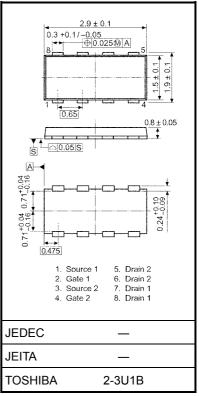
TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (U-MOS III)

TPCF8201

Notebook PC Applications Portable Equipment Applications

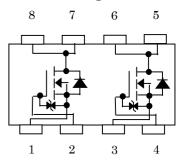
- Low drain-source ON resistance: $RDS(ON) = 38 \text{ m}\Omega \text{ (typ.)}$
- High forward transfer admittance: $|Y_{fs}| = 5.4 \text{ S (typ.)}$
- Low leakage current: $IDSS = 10 \mu A (max) (VDS = 20 V)$
- Enhancement-model: $V_{th} = 0.5 \text{ to } 1.2 \text{ V}$

 $(V_{DS} = 10 \text{ V}, I_{D} = 200 \text{ }\mu\text{A})$

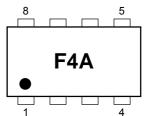

Maximum Ratings (Ta = 25°C)

Cha	Symbol	Rating	Unit		
Drain-source volta	rain-source voltage		20	V	
Drain-gate voltage	$(R_{GS} = 20 \text{ k}\Omega)$	V_{DGR}	20	V	
Gate-source voltage	Gate-source voltage		±12	V	
Drain current	DC (Note 1)	ΙD	3	Α	
Brain carrent	Pulse (Note 1)	I_{DP}	20 20 ±12 3 12 1.35 1.12 0.53 0.33 1.46 1.5 0.11	A	
Drain power	Single-device operation (Note 3a)	P _{D (1)}	1.35	W	
dissipation (t = 5 s) (Note 2a)	Single-device value at dual operation (Note 3b)	P _{D (2)}	1.12		
Drain power dissipation	Single-device operation (Note 3a)	P _{D (1)}	0.53		
(t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	P _{D (2)}	0.33		
Single pulse avala	nche energy (Note 4)	E _{AS}	1.46	mJ	
Avalanche current	anche current I _{AR}			Α	
Repetitive avalanc Single-device value	E _{AR}	0.11	mJ		
Channel temperatu	ıre	T _{ch}	150	°C	
Storage temperatu	re range	T _{stg}	-55~150	°C	

Note: For (Note 1), (Note 2), (Note 3), (Note 4), (Note 5) and (Note 6), please refer to the next page.

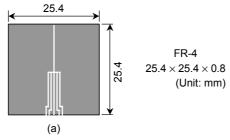

This transistor is an electrostatic sensitive device. Please handle with caution.

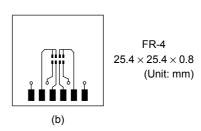
Unit: mm



Weight: 0.011 g (typ.)

Circuit Configuration


Marking (Note 6)



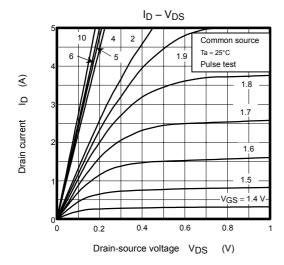
Thermal Characteristics

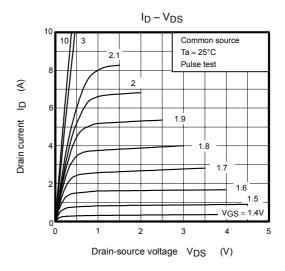
Characteristics		Symbol	Max	Unit	
Thermal resistance, channel to ambient (t = 5 s) (Note 2a)	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	92.6	°C/W	
	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	111.6		
Thermal resistance,	Single-device operation (Note 3a)	R _{th (ch-a) (1)}	235.8	3 °C/W	
channel to ambient (t = 5 s) (Note 2b)	Single-device value at dual operation (Note 3b)	R _{th (ch-a) (2)}	378.8	C/VV	

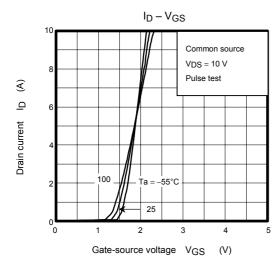
- Note 1: Please use devices on condition that the channel temperature is below 150°C.
- Note 2: (a) Device mounted on a glass-epoxy board (a)
- (b) Device mounted on a glass-epoxy board (b)

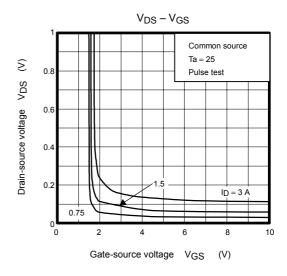
- Note 3: a) The power dissipation and thermal resistance values are shown for a single device (During single-device operation, power is only applied to one device.).
 - b) The power dissipation and thermal resistance values are shown for a single device (During dual operation, power is evenly applied to both devices.).
- Note 4: $V_{DD} = 16 \text{ V}$, $T_{ch} = 25^{\circ}\text{C}$ (initial), L = 0.5 mH, $R_G = 25 \Omega$, $I_{AR} = 1.5 \text{ A}$
- Note 5: Repetitive rating; Pulse width limited by Max. Channel temperature.
- Note 6: Black round marking " "locates on the left lower side of parts number marking "F4A" indicates terminal No. 1.

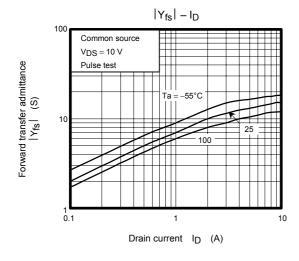
TPCF8201

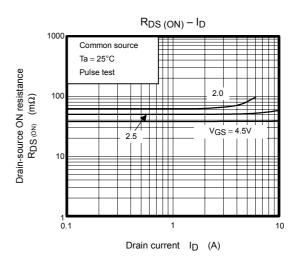

Electrical Characteristics (Ta = 25°C)

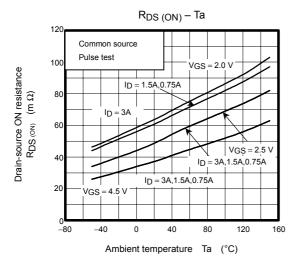

Cha	aracteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
Gate leakage cur	rent	I _{GSS}	$V_{GS} = \pm 10 \text{ V}, V_{DS} = 0 \text{ V}$	_	_	±10	μΑ
Drain cut-off curr	ent	I _{DSS}	V _{DS} = 20 V, V _{GS} = 0 V	_	_	10	μΑ
Drain source breekdown veltere		V (BR) DSS		20	_	_	V
Dialii-source bre	rain-source breakdown voltage		$I_D = 10 \text{ mA}, V_{GS} = -12 \text{ V}$	8	_	_	·
Gate threshold vo	oltage	V _{th}	$V_{DS} = 10 \text{ V}, I_D = 200 \mu\text{A}$	0.5	_	1.2	V
		R _{DS} (ON)	$V_{GS} = 2.0 \text{ V}, I_D = 1.5 \text{ A}$	_	62	100	
Drain-source ON	resistance	R _{DS} (ON)	$V_{GS} = 2.5 \text{ V}, I_D = 1.5 \text{ A}$	_	50	66	mΩ
		R _{DS} (ON)	$V_{GS} = 4.5 \text{ V}, I_D = 1.5 \text{ A}$	_	38	49	
Forward transfer	admittance	Y _{fs}	V _{DS} = 10 V, I _D = 1.5 A	2.7 5.4 -		_	S
Input capacitance		C _{iss}		_	590	_	
Reverse transfer	capacitance	C _{rss}	$V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	_	70	_	pF
Output capacitance		C _{oss}		_	85	_	
Reverse transfer ca Output capacitance Switching time	Rise time	t _r	V _{GS} ⁵ V	_	3.0	_	
	Turn-on time	t _{on}		_	7.5	_	ns
	Fall time	t _f		_	4.4	_	115
	Turn-off time	t _{off}	Duty ≦ 1%, t _w = 10 μs	_	26	_	
Total gate charge (gate-source plus	tal gate charge ate-source plus gate-drain)		$V_{DD} \approx 16 \text{ V}, V_{GS} = 5 \text{ V},$ $I_D = 3.0 \text{ A}$	_	7.5	_	
Gate-source charge1		Q _{gs1}			1.3		nC
Gate-drain ("miller") charge		Q _{gd}		_	2.1		

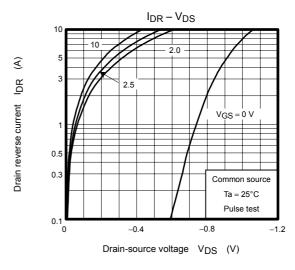

Source-Drain Ratings and Characteristics (Ta = 25°C)

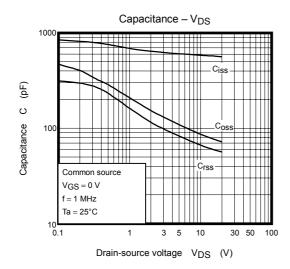

Characterist	ics	Symbol	Test Condition	Min	Тур.	Max	Unit
Drain reverse current	Pulse (Note 1)	I _{DRP}	_	_	_	12	Α
Forward voltage (diode)		V _{DSF}	$I_{DR} = 3.0 \text{ A}, V_{GS} = 0 \text{ V}$	_	_	-1.2	V

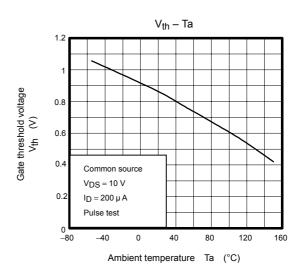

3 2003-11-10

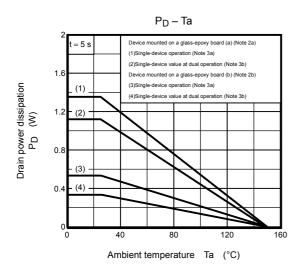


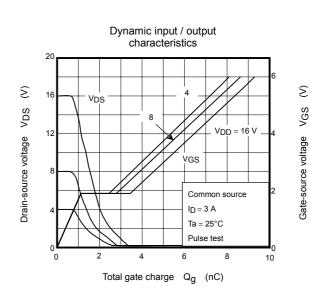


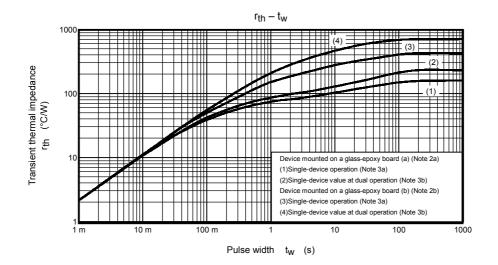


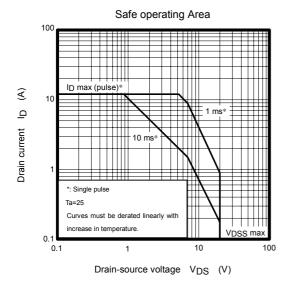












RESTRICTIONS ON PRODUCT USE

000707EAA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.