

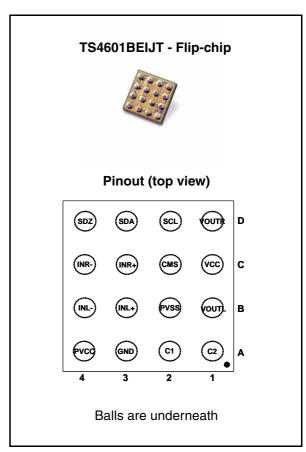
TS4601B

High performance stereo headphone amplifier with capacitorless outputs and I²C bus interface

Features

- Power supply range: 2.9 V to 5.5 V
- 107 dB of PSRR at 217 Hz
- Fully differential inputs
- I²C interface for volume control
- Digital volume control range from -60 dB to +4 dB
- 101 dB of SNR A-weighted
- Independent right and left channel shutdown control
- Low quiescent current: 4.8 mA typ. at 3.0 V
- Low standby current: 2 µA max
- Output-coupling capacitors removed
- Flip-chip package 2.1 mm x 2.1 mm, 500 µm pitch, 16 bumps

Applications


- Cellular phones
- Notebook computers
- CD/MP3 players

Description

The TS4601B is a stereo headphone driver dedicated to high audio performance and space-constrained applications. It has the same uses as the TS4601 which it replaces, while offering highly improved ESD ratings.

It is based on low power dissipation amplifier core technology. Special care was taken in the design of the amplification chain to achieve peerless PSRR (107 dB typ. at 217 Hz) and 101 dB of SNR.

The TS4601B can drive 0.9 V_{rms} output voltage into 16 Ω and 1.6 V_{rms} into 10 $k\Omega$, whatever the power supply voltage, in the 2.9 V to 5.5 V range.

An I^2C interface offers volume control in 64 steps from -60 dB to +4 dB and multiple configuration modes for the device.

The traditionally used output-coupling capacitors can be removed and a dedicated common-mode sense pin removes parasitic noise from the jack.

The TS4601B is designed to be used with an output serial resistor. It ensures unconditional stability over a wide range of capacitive loads.

The TS4601B is packaged in a tiny 16-bump flip-chip with a pitch of 500 μ m and a 300 μ m diameter ball size.

Contents TS4601B

Contents

1	Abs	olute maximum ratings and operating conditions 3					
2	Турі	cal application schematics4					
3	Elec	Electrical characteristics					
	3.1	Electrical characteristics tables 6					
	3.2	Electrical characteristic curves					
4	Арр	lication information					
	4.1	Common-mode sense 17					
	4.2	I ² C bus interface					
		4.2.1 I ² C bus operation					
		4.2.2 Control registers					
		Control register CR0					
	4.3	Wake-up and standby time definition					
	4.4	Decoupling considerations					
	4.5	Low frequency response					
	4.6	Low pass output filter					
	4.7	Single-ended input configuration					
5	Pack	age information					
6	Orde	ering information					
7	Revi	sion history					

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	6	V
V _{in}	Input voltage In Master standby mode, and I ² C mode 1, 6 and 7 In I ² C mode 2, 3, 4 and 5	0 to V _{CC} -2.4 to +2.4	V
T _{stg}	Storage temperature	-65 to +150	°C
T _j	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction to ambient (2)	200	°C/W
P _d	Power dissipation	Internally limited ⁽³⁾	
	HBM - human body model - all pins ⁽⁴⁾ VOUTL, VOUTR vs. VCC, GND	2 4	kV
ESD	MM - machine model (min. value) ⁽⁵⁾	200	V
ESD	CDM - charge device model	500	V
	IEC61000-4-2 level 4, contact ⁽⁶⁾ IEC61000-4-2 level 4, air discharge ⁽⁶⁾	+/- 8 +/- 15	kV
Latch-up	Latch-up immunity	200	mA
	Lead temperature (soldering, 10sec)	260	°C

- 1. All voltage values are measured with respect to the ground pin.
- 2. The device is protected in case of over temperature by a thermal shutdown active @ 150° C.
- 3. Exceeding the power derating curves during a long period may provoke abnormal operation.
- 4. Human body model: A 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- 5. Machine model: A 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are floating.
- 6. The measurement is performed on the evaluation board, with an STMicroelectronics ESD protection EMIF02-AV01F3

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	2.9 to 5.5	V
R _L	Load resistor	≥ 16	Ω
C _L	Load capacitor Serial resistor of 12Ω minimum, $R_L \ge 16\Omega$,	0.8 to 100	nF
T _{oper}	Operating free air temperature range	-40 to +85	°C
R _{thja}	Flip-chip thermal resistance junction to ambient	90	°C/W

2 Typical application schematics

Figure 1. Typical application schematics for the TS4601B

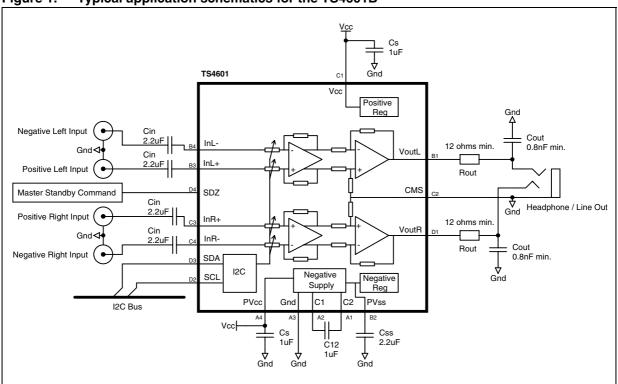


Table 3. Pin description for the TS4601B

Pin number	Pin name	Pin definition
C1	VCC	Analog supply voltage, connect to V _{battery}
A4	PVCC	Power supply voltage, connect to V _{battery} .
A2	C1	Capacitor terminal for internal negative supply generator.
A1	C2	Capacitor terminal for internal negative supply generator.
B2	PVSS	Capacitor terminal for internal negative supply generator filtering.
D1	VOUTR	Right audio channel output signal.
B1	VOUTL	Left audio channel output signal.
А3	GND	Ground of the device.
C2	CMS	Common-mode sense, to be connected as close as possible to the ground of headphone / line out plug.
B4	INL-	Left audio channel negative input signal.
В3	INL+	Left audio channel positive input signal.
D4	SDZ	Master standby of the circuit. When SDZ = 0, the device is also reset to initial state. Up to V_{CC} tolerant input.
C4	INR-	Right audio channel negative input signal.

Table 3. Pin description for the TS4601B (continued)

Pin number	Pin name	Pin definition				
C3	C3 INR+ Right audio channel positive input signal.					
D3	SDA	I ² C signal data. Up to V _{CC} tolerant input.				
D2	SCL	I ² C clock signal. Up to V _{CC} tolerant input.				

Table 4. Component description for the TS4601B

Component	Value	Description
Cs	1μF	Decoupling capacitors for V_{CC} and PV_{CC} . Two 1 μ F capacitors are enough for proper decoupling of TS4601B. X5R dielectric and 10V rating voltage is recommended to minimize $\Delta C/\Delta V$ when $V_{CC}=5V$. Must be placed as close as possible to the TS4601B to minimize parasitic inductance and resistance.
C12	1μF	Capacitor for internal negative power supply operation. X5R dielectric and 10V rating voltage is recommended to minimize $\Delta C/\Delta V$ when $V_{CC}\!\!=5V.$ Must be placed as close as possible to the TS4601B to minimize parasitic inductance and resistance.
C _{SS}	2.2µF	Filtering capacitor for internal negative power supply. X5R dielectric and 10V rating voltage is recommended to minimize $\Delta C/\Delta V$ when $V_{CC} = 5V$.
C _{in}	$Cin = \frac{1}{2\pi ZinFc}$	Input coupling capacitor that forms with Z_{in} , a first order high pass filter with a -3dB cut-off frequency F_C . Z_{in} is $12k\Omega$ typical and independent of the gain setting. For example F_C = 13Hz, C_{in} = 1 μ F and for F_C = 6Hz, C_{in} = 2.2 μ F
C _{out}	0.8nF to 100nF	Output capacitor of 0.8nF minimum to 100nF maximum. This capacitor is mandatory for operation of the TS4601B.
R _{out}	12 Ω min.	Output resistor in series with the TS4601B output. This 12 $\!\Omega$ minimum resistor is mandatory for operation of the TS4601B.

3 Electrical characteristics

3.1 Electrical characteristics tables

Table 5. Electrical characteristics of the I²C interface from V_{CC} =+2.9 V to V_{CC} =+5.5 V, GND = 0 V, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{IL}	Low level input voltage on SDZ pins			0.63	V
V _{IH}	High level input voltage on SDZ pins	1.1			V
V _{IL}	Low level input voltage on SDA, SCL pins			0.6	V
V _{IH}	High level input voltage on SDA, SCL pins	1.3			V
F _{SCL}	I ² C clock frequency			400	kHz
V _{OL}	Low level output voltage, SDA pin, I _{sink} = 3mA			0.4	V
I _{in}	Input current on SDA, SCL from 0.4V to 4.5V			10	μΑ

Table 6. Electrical characteristics of the amplifier from V_{CC} =+2.9 V to V_{CC} =+5.5 V, GND = 0 V, T_{amb} = 25° C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Icc	Quiescent supply current, no input signal, both channels enabled, R_L = 16Ω V_{CC} = $3.0V$ V_{CC} = $5.0V$		4.8 5.6	6 7	mA
I _{STBY}	Master standby current, No input signal $ V_{SDZ} = 0V $		0.5	2 10	μА
I _{STBY}	I ² C standby current, no input signal			75	μΑ
	Pull-down resistor on SDZ	480	600	720	kΩ
V _{in}	Input differential voltage range ⁽¹⁾			1.2	V_{rms}
V _{oo}	Output offset voltage No input signal, $R_L = 32\Omega$	-5		+5	mV
V _{out}	Maximum output voltage, in-phase signals $R_L=16\Omega,\ THD+N=1\%\ max,f=1kHz$ $R_L=10k\Omega,\ R_S=15\Omega,C_L=1nF,THD+N=1\%\ max,f=1kHz$	0.9 1.6			V _{rms}
Frequency range	$R_L = 16\Omega,~G = 0$ dB, $P_{out} = 20$ mW, +/- 0.5dB (related to1kHz) $C_{in} = 4.7 \mu F$	10		22000	Hz
THD + N	Total harmonic distortion + noise, G = 0dB $R_L = 16\Omega$, $P_0 = 5$ mW, $F = 1$ kHz $R_L = 16\Omega$, $P_0 = 10$ mW, 20 Hz $< F < 20$ kHz		0.2	0.02	%

6/28

Table 6. Electrical characteristics of the amplifier from V_{CC} =+2.9 V to V_{CC} =+5.5 V, GND = 0 V, T_{amb} = 25° C (unless otherwise specified)

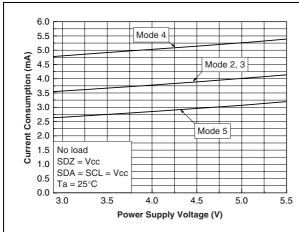
	v_{CC} =+2.9 v to v_{CC} =+5.5 v, GND = 0 v, v_{amb} = 25 v				
Symbol	Parameter	Min.	Тур.	Max.	Unit
PSRR	Power supply rejection ratio ⁽²⁾ $F = 217 Hz, \ R_L = 16 \Omega, \ G = 0 dB$ $V_{ripple} = 200 mV_{pp}, \ grounded \ inputs$ $F = 10 kHz, \ R_L = 16 \Omega, \ G = 0 dB$ $V_{ripple} = 200 \ mV_{pp}, \ grounded \ inputs$	100	107 70		dB
CMRR	Common mode rejection ratio $R_L = 16\Omega$, $F = 20$ Hz to 20 kHz, $G = 0$ dB, $V_{ic} = 200$ m V_{pp}		65		dB
Crosstalk	Channel separation $\begin{aligned} R_L &= 16\Omega, \ G = 0 \text{dB}, \ F = 1 \text{kHz}, \ P_o = 40 \text{mW} \\ R_L &= 10 \text{k}\Omega, \ G = 0 \text{dB}, \ F = 1 \text{kHz}, \ V_{\text{out}} = 1.6 V_{\text{rms}} \end{aligned}$	60 80	82 84		dB
SNR	Signal to noise ratio, A-weighted, R_{I} =16 Ω , V_{out} = 0.9 V_{rms} THD+N < 1%, F = 1kHz, G=+4 dB ⁽³⁾		101		dB
ONoise	Output noise voltage, A-weighted ⁽³⁾ G= +4dB G=-19.5dB		-103	-100	dBV
G	Gain range with Gain(dB) = 20xlog[(V _{out} L/R)/(InL/R+ - InL/R-)]	-60		+4	dB
Mute	InL/R+ - InL/R- = 1V _{rms}			-80	dB
-	Gain step size from -60dB to -36dB from -36dB to -16.5dB from -16.5dB to +4dB		3 1.5 0.5		dB
-	Step size error	-1		+1	stepsize
	Gain error (G = +4dB)	-0.45		+0.42	dB
Z _{in}	Left and right channel input impedance all gains setting Single-ended inputs referenced to GND Differential inputs	10 20	12 24	14.5 29	kΩ
Z _{out}	Output impedance in Mode 5 (negative supply is ON and amplifier output stages are OFF) ⁽³⁾ F < 40kHz F = 6MHz F = 36MHz	10 500 75			kΩ Ω Ω
t _{wu}	Wake-up time		12	22	ms
t _{STBY}	Standby time		10		μs

^{1.} Guaranteed by design and parameter correlation.

^{2.} Dynamic measurements - $20*log(rms(V_{out})/rms(V_{ripple}))$. V_{ripple} is an added sinus signal to V_{CC} @ F = 217 Hz.

^{3.} Guaranteed by design and parameter correlation.

3.2 Electrical characteristic curves


Current consumption vs. power supply voltage see Figure 2 Standby current consumption vs. power supply voltage see Figure 3 and Figure 4 Maximum output power vs. power supply voltage see Figure 5 Maximum output power vs. power supply voltage see Figure 6 Maximum output voltage vs. power supply voltage see Figure 7 PSRR vs. frequency see Figure 8 to Figure 12 PSRR vs. gain setting see Figure 13 see Figure 14 to Figure 25 THD+N vs. output power THD+N vs. output voltage see Figure 26 THD+N vs. frequency see Figure 27 THD+N vs. frequency see Figure 28 to Figure 39 see Figure 40 and Figure 41 CMRR vs. frequency Crosstalk vs. frequency see Figure 42 to Figure 45 Common mode response vs. frequency see Figure 46 THD+N vs. input voltage. Line in mode 5 see Figure 47 Input impedance vs. frequency. Line in mode 5 see Figure 48 see Figure 49 Gain vs. frequency

Note:

When the label "RC network" is present in a curve, it means that a $12 \Omega + 1 \text{ nF}$ low pass filter connected on outputs is used (refer to Figure 1: Typical application schematics for the TS4601B on page 4).

Figure 2. Current consumption vs. power supply voltage

Figure 3. Standby current consumption vs. power supply voltage

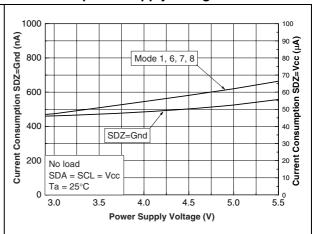
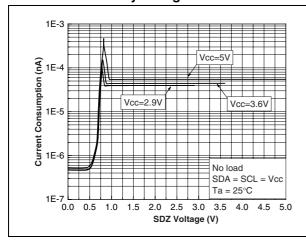



Figure 4. Standby current consumption vs. standby voltage

Figure 5. Maximum output power vs. power supply voltage

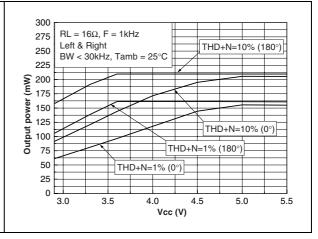
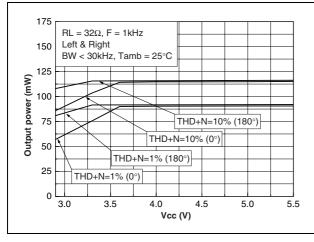



Figure 6. Maximum output power vs. power supply voltage

Figure 7. Maximum output voltage vs. power supply voltage

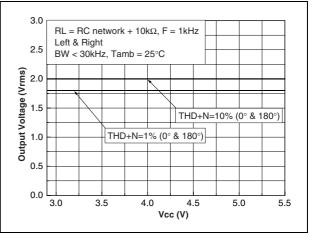
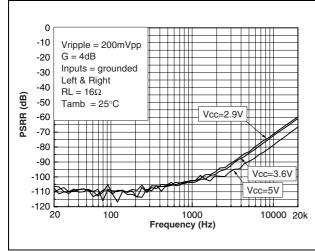



Figure 8. PSRR vs. frequency

Figure 9. PSRR vs. frequency

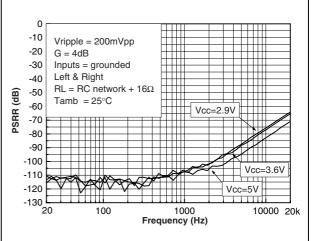
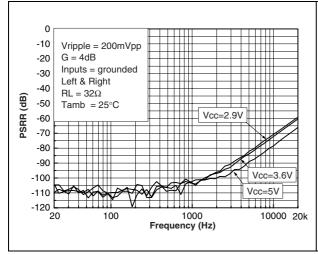



Figure 10. PSRR vs. frequency

Figure 11. PSRR vs. frequency

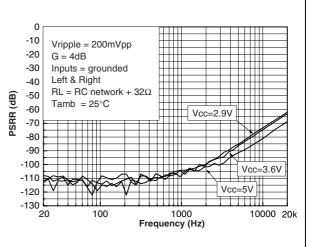
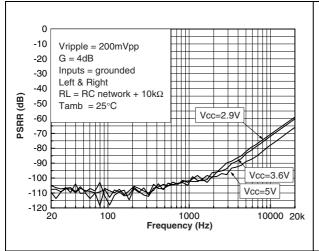



Figure 12. PSRR vs. frequency

Figure 13. PSRR vs. gain setting

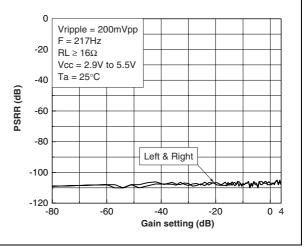
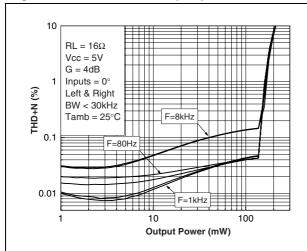



Figure 14. THD+N vs. output power

Figure 15. THD+N vs. output power

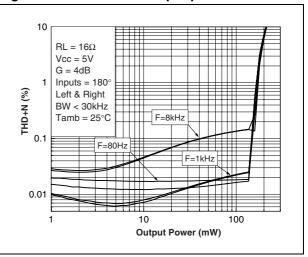
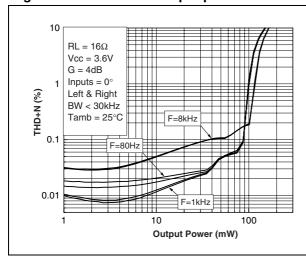



Figure 16. THD+N vs. output power

Figure 17. THD+N vs. output power

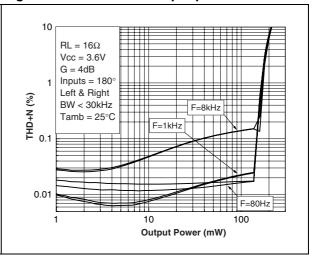
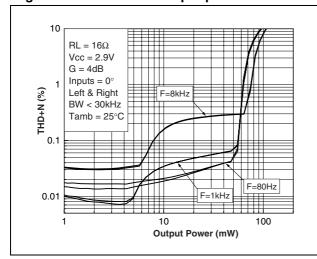



Figure 18. THD+N vs. output power

Figure 19. THD+N vs. output power

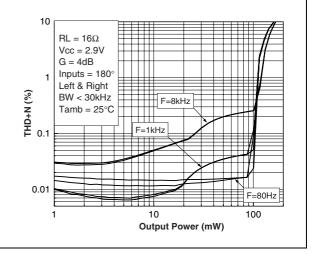
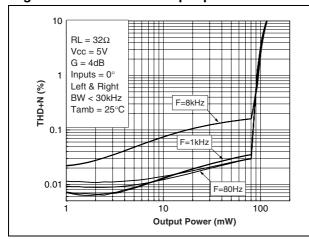



Figure 20. THD+N vs. output power

Figure 21. THD+N vs. output power

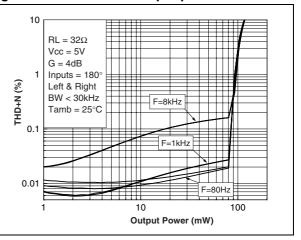
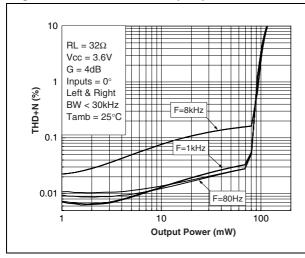



Figure 22. THD+N vs. output power

Figure 23. THD+N vs. output power

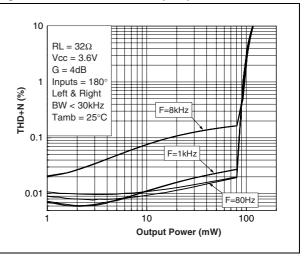
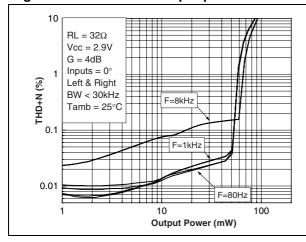



Figure 24. THD+N vs. output power

Figure 25. THD+N vs. output power

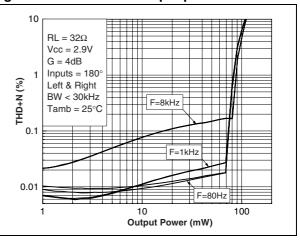
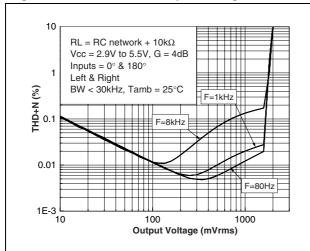



Figure 26. THD+N vs. output voltage

Figure 27. THD+N vs. frequency

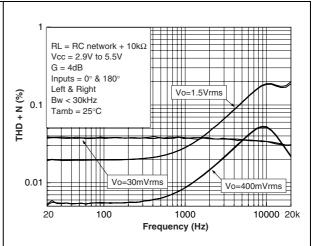
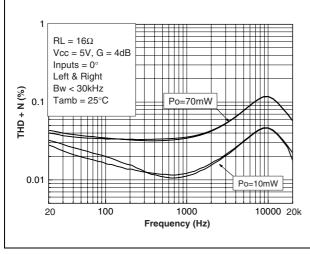



Figure 28. THD+N vs. frequency

Figure 29. THD+N vs. frequency

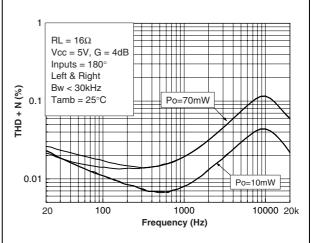
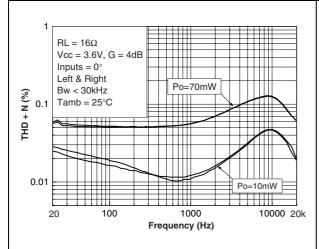



Figure 30. THD+N vs. frequency

Figure 31. THD+N vs. frequency

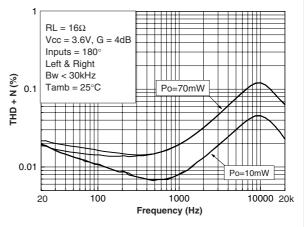
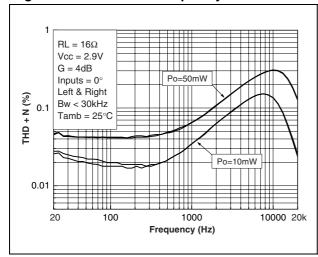



Figure 32. THD+N vs. frequency

Figure 33. THD+N vs. frequency

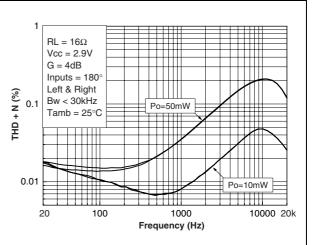
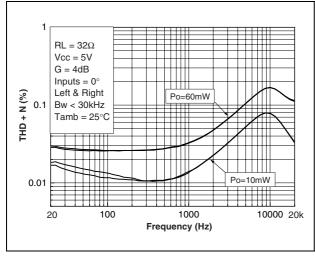



Figure 34. THD+N vs. frequency

Figure 35. THD+N vs. frequency

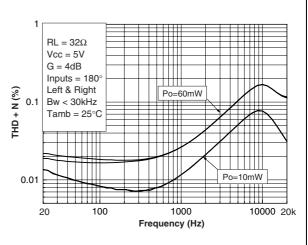
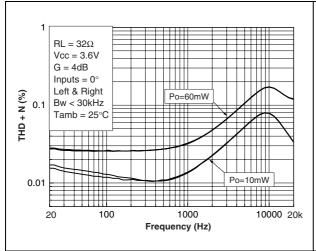



Figure 36. THD+N vs. frequency

Figure 37. THD+N vs. frequency

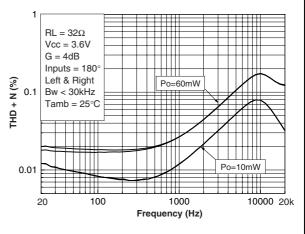


Figure 38. THD+N vs. frequency

1 RL = 32Ω Vcc = 2.9V G = 4dB Inputs = 0° Left & Right Bw < 30kHz Tamb = 25°C Po=10mW

1000

Frequency (Hz)

10000 20k

Figure 39. THD+N vs. frequency

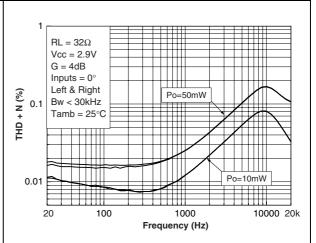


Figure 40. CMRR vs. frequency

100

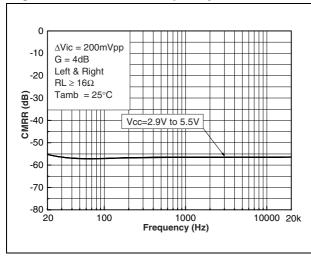


Figure 41. CMRR vs. frequency

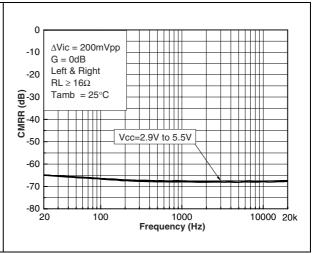


Figure 42. Crosstalk vs. frequency

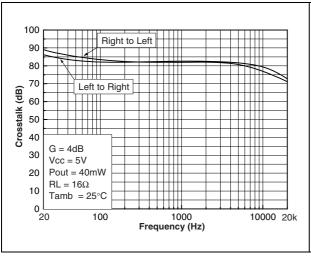


Figure 43. Crosstalk vs. frequency

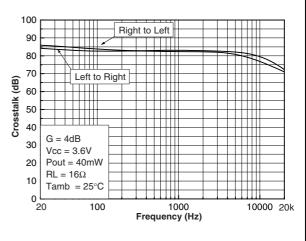
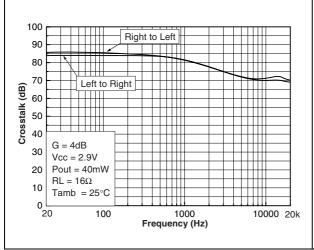
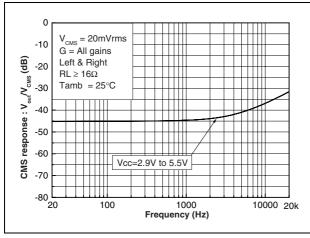



Figure 44. Crosstalk vs. frequency


Figure 45. Crosstalk vs. frequency

100 Right to Left 90 80 Left to Right (dB) 60 Crosstalk 50 40 G = 4dB30 Vcc = 2.9V to 5.5V Vout = 1.6Vrms 20 $RL = RC \text{ network} + 10k\Omega$ 10 Tamb = 25° C 0 ∟ 20 100 10000 20k 1000 Frequency (Hz)

Figure 46. Common mode response vs. frequency

Figure 47. THD+N vs. input voltage. Line in mode 5

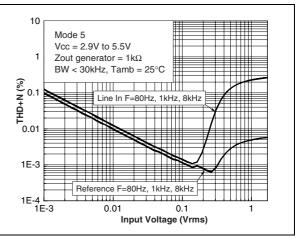
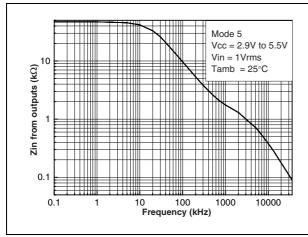
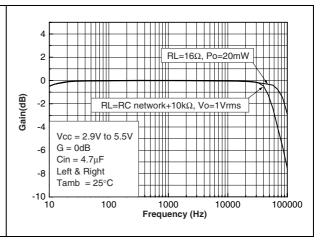




Figure 48. Input impedance vs. frequency. Line in mode 5

Figure 49. Gain vs. frequency

4 Application information

4.1 Common-mode sense

The TS4601B implements a common-mode sense to correct the voltage differences that might occur between the headphone jack return and the GND of the device, thus creating parasitic noise in the headphone and/or line-out.

The solution to strongly reduce and practically eliminate this noise, is to connect the headphone jack ground to the CMS of the device that is a common-mode sense pin. It will sense the difference of potential (voltage noise) between the TS4601B ground and headphone ground. Thanks to CMS frequency response (refer to *Figure 46 on page 16*), this noise is removed from the TS4601B outputs. *Figure 1: Typical application schematics for the TS4601B* illustrates this connection.

4.2 I²C bus interface

In compliance with the I²C protocol, the TS4601B uses a serial bus to control the chip's functions with two wires: Clock (SCL) and Data (SDA). The clock line and the data line are bi-directional (open-collector) with an external chip pull-up resistor (typically 10 k Ω). The maximum clock frequency in fast-mode specified by the I²C standard is 400 kHz, which TS4601B supports. In this application, the TS4601B is always the slave device and the controlling microcontroller MCU is the master device.

The slave address of the TS4601B is 1100 000x (C0h).

An SDZ pin is available to shut down the circuit from a master MCU.

Table 7 summarizes the pin descriptions for the I²C bus interface.

Table 7. I²C bus interface pin descriptions

Pin	Functional description
SDA	Serial data pin
SCL	Clock input pin
SDZ	Master standby of the TS4601B

4.2.1 I²C bus operation

The host MCU can write into the TS4601B control register to control the TS4601B, and read from the control register to get a configuration from the TS4601B. The TS4601B is addressed by the byte consisting of the 7-bit slave address and R/W bit.

Table 8. The first byte after the START message for addressing the device

A6	A 5	A4	А3	A2	A 1	A0	R/W
1	1	0	0	0	0	0	Х

There are five control registers (see *Table 9*) named CR0 to CR4. In read mode, all the control registers can be accessed. In write mode, only CR1 and CR2 can be addressed.

CR3

CR4 - identification

0

O

Description	D7	D6	D5	D4	D3	D2	D1	D0
CR0	SC_L	SC_R	T_SH	0	0	0	0	0
CR1 - modes Output modes		0	0	0	0	0		
CR2 - volume control	Mute_L	Mute_R			Volume	control		

0

0

Table 9. Control registers summary

To write in the control registers:

n

0

In order to write data into the TS4601B, after the "start" message, the MCU must:

- send byte with the I²C 7-bit slave address and with a low level for the R/\overline{W} bit
- send the data (control register setting)

All bytes are sent with MSB first. The transfer of written data ends with a "stop" message. When transmitting several data, the data can be written with no need to repeat the "start" message and addressing byte with the slave address.

O

0

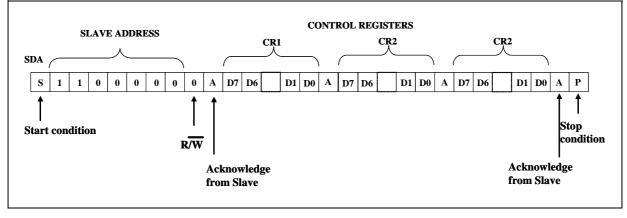
0

0

0

0

0

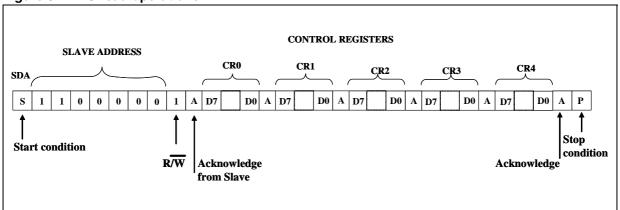

1

When writing several bytes, the data is transmitted as follows:

0

 CR1 CR2 CR2 CR2... this is an advantage for a fast increase/decrease of the volume control.

Figure 50. I²C write operations


To read from the control registers:

In order to read data from the TS4601B, after the "start" message, the MCU must:

- send byte with the I²C 7-bit slave address and with a high level for the R/\overline{W} bit
- receive the data (control register value)

All bytes are read with MSB first. The transfer of read data ends with the "stop" message. When transmitting several data, the data can be read with no need to repeat the "start" message and the byte with the slave address. In this case, the value of the control register is read repeatedly, CR0, CR1, CR2, CR3, CR4, CR0, CR1 etc.

Figure 51. I2C read operations

4.2.2 Control registers

Table 10. Output mode configuration - CR1

Modes register				Headphone output Left	Headphone output Right	Negative supply and regulators	
0	0	0	Mode 1: standby	SD ⁽¹⁾	SD	SD	
0	0	1	Mode 2: channel R	SD	GxINR	ON	
0	1	0	Mode 3: channel L	GxINL	SD	ON	
0	1	1	Mode 4: on	GxINL	GxINR	ON	
1	0	0	Mode 5: Line-in mode	SD	SD	ON	
1	0	1	Mode 6: standby	SD	SD	SD	
1	1	0	Mode 7: standby	SD	SD	SD	
1	1	1	Mode 8: standby	SD	SD	SD	

SD: shutdown,I NR: audio input right, INL: audio input left, G: gain for channel R and channel L, ON: when a function is active.

The TS4601B can be set to standby in two different ways:

- A master standby from an MCU using SDZ input, can set the TS4601B in master standby. The lowest current consumption (I_{stby} =2 μ A maximum) is achieved with a 0 V on SDZ. At 0.63 V, I_{stby} is 20 μ A maximum. Note that the SDZ input has a 600 k Ω +/-20% pull-down resistor. If VSDZ > 0 V, an additional current consumption has to be taken into consideration and provided by the MCU IO. This additional current is V_{SDZ} /600k Ω (+/-20%). During master standby mode, amplifiers, power management and I^2 C part are disabled thus offering the most current-saving standby mode.
- The TS4601B can also be set to I²C standby by an I²C command. In this case the I_{stby} is slightly higher and is I_{stby}=75 μA maximum (including current consumption on SDA and SCL inputs).

When the TS4601B is in Master standby or I²C standby mode (on one or both channels), the corresponding amplifier output is forced to ground through a 16 Ω resistor. In mode 5, in which amplifiers are inactive but the power management part is active, the amplifier outputs are in high impedance state to allow line in function.

Table 11. Volume control register - CR2

Table	Volume control register - CR2 Volume control range: -60 dB to +4 dB												
D5	D4	D3	D2	D1	D0	Gain (in dB)	D5	D4	D3	D2	D1	D0	Gain (in dB)
0	0	0	0	0	0	Mute: -80dB	1	0	0	0	0	0	-11.5dB
0	0	0	0	0	1	-60dB	1	0	0	0	0	1	-11dB
0	0	0	0	1	0	-57dB	1	0	0	0	1	0	-10.5dB
0	0	0	0	1	1	-54dB	1	0	0	0	1	1	-10dB
0	0	0	1	0	0	-51dB	1	0	0	1	0	0	-9.5dB
0	0	0	1	0	1	-48dB	1	0	0	1	0	1	-9dB
0	0	0	1	1	0	-45dB	1	0	0	1	1	0	-8.5dB
0	0	0	1	1	1	-42dB	1	0	0	1	1	1	-8dB
0	0	1	0	0	0	-39dB	1	0	1	0	0	0	-7.5dB
0	0	1	0	0	1	-36dB	1	0	1	0	0	1	-7dB
0	0	1	0	1	0	-34.5dB	1	0	1	0	1	0	-6.5dB
0	0	1	0	1	1	-33dB	1	0	1	0	1	1	-6dB
0	0	1	1	0	0	-31.5dB	1	0	1	1	0	0	-5.5dB
0	0	1	1	0	1	-30dB	1	0	1	1	0	1	-5dB
0	0	1	1	1	0	-28.5dB	1	0	1	1	1	0	-4.5dB
0	0	1	1	1	1	-27dB	1	0	1	1	1	1	-4dB
0	1	0	0	0	0	-25.5dB	1	1	0	0	0	0	-3.5dB
0	1	0	0	0	1	-24dB	1	1	0	0	0	1	-3dB
0	1	0	0	1	0	-22.5dB	1	1	0	0	1	0	-2.5dB
0	1	0	0	1	1	-21dB	1	1	0	0	1	1	-2dB
0	1	0	1	0	0	-19.5dB	1	1	0	1	0	0	-1.5dB
0	1	0	1	0	1	-18dB	1	1	0	1	0	1	-1dB
0	1	0	1	1	0	-16.5dB	1	1	0	1	1	0	-0.5dB
0	1	0	1	1	1	-16dB	1	1	0	1	1	1	0dB
0	1	1	0	0	0	-15.5dB	1	1	1	0	0	0	0.5dB
0	1	1	0	0	1	-15dB	1	1	1	0	0	1	1dB
0	1	1	0	1	0	-14.5dB	1	1	1	0	1	0	1.5dB
0	1	1	0	1	1	-14dB	1	1	1	0	1	1	2dB
0	1	1	1	0	0	-13.5dB	1	1	1	1	0	0	2.5dB
0	1	1	1	0	1	-13dB	1	1	1	1	0	1	3dB
0	1	1	1	1	0	-12.5dB	1	1	1	1	1	0	3.5dB
0	1	1	1	1	1	-12dB	1	1	1	1	1	1	4dB

20/28

In the volume register, MUTE_L, and MUTE_R are dedicated bits to enable the mute independently from the channel. When MUTE_L, MUTE_R are set to VIH, the mute function is enabled on the corresponding channel. When MUTE_L, MUTE_R are set to VIL, the gain level is applied to the channel.

Control register CR0

Amplifier output short-circuit detection:

The outputs of the amplifier are protected against short-circuits that might occur accidentally during manipulation of the device. In the typical application, if a short-circuit arises on the jack plug, there is no detection due to the serial resistor present on the amplifier output, thus the output current threshold is not reached.

To be active, the detection has to occur directly on the amplifier output with a signal modulation on the inputs of the TS4601B.

If a short-circuit is detected on one channel, a flag is raised in the I2C read register CR0.

- SC_L: equals 0 during normal operation, equals 1 when a short-circuit is detected on the left channel
- SC_R: equals 0 during normal operation, equals 1 when a short-circuit is detected on the right channel

The corresponding channel output stage is then set to high impedance mode. An I²C read command allows the reading of the SC_L and SC_R flags but does not reset them. An I²C write command has to be sent to reset the flags to 0 and restore normal operation.

When the TS4601B is in I²C standby mode, the SC_L and SC_R flags are in an undetermined state.

Thermal shutdown protection:

A thermal shutdown protection is implemented to protect the device from overheating. If the temperature rises above the thermal junction of 150°C, the device is put into standby mode and a flag is raised in the read register CR0.

 T_SH: equals 0 during normal operation, equals 1 when a thermal shutdown is detected.

When the temperature decreases to safe levels, the circuit switches back to normal operation and the corresponding flag is cleared.

5/

4.3 Wake-up and standby time definition

The wake-up time of the TS4601B is guaranteed at 12 ms typical (refer to *Section 3.1: Electrical characteristics tables on page 6*). However, as the TS4601B is activated with an I²C bus, the wake-up start procedure is as follows:

- 1. The master sends a start bit
- 2. The master sends the address.
- 3. The slave (TS4601B) answers by an acknowledge.
- 4. The master sends the output mode configuration (CR1).
- 5. If the TS4601B was in I²C standby (mode 1, 6, 7), the wake-up starts on the falling edge of the eighth clock signal (SCL) corresponding to CR1 byte.
- 6. 12 ms after (de-pop sequence time), the TS4601B outputs are operational.

The standby time is guaranteed as 10 µs typical (refer to *Section 3.1: Electrical characteristics tables on page 6*). However, as the TS4601B is de-activated with an I²C bus, the standby time operates as follows:

- 1. The master sends a start bit
- 2. The master sends the address.
- The slave (TS4601B) answers by an acknowledge.
- 4. The master sends the output mode configuration (CR1) and in this case it corresponds to mode 1, 6, 7.
- 5. The standby time starts on the falling edge of the eighth clock signal (SCL) corresponding to CR1 byte.
- 6. After 10 μs, the TS4601B is in standby mode.

4.4 Decoupling considerations

The TS4601B needs two decoupling capacitors for the positive power supply (battery) and two capacitors for normal operation of the internal negative supply (refer to *Figure 1: Typical application schematics for the TS4601B on page 4*). These capacitors must be placed as close as possible of the TS4601B to minimize parasitic inductance and resistance that have a negative impact on audio performance.

Two decoupling capacitors (Cs) of 1 μ F and low ESR are recommended for positive power supply decoupling. Packages like the 0402 or 0603 are also recommended because the placement close to TS4601B is easier. X5R dielectric for capacitor tolerance behavior and 10 V DC rating voltage for 5 V operation or 6.3 V DC rating operation for 3.6 V operation to take into consideration the Δ C/ Δ V variation of this type of dielectric.

Two decoupling capacitors (C12 and Css) of respectively 1 μ F and 2.2 μ F and low ESR are recommended for internal negative power supply decoupling. Packages like the 0402 or 0603 are also recommended because the placement close to TS4601B is easier. X5R dielectric for capacitor tolerance behavior and 10 V DC rating voltage for 5 V operation or 6.3 V DC rating operation for 3.6 V operation to take into consideration the Δ C/ Δ V variation of this type of dielectric.

4.5 Low frequency response

Input coupling capacitors C_{in} (see *Figure 1: Typical application schematics for the TS4601B on page 4*) are mandatory for TS4601B operation. C_{in} with Z_{in} (see *Section 3.1: Electrical characteristics tables on page 6*) form a first order high pass filter and the -3 dB cut-off frequency is:

$$F_{c}(-3dB) = \frac{1}{2\pi Z_{in}C_{in}}$$

Z_{in} is the single-ended input impedance.

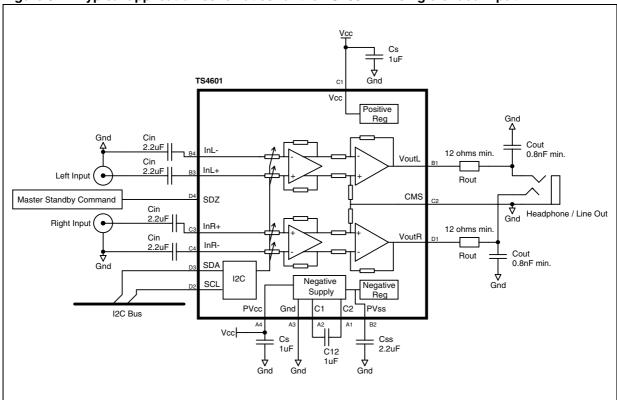
Because Z_{in} is independent from the gain setting, determining the appropriate C_{in} is very simple. However, the tolerance of Z_{in} (refer to *Section 3.1: Electrical characteristics tables on page 6*) must be taken into consideration for determining C_{in} .

Therefore, for a given F_c , the value of C_{in} is given by the following equation:

$$\left(C_{i\dot{n}_{min}} = \frac{16}{F_c}\right) \leq \left(C_{in_{typ}} = \frac{13.3}{F_c}\right) \leq \left(C_{in_{max}} = \frac{11}{F_c}\right)$$

(With C_{in} in μF and F_c in Hz).

4.6 Low pass output filter


The TS4601B is designed to operate with a passive first order low pass filter (see *Figure 1: Typical application schematics for the TS4601B on page 4*). This low pass filter is mandatory to ensure stability of the TS4601B.

 R_{out} must have a value of 12 Ω minimum and C_{out} a value of 0.8 nF minimum up to 100 nF maximum. Values of 12 Ω and 1 nF are a good start point for a design able to drive a classic headphone (16 Ω 32 Ω 60 Ω) and the line-in of any Hi-fi system or sound card. The cut-off frequency of this filter (12 Ω and 1 nF) is about 13 MHz and clearly above the audio band.

4.7 Single-ended input configuration

The TS4601B can be used in single-ended input configuration. InR- and InL- must be shorted to ground through input capacitors. All $C_{\rm in}$ capacitors must have the same value to keep the same PSRR performance as in differential input configuration. *Figure 52* shows an example.

Figure 52. Typical application schematics for the TS4601B in single-ended input

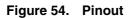
The gain in this configuration is given by:

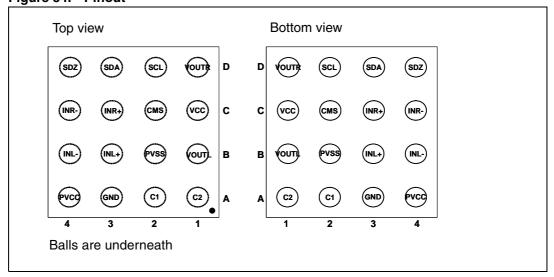
$$Gain(dB) = 20log\left(\frac{V_{outL}}{V_{inputLeft}}\right)$$

or:

$$Gain(dB) = 20log\left(\frac{V_{outR}}{V_{inputRight}}\right)$$

TS4601B Package information


5 Package information


In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: www.st.com.

Non Solder mask opening

Pad in Cu 18µm with Flash NiAu (2-6µm, 0.2µm max.)

Figure 53. TS4601B footprint recommendation

25/28

Package information TS4601B

Figure 55. Marking (top view)

■ Logo: ST

■ Symbol for lead-free: E

■ Part number: B1

■ X digit: Assembly code

Date code: YWW

■ The dot marks pin A1

Figure 56. Flip-chip - 16 bumps

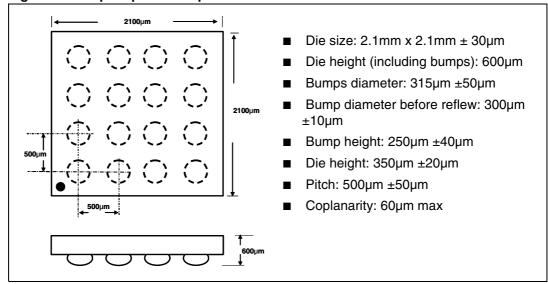
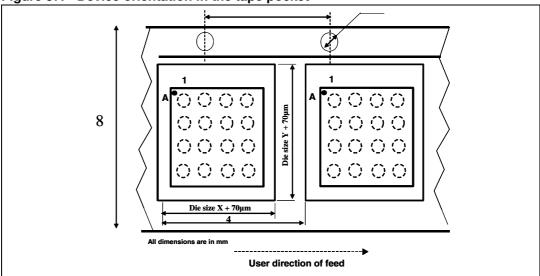



Figure 57. Device orientation in the tape pocket

TS4601B Ordering information

6 Ordering information

Table 12. Order codes

Order code	Temperature range	Package	Packing	Marking
TS4601BEIJT	-40° C to +85° C	Flip-chip	Tape & reel	B1

7 Revision history

Table 13. Document revision history

Date	Revision	Changes
03-Jun-2008	1	Initial release of TS4601B. Identical to TS4601 except for improved ESD ratings.
08-Jul-2008 2 Cor		Corrected typographical error on page 1.

27/28

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com