

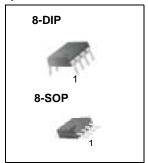
Is Now Part of

ON Semiconductor®

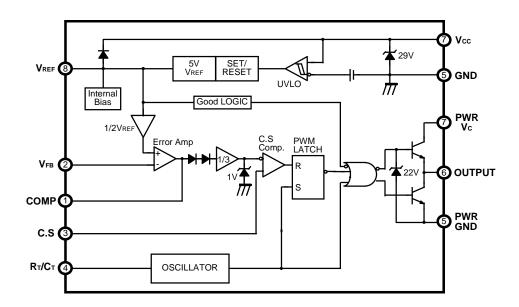
To learn more about ON Semiconductor, please visit our website at www.onsemi.com

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild guestions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officer


KA3882C/KA3883C SMPS Controller

Features


- Low Start Current 0.2mA (Typ)
- Operating Range Up To 500kHz
- Cycle by Cycle Current Limiting
- Under Voltage Lock Out With Hysteresis
- Short Shutdown Delay Time: Typ.100ns
- High Current Totem-Pole Output
- Output Swing Limiting: 22V

Description

The KA3882C/KA3883C is a fixed PWM controller for Off Line and DC to DC converter applications. The internal circuits include an UVLO, a low start up current circuit, a temperature compensated reference, a high gain error amplifier, a current sensing comparator, and the high current totem-pole output for driving a POWER MOSFET. Also the KA3882C/KA3883C provides low start-up current below 0.3mA and short shutdown delay time typ. 100ns. The KA3882C has the UVLO threshold of 16V (on) and 10V(off). The KA3883C is 8.4V(on) and 7.6V(off). The KA3882C and KA3883C can operate within 100% duty cycle.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Supply Voltage	Vcc	30	V
Output Current	lo	±1	Α
Analog Inputs (pin 2, 3)	VI(ANA)	-0.3 to 6.3	V
Error Amp. Output Sink Current	ISINK(EA)	10	mA
Power Dissipation	PD	1	W
Thermal Resistance, Junction-to-Air (Note4) 8-SOP 8-DIP	Rθja	280 95	°C/W
Storage Temperature	T _{stg}	-65 ~ 150	°C

Electrical Characteristics

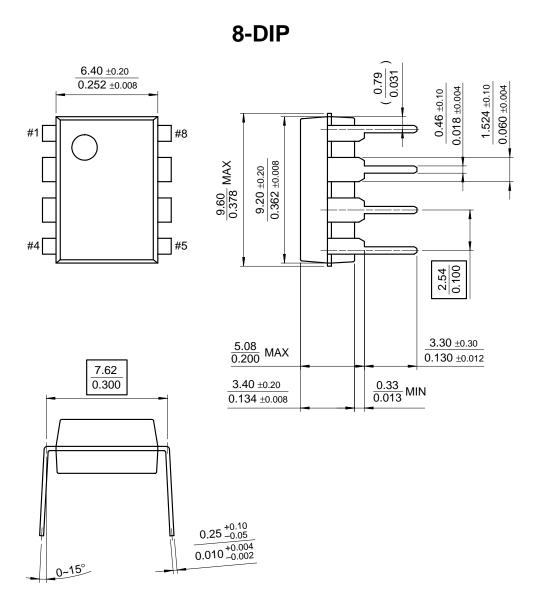
(VCC = 15V, RT = 10k Ω , CT = 3.3nF, TA = 0°C to +70°C ,Unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
REFERENCE SECTION						
Output Voltage	VREF	T _J = 25°C, I _O = 1mA	4.9	5.0	5.1	V
Line Regulation	ΔVREF	VCC = 12V to 25V	-	6	20	mV
Load Regulation	ΔVREF	IO = 1mA to 20mA	-	6	25	mV
Output Short Circuit	Isc	Ta = 25°C	-	-100	-180	mA
OSILLATOR SECTION						
Initial Accuracy	Fosc	T _J = 25°C	47	52	57	kHz
Voltage Stability	ST∨	VCC = 12V to 25V	-	0.2	1	%
Amplitude	Vosc	VPIN4, Peak to Peak	-	1.7	-	V
Discharge Current	IDISCHG	T _J = 25°C, Pin4 = 2V	7.8	8.3	8.8	mΑ
CURRENT SENSE SECTION						
Gain	G∨	(Note2, 3)	2.85	3	3.15	V/V
Maximum Input Signal	VI(MAX)	VPIN1 = 5V(Note2)	0.9	1.0	1.1	V
PSRR	PSRR	VCC = 12V to 25V (Note1, 2)	-	70	-	dB
Input Bias Current	IBIAS	-	-	-2	-10	uA
Delay to Output	TD	VPIN3 = 0 V to 2V (Note1)	-	100	200	ns

Electrical Characteristics (Continued)

