THREE-TERMINAL 3A-5V POSITIVE VOLTAGE REGULATORS

- OUTPUT CURRENT: 3A
- INTERNAL CURRENT AND THERMAL LIMITING
- TYPICAL OUTPUT IMPEDANCE: 0.01Ω
- MINIMUM INPUT VOLTAGE: 7.5V
- POWER DISSIPATION: 30W

DESCRIPTION

The LM123, LM223, LM323 are three-terminal positive voltage regulators with a preset 5 V output and a load driving capability of 3A. New circuit design and processing techniques are used to provide the high output current without sacrificing the regulation characteristics of lower current devices.
The 3A regulator is virtually blowout proof.
Current limiting, power limiting and thermal shut-down provide the same high level of reliability obtained with these techniques in the LM209, 1A regulator. An overall worst case specification for the combined effects of input voltage, load current, ambient temperature, and power

dissipation ensure that the LM123, LM223, LM323 will perform satisfactorily as a system element.

SCHEMATIC DIAGRAM

Table 1: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{I}	Input Voltage	20	V
I_{O}	Output Current	Internally Limited	
$\mathrm{P}_{\text {tot }}$	Power Dissipation	Internally Limited	
$\mathrm{T}_{\text {stg }}$	Storage Temperature Range	-65 to 150	
$\mathrm{~T}_{\text {oper }}$	Operating Junction Temperature Range	LM123	
		LM223	-55 to 150
		LM323	-25 to 125

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

Table 2: Thermal Data

Symbol	Parameter	TO-220	TO-3	Unit
$\mathrm{R}_{\mathrm{th} j \text {-case }}$	Thermal Resistance Junction-case Max	3	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{th} \text {-amb }}$	Thermal Resistance Junction-ambient Max	50	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Figure 1: Connection Diagram (top view)

Table 3: Order Codes

TYPE	TO-220	TO-3	TEMPERATURE RANGE
LM123		LM123K	$-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM223		LM223K	$-25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
LM323	LM323T	LM323K	$0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Table 4: Electrical Characteristics Of LM123/LM223 ($T_{J}=-55$ to $150^{\circ} \mathrm{C}$ for LM123, $T_{J}=-25$ to $150^{\circ} \mathrm{C}$ for LM223 unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{O}	Output Voltage Range (Note 2)	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{l}}=7.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=0$	4.7	5	5.3	V
V_{0}	Output Voltage Range (Note 2)	$\begin{array}{ll} \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\min } \text { to } \mathrm{T}_{\max } & \mathrm{P} \leq \mathrm{P}_{\max } \\ \mathrm{V}_{\mathrm{I}}=7.5 \text { to } 15 \mathrm{~V} & \mathrm{I}_{\mathrm{O}}=0 \text { to } 3 \mathrm{~A} \end{array}$	4.6		5.4	V
K_{VI}	Line Regulation (Note 3)	$\mathrm{V}_{1}=7.5$ to $15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		5	25	mV
K_{vo}	Load Regulation (Note 3)	$\mathrm{I}_{\mathrm{O}}=0$ to $3 \mathrm{AV}_{1}=7.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		25	100	mV
I_{B}	Quiescent Current	$\mathrm{V}_{\mathrm{l}}=7.5$ to $15 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0$ to 3 A		12	20	mA
V_{NO}	Output Noise Voltage	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \quad \mathrm{f}=10 \mathrm{~Hz}$ to 100 KHz		40		$\mu \mathrm{V}_{\text {rms }}$
los	Short Circuit Current Limit	$\mathrm{V}_{1}=15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		3	4.5	A
		$\mathrm{V}_{\mathrm{I}}=7.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4	5	
K_{VH}	Long Term Stability				35	mV

Notes: 1. Although power dissipation is internally limited, specifications apply only for $\mathrm{P} \leq 30 \mathrm{~W}$.
2. Selected devices with tightened tolerance output voltage available.
3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and duty cycle $\leq 5 \%$.
Table 5: Electrical Characteristics Of LM323 ($T_{J}=0$ to $150^{\circ} \mathrm{C}$, unless otherwise specified).

