

Is Now Part of

ON Semiconductor®

To learn more about ON Semiconductor, please visit our website at <u>www.onsemi.com</u>

Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers will need to change in order to meet ON Semiconductor's system requirements. Since the ON Semiconductor product management systems do not have the ability to manage part nomenclature that utilizes an underscore (_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please email any questions regarding the system integration to Fairchild_questions@onsemi.com.

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or unavteries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out or i, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor and is officers, employees, uniotificated use, even if such claim any manner.

July 2001 **Revised November 2005**

NC7NZU04 TinyLogic® UHS Unbuffered Inverter

FAIRCHILD

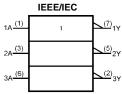
SEMICONDUCTOR

NC7NZU04 TinyLogic® UHS Unbuffered Inverter

General Description

The NC7NZU04 is a triple unbuffered inverter from Fairchild's Ultra High Speed Series of TinyLogic®. The special purpose unbuffered circuit design is primarily intended for crystal oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range.

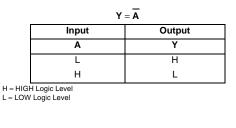
Features


- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- Unbuffered for crystal oscillator and analog applications
- Balanced Output Drive; ± 8 mA at 4.5V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Low Quiescent Power;
 - $I_{CC} < 1~\mu\text{A},~V_{CC} = 5.5\text{V},~T_{A} = 25^{\circ}\text{C}$

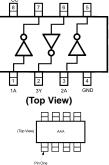
Ordering Code:

j				
		Product		
Order	Package	Code	Package Description	Supplied As
Number	Number	Top Mark		
NC7NZU04K8X	MAB08A	NZU4	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel
NC7NZU04L8X	MAC08A	U6	Pb-Free 8-Lead MicroPak, 1.6 mm Wide	5k Units on Tape and Reel

Pb-Free package per JEDEC J-STD-020B.


Logic Symbol

Pin Descriptions


Pin Names	Description
А	Input
Y	Output

Function Table

Connection Diagrams

AAA represents Product Code Top Mark - see ordering code Note: Orientation of Top Mark determines Pin One location. Read the Top Product Code Mark left to right, Pin One is the lower left pin (see diagram).

> Pad Assignment for MicroPak 1A 3Y 2A 4 GND Vcc

> > (Top Thru View)

TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation. MicroPak™ is a trademark of Fairchild Semiconductor Corporation.

© 2005 Fairchild Semiconductor Corporation DS500490

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7V
DC Input Voltage (V _{IN})	-0.5V to +7V
DC Output Voltage (V _{OUT})	-0.5V to +7V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
@ $V_{IN} > V_{CC} + 0.5V$	+20 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 0.5V$, $V_{CC} = GND$	+50 mA
DC Output Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T _J)	150°C
Junction Lead Temperature (T _L);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

Recommended Operating Conditions (Note 2)

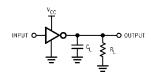
Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions			
Symbol	Parameter	(V)	Min	Тур	Max	Min	Max	Units	Con	attons
V _{IH}	HIGH Level Input Voltage	1.65 to 2.7	0.85 V _{CC}			0.85 V _{CC}		v		
		3.0 to 5.5	0.8 V _{CC}			0.8 V _{CC}		V		
V _{IL}	LOW Level Input Voltage	1.65 to 2.7			0.15 V _{CC}		0.15 V _{CC}	v		
		3.0 to 5.5			0.2 V _{CC}		0.2 V _{CC}	v		
V _{ОН}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		2.3	2.1	2.3		2.1			V – V.	1004
		3.0	2.7	3.0		2.7			VIN – VIL	I _{OH} = -100 μ
		4.5	4.0	4.4		4.0				
		1.65	1.29	1.52		1.29		V		$I_{OH} = -2 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -2 \text{ mA}$
		3.0	2.4	2.75		2.4			V _{IN} = GND	$I_{OH} = -4 \text{ mA}$
		3.0	2.3	2.61		2.3				$I_{OH} = -6 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -8 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.2		0.2			
		2.3		0.0	0.2		0.2		V – V	I _{OL} = 100 μA
		3.0		0.0	0.3		0.3		VIN – VIH	10L - 100 hr
		4.5		0.0	0.5		0.5			
		1.65		0.08	0.24		0.24	V		$I_{OL} = 2 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 2 \text{ mA}$
		3.0		0.17	0.4		0.4		$V_{IN} = V_{CC}$	$I_{OL} = 4 \text{ mA}$
		3.0		0.25	0.55		0.55		VIN - VCC	$I_{OL} = 6 \text{ mA}$
		4.5		0.26	0.55		0.55			$I_{OL} = 8 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μA	V _{IN} = 5.5V,	GND
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1		10	μA	V _{IN} = 5.5V,	GND
I _{CCPEAK}	Peak Supply Current in	1.8		1				mA	$V_{OUT} = Ope$	en
	Analog Operation	2.5		2					$V_{IN} = Adjus$	t for
		3.3		5					Peak I _{CC} C	urrent
		5.0		15						


Symbol	Parameter	V _{cc}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Figure
Symbol		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH} ,	Propagation Delay	1.8 ± 0.05	1.0		8.5	1.0	9.0		C _L = 15 pF, Figure	
t _{PHL}		2.5 ± 0.2	0.8		6.2	0.8	6.5			Figures
		3.3 ± 0.3	0.5		4.5	0.5	4.8	ns	$R_L = 1 \ M\Omega$	ĭ, 3
		5.0 ± 0.5	0.5		3.9	0.5	4.1			
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.0		6.0	1.0	6.5		C _L = 50 pF,	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8		5.0	0.8	5.5	ns	$R_L=500\Omega$	
CIN	Input Capacitance	0		2.5				pF		1
C _{PD}	Power Dissipation	3.3		9				»Г	(Nata 2)	Figure 2
	Capacitance	5.0		11		1		pF (Note 3)	(NOLE 3)	Figure 2

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 pF, V_{IH} = 5.0 V, V_{IL} = 0 V$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	-0.8	V

AC Loading and Waveforms

 C_{L} includes load and stray capacitance Input PRR = 1.0 MHz; t_{W} = 500 ns

FIGURE 1. AC Test Circuit

Application Note: When operating the NC7NZU04's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the $I_{\rm CCPEAK}$ specification in the DC Electrical Characteristics table.

Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = variable; Duty Cycle = 50%

FIGURE 2. I_{CCD} Test Circuit

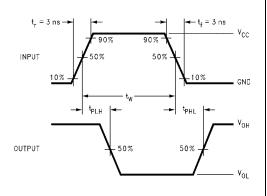
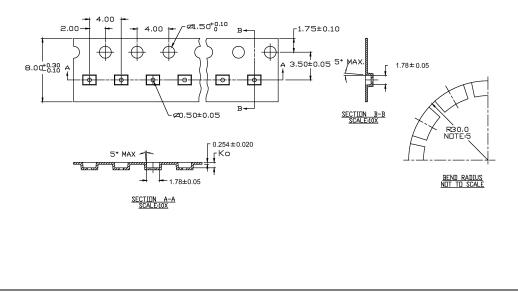
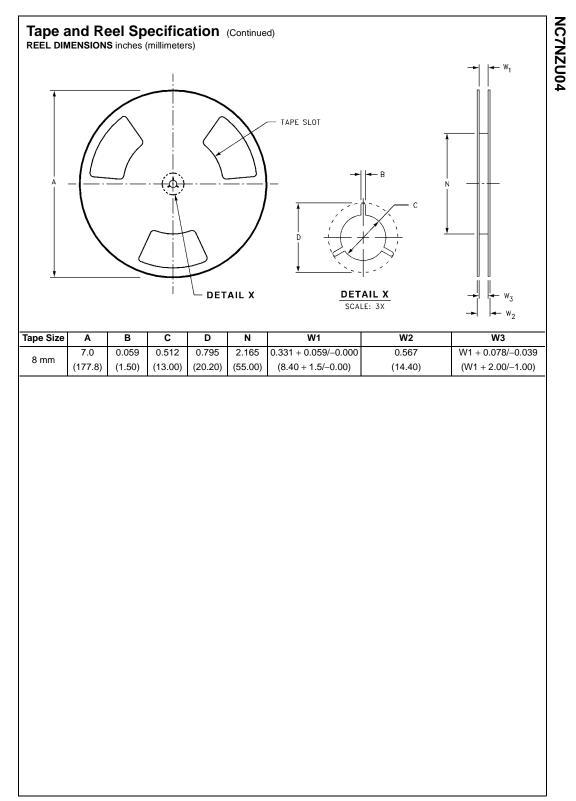


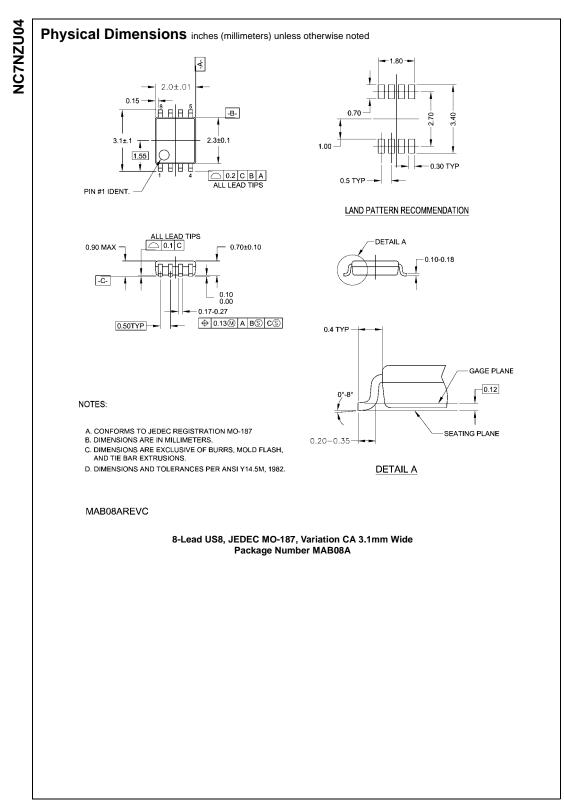
FIGURE 3. AC Waveforms

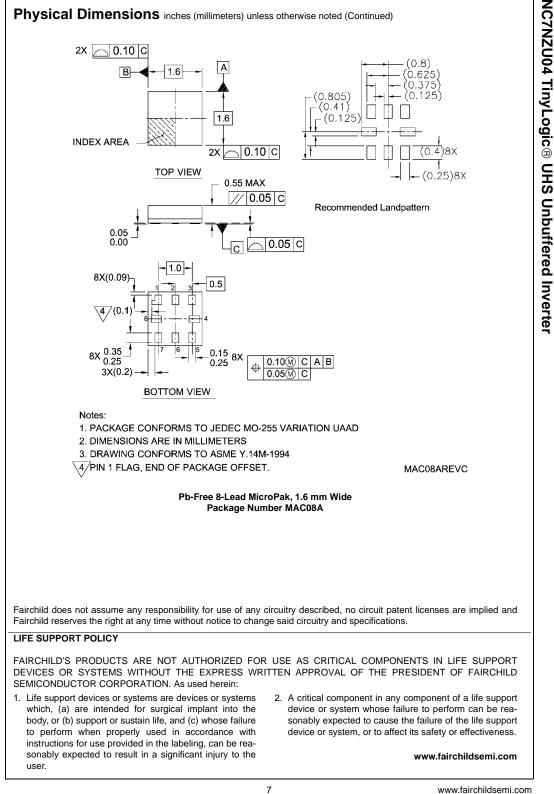
www.fairchildsemi.com

NC7NZU04


Tape and Reel Specification


TAPE FORMAT for U	JS8			
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


TAPE DIMENSIONS inches (millimeters)


Package	Таре	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
L8X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

TAPE DIMENSIONS inches (millimeters)

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC