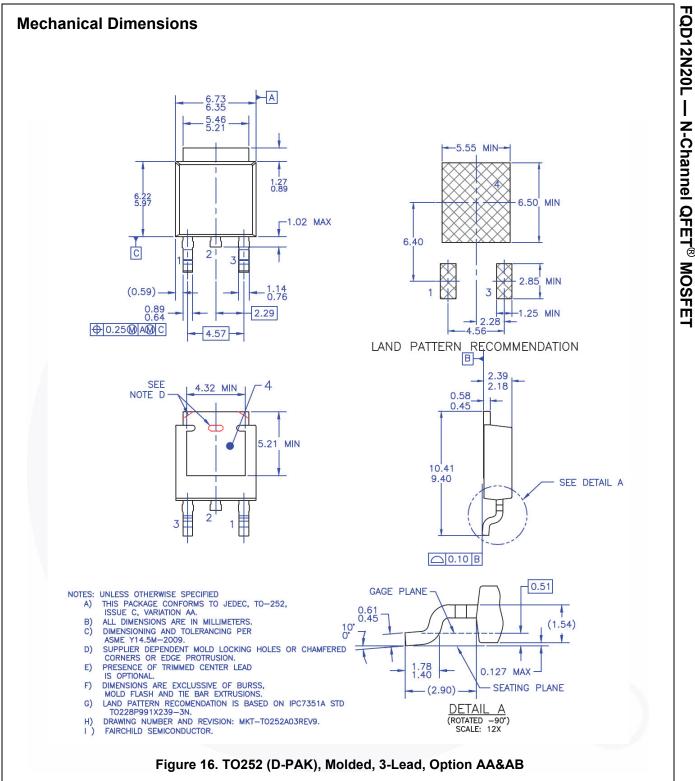
Absolute Maximum Ratings T_c = 25°C unless otherwise noted.


Symbol	Parameter		FQD12N20LTM	Unit
V _{DSS}	Drain-Source Voltage		200	V
I _D	Drain Current - Continuous ($T_C = 25^{\circ}C$)		9.0	А
	- Continuous (T _C = 100°C)		5.7	A
I _{DM}	Drain Current - Pulsed	(Note 1)	36	A
V _{GSS}	Gate-Source Voltage		± 20	V
E _{AS}	Single Pulsed Avalanche Energy	(Note 2)	210	mJ
I _{AR}	Avalanche Current	(Note 1)	9.0	A
E _{AR}	Repetitive Avalanche Energy	(Note 1)	5.5	mJ
dv/dt	Peak Diode Recovery dv/dt	(Note 3)	5.5	V/ns
P _D	Power Dissipation ($T_A = 25^{\circ}C$) *		2.5	W
	Power Dissipation ($T_C = 25^{\circ}C$)		55	W
	- Derate above 25°C		0.44	W/°C
T _J , T _{STG}	Operating and Storage Temperature Range		-55 to +150	°C
TL	Maximum lead temperature for soldering, 1/8" from case for 5 seconds		300	°C


Thermal Characteristics


Symbol	Parameter	FQD12N20LTM	Unit
R_{\thetaJC}	Thermal Resistance, Junction to Case, Max.	2.27	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient (Minimum Pad of 2-oz Copper), Max.	110	°C/W
	Thermal Resistance, Junction to Ambient (*1 in ² Pad of 2-oz Copper), Max.	50	1


			DP	kagePacking MethodReePAKTape and Reel330		330		Tape Width 16 mm		Quantity 2500 units		
Symbol Off Cha ^{3V_{DSS} ABV_{DSS}}	cal Chai	D12N20LTM FQD12N20L D										
Dff Cha ^{3V} _{DSS} ABV _{DSS}		racteristics	T _C = 25°0	cunless ot	herwise noted.							
BV _{DSS}		Parameter			Test Cor	nditions		Min.	Тур.	Max.	Unit	
BV _{DSS}											-	
ABV _{DSS}			tage	Vee =	$0 V l_{p} = 2$	50 JJA		200			V	
	Drain-Source Breakdown Voltage Breakdown Voltage Temperature		V _{GS} = 0 V, I _D = 250 μA			200			V			
J	Coefficient	U 1	ture	I _D = 28	50 μA, Refe	erenced to	25°C		0.14		V/°C	
DSS	Zero Gate Voltage Drain Current Gate-Body Leakage Current, Forward		$V_{DS} = 200 V, V_{GS} = 0 V$ $V_{DS} = 160 V, T_C = 125^{\circ}C$					1	μA			
								10	μA			
GSSF			Forward		20 V, V_{DS}					100	nA	
GSSR	Gate-Body	/ Leakage Current,	Reverse	V _{GS} =	-20 V, V _{DS}	= 0 V				-100	nA	
On Cha	racterist	ics										
/ _{GS(th)}		Gate Threshold Voltage		V _{DS} =	V_{GS} , $I_D = 2$	250 μΑ		1.0		2.0	V	
R _{DS(on)}	Static Drai	n-Source		V _{GS} =	10 V, I _D =	4.5 A	- /		0.22	0.28	0	
	On-Resist	ance	_	V _{GS} =	5 V, I _D = 4	.5 A			0.25	0.32	Ω	
FS	Forward T	ransconductance		V _{DS} =	30 V, I _D =	4.5 A			11.6		S	
Jynami	ic Charac	toristics										
	Input Capa		-	V -	25 1/ 1/	- 0.)/			830	1080	pF	
S	Output Ca		_	f = 1.0	25 V, V _{GS}	= 0 V,			120	155	pF	
Crss		ransfer Capacitanc	e	1 - 1.0					17	22	pF	
100			-									
Switchi	ng Chara	octeristics										
Switchi				1				r				
d(on)	Turn-On D	5		V _{DD} =	100 V, I _D =	= 11.6 A,			15	40	ns	
d(on) r	Turn-On R	lise Time		V _{DD} = R _G = 2	100 V, I _D = 25 Ω	= 11.6 A,			190	390	ns ns	
d(on) r d(off)	Turn-On R Turn-Off D	tise Time Pelay Time			_		(Note 4)		190 60	390 130		
d(on) r d(off) f	Turn-On R Turn-Off D Turn-Off F	tise Time Jelay Time all Time	_	R _G = 2	25 Ω		(Note 4)		190 60 120	390 130 250	ns ns ns	
d(on) r d(off) f Q _g	Turn-On R Turn-Off D Turn-Off F Total Gate	tise Time lelay Time all Time Charge		R _G = 2	25 Ω 160 V, I _D =		(Note 4)	 	190 60 120 16	390 130 250 21	ns ns ns nC	
d(on) r d(off) f Q _g Q _{gs}	Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour	tise Time elay Time all Time Charge ce Charge		R _G = 2	25 Ω 160 V, I _D =	: 11.6 A,			190 60 120 16 2.8	390 130 250 21 	ns ns nS nC nC	
d(on) r d(off) f Q _g Q _{gs}	Turn-On R Turn-Off D Turn-Off F Total Gate	tise Time elay Time all Time Charge ce Charge		R _G = 2	25 Ω 160 V, I _D =	: 11.6 A,	(Note 4) (Note 4)	 	190 60 120 16	390 130 250 21	ns ns ns nC	
$\frac{d(on)}{r}$ $\frac{d(off)}{f}$ $\frac{\lambda_g}{\lambda_{gs}}$ $\frac{\lambda_{gd}}{\lambda_{gd}}$	Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain	tise Time elay Time all Time Charge ce Charge n Charge	istics a	$R_G = 2$ $V_{DS} =$ $V_{GS} =$	25 Ω 160 V, I _D = 5 V	: 11.6 A,		 	190 60 120 16 2.8	390 130 250 21 	ns ns nS nC nC	
d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S	Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain	tise Time elay Time all Time Charge ce Charge		$R_G = 2$ $V_{DS} =$ $V_{GS} =$	25 Ω 160 V, I _D = 5 V ximum F	: 11.6 A, Ratings		 	190 60 120 16 2.8	390 130 250 21 	ns ns nS nC nC	
d(on) r d(off) f Q _g Q _{gs} Q _{gd} Drain-S S	Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Gate-Drain Maximum	tise Time elay Time all Time Charge ce Charge n Charge ode Character	Source Dic	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $N_{GS} =$	25 Ω 160 V, I _D = 5 V ximum F vard Currer	: 11.6 A, Ratings			190 60 120 16 2.8 7.6	390 130 250 21 	ns ns nC nC nC	
d(on) r d(off) f Q _{gs} Q _{gs} Q _{gd} Drain-S s SM	Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Cource Di Maximum Maximum	tise Time elay Time all Time Charge the Charge the Charge ode Character Continuous Drain-	Source Dic ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $N_{GS} =$	25 Ω 160 V, I _D = 5 V ximum F vard Currer	: 11.6 A, Ratings		 	190 60 120 16 2.8 7.6	390 130 250 21 9.0	ns ns nC nC nC A	
$\frac{d(on)}{r}$ $\frac{d(off)}{f}$ $\frac{2g}{ggs}$ $\frac{2gg}{ggd}$	Turn-On R Turn-Off D Turn-Off F Total Gate Gate-Sour Gate-Drain Ource Di Maximum Maximum Drain-Sou	tise Time elay Time all Time Charge the Charge the Charge ode Character Continuous Drain-Sour	Source Dic ce Diode F	$R_{G} = 2$ $V_{DS} =$ $V_{GS} =$ $M_{GS} =$ $M_{GS} =$ $V_{GS} =$ $V_{GS} =$	25 Ω 160 V, I _D = 5 V kimum F vard Current	atings atings nt .0 A 1.6 A,		 	190 60 120 16 2.8 7.6	390 130 250 21 9.0 36	ns ns nC nC nC A A	


FQD12N20L — N-Channel QFET[®] MOSFET

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings:

http://www.fairchildsemi.com/package/packageDetails.html?id=PN_TT252-003

		may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. I66

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC