Features

- 18 Mbps (max.) data rate when driven by a totem pole driver
■ 6.8 Mbps (max.) data rate when driven by an open drain pole driver
- Bidirectional level translation, without direction pin
■ Wide V_{L} voltage range of 1.65 V to 3.6 V
■ Wide V_{CC} voltage range of 1.80 V to 5.5 V
- Integrated $10 \mathrm{k} \Omega$ pull-up on both V_{CC} and V_{L} sides
- Power-down mode feature; when either supply is off, all I/Os are in high impedance
■ Low quiescent current (max. $4 \mu \mathrm{~A}$)
- Able to be driven by totem pole and open drain drivers
- 5.5 V tolerant enable pin

■ ESD performance on all pins: $\pm 2 \mathrm{kV}$ HBM

- Small package and footprint - QFN10 (1.8 x 1.4 mm) package

Applications

- Low voltage system level translation
- Mobile phones and other mobile devices
- $I^{2} C$ level translation
- UART level translation

Table 1. Device summary

Order code	Package	Packing
ST2329IQTR	QFN10	Tape and reel
	$(1.8 \times 1.4 \mathrm{~mm})$	$(3000$ parts per reel $)$

Contents

1 Description 5
2 Pin configuration 6
2.1 Supplementary notes 7
2.1.1 Driver requirements 7
2.1.2 Load driving capability 7
2.1.3 Power-off feature 7
2.2 AC characteristics (device driven by open drain driver) 11
2.3 AC characteristics (device driven by totem pole driver) 13
3 Package information 16
4 Revision history 21

List of tables

Table 1. Device summary 1
Table 2. Pin description 6
Table 3. Truth table 8
Table 4. Absolute maximum ratings 8
Table 5. Recommended operating conditions 8
Table 6. DC characteristics (over recommended operating conditions unless otherwise noted. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) 9
Table 7. For test conditions: $\mathrm{V}_{\mathrm{L}}=1.65$ to 1.8 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=4.7 \mathrm{k} \Omega$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ 11
Table 8. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.5$ to 2.7 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\text {up }}=4.7 \mathrm{k} \Omega$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathrm{ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{O}$ 11
Table 9. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.7$ to 3.6 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=4.7 \mathrm{k} \Omega$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ 12
Table 10. For test conditions: $\mathrm{V}_{\mathrm{L}}=1.65$ to $1.8 \mathrm{~V}\left(\operatorname{load} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=10 \mathrm{k} \Omega ;\right.$ driver $t_{r}=t_{f} S$ ns) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. 13
Table 11. For test conditions: $\mathrm{VL}=2.5$ to 2.7 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=10 \mathrm{k} \Omega$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. 13
Table 12. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.7$ to $3.6 \mathrm{~V}\left(\operatorname{load} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=10 \mathrm{k} \Omega\right.$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ 14
Table 13. Test circuit 14
Table 14. Waveform symbol value 15
Table 15. Mechanical data for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) - 0.40 mm pitch 17
Table 16. Document revision history 21

List of figures

Figure 1. Pin configuration 6
Figure 2. Device block diagram 6
Figure 3. Typical application diagram 7
Figure 4. Test circuit 14
Figure 5. Waveform - propagation delay ($f=1 \mathrm{MHz}, 50 \%$ duty cycle). 15
Figure 6. Waveform - output enable/disable ($\mathrm{f}=1 \mathrm{MHz}, 50 \%$ duty cycle) 15
Figure 7. Package outline for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) - 0.40 mm pitch 16
Figure 8. Footprint recommendation for QFN10 $(1.8 \times 1.4 \times 0.5 \mathrm{~mm})-0.40 \mathrm{~mm}$ pitch 17
Figure 9. Carrier tape for QFN10 $(1.8 \times 1.4 \times 0.5 \mathrm{~mm})-0.40 \mathrm{~mm}$ pitch 18
Figure 10. Reel information for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) -0.40 mm pitch - back view 19
Figure 11. Reel information for QFN10 $(1.8 \times 1.4 \times 0.5 \mathrm{~mm})-0.40 \mathrm{~mm}$ pitch - front view. 20

1
 Description

ST23291 is a 2-bit dual-supply level translator which provides the level shifting capability to allow data transfer in a multi-voltage system. Externally applied voltages, V_{CC} and V_{L}, set the logic levels on either side of the device. It utilizes a transmission gate based design that allows bidirectional level translation without a control pin.

