

www.vishay.com

Vishay Vitramon

# Surface Mount Multilayer Ceramic Chip Capacitor Solutions for High Voltage Applications



## **FEATURES**

Excellent reliability and thermal shock performance



 High voltage breakdown compared to standard design

COMPLIANT

- · High reliable serial electrode design
- Protective surface coating may be required to prevent surface arcing

FREE GREEN

- Polymer termination available for intensive, board flex requirements
- · Wet build process
- Reliable Noble Metal Electrode (NME) system
- Material categorization: for definitions of compliance please see <a href="https://www.vishay.com/doc?99912"><u>www.vishay.com/doc?99912</u></a>

#### **APPLICATIONS**

- · Input filter capacitors
- Output filter capacitors
- Snubber capacitors reduce MOSFET voltage spikes
- Filtering for switching power supplies
- For lighting and other AC applications please contact: mlcc@vishay.com

## **ELECTRICAL SPECIFICATIONS**

### X7R

# **GENERAL SPECIFICATION**

Note

Electrical characteristics at +25 °C unless otherwise specified

Operating Temperature: -55 °C to +125 °C

Capacitance Range: 150 pF to 15 nF

**Voltage Range:** 3000 V<sub>DC</sub>, 4000 V<sub>DC</sub>, 5000 V<sub>DC</sub>, 6000 V<sub>DC</sub>

Temperature Coefficient of Capacitance (TCC): ± 15 % from -55 °C to +125 °C, with 0 V<sub>DC</sub> applied

**Dissipation Factor (DF):** 

2.5 % maximum at 1.0  $V_{RMS}$  and 1 kHz

**Insulating Resistance:** 

at +25 °C 100 000 M $\Omega$  min. or 1000  $\Omega$ F whichever is less at +125 °C 10 000 M $\Omega$  min. or 100  $\Omega$ F whichever is less

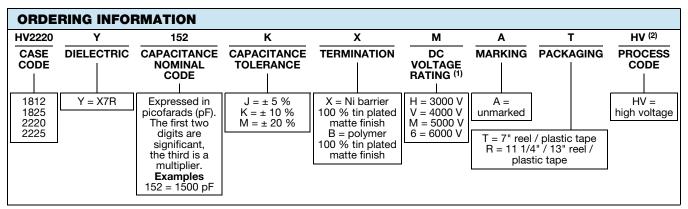
Aging Rate: 1 % maximum per decade

**Dielectric Strength Test:** 

applied test voltages  $3000 V_{DC}$ - /  $4000 V_{DC}$ - /  $5000 V_{DC}$ - /  $6000 V_{DC}$ -rated:

min. 120 % of rated voltage

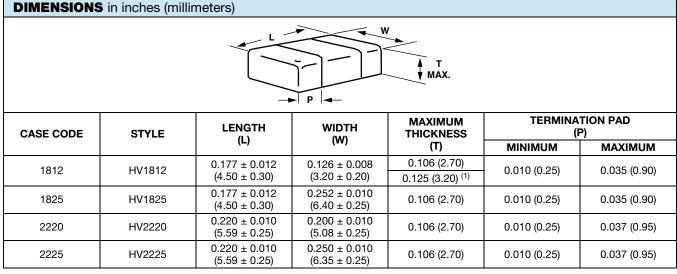



www.vishay.com

Vishay Vitramon

| QUICK REFERENCE DATA |      |                 |             |         |  |  |  |  |
|----------------------|------|-----------------|-------------|---------|--|--|--|--|
| DIELECTRIC           | CASE | MAXIMUM VOLTAGE | CAPACITANCE |         |  |  |  |  |
|                      | OASE | (V)             | MINIMUM     | MAXIMUM |  |  |  |  |
| X7R                  | 1812 | 6000            | 150 pF      | 3.9 nF  |  |  |  |  |
|                      | 1825 | 6000            | 470 pF      | 10 nF   |  |  |  |  |
|                      | 2220 | 6000            | 470 pF      | 10 nF   |  |  |  |  |
|                      | 2225 | 6000            | 470 pF      | 15 nF   |  |  |  |  |