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{O}	Output Voltage Range (Note 2)	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{I}}=7.5 \mathrm{~V}, \quad \mathrm{I}_{\mathrm{O}}=0$	4.8	5	5.2	V
V_{0}	Output Voltage Range (Note 2)	$\begin{array}{ll} \hline \mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\text {min }} \text { to } \mathrm{T}_{\max } & \mathrm{P} \leq \mathrm{P}_{\text {max }} \\ \mathrm{V}_{\mathrm{I}}=7.5 \text { to } 15 \mathrm{~V} & \mathrm{I}_{\mathrm{O}}=0 \text { to } 3 \mathrm{~A} \\ \hline \end{array}$	4.75		5.25	V
K_{VI}	Line Regulation (Note 3)	$\mathrm{V}_{1}=7.5$ to $15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		5	25	mV
K_{vo}	Load Regulation (Note 3)	$\mathrm{I}_{\mathrm{O}}=0$ to $3 \mathrm{AV}_{1}=7.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		25	100	mV
$\mathrm{I}_{\text {IB }}$	Quiescent Current	$\mathrm{V}_{\mathrm{I}}=7.5$ to $15 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0$ to 3 A		12	20	mA
V_{NO}	Output Noise Voltage	$\mathrm{T}_{\mathrm{a}}=25^{\circ} \mathrm{C} \mathrm{f}=10 \mathrm{~Hz}$ to 100 KHz		40		$\mu \mathrm{V}_{\text {rms }}$
los	Short Circuit Current Limit	$\mathrm{V}_{1}=15 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		3	4.5	A
		$\mathrm{V}_{\mathrm{I}}=7.5 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$		4	5	
K_{VH}	Long Term Stability				35	mV

Notes: 1. Although power dissipation is internally limited, specifications apply only for $\mathrm{P} \leq 30 \mathrm{~W}$.
2. Selected devices with tightened tolerance output voltage available.
3. Load and line regulation are specified at constant junction temperature. Pulse testing is required with a pulse width $\leq 1 \mathrm{~ms}$ and duty cycle $\leq 5 \%$.

Figure 2: Output Noise Voltage

Figure 3: Output Impedance

Figure 4: Peak Available Output Current

Figure 5: Short Circuit Current

Figure 6: Ripple Rejection

Figure 7: Dropout Voltage

Figure 8: Line Transient Response

Figure 9: Output Voltage

Figure 10: Quiescent Current

Figure 11: Load Transient Response

TYPICAL APPLICATION

Figure 12: Basic 3A Regulator

$\mathrm{C}_{1}=$ Required if regulator is distant from filter capacitors.
$\mathrm{C}_{\mathrm{L}}=$ Regulator is stable with no load capacitor into resistive loads.
Figure 13: Trimming Output To 5V

Figure 14: 10A Regulator With Complete Overload Protection

* Selected for 20 mA current from unregulated negative supply.
** Solid tantalum.
$A=L M 101 A, L M 201 A, L M 301 A$.
Figure 15: Adjustable Regulator 0-10V/3A

A1 = LM101A, LM201A, LM301A.
$\mathrm{Cl}=2 \mu \mathrm{~F}$ optional - improves ripple rejection, noise and transient response.

TO-3 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A		11.85			0.466	
B	0.96	1.05	1.10	0.037	0.041	0.043
C			1.70			0.066
D			8.7			0.342
E			20.0			0.787
G		10.9			0.429	
N		16.9			0.665	
P			26.2			1.031
R	3.88		4.09	0.152		0.161
U			39.5			1.555
V		30.10			1.185	

P003C/C

TO-220 MECHANICAL DATA

DIM.	mm.				Mnch	
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A	4.40		4.60	0.173		0.181
C	1.23		1.32	0.048		0.051
D	2.40		2.72	0.094		0.107
D1		1.27			0.050	
E	0.49		0.70	0.019		0.027
F	0.61		0.88	0.024		0.034
F1	1.14		1.70	0.044		0.067
F2	1.14		1.70	0.044		0.067
G	4.95		5.15	0.194		0.106
G1	2.4		10.40	0.393		0.409
H2	10.0					0.645
L2			14.0	0.511		0.551
L4	13.0		2.95	0.104		0.116
L5	2.65		15.75	0.600		0.620
L6	15.25		6.6	0.244		0.260
L7	6.2		3.93	0.137		0.154
L9	3.5		3.85	0.147		0.151
DIA.	3.75					

P011C

Table 6: Revision History

Date	Revision	Description of Changes
04-Nov-2005	3	Updated curves, no content change.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