The ST2329I accepts V_{L} from 1.65 V to 3.6 V and V_{CC} from 1.80 V to 5.5 V , making it ideal for data transfer between low-voltage ASICs/PLD and higher voltage systems. This device has a tri-state output mode which can be used to disable all the I/Os.
The ST23291 supports power-down mode when V_{CC} is grounded/floating and the device is disabled via the OE pin. The device has integrated $10 \mathrm{k} \Omega$ pull-ups on both sides.

2 Pin configuration

Figure 1. Pin configuration

Table 2. Pin description

QFN10 pin no	Symbol	Name and function
1,2	$\mathrm{I}^{\prime} \mathrm{O}_{\mathrm{VL} 1}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL} 2}$	Data inputs/outputs
8,7	$\mathrm{I}_{\mathrm{VCC} 1}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC} 2}$	Data inputs/outputs
3	OE	Output enable input
6	GND	Ground
10	$\mathrm{~V}_{\mathrm{L}}$	Supply voltage
9	$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage
4,5	NC	No connect

Figure 2. Device block diagram

1. ST2329I has 2 channels. For simplicity, the diagram above shows only 1 channel.
2. When OE is LOW, all I/Os are in high impedance mode.

Figure 3. Typical application diagram

1. External pull-up resistors are optional. Only needed if a pull-up value lower than $10 \mathrm{k} \Omega$ is desired.

2.1 Supplementary notes

2.1.1 Driver requirements

The ST2329I may be driven by an open drain or totem pole driver and the nature of the device output is "open drain". It must not be used to drive a pull-down resistor as the impedance of the output at HIGH state depends on the pull-up resistor placed at the I/Os.

As the device has pull-up resistors on both $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}$ and $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$ ports, the user needs to ensure that the driver is able to sink the required amount of current. For example, if the settings are $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=4.3 \mathrm{~V}$, and the pull-up resistor is $10 \mathrm{k} \Omega$ then the driver must be able to sink at least $(5.5 \mathrm{~V} / 10 \mathrm{k} \Omega)+(4.3 \mathrm{~V} / 10 \mathrm{k} \Omega) \approx 1 \mathrm{~mA}$ and still meet V_{IL} requirements of ST2329I.

2.1.2 Load driving capability

To support the open drain system, the one-shot transistor is turned on only during high transition at the output side. When it drives a high state, after the one-shot transistor turned off, only the pull-up resistor is able to maintain the state. In this case, the resistive load is not recommended.

2.1.3 Power-off feature

In some applications where it might be required to turn off one of the power supplies powering up the level translator, the user may turn OFF the V_{CC} only when the OE pin is low (device is disabled). There is no current consumption in V_{L} due to floating gates or other causes, and the I/Os are in a high impedance state in this mode.

Table 3. Truth table

Enable	Bidirectional input/output	
OE	$\mathrm{I} \mathrm{O}_{\mathrm{VCC}}$	$\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$
$\mathrm{H}^{(1)}$	$\mathrm{H}^{(2)}$	$\mathrm{H}^{(1)}$
$\mathrm{H}^{(1)}$	L	L
L	$\mathrm{Z}^{(3)}$	Z

1. High level V_{L} power supply referred.
2. High level V_{CC} power supply referred.
3. $Z=$ high impedance.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{L}	Supply voltage	-0.3 to 4.6	V
$\mathrm{~V}_{\mathrm{CC}}$	Supply voltage	-0.3 to 6.5	V
$\mathrm{~V}_{\mathrm{OE}}$	DC control input voltage	-0.3 to 6.5	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{OVL}}$	$\mathrm{DC} \mathrm{I/O} \mathrm{VL}_{\mathrm{VL}}$ input voltage (OE = GND or V_{L})	-0.3 to $\mathrm{V}_{\mathrm{L}}+0.3$	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{OVCC}}$	$\mathrm{DC} \mathrm{I/O} \mathrm{VCC}$ input voltage (OE = GND or V_{L})	-0.3 to $\mathrm{V}_{\mathrm{CC}}+0.3$	V
I_{IK}	DC input diode current	-20	mA
$\mathrm{I}_{\mathrm{I} / \mathrm{OVL}}$	DC output current	± 25	mA
$\mathrm{I}_{\mathrm{I} / \mathrm{OVCC}}$	DC output current	± 258	mA
$\mathrm{I}_{\mathrm{SCTOUT}}$	Short-circuit duration, continuous	40	mA
P_{D}	Power dissipation ${ }^{(1)}$	500	mW
$\mathrm{~T}_{\mathrm{STG}}$	Storage temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
TL	Lead temperature (10 seconds)	300	${ }^{\circ} \mathrm{C}$
ESD	Electrostatic discharge protection (HBM)	± 2	KV

1. $500 \mathrm{~mW}: 65^{\circ} \mathrm{C}$ derated to 300 mW by $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}: 65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

Table 5. Recommended operating conditions

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{L}	Supply voltage	1.65		3.6	V
$\mathrm{~V}_{\mathrm{CC}}{ }^{(1)}$	Supply voltage	1.8		5.5	V
$\mathrm{~V}_{\mathrm{OE}}$	Input voltage (OE output enable pin, V_{L} power supply referred)	0		3.6	V
$\mathrm{~V}_{\mathrm{I} / \mathrm{OVL}}$	I/O $\mathrm{VL}_{\mathrm{VL}}$ voltage	0		$\mathrm{~V}_{\mathrm{L}}$	V
$\mathrm{V}_{\mathrm{I} / \mathrm{OVCC}}$	$\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}$ voltage	0		$\mathrm{~V}_{\mathrm{CC}}$	V
TOP	Operating temperature	-40		85	${ }^{\circ} \mathrm{C}$
$\mathrm{dt/dV}$	Input rise and fall time	0		1	$\mathrm{~ns} / \mathrm{V}$

1. $V_{C C}$ must be greater than V_{L}.

Table 6. DC characteristics (over recommended operating conditions unless otherwise noted. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Test conditions			Value					Unit
		$\mathrm{V}_{\mathbf{L}}$	V_{CC}		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\mathrm{IHL}}$	High level input voltage on V_{L} side $\left(1 / O_{V L}\right)$	1.65	V_{L} to 5.5	-	1.4			1.4		V
		2.0			1.6			1.6		
		2.5			2.0			2.0		
		3.0			2.4			2.4		
		3.6			2.8			2.8		
$\mathrm{V}_{\text {ILL }}$	Low level input voltage on V_{L} side $\left(1 / O_{V L}\right)$	1.65	V_{L} to 5.5	-			0.3		0.3	V
		2.0					0.4		0.4	
		2.5					0.5		0.5	
		3.0					0.6		0.6	
		3.6					0.8		0.8	
$\mathrm{V}_{\mathrm{IHC}}$	High level input voltage on V_{CC} side ($1 / O_{\mathrm{Vcc}}$)	$\begin{gathered} 1.65 \text { to } \\ V_{C C} \end{gathered}$	1.65	-		1.4		1.6		V
			2.0			1.6		2.3		
			2.5			2.3		2.7		
			3.0			2.7		3.3		
			3.6			3.3		3.5		
			5.5			4.2		4.2		
$\mathrm{V}_{\text {ILC }}$	Low level input voltage on V_{CC} side ($1 / \mathrm{O}_{\mathrm{VCc}}$)	$\begin{aligned} & 1.65 \text { to } \\ & V_{C C} \end{aligned}$	1.65	-			0.3			V
			2.0				0.3			
			2.5				0.3			
			3.0				0.5			
			3.6				0.5			
			5.5				0.5			
$\mathrm{V}_{\mathrm{IH}-\mathrm{OE}}$	High level input voltage (OE)	1.65	$V_{L} \text { to } 5.5$	-	1.0			1.0		V
		2.0			1.2			1.2		
		2.5			1.4			1.4		
		3.0			1.6			1.6		
		3.6			2.0			2.0		

Table 6. DC characteristics (over recommended operating conditions unless otherwise noted. All typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) (continued)

Symbol	Parameter	Test conditions			Value					Unit
		V_{L}	V_{cc}		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85{ }^{\circ} \mathrm{C}$		
					Min.	Typ.	Max.	Min.	Max.	
$\mathrm{V}_{\text {IL-OE }}$	Low level input voltage (OE)	1.65	V_{L} to 5.5	-			0.33		0.33	V
		2.0					0.40		0.40	
		2.5					0.50		0.50	
		3.0					0.60		0.60	
		3.6					0.75		0.75	
$\mathrm{V}_{\text {OLL }}$	Low level output voltage (I/O VL)	1.65 to 3.6	V_{L} to 5.5	$\begin{gathered} \mathrm{IO}=1.0 \mathrm{~mA} \\ \mathrm{I} / \mathrm{O}_{\mathrm{Vcc}} \leq 0.15 \mathrm{~V} \end{gathered}$			0.40		0.40	V
$\mathrm{V}_{\text {OLC }}$	Low level output voltage ($/ / \mathrm{O}_{\mathrm{VCC}}$)	1.65 to 3.6	V_{L} to 5.5	$\begin{gathered} \mathrm{IO}=1.0 \mathrm{~mA} \\ \mathrm{I} / \mathrm{O}_{\mathrm{VL}} \leq 0.15 \mathrm{~V} \end{gathered}$			0.40		0.40	V
loe	Control input leakage current (OE)	1.65 to 3.6	V_{L} to 5.5	$\mathrm{V}_{\mathrm{OE}}=\mathrm{GND}$ or V_{L}			± 0.1		± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IO_LKG }}$	High impedance leakage current $\left(1 / O_{V L}, I / O_{V C c}\right)$	1.65 to 3.6	V_{L} to 5.5	OE = GND			± 0.1		± 0.1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {QVCC }}$	Quiescent supply current V_{CC}	1.65 to 3.6	V_{L} to 5.5	Only pull-up resistor connected to I/O		3	3.5		6	$\mu \mathrm{A}$
$\mathrm{I}_{\text {QVL }}$	Quiescent supply current V_{L}	1.65 to 3.6	V_{L} to 5.5	Only pull-up resistor connected to I/O		0.01	0.1		1	$\mu \mathrm{A}$
$\mathrm{I} z-\mathrm{vcc}$	High impedance quiescent supply current V_{CC}	1.65 to 3.6	V_{L} to 5.5	$\begin{gathered} \hline \text { OE = GND; only } \\ \text { pull-up resistor } \\ \text { connected to I/O } \end{gathered}$		3	3.5		6	$\mu \mathrm{A}$
I z -vL	High impedance quiescent supply current V_{L}	1.65 to 3.6	V_{L} to 5.5	$\begin{aligned} & \text { OE = GND; only } \\ & \text { pull-up resistor } \\ & \text { connected to I/O } \end{aligned}$		0.01	0.1		1	$\mu \mathrm{A}$

2.2 AC characteristics (device driven by open drain driver)

Table 7. For test conditions: $\mathrm{V}_{\mathrm{L}}=1.65$ to 1.8 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\text {up }}=4.7 \mathrm{k} \Omega$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 n s}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		$\mathrm{V}_{\mathrm{CC}}=1.8$-2.5 V		$\mathrm{V}_{\text {cc }}=2.7-3.6 \mathrm{~V}$		$\mathrm{V}_{\text {cc }}=4.3-5.5 \mathrm{~V}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RVCC }}$	Rise time I/O Vcc			80		60		45	ns
$\mathrm{t}_{\text {FVCC }}$	Fall time I/O Occ			23.2		33.9		53.3	ns
$\mathrm{t}_{\mathrm{RVL}}$	Rise time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			60		45		35	ns
$\mathrm{t}_{\mathrm{FVL}}$	Fall time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			16.4		17.6		16.9	ns
$\mathrm{t}_{1 / \mathrm{OVL}-\mathrm{VCC}}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}$-LH $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}-\mathrm{HL}$	$\mathrm{t}_{\text {PLH }}$		3.4		2			ns
		$\mathrm{t}_{\text {PLH }}$		13.9		19.1		30.2	ns
$\mathrm{t}_{\text {/OVCC-VL }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}$-LH to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ I/OVCC-HL to I/OVL-HL	$\mathrm{t}_{\text {PLH }}$		2		2		2.6	ns
		$t_{\text {PLH }}$		8.6		9		9.5	ns
$t_{\text {PZL }} t_{\text {PZH }}$ $t_{\text {PLZ }} \mathrm{t}_{\mathrm{PHZ}}$	Output enable and disable time	En		10		10		10	ns
		Dis		40		40		40	ns
D_{R}	Data rate ${ }^{(1)}$			1.8		2.2		3.4	MHz

1. The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I / O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation is not less than 30%. Note that the $R_{\text {up }}$ of $4.7 \mathrm{k} \Omega$ is an effective R pull-up value. Since the device has an integrated $10 \mathrm{k} \Omega$ pull-up resistor, an effective value of $4.7 \mathrm{k} \Omega$ is obtained by adding an external $8.9 \mathrm{k} \Omega$ pull-up resistor.

Table 8. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.5$ to $2.7 \mathrm{~V}\left(\operatorname{load} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=4.7 \mathrm{k} \Omega\right.$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 n s}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.3-5.5 \mathrm{~V}$		Unit
			Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RVCC }}$	Rise time I/O Vcc			70		50	ns
$\mathrm{t}_{\text {FVCC }}$	Fall time I/OV ${ }_{\text {Vcc }}$			14.8		19.1	ns
$\mathrm{t}_{\text {RVL }}$	Rise time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			50		35	ns
$\mathrm{t}_{\mathrm{FVL}}$	Fall time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			9.8		10	ns
$\mathrm{t}_{\text {//OVL-VCC }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}} \mathrm{LH}$ I/OVL-HL to I/OVCC-HL	$\mathrm{t}_{\text {PLH }}$		2		2	ns
		$\mathrm{t}_{\text {PLH }}$		8.2		11.6	ns
$\mathrm{t}_{\text {/OVCC-VL }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}-\mathrm{HL}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$	$\mathrm{t}_{\text {PLH }}$		2		2	ns
		$\mathrm{t}_{\text {PLH }}$		5.3		5.9	ns
$t_{\text {PZL }}{ }^{t_{\text {PZH }}}$ $t_{\text {pLZ }} \mathrm{t}_{\mathrm{PHZ}}$	Output enable and disable time	En		6		6	ns
		Dis		40		40	ns
D_{R}	Data rate ${ }^{(1)}$			2.2		3.0	MHz

1. The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation is not less than 30%. Note that the $\mathrm{R}_{\text {up }}$ of $4.7 \mathrm{k} \Omega$ is an effective R pull-up value. Since the device has an integrated $10 \mathrm{k} \Omega$ pull-up resistor, an effective value of $4.7 \mathrm{k} \Omega$ is obtained by adding an external $8.9 \mathrm{k} \Omega$ pull-up resistor.

Table 9. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.7$ to $3.6 \mathrm{~V}\left(\operatorname{load} \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=4.7 \mathrm{k} \Omega ;\right.$ driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2 \mathrm{~ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		$\mathrm{V}_{\mathrm{CC}}=4.3-5.5 \mathrm{~V}$		Unit
			Min.	Max.	
$t_{\text {RVCC }}$	Rise time I/O ${ }_{\mathrm{Vcc}}$			55	ns
$\mathrm{t}_{\text {FVCC }}$	Fall time I/O VCC			17.2	ns
$\mathrm{t}_{\text {RVL }}$	Rise time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			40	ns
$\mathrm{t}_{\text {FVL }}$	Fall time $1 / \mathrm{O}_{\mathrm{VL}}$			9.7	ns
$\mathrm{t}_{\text {//OVL-VCC }}$	Propagation delay time I/OVL-LH to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{LH}}$ I/OVL-HL to I/OVCC-HL	$\mathrm{t}_{\text {PLH }}$		2	ns
		$t_{\text {PLH }}$		10.6	ns
$\mathrm{t}_{\text {/OVCC-VL }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{HL}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$	$\mathrm{t}_{\mathrm{PLH}}$		2	ns
		$t_{\text {PLH }}$		4.8	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZL}} \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PLZ}} \mathrm{t}_{\mathrm{PHZ}} \end{aligned}$	Output enable and disable time	En		6	ns
		Dis		40	ns
DR	Data rate ${ }^{(1)}$			3.0	MHz

1. The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation is not less than 30%.
Note that the $R_{\text {up }}$ of $4.7 \mathrm{k} \Omega$ is an effective R pull-up value. Since the device has an integrated $10 \mathrm{k} \Omega$ pull-up resistor, an effective value of $4.7 \mathrm{k} \Omega$ is obtained by adding an external $8.9 \mathrm{k} \Omega$ pull-up resistor.

2.3 AC characteristics (device driven by totem pole driver)

Table 10. For test conditions: $\mathrm{V}_{\mathrm{L}}=1.65$ to 1.8 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\text {up }}=10 \mathrm{k} \Omega$; driver $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq \mathbf{2 n s}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		$\mathrm{V}_{\mathrm{CC}}=1.8$-2.5 V		$\mathrm{V}_{\mathrm{cc}}=2.7-3.6 \mathrm{~V}$		$\mathrm{V}_{\mathrm{cc}}=4.3-5.5 \mathrm{~V}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{RVCC}}$	Rise time I/OVcc			7.2		4.6		1.4	ns
$\mathrm{t}_{\text {FVCC }}$	Fall time I/O VCc			23.2		33.9		53.3	ns
$\mathrm{t}_{\mathrm{RVL}}$	Rise time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			5.9		5.7		5.5	ns
$\mathrm{t}_{\mathrm{FVL}}$	Fall time $/ / \mathrm{O}_{\mathrm{VL}}$			16.4		17.6		16.9	ns
$\mathrm{t}_{\text {/OVL-VCC }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}} \mathrm{LH}$ I/OVL-HL to I/OVCC-HL	$\mathrm{t}_{\text {PLH }}$		5.5		4.1		3.6	ns
		$\mathrm{t}_{\text {PLH }}$		13.9		19.1		30.2	ns
$\mathrm{t}_{\text {/ OVCC-VL }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}$-LH to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}-\mathrm{HL}$ to $\mathrm{I} / \mathrm{OVL}_{\mathrm{VL}} \mathrm{HL}$	$\mathrm{t}_{\text {PLH }}$		4.5		3.9		3.6	ns
		$\mathrm{t}_{\text {PLH }}$		8.6		9.0		9.5	ns
$t_{\text {PZL }} t_{\text {PZH }}$ $\mathrm{t}_{\mathrm{PLZ}} \mathrm{t}_{\mathrm{PHZ}}$	Output enable and disable time	En		10		10		10	ns
		Dis		40		40		40	ns
D_{R}	Data rate ${ }^{(1)}$			6.4		4.5		3.0	MHz

1. The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I / O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation is not less than 30%. Note that the $R_{\text {up }}$ of $4.7 \mathrm{k} \Omega$ is an effective R pull-up value. Since the device has an integrated $10 \mathrm{k} \Omega$ pull-up resistor, an effective value of $4.7 \mathrm{k} \Omega$ is obtained by adding an external $8.9 \mathrm{k} \Omega$ pull-up resistor.

Table 11. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.5$ to 2.7 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=10 \mathrm{k} \Omega$; driver $\left.t_{r}=t_{f} \leq 2 n s\right)$ overtemperature range $-40{ }^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		$\mathrm{V}_{\mathrm{CC}}=2.7-3.6 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=4.3-5.5 \mathrm{~V}$		Unit
			Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {RVCC }}$	Rise time I/Ovcc			3.8		2.8	ns
$\mathrm{t}_{\text {FVCC }}$	Fall time I/OVCc			14.8		19.1	ns
$t_{\text {RVL }}$	Rise time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}}$			3.3		3.2	ns
$\mathrm{t}_{\mathrm{FVL}}$	Fall time I/OVL			9.8		10.0	ns
$\mathrm{t}_{\text {/ OVL-VCC }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}} \mathrm{LH}$ $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}-\mathrm{HL}$	$t_{\text {PLH }}$		3.2		2.8	ns
		$t_{\text {PLH }}$		8.2		11.6	ns
$\mathrm{t}_{\text {/ OVCC-VL }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}-\mathrm{HL}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$	$t_{\text {PLH }}$		2.6		2.0	ns
		$t_{\text {PLH }}$		5.3		5.9	ns
$t_{\text {PZL }} t_{\text {PZH }}$ $\mathrm{t}_{\mathrm{PLZ}} \mathrm{t}_{\mathrm{PHZ}}$	Output enable and disable time	En		6		6	ns
		Dis		40		40	ns
DR	Data rate ${ }^{(1)}$			9		6.8	MHz

[^0]Table 12. For test conditions: $\mathrm{V}_{\mathrm{L}}=2.7$ to 3.6 V (load $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{R}_{\mathrm{up}}=10 \mathrm{k} \Omega$; driver $t_{r}=t_{f} \leq 2 \mathrm{~ns}$) overtemperature range $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Symbol	Parameter		V_{CC}	- 5.5 V	Unit
			Min.	Max.	
$t_{\text {RVCC }}$	Rise time $\mathrm{I} / \mathrm{O}_{\mathrm{Vcc}}$			2.9	ns
$\mathrm{t}_{\text {FVCC }}$	Fall time I/O Occ			17.2	ns
$\mathrm{t}_{\text {RVL }}$	Rise time $1 / \mathrm{O}_{\mathrm{VL}}$			3.0	ns
$\mathrm{t}_{\mathrm{FVL}}$	Fall time $1 / \mathrm{O}_{\mathrm{VL}}$			9.7	ns
$\mathrm{t}_{\text {/ OVL-vCC }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}$ LH $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}}-\mathrm{HL}$	$\mathrm{t}_{\text {PHL }}$		2.7	ns
		${ }_{\text {t }}{ }_{\text {PHL }}$		10.6	ns
$\mathrm{t}_{\text {//OVCC-VL }}$	Propagation delay time $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{LH}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{LH}}$ $\mathrm{I} / \mathrm{O}_{\mathrm{VCC}-\mathrm{HL}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{VL}-\mathrm{HL}}$	$\mathrm{t}_{\text {PHL }}$		1.9	ns
		${ }^{\text {t }}$ PHL		4.8	ns
$t_{\text {PZL }}$ tpzH $t_{\text {PLZ }} \mathrm{t}_{\mathrm{PHZ}}$	Output enable and disable time	En		6	ns
		Dis		40	ns
D_{R}	Data rate ${ }^{(1)}$			7.2	MHz

1. The data rate is guaranteed based on the condition that the output I/O signal rise/fall time is less than 15% of the input I/O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation is not less than 30%.
Note that the $R_{\text {up }}$ of $4.7 \mathrm{k} \Omega$ is an effective R pull-up value. Since the device has an integrated $10 \mathrm{k} \Omega$ pull-up resistor, an effective value of $4.7 \mathrm{k} \Omega$ is obtained by adding an external $8.9 \mathrm{k} \Omega$ pull-up resistor.

Figure 4. Test circuit

Table 13. Test circuit

Test	Switch		
	Driving I/O VLL	Driving I/O VCC	Open drain driving
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open	Open	Open

Note: \quad The pull-up resistors shown in the above test circuit are optional and are only needed if total pull-up on either end of the level translator needs to be lower than $10 \mathrm{k} \Omega$. In applications where $10 \mathrm{k} \Omega$ is sufficient, the external pull-up resistor is not required.

Table 14. Waveform symbol value

Symbol	Driving $/ \mathrm{O}_{\mathrm{VL}}$		Driving I/O VCC	
	$\mathbf{1 . 8} \mathrm{V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$ $\leq \mathbf{2 . 5} \mathrm{V}$	$\mathbf{3 . 3} \mathrm{V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$ $\leq \mathbf{5 . 0} \mathrm{V}$	$\mathbf{1 . 8} \mathrm{V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$ $\leq \mathbf{2 . 5} \mathrm{V}$	$\mathbf{3 . 3} \mathrm{V} \leq \mathrm{V}_{\mathrm{L}} \leq \mathrm{V}_{\mathrm{CC}}$ $\leq \mathbf{5 . 0} \mathrm{V}$
	V_{L}	V_{L}	V_{CC}	V_{CC}
V_{IM}	$50 \% \mathrm{~V}_{\mathrm{L}}$	$50 \% \mathrm{~V}_{\mathrm{L}}$	$50 \% \mathrm{~V}_{\mathrm{CC}}$	$50 \% \mathrm{~V}_{\mathrm{CC}}$
V_{OM}	$50 \% \mathrm{~V}_{\mathrm{CC}}$	$50 \% \mathrm{~V}_{\mathrm{CC}}$	$50 \% \mathrm{~V}_{\mathrm{CC}}$	$50 \% \mathrm{~V}_{\mathrm{CC}}$
V_{X}	$\mathrm{V}_{\mathrm{OL}}+15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Figure 5. Waveform - propagation delay (f =1 MHz, 50\% duty cycle)

Figure 6. Waveform - output enable/disable (f = $1 \mathrm{MHz}, 50 \%$ duty cycle)

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK ${ }^{\circledR}$ packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at www.st.com. ECOPACK is an ST trademark.

Figure 7. Package outline for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) - 0.40 mm pitch

Table 15. Mechanical data for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) $\mathbf{- 0 . 4 0 \mathrm { mm } \text { pitch }}$

Symbol	millimeters			inches			Note
	Typ.	Min.	Max.	Typ.	Min.	Max.	
A	0.5	0.45	0.55	0.02	0.018	0.022	
A1	0.02	0	0.05	0.001	0	0.002	
A3	0.13			0.005			
b	0.2	0.15	0.25	0.008	0.006	0.01	
D	1.8	1.75	1.85	0.071	0.069	0.073	
E	1.4	1.35	1.45	0.055	0.053	0.057	
e	0.4			0.016			
L	0.4	0.35	0.45	0.016	0.014	0.018	

Figure 8. Footprint recommendation for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) - 0.40 mm pitch

Figure 9. Carrier tape for QFN10 ($1.8 \times 1.4 \times 0.5 \mathrm{~mm}$) - 0.40 mm pitch

Figure 10. Reel information for QFN10 (1.8 $\times 1.4 \times 0.5 \mathrm{~mm})-0.40 \mathrm{~mm}$ pitch - back view

Figure 11. Reel information for QFN10 (1.8 $\times 1.4 \times 0.5 \mathrm{~mm})-0.40 \mathrm{~mm}$ pitch - front view

4 Revision history

Table 16. Document revision history

Date	Revision	Changes	
02-Mar-2011	1	Initial release.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com

[^0]: 1. The data rate is guaranteed based on the condition that the output I / O signal rise/fall time is less than 15% of the input I / O signal period; the input I/O signal is at 50% duty cycle and the output I/O signal duty cycle deviation is not less than 30%. Note that the $\mathrm{R}_{\text {up }}$ of $4.7 \mathrm{k} \Omega$ is an effective R pull-up value. Since the device has an integrated $10 \mathrm{k} \Omega$ pull-up resistor, an effective value of $4.7 \mathrm{k} \Omega$ is obtained by adding an external $8.9 \mathrm{k} \Omega$ pull-up resistor.
