

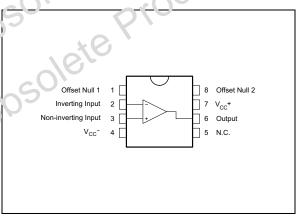
TSH10

140MHz BANDWIDTH LOW NOISE SINGLE OPERATIONAL AMPLIFIER

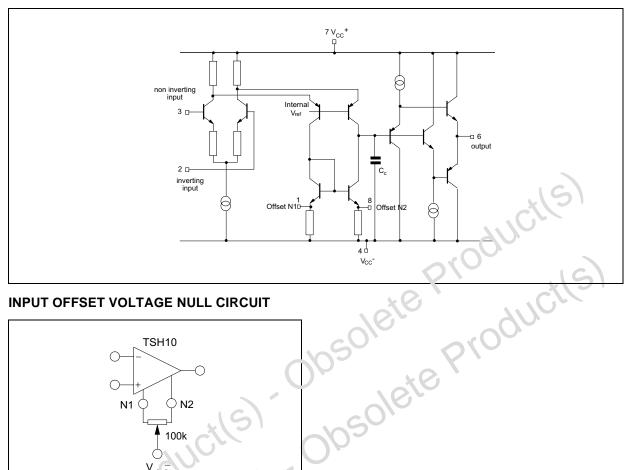
■ LOW NOISE : 6nV/√Hz GAIN BANDWIDTH PRODUCT : 140MHz UNITY GAIN STABLE SLEW RATE : 150V/µs

■ STANDARD PIN OUT

DESCRIPTION


The TSH10 is a low cost wide bandwidth single operational amplifier featuring low input noise of $6nV/\sqrt{Hz}$. Other features as unity gain stability, fast settling time and high linearity make it suitable for any application requiring speed and precision as high resolution video or DAC buffer.

ORDER CODE


	Part Number	Tomporaturo Bango	Package
		Temperature Range	D
TSI	H10I	-40°C, +125°C	• 0
D = 5	Small Outline Packa	ge (SO) - also available in Tap	e & ceel (DT)
005	olete	Product	5)

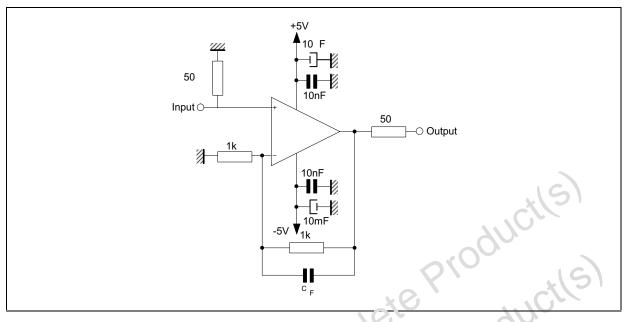
PIN CONMECTIONS (top view)

SCHEMATIC DIAGRAM

MAXIMUM PATINGS

Symbo'	Parameter	Value	Unit
'/cc	Supply Voltage	±7	V
V _{id}	Differential Input Voltage	±5	V
Vi	Input Voltage	±5	V
l _{in}	Current On Inputs Current On Offset Null Pins	±50 ±20	V
T _{oper}	Operating Free-Air Temperature range	-40 to +125	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C

OPERATING CONDITIONS


Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	±3 to ±6	V
V _{ic}	Common Mode Input Voltage Range	$V_{\rm CC}^{-}$ +2 to $V_{\rm CC}^{+}$ -1	V

ELECTRICAL CHARACTERISTICS

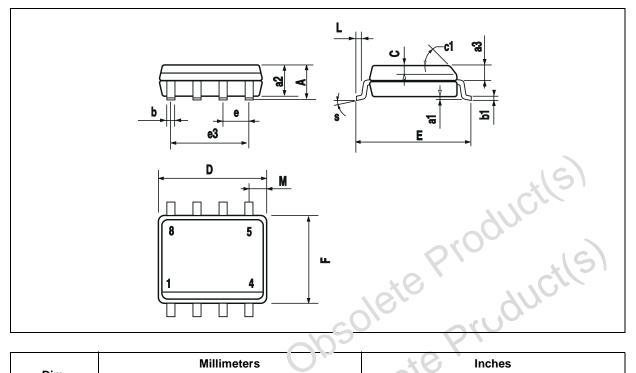
Symbol	Parameter		Min.	Тур.	Max.	Unit
V _{io}	Input Offset Voltage			1	10	mV
DV_{io}	Input Offset Voltage Drift $T_{min} \le T_{amb} \le T_{max}$			20		μV/°C
l _{ib}	Input Bias Current			5	30	μΑ
l _{io}	Input Offset Current			0.1	10	μΑ
I _{CC}	Supply Current, no load	$V_{CC} = \pm 5V$		20	40	mA
Avd	Large Signal Voltage Gain Vo = ±2.5V	$R_L = 100\Omega$	200	800		V/V
V_{icm}	Input Common Mode Voltage Ran	ige	-3 to +4	-3.5 to +4.5	10	V
CMR	Common-mode Rejection Ratio V _{ic} = V _{icm min.}		55	100	J.	V
SVR	Supply Voltage Rejection Ratio $V_{CC} = \pm 5V$ to $\pm 3V$		45	70	<u> </u>	dB
Vo	Output Voltage	$R_L = 100\Omega$	±2.5	·3.5 -3.7		CV
Ι _ο	Output Short Circuit Current Vid = $\pm 1V$, Vo = 0V		10	±70		mA
GBP	Gain Bandwidth Product $A_{VCL} = 100, R_L = 100\Omega, f = 7$	7.5MHz	010	140	20.	MHz
SR	Slew Rate $V_{in} = \pm 2V, A_{VCL} = 1, R_L = 100$	ΩΩ		150		V/µs
en	Equivalent Input Voltage Noise	f = 1lvirlz		6		nV/ √H
φm	Phase Margin $A_{VM} = 1, R_L = 100\Omega, C_L = 15$	40	c010	40		Degrees
	Equivalent Input Voltage Noise Phase Margin $A_{VM} = 1, R_L = 100\Omega, C_L = 13$	si				

 $V_{CC} = \pm 5V$, $T_{amb} = 25^{\circ}C$ (unless otherwise specified)

EVALUATION CIRCUIT

PRINTED CIRCUIT LAYOUT

As for any high frequency device, a few rules must be observed when designing the PCB to get the best performances from this high speed op amp


From the most to the least important points :

- Each power supply lead has to be bypassed to ground with a 10 μ⁻ ceramic capacitor very close to the (levice and a 10μF tantalum capacitor.
- To provide low incucance and low resistance common return, use a ground plane or common point return for power and signal.
- □ All (3): d5 must be wide and as short as pos-(ible especially for op amp inputs. This is in order to decrease parasitic capacitance and inductance.

- Use small resistor values to decrease time constant with parasitic capacitance. Be aware on TSH10 device of the lio error and input noise currents with high feedback resistor values.
- Choose component sizes as small as possible (SMD).
- On output, decrease capacitor load so as to avoid circuit stability being degraded which may cause oscillation. You can also add a serial resistor in order to minimise its influence.
- □ One can add in parallel with feedback resistor a few pF ceramic capacitor C_F adjusted to optimize the settling time.

PACKAGE MECHANICAL DATA

8 PINS - PLASTIC MICROPACKAGE (SO)

Dim.	Millimeters			Inches		
	Min.	Тур.	Max.	Min.	Тур.	Max.
А		101	1.75	S.		0.069
a1	0.1		0.25	0.004		0.010
a2	21		1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35	S	0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
С	0.25		0.5	0.010		0.020
C	~		45° (typ.)		
0	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
е	2	1.27			0.050	
e3 🔶		3.81			0.150	
F	3.8		4.0	0.150		0.157
SY	0.4		1.27	0.016		0.050
М			0.6			0.024
S			8° (n	nax.)		

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco

Singapore - Spain - Sweden - Switzerland - United Kingdom

© http://www.st.com