#### Note


• Detail ratings see "Selection Chart"



#### **Notes**

- (1) DC voltage rating should not be exceeded in application. Other application factors may affect the MLCC performance. Consult for questions: mlcc@vishay.com
- (2) Process code with 2 digits has to be added

| ENVIRONMENTAL STATUS |                                              |                |              |  |  |  |  |  |  |
|----------------------|----------------------------------------------|----------------|--------------|--|--|--|--|--|--|
| TERMINATION CODE     | TERMINATION DESCRIPTION                      | RoHS COMPLIANT | VISHAY GREEN |  |  |  |  |  |  |
| Х                    | Ni barrier 100 % tin plated matte finish     | Yes            | Yes          |  |  |  |  |  |  |
| В                    | Polymer layer, 100 % tin plated matte finish | Yes            | Yes          |  |  |  |  |  |  |



#### Notes

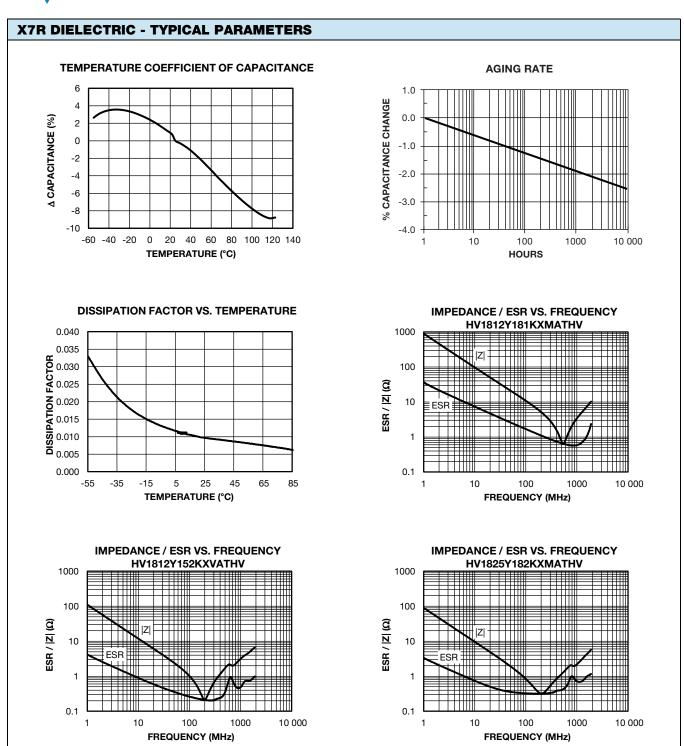
- Polymer layer (B termination) have increased dimensions: length 0.006" (0.15 mm)
- (1) Maximum thickness for 1812, 4.7 nF, 3 kV part



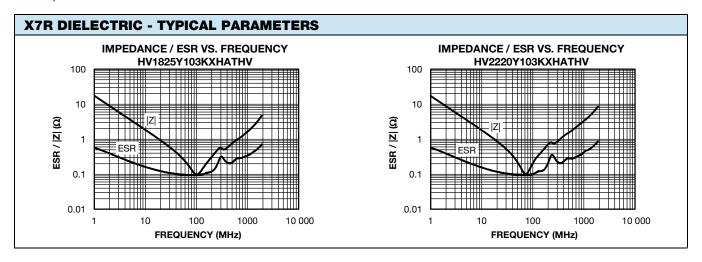
www.vishay.com

Vishay Vitramon

| SELECTION CHART |        |                            |       |   |                       |       |      |                     |      |                    |      |                       |      |      |      |   |   |
|-----------------|--------|----------------------------|-------|---|-----------------------|-------|------|---------------------|------|--------------------|------|-----------------------|------|------|------|---|---|
| DIELECTRIC      | ;      | X7R                        |       |   |                       |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| STYLE           |        | HV1812 <sup>(1)</sup>      |       |   | HV1825 <sup>(1)</sup> |       |      |                     | HV22 | 220 <sup>(1)</sup> |      | HV2225 <sup>(1)</sup> |      |      |      |   |   |
| EIA CODE        |        | 1812                       |       |   |                       | 1825  |      |                     | 2220 |                    |      |                       | 2225 |      |      |   |   |
| VOLTAGE (V      | DC)    | 3000 4000 5000 6000 3000 4 |       |   | 4000                  | 5000  | 6000 | 3000 4000 5000 6000 |      |                    | 6000 | 3000                  | 4000 | 5000 | 6000 |   |   |
| VOLTAGE C       | ODE    | Н                          | ٧     | М | 6                     | Н     | V    | М                   | 6    | Н                  | V    | М                     | 6    | Н    | ٧    | M | 6 |
| CAP. CODE       | CAP.   |                            |       |   |                       |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 101             | 100 pF |                            |       |   |                       |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 121             | 120 pF |                            |       |   |                       |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 151             | 150 pF |                            |       |   | •                     |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 181             | 180 pF |                            |       | • | •                     |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 221             | 220 pF |                            | •     | • | •                     |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 271             | 270 pF |                            | •     | • | •                     |       |      |                     |      |                    |      |                       |      |      |      |   |   |
| 331             | 330 pF |                            | •     | • |                       |       | •    | •                   |      |                    |      |                       |      |      |      |   |   |
| 391             | 390 pF |                            | •     | • |                       |       | •    | •                   |      |                    |      | •                     |      |      |      |   |   |
| 471             | 470 pF |                            | •     | • |                       |       | •    | •                   | •    |                    | •    | •                     | •    |      |      | • | • |
| 561             | 560 pF | •                          | •     | • |                       |       | •    | •                   | •    |                    | •    | •                     | •    |      |      | • | • |
| 681             | 680 pF | •                          | •     | • |                       |       | •    | •                   | •    |                    | •    | •                     | •    |      | •    | • | • |
| 751             | 750 pF |                            |       |   |                       |       |      |                     | •    |                    |      |                       | •    |      |      |   | • |
| 821             | 820 pF | •                          | •     | • |                       |       | •    | •                   | •    |                    | •    | •                     | •    |      | •    | • | • |
| 102             | 1.0 nF | •                          | •     |   |                       |       | •    | •                   | •    |                    | •    | •                     | •    |      | •    | • | • |
| 122             | 1.2 nF | •                          | •     |   |                       | •     | •    | •                   | •    | •                  | •    | •                     | •    |      | •    | • | • |
| 152             | 1.5 nF | •                          | • (2) |   |                       | •     | •    | •                   | •    | •                  | •    | •                     | •    |      | •    | • | • |
| 182             | 1.8 nF | •                          |       |   |                       | •     | •    | •                   |      | •                  | •    | •                     | •    | •    | •    | • | • |
| 222             | 2.2 nF | •                          |       |   |                       | •     | •    |                     |      | •                  | •    |                       | •    | •    | •    | • | • |
| 272             | 2.7 nF | • (2)                      |       |   |                       | •     | •    |                     |      | •                  | •    |                       |      | •    | •    | • | • |
| 332             | 3.3 nF | • (2)                      |       |   |                       | •     | •    |                     |      | •                  | •    |                       |      | •    | •    | • |   |
| 392             | 3.9 nF | • (2)                      |       |   |                       | •     |      |                     |      | •                  |      |                       |      | •    | •    |   |   |
| 472             | 4.7 nF | • (2)                      |       |   |                       | •     |      |                     |      | •                  |      |                       |      | •    | •    |   |   |
| 562             | 5.6 nF |                            |       |   |                       | • (2) |      |                     |      | • (2)              |      |                       |      | •    | •    |   |   |
| 682             | 6.8 nF |                            |       |   |                       | • (2) |      |                     |      | • (2)              |      |                       |      | •    |      |   |   |
| 822             | 8.2 nF |                            |       |   |                       | • (2) |      |                     |      | • (2)              |      |                       |      | •    |      |   |   |
| 103             | 10 nF  |                            |       |   |                       | • (2) |      |                     |      | • (2)              |      |                       |      | •    |      |   |   |
| 123             | 12 nF  |                            |       |   |                       |       |      |                     |      |                    |      |                       |      | •    |      |   |   |
| 153             | 15 nF  |                            |       |   |                       |       |      |                     |      |                    |      |                       |      | •    |      |   |   |
| 183             | 18 nF  |                            |       |   |                       |       |      | _                   | _    |                    |      |                       |      |      |      |   |   |