(VCC = 15V, RT = $10k\Omega$, CT = 3.3nF, TA = $0^{\circ}C$ to $+70^{\circ}C$, Unless otherwise specified)

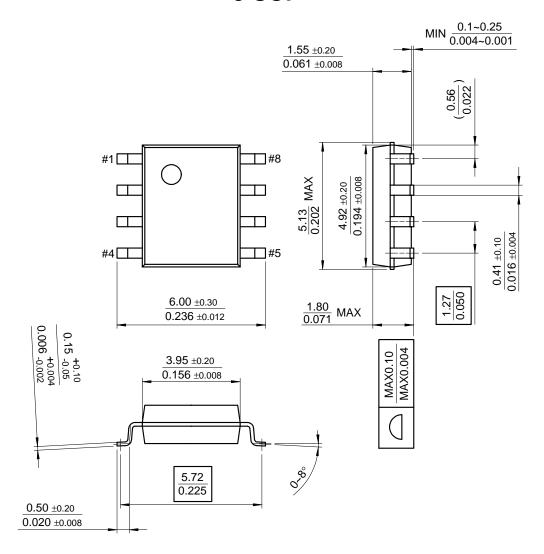
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
ERROR AMPLIFIER SECTION							
Input Voltage	Vı	TPIN1 = 2.5V	2.42	2.50	2.58	V	
Input Bias Current	IBIAS	-	-	-0.3	-2	uA	
Open Loop Gain	Gvo	Vo = 2V to 4V (Note1)	65	90	-	dB	
Unity Gain Bandwidth	GBW	T _J = 25°C (Note1)	0.7	1	-	MHz	
PSRR	PSRR	V _C C = 12V to 25V (Note1)	60	70	-	dB	
Output Sink Current	ISINK	VPIN2 = 2.7V, VPIN1 = 1.1V	2	6	-	mA	
Output Source Current	ISOURCE	VPIN2 = 2.3V, VPIN1 = 5.0V	-0.5	-0.8	-	mA	
Output High Voltage	Voн	VPIN2 = 2.3V, $R1 = 15kΩ$ to GND	5	6	-	V	
Output Low Voltage	VoL	$V_{PIN2} = 2.7V$, R1 = 15kΩ to Pin8	-	0.8	1.1	V	
OUTPUT SECTION				•	•	•	
Output Low Level	Vol	ISINK = 20mA	-	0.1	0.4	V	
Output Low Level	VoL	ISINK = 200mA	-	1.5	2.2	V	
Output High Lovel	\/o	ISOURCE = 20mA	13	13.5	-	V	
Output High Level	Voн	ISOURCE = 200mA	12	13.5	-	V	
Rise Time	tR	T _J = 25°C, C1 = 1nF (Note1)	-	40	100	ns	
Fall Time	tF	T _J = 25°C, C1 = 1nF (Note1)	-	40	100	ns	
Output Voltage Swing Limit	VOLIM	V _C C = 27V, C1 = 1nF	-	22	-	V	
UNDER VOLTAGE LOCKOU	UNDER VOLTAGE LOCKOUT SECTION						
Start Threshold VTH	\/	KA3882C	15	16	17	V	
	VIH	KA3883C	7.8	8.4	9.0	V	
Min. Operating Voltage (After turn on)	VTL -	KA3882C	9	10	11	V	
		KA3883C	7.0	7.6	8.2	V	
PWM SECTION							
Maximum Duty Cycle	DMAX	KA3882C/KA3883C	94	96	100	%	
Minimum Duty Cycle	DMIN	-	-	-	0	%	
TOTAL STANDBY CURRENT							
Start-Up Current	IST	-	-	0.2	0.4	mA	
Operating Supply Current	Icc	VPIN2 = VPIN3 = 0V	-	11	17	mA	
VCC Zener Voltage	Vz	ICC = 25mA	-	29	-	V	


^{*} Adjust VCC above the start threshold before setting at 15V

Notes :

- 1. These parameters, although guaranteed, are not 100% tested in production.
- 2. Parameter measured at trip point of latch with V2 = 0V.
- 3. Gain defined as: $GV = \Delta V_{PIN1} \Delta V_{PIN3} (V_{PIN3} = 0 \text{ to } 0.8V)$
- 4. Junction-to-air thermal resistance test enviroments.
- -. PCB information;
 - Board thickness: 1.6mm, Board dimension: $76.2 \times 114.3 \text{mm}^2$, Ref.: EIA / JSED51-3 and EIA / JSED51-7
- -. Board structure; Using the single layer PCB.

Mechanical Dimensions


Package

Mechanical Dimensions (Continued)

Package

8-SOP

Ordering Information

Product Number	Package	Operating Temperature
KA3882C	8-DIP	
KA3882CD	8-SOP	0 ~ +70°C
KA3883C	8-DIP	0~+700
KA3883CD	8-SOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and exp

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative