

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized applications, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an equif prese

June 2011

FSA203 — Multimedia High-Speed USB, Video, and Negative Swing Audio Switch with Video Amp/Filter

Features

- USB: 3.5Ω Typical On Resistance
- Video/Mic: 3Ω Typical On Resistance
- Audio: 3.5Ω Typical On Resistance
- USB: -3db Bandwidth at 0pF > 745MHz
- Video: -3db Bandwidth > 615MHz
- Video: 1.0db Flatness > 6MHz
- Low-Power Shutdown Mode: 1µA Maximum
- Power-Off Protection on Common D+/R, D-/L, Video/Microphone Ports
- Packaged in Pb-free 20-Lead DQFN

Applications

- Cell Phone, PDA, Digital Camera, and Notebook
- LCD Monitor, TV, and Set-Top Box

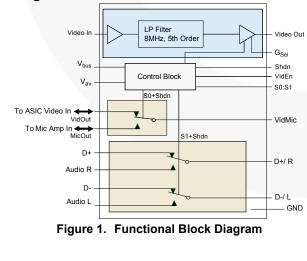
Description

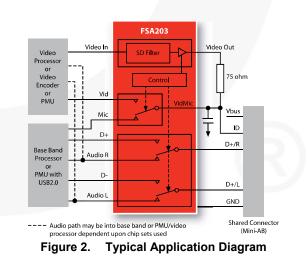
The FSA203 is a multimedia device that includes a Double-Pole, Double Throw (DPDT) USB / audio multiplexer, a video/microphone switch, and a video amplifier / filter path. The DPDT path combines a low-distortion audio and a USB2.0 switch path.

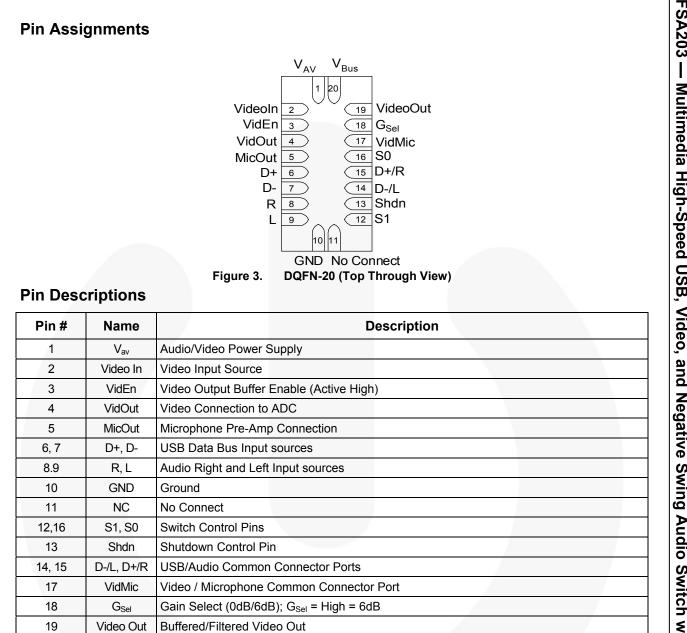
This configuration enables audio and USB data to share a common connector port. The architecture is designed such that audio signals are allowed to swing below ground, enabling the use of a common USB and headphone connector for personal media players and similar portable peripheral devices.

The FSA203 includes a power-off feature to minimize current consumption when V_{av} or V_{bus} is not present. This power-off circuitry is available for the common D+/R, D-/L ports only.

Typical applications involve switching in portables and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers.


IMPORTANT NOTE:


For additional performance information, please contact <u>analogswitch@fairchildsemi.com</u>.


Ordering Information

Part Number	Top Mark	Package
FSA203BQX	203	20-Lead Depopulated very thin Quad Flat-pack No leads (DQFN) JEDEC MO-241, 2.5 x 4.5mm

Diagrams

Truth Table

V_{bus}

USB V_{bus} Supply

20

Tradit Ta	510						
Shdn	VidEn	S0	S1	D+/R	D-/L	Vid/Mic	Video Out
LOW	LOW	LOW	LOW	D+	D-	VidOut	Off
LOW	LOW	LOW	HIGH	R	L	VidOut	Off
LOW	LOW	HIGH	LOW	D+	D-	MicOut	Off
LOW	LOW	HIGH	HIGH	R	L	MicOut	Off
LOW	HIGH	LOW	LOW	D+	D-	VidOut	On
LOW	HIGH	LOW	HIGH	R	L	VidOut	On
LOW	HIGH	HIGH	LOW	D+	D-	MicOut	On
LOW	HIGH	HIGH	HIGH	R	L	MicOut	On
HIGH	Х	Х	Х	Hi-Z	Hi-Z	Hi-Z	Off

FSA203 — Multimedia High-Speed USB, Video, and Negative Swing Audio Switch with Video Amp / Filter

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter		Min.	Max.	Unit
V_{AV} / V_{Bus}	Supply Voltage	-0.5		6.0	V
M	Switch I/O Voltage ⁽¹⁾	D+, D-, D+/R, D-/L Pins	V _{AV} -5.5	V _{AV} -0.3	V
V_{SW}	Switch I/O Voltage	R, L, VidOut, MicOut, VidMic Pins	V _{AV} -5.5	V _{AV} -0.3	V
V _{VideoIn}	Control Input Voltage		-0.5	6.0	V
V _{VideoOut}	Control Output Voltage		-0.5	6.0	V
V _{CNTRL}	Control Input Voltage ⁽¹⁾ S0: S1 VidEn,	Shdn	-0.5	6.0	V
I _{Video}	Video Out Current			16	mA
I _{IK}	Input Clamp Diode Current		-50		mA
		USB D+, D-		20	
Isw	Switch I/O Current (Continuous)	R, L, D+/R, D-/L		50	mA
1500		VidOut, MicOut, VidMic		50	ШA
		USB D+, D-		100	
I _{SWPEAK}	Peak Switch Current (Pulsed at 1ms	R, L, D+/R, D-/L		250	mA
ISWPEAK	Duration, <10% Duty Cycle)	VidOut, MicOut, VidMic		250	ШA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature			+150	°C
TL	Lead Temperature (Soldering, 10 sec	onds)		+260	°C
		I/O to GND		5.5	
	Human Body Model (JEDEC: JESD22-A114)	All other pins		6.5	kV
ESD		V_{AV}/V_{Bus} to GND		12.0	
	Charged Discharge Model (JEDEC: J	ESD22-C101)		2.0	kV

Note:

1. The input and output negative ratings may be exceeded if the input and output diode current ratings are observed.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameter	Min.	Max.	Unit
V _{AV}	Supply Voltage	3.0	3.6	V
V _{Bus}	Supply Voltage	4.25	5.5	V
V _{Videoln}	Video Input Voltage	0	V _{AV}	V
V _{VideoOut}	Video Output Voltage	0	V _{AV}	V
VCNTRL	Control Input Voltage	0	V _{AV}	V
V _{SW}	Switch I/O Voltage	V _{AV} -5.5	V _{AV} -0.3	
T _A	Operating Temperature	-40	85	°C

DC Electrical Characteristics

All typical values are at 25°C unless otherwise specified.

Symbol	Parameter	Conditions	V_{AV}/V_{Bus}	T _A = - 40°C to +85°C			Unit
Symbol	Falameter	Conditions	(V)	Min.	Тур.	Max.	Unit
V _{IK}	Clamp Diode Voltage	I _{IK} = -18mA	V _{AV} = 3.0V V _{Bus} = 0V			-1.2	V
V _{IH}	Control Input Voltage HIGH		V _{AV} = 3.0 to 3.6V V _{Bus} = 5.5V	1.3			V
V _{IL}	Control Input Voltage LOW		V _{AV} = 3.0 to 3.6V V _{Bus} = 5.5V			0.5	v
I _{IN}	Control Input Current	$V_{CNTRL} = 0$ to 3.6V	V _{AV} = 3.0 to 3.6V V _{Bus} = 5.5V	-1		1	μA
I _{OFF}	Power Off Leakage Current (Common Port Only D+/R, D-/L, VidMic)	Common Ports (D+/R,D-/L); V _{SW} = 0 to 5.5V See Figure 15	V _{AV} = 0V V _{Bus} = 0V			500	nA
Ioz(off)	Off Leakage Current of Ports D+, D-, R, L, MicOut, VidOut)	Ports (D+/R, D-/L = 0.3V, $V_{AV} - 0.3V$, D+, D-, R, L = 0.3V, $V_{AV} - 0.3V$ or Floating) See Figure 15	V _{AV} = 0V V _{Bus} = 0V			500	nA
I _{NC(ON)}	On-Leakage Current of Ports D+/R, D-/L or VidMic	Ports (D+/R, D-/L = 0.3V, $V_{AV} - 0.3V$, D+, D-, R, L = 0.3V, $V_{AV} - 0.3V$ or Floating) See Figure 16	V _{AV} = 3.6V V _{Bus} = 5.5V	-100	50	100	nA
USB Switch I	Path						
	USB Analog Signal Range ⁽³⁾			0		3.6	V
R _{ONUSB}	Switch On Resistance ⁽²⁾	$V_{D+/D-} = 0V, 0.4V, I_{ON} = -8mA$ See Figure 5, Figure 14	V _{AV} = 3.0V V _{Bus} = 4.25V		4	6	Ω
ΔR_{ONUSB}	Delta On Resistance ⁽³⁾	$V_{D+/D-} = 0V, 0.4V,$ $I_{ON} = -8mA$	V _{AV} = 3.0V V _{Bus} = 4.25V		0.35		Ω
R _{FLAT(ON)USB}	R _{ON} Flatness ⁽⁴⁾	V _{D+/D-} = 0V, 0.4V, I _{ON} = -8mA	V _{AV} = 3.0V V _{Bus} = 4.25V	1.0		2.5	Ω
Audio R/L Sv	vitch Path					1	
	Audio Analog Signal Range ⁽³⁾			V _{AV} – 5.5		VAV	V
Ronaudio	Switch On Resistance ⁽²⁾		V _{AV} = 3.0V V _{Bus} = 0V		3.5	5.5	Ω
$\Delta R_{ONAudio}$	Delta On Resistance ⁽³⁾	V _{L/R} = 0V, 0.7V; I _{ON} = -20mA	V _{AV} = 3.0V V _{Bus} = 0V	0.10		0.35	Ω
R _{FLAT(ON)} Audio	R _{ON} Flatness ⁽⁴⁾	V _{L/R} = 0V, 0.7V; I _{ON} = -20mA	V _{AV} = 3.0V V _{Bus} = 0V		0.5	2.5	Ω

Continued on the following page...

2.

R_{ON} measured by the voltage drop between 1Bn (2Bn) and 1A (2A) pins at identical current through the switch. R_{ON} is determined by the lower of the voltage on the two pins.

Guaranteed by characterization, not production tested. 3.

Flatness is defined as the difference between the maximum and minimum values of on resistance over the 4. specified range of conditions.

Symbol	Parameter	Conditions	V _{AV} /V _{Bus} (V)	T _A = - 40°C to +85°C			Unit
-				Min.	Тур.	Max.	
VidMic Swite	ch Path				•		
	Audio Analog Signal Range ⁽³⁾			V _{AV} - 5.5		V _{AV}	V
R_{ONVidMic}	Video Switch On Resistance ⁽²⁾	$V_{Vid/Mic}$ = 0V, 0.7V; I _{ON} = -13mA See Figure 6, Figure 14	V _{AV} = 3.0V V _{Bus} = 0V		3	6	Ω
Video Buffe	r Path			•	•		
V _{INV}	Video Input Voltage Range		V _{AV} = 3.0V V _{Bus} = 0V		1.2V _{pp}		V _{pp}
V _{OLS}	Output Level Shift	$V_{VideoIn}$ = 0V; R _S = 37.5 Ω AC Coupled into 150 Ω	V _{AV} = 3.0V V _{Bus} = 0V		250		mV
ROUTVID	Video Output Impedance ⁽³⁾		V _{AV} = 3.6V V _{Bus} = 0V		2.5		kΩ
Power Supp	ly						
I _{CC(AV)}	Quiescent Supply Current	$V_{CNTRL} = 0V$ to V_{AV} $I_{OUT} = 0$	V _{AV} = 3.6V V _{Bus} = 0V		4.5	6.4	mA
I _{CC(VBus)}	Quiescent Supply Current	V _{CNTRL} = 0V to V _{AV} I _{OUT} = 0	V _{AV} = 3.0V V _{Bus} = 5.5V			20	μA
I _{SHDN}	Shutdown Current		V _{AV} = 3.6V V _{Bus} = 0V		.050	0.100	μA
	Increase in Icc per Control	V _{CNTRL} = 1.8V	V _{AV} = 3.6V V _{Bus} = 0V			18	μA
I _{CCT}	Voltage and V _{AV}	V _{CNTRL} = 2.6V	V _{AV} = 3.6V V _{Bus} = 0V			15	μA

DC Electrical Characteristics (Continued)

All typical values are at 25°C unless otherwise specified.

FSA203 — Multimedia High-Speed USB, Video, and Negative Swing Audio Switch with Video Amp / Filter

Unit

ns

ns

ns

ns

ns

dB

dB

dB

dB

MHz

MHz

%

dB

AC Electrical Characteristics

Symbol	Parameter	Conditions	V _{AV} /V _{Bus} (V)	T _A = - 40°C to +85°C		
				Min.	Тур.	Μ
t _{ONAudio}	Turn-On Time S1 or Shdn to Output	$V_{D+/R, D-/L} = 0.8V$ $R_L = 50\Omega, C_L = 5pF$ See Figure 17, Figure 18	V _{AV} = 3.0V V _{Bus} = 0V		25	
t _{OFFAudio}	Turn-Off Time S1 or Shdn to Output	$V_{D+/R, D-/L} = 0.8V$ $R_L = 50\Omega, C_L = 5pF$ See Figure 17, Figure 18	V _{AV} = 3.0V V _{Bus} = 0V		22	;
t _{onusb}	Turn-On Time S1 or Shdn to Output	$V_{D+/R, D-/L} = 0.8V$ $R_L = 50\Omega, C_L = 5pF$ See Figure 17, Figure 18	V _{AV} = 3.0V V _{Bus} = 4.25V		31	4
toffusb	Turn-Off Time S1 or Shdn to Output	$\label{eq:V_D+/R, D-/L} \begin{split} V_{D+/R, D-/L} &= 0.8V\\ R_L &= 50\Omega, \ C_L &= 5pF\\ See \ Figure \ 17, \ Figure \ 18 \end{split}$	V _{AV} = 3.0V V _{Bus} = 4.25V		12	
t _{PDUSB}	USB Switch Propagation Delay ⁽⁵⁾	$R_L = 50\Omega$, $C_L = 5pF$ See Figure 19	V _{AV} = 3.0V V _{Bus} = 4.25V		0.25	
O _{IRRUSB}	Off-Isolation – USB	$ f = 1 MHz, R_T = 50\Omega, \\ C_L = 5pF \\ See Figure 7, Figure 21 $	V _{AV} = 3.0V V _{Bus} = 4.25V		-80	
O _{IRRA}	Off-Isolation – Audio	$f = 20$ kHz, $R_T = 50\Omega$, $C_L = 5pF$ See Figure 8, Figure 21	V _{AV} = 3.0V V _{Bus} = 4.25V		-100	
Xtalk _{USB}	Non-Adjacent Channel Crosstalk – USB	f = 1MHz, R_L = 50 Ω See Figure 9, Figure 22	V _{AV} = 3.0V V _{Bus} = 4.25V		-80	
Xtalk _A	Non-Adjacent Channel Crosstalk – Audio	f = 20kHz, R _L = 50Ω See Figure 10, Figure 22	V _{AV} = 3.0V V _{Bus} = 4.25V		-80	
D)//	-3db Bandwidth - USB	$R_T = 50\Omega$, $C_L = 0pF$, Signal 0dBm See Figure 11, Figure 20	V _{AV} = 3.0V V _{Bus} = 4.25V		780	
BW _{USB}	-Sub Bandwidth - USB	$R_T = 50\Omega$, $C_L = 5pF$, Signal 0dBm See Figure 11. Figure 20	V _{AV} = 3.0V V _{Bus} = 4.25V		450	

See Figure 11, Figure 20

 $V_{R,L}$ = 0.8V; R_T = 32 Ω ; f=217Hz on V_{AV} at

 $R_L = 32\Omega$

600mV_{pp} See Figure 25

 $V_{AV} = 3.0V$

 $V_{AV} = 3.0V$

V_{Bus} = 0V

 $V_{Bus} = 0V$

Continued on the following page...

0.01

40

THD

PSRR_{Audio}

Total Harmonic Distortion

Power Supply Rejection

Ratio

Unit

ns

ns

MHz

MHz

dB

μs

ns

dB

MHz

MHz

dB

dB

dB

%

0

dB

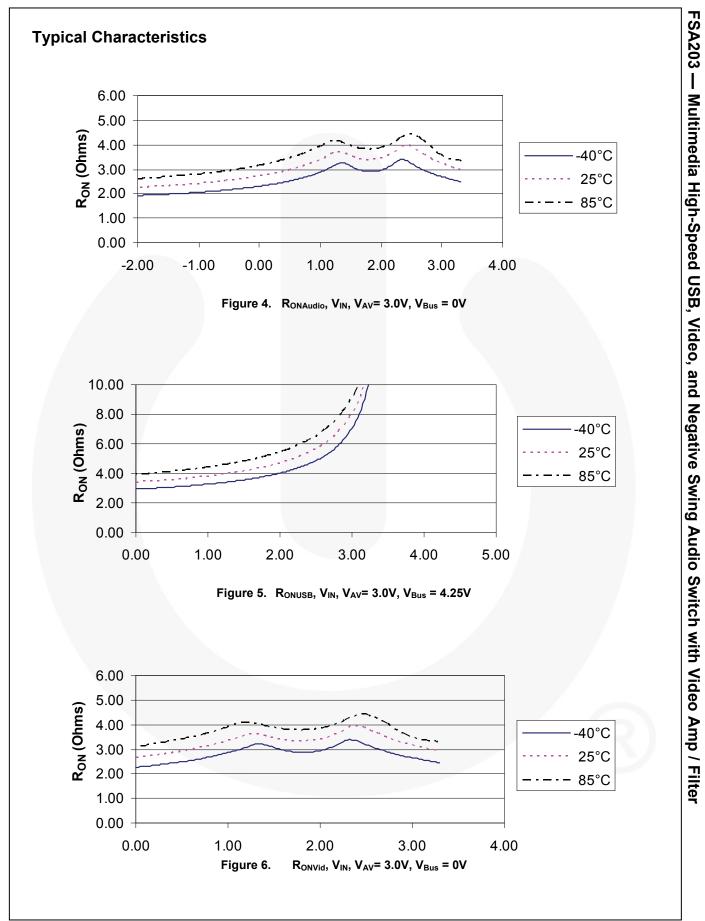
AC Electrical Characteristics (Continued)

0	Damagente	O an all the sec		T _A = -	40°C to	+85°C
Symbol	Parameter	Conditions	V _{AV} /V _{Bus} (V)	Min.	Тур.	Max.
VidMic Swit	ch		1			
t _{on}	Turn-On Time S1 or Shdn to Output	V_{VidMic} = 0.8V R _L = 75Ω, C _L = 5pF See Figure 17, Figure 18	V _{AV} = 3.0V V _{Bus} = 0V		35	50
t _{OFF}	Turn-Off Time S1 or Shdn to Output	V_{VidMic} = 0.8V R _L = 75 Ω , C _L = 5pF See Figure 17, Figure 18	V _{AV} = 3.0V V _{Bus} = 0V		15	35
		$R_T = 50\Omega$, $C_L = 0pF$, Signal 0dBm See Figure 12, Figure 20	V _{AV} = 3.0V V _{Bus} = 0V		615	
BW _{VidMic}	-3db Bandwidth	$R_T = 50\Omega$, $C_L = 5pF$, Signal 0dBm See Figure 12, Figure 20	V _{AV} = 3.0V V _{Bus} = 0V		400	
Xtalk _{VidMic}	Non-Adjacent Channel Crosstalk – VidMic	f = 30MHz, R_L = 50 Ω See Figure 22	V _{AV} = 3.0V V _{Bus} = 0V		-35	
Video Buffe	r Path		·		•	•
t _{VidEn}	Turn-On Time VidEn or Shdn to VideoOut	$V_{VideoIn} = 0.5V$ R _S = 37.5 Ω	V _{AV} = 3.0V V _{Bus} = 0V		325	
t _{VidDis}	Turn-Off Time VidEn or Shdn to VideoOut	$V_{VideoIn} = 0.5V$ R _S = 37.5 Ω	V _{AV} = 3.0V V _{Bus} = 0V		20	
A _{V6dB}	Voltage Gain	$R_s = 37.5\Omega$; AC Coupled into 150 Ω	V _{AV} = 3.0 to 4.3V		6	
BW_{1dB}	-1db Bandwidth	See Figure 13, Figure 26	V _{AV} = 3.0V V _{Bus} = 5.0V		8	
BW_{3dB}	-3db Bandwidth	See Figure 13, Figure 26	V _{AV} = 3.0V V _{Bus} = 5.0V		9	
F _{sb}	Attenuation	$R_S = 37.5\Omega$; AC Coupled into 150 Ω ; f=27MHz Referenced to 100kHz, VideoIn = 0dBm	V _{AV} = 3.0V V _{Bus} = 5.0V		-42	
PSRR _{Video}	Power Supply Rejection Ratio	See Figure 25	V _{AV} = 3.3V V _{Bus} = 0V		-40	
OIRR _{VidOut}	Off-Isolation – Video Out	See Figure 27	V _{AV} = 3.0V V _{Bus} = 4.25V		-50	6
dG	Differential Gain	$R_{S} = 37.5\Omega;$ AC Coupled into 150Ω See Figure 28	V _{AV} = 3.0V V _{Bus} = 0V		.5	Ų
dφ	Differential Phase	$R_{S} = 37.5\Omega;$ AC Coupled into 150Ω See Figure 28	V _{AV} = 3.0V V _{Bus} = 0V		.9	
SNR	Signal-to-Noise Ratio	NTSC-7 Weighting, f=100kHz to 4.2MHz See Figure 28	V _{AV} = 3.0V V _{Bus} = 0V		75	

All typical value are for V_{AV} = 3.3V, V_{BUS} = 5.0V, and at 25°C unless otherwise specified.

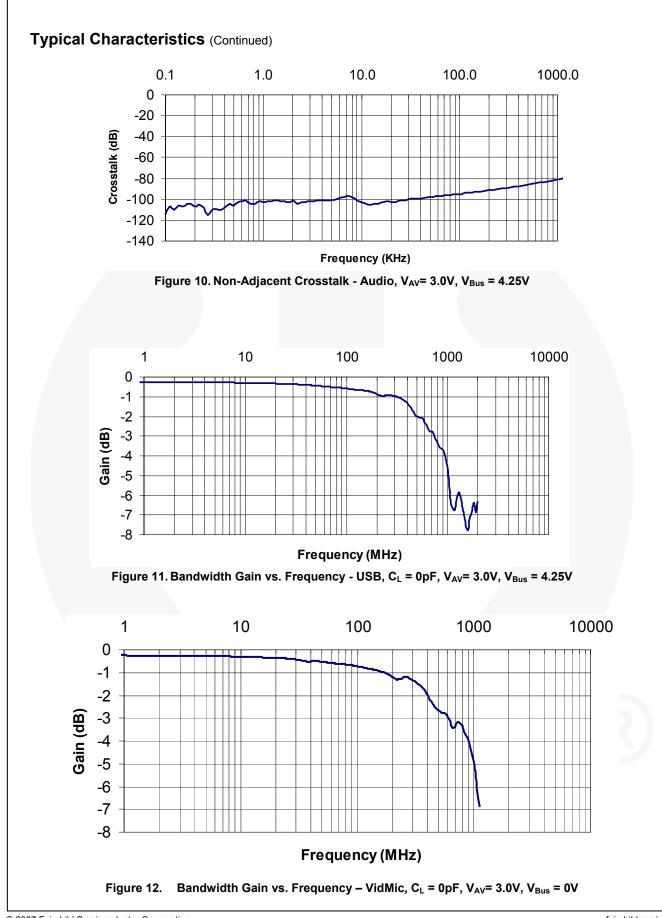
USB High-Speed-Related AC Electrical Characteristics

All typical value are for	$V_{AV} = 3.0V$, $V_{BUS} = 4$	4.25V, and at 25°C unles	s otherwise specified.
, al cypical value ale ioi			o ounor moo opoomou.


Symbol	Parameter	Conditions VAV/VEUE (V)		T _A = -	40°C to	•+85°C	l lmit
Symbol	Parameter	Conditions	V _{AV} /V _{Bus} (V)	Min.	Тур.	Max.	Unit
t _{sk(o)}	Channel-to-Channel Skew ⁽⁵⁾	$t_R = t_F = 75ps (10-90\%) at$ 240MHz; C _L = 5pF, R _L = 50 Ω	V _{AV} = 3.0V V _{Bus} = 4.25V		50		ps
t _{sk(P)}	Skew of Opposite Transitions of the Same Output ⁽⁵⁾	$t_{R} = t_{F} = 75ps (10-90\%) at$ 240MHz; C _L = 5pF, R _L = 50Ω	V _{AV} = 3.0V V _{Bus} = 4.25V		50		ps
tJ	Total Jitter ⁽⁵⁾	$t_R = t_F = 75ps (10-90\%) at$ 480Mbps; C _L = 5pF, R _L = 50Ω; (PRBS = 2 ¹⁵ - 1)	V _{AV} = 3.0V V _{Bus} = 4.25V		100		ps

Note:

5. Guaranteed by characterization, not production tested.

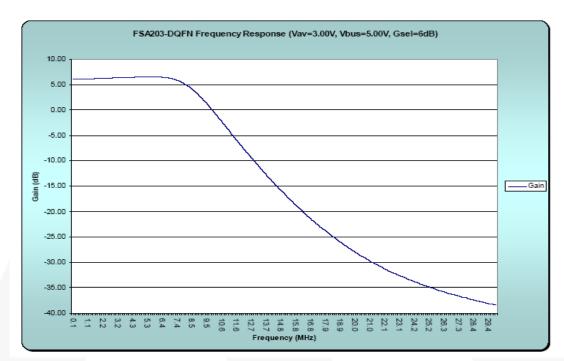
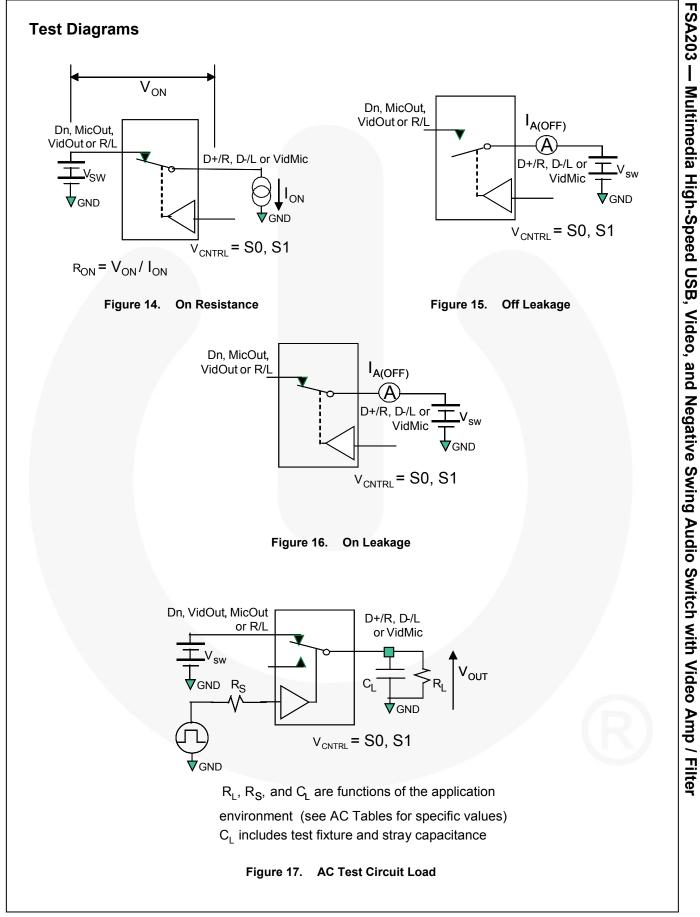
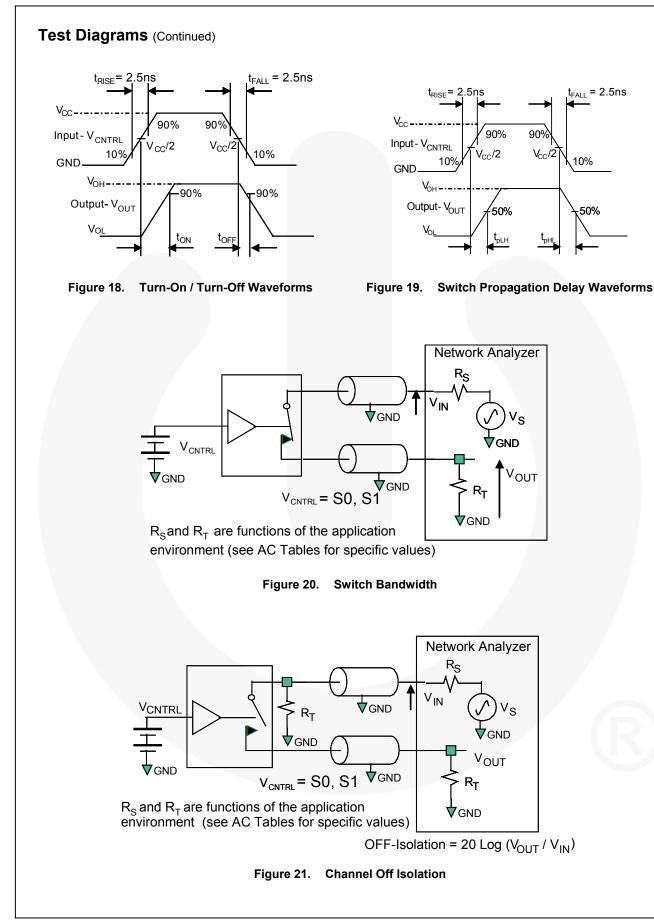
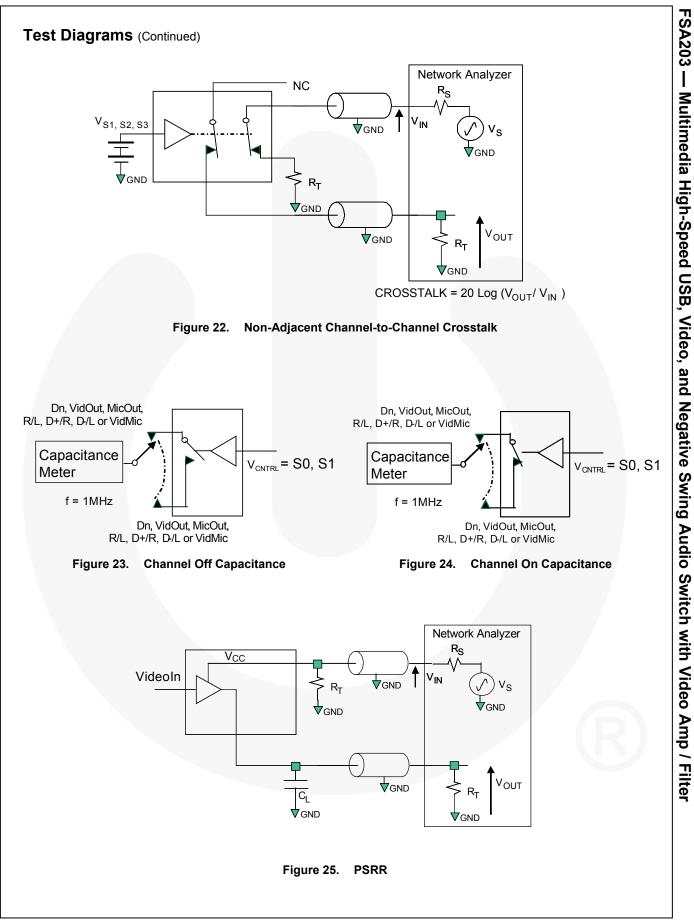
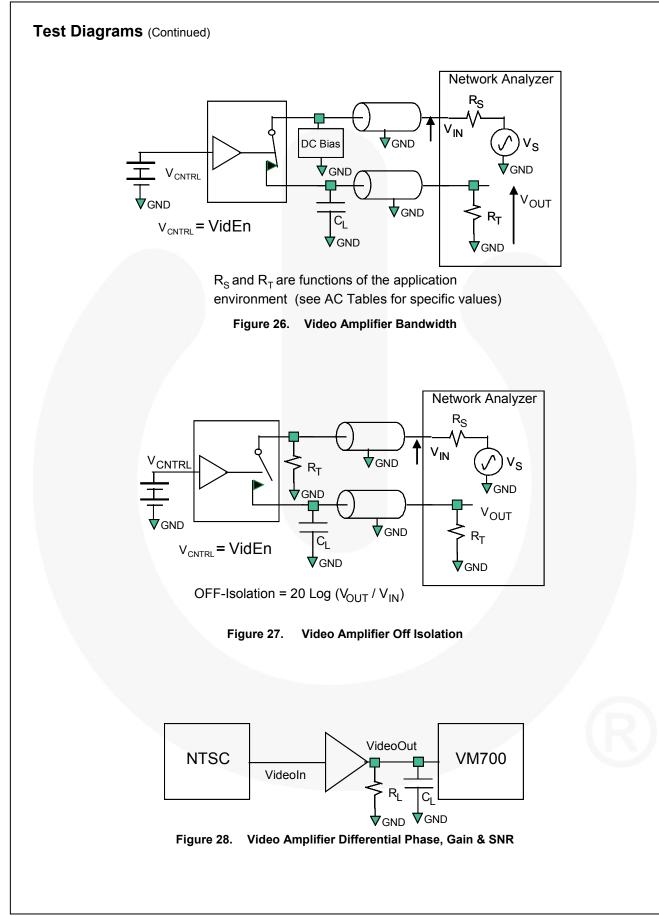