#### Notes

<sup>(1)</sup> See soldering recommendations within this data book, or visit: <a href="www.vishay.com/doc?45034">www.vishay.com/doc?45034</a>

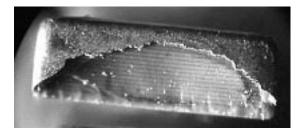

<sup>(2)</sup> Rating use lower packaging quantity, see "Standard Packaging Quantities" chart





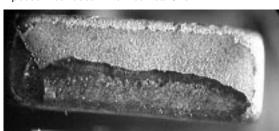


Vishay Vitramon




# **POLYMER TERMINATION**

Polymer termination provides additional protection against board flexure damage by absorbing greater mechanical and thermal stresses. Components can be packaged, transported, stored and handled the same standard terminated product. Reflow soldering of MLCC does not require modification to equipment and / or process. Polymer termination greatly reduces the risk of mechanical cracking however it does not completely eliminate.


# STANDARD TERMINATION

Exposed Electrodes = Electrical Short



# OMD CAP PLUS POLYMER TERMINATION

No Exposed Electrodes = No Electrical Short



| STANDARD PACKAGING QUANTITIES (1) |           |                                          |                                                          |  |  |  |  |  |  |
|-----------------------------------|-----------|------------------------------------------|----------------------------------------------------------|--|--|--|--|--|--|
| CASE CODE                         | TAPE SIZE | 7" REEL QUANTITIES<br>PACKAGING CODE "T" | 11 1/4" AND 13"<br>REEL QUANTITIES<br>PACKAGING CODE "R" |  |  |  |  |  |  |
| 1812                              | 12 mm     | 500 <sup>(2)</sup> / 1000                | 4000                                                     |  |  |  |  |  |  |
| 1825                              | 12 mm     | 500 <sup>(2)</sup> / 1000                | 4000                                                     |  |  |  |  |  |  |
| 2220                              | 12 mm     | 500 <sup>(2)</sup> / 1000                | n/a                                                      |  |  |  |  |  |  |
| 2225                              | 12 mm     | 500                                      | n/a                                                      |  |  |  |  |  |  |

#### **Notes**

- (1) Reference: EIA standard RS 481 "Taping of Surface Mount Components for Automatic Placement"
- (2) Lower quantity for certain ratings, see "Selection Chart"

# STORAGE AND HANDLING CONDITIONS

- (1) Store the components at 5 °C to 40 °C ambient temperature and  $\leq$  70 % relative humidity conditions.
- (2) The product is recommended to be used within a time-frame of 2 years after shipment. Check solderability in case extended shelf life beyond the expiry date is needed.

#### Precautions:

- a. Do not store products in an environment containing corrosive elements, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. This may cause corrosion or oxidization of the terminations, which can easily lead to poor soldering.
- b. Store products on the shelf and avoid exposure to moisture or dust.
- c. Do not expose products to excessive shock, vibration, direct sunlight and so on.



# **Legal Disclaimer Notice**

Vishay

# **Disclaimer**

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.