Capacitance

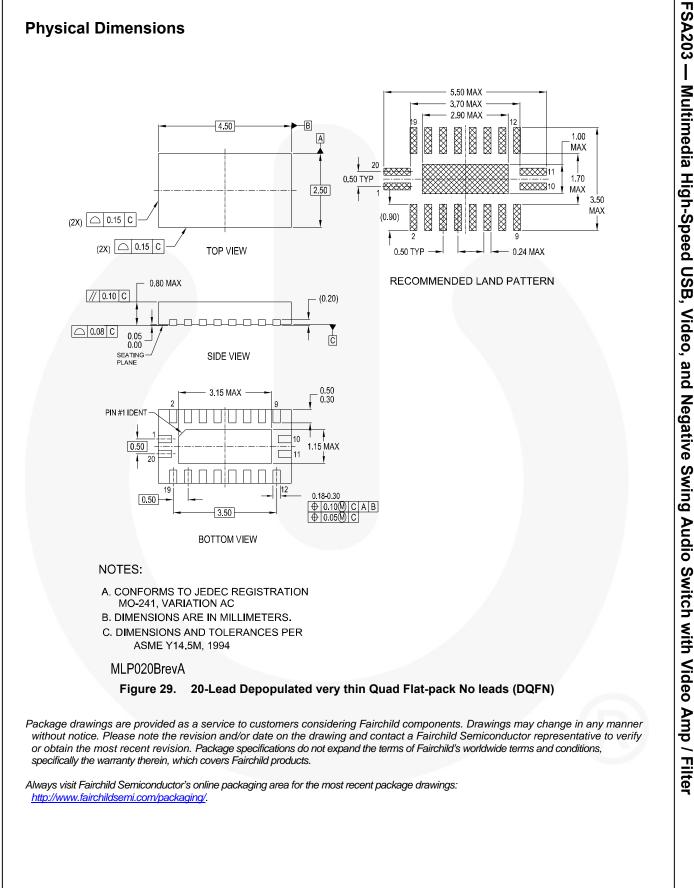
Symbol	Parameter	Conditions	V _{AV} /V _{Bus} (V)	T _A = - 40°C to +85°C	Unit
				Typical	
CIN (CNTRL)	Control Pin Input Capacitance (S0, S1, /Shdn, VidEn)	V _{BIAS} = 0V	V _{AV} = 3.0V V _{Bus} = 4.25V	2.75	pF
G	C _{D+/R, D-/L} Source Port	V _{BIAS} = 0.4V; f = 1MHz, 240Mhz See Figure 24	V _{AV} = 3.0V V _{Bus} = 4.25V S1 = 0V C _{ONUSB}	7.6	pF
C _{ON (D+/R, D-/L)}	On Capacitance	V _{BIAS} = 0V; f = 1MHz, 240Mhz See Figure 24	$V_{AV} = 3.0V$ $V_{Bus} = 4.25V$ $S1 = 3.0V C_{ONAudio}$	9.7	рг
Coff(D+, D-)	USB Source Off Capacitance	V _{BIAS} = 0.4V; f = 1MHz, 240Mhz See Figure 23	$V_{AV} = 3.0V$ $V_{Bus} = 4.25V$ $S1 = 3.0V_{o}$	1.5	pF
$C_{\text{OFF}(\text{R/L})}$	Audio Source Off Capacitance	V _{BIAS} = 0V; f = 1MHz See Figure 23	V _{AV} = 3.0V V _{Bus} = 4.25V S1 = 0V	3.0	pF
CON(VidMic)	VidMic Source On Capacitance	V _{BIAS} = 0V; f = 1MHz See Figure 24	V _{AV} = 3.0V V _{Bus} = 4.25V	10 (15 Max.)	pF
COFF(MicOut)	MicOut Source Off Capacitance	V _{BIAS} = 0V; f = 1MHz See Figure 23	V _{AV} = 3.0V V _{Bus} = 4.25V	3.0	pF
C _{OFF(VidOut)}	VidOut Source Off Capacitance	V _{BIAS} = 0V; f = 1MHz See Figure 23	V _{AV} = 3.0V V _{Bus} = 4.25V	2.7	pF

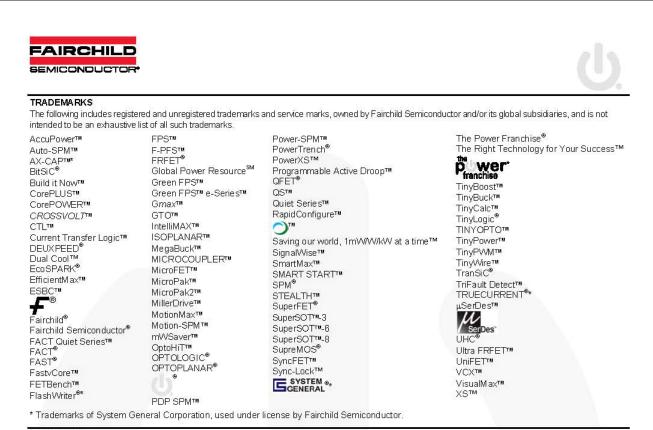
Typical Characteristics (Continued) 0 1 10 100 -10 Off Isolation (dB) -30 -50 -70 -90 -110 Frequency (MHz) Figure 7. Off Isolation USB (OIRRUSB), VAV = 3.0V, VBus = 4.25V 1000.0 0.1 1.0 10.0 100.0 0 -20 Off isolation (dB) -40 -60 -80 -100 -120 -140 Frequency (KHz) Off Isolation Audio (OIRRA), V_{AV} = 3.0V, V_{Bus} = 4.25V Figure 8. 0 1 10 100 0 -10 -20 -30 Crosstalk (dB) -40 -50 -60 -70 -80 -90 -100 -110 Frequency (MHz) Figure 9. Non-Adjacent Crosstalk - USB, V_{AV}= 3.0V, V_{Bus} = 4.25V

FSA203 — Multimedia High-Speed USB, Video, and Negative Swing Audio Switch with Video Amp / Filter

Typical Characteristics (Continued)


Figure 13. Video Buffer Frequency Response



DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR ORCUIT DESCRIBED HEREIN, NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information Formative / In Design		Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary First Production		Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete Not In Production		Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

Rev. 154

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC