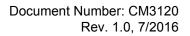
NXP Semiconductors


Advance Information

IO-link master transceiver

The CM3120 is an IO-Link master physical layer dedicated to the industrial market. It includes two fully-featured IO-Link channels, which can work in three different operation modes. This circuit integrates an IO-Link frame handler fully compliant with the IO-Link v1.1 specification, and which implements most of the IO-Link communication tasks. The frame handler significantly decreases load of the master microcontroller. The CM3120 also provides several protection and monitoring mechanisms such as overcurrent, overvoltage, and overtemperature.

Features

- Two IO-Link channels with three different operation modes (SIO, UART, and frame handler)
- Protection mechanisms (overcurrent, overtemperature, overvoltage)
- · Configurable through a SPI interface
- Operating voltage range from 8.0 V to 32 V
- Suitable for 2/4/8/16 port-applications
- · Can operate as a Master or Device
- Two integrated LED drivers
- Integrated hardware frame handler (supports all IO-link v1.1 frames and COM1, COM2, and COM3 baud rates)
- · Integrated NMOS gate drivers to control current to the C/Q and L+ lines

IO-LINK TRANSCEIVER

Applications

- Factory automation
- Fieldbus gateways
- Programmable logic controllers
- Process controllers

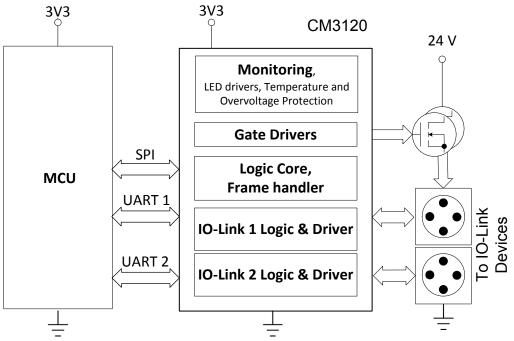
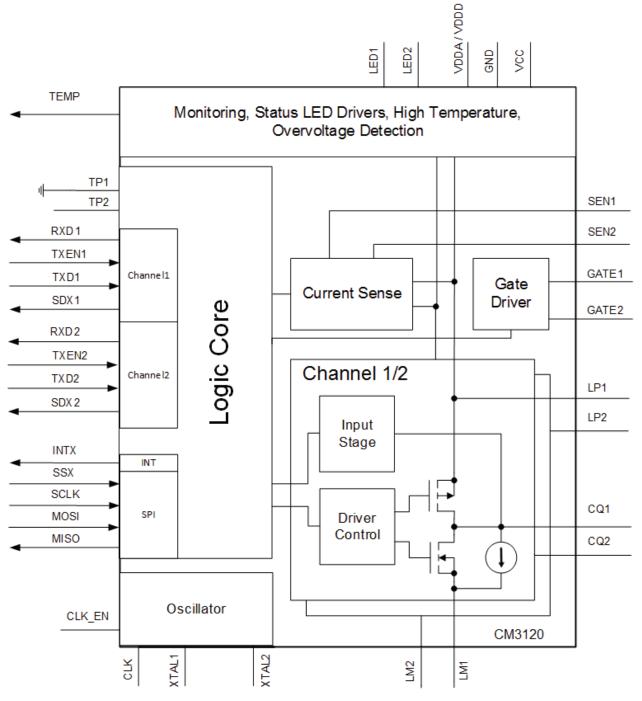


Figure 1. CM3120 simplified application diagram

* This document contains certain information on a new product. Specifications and information herein are subject to change without notice.

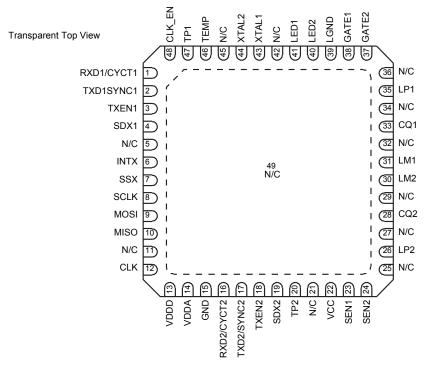
1 Orderable parts


Table 1. Orderable part variations

Part number ⁽¹⁾	Temperature (T _A)	V _{DD} voltage	Package
MC34CM3120EP	-40 °C to 85 °C	5.0 V	QFN48 with exposed pad (7.0 mm x 7.0 mm)

Notes

1. To order parts in Tape and Reel, add the R2 suffix to the part number.


2 Internal block diagram

3 Pin connections

3.1 Pinout diagram

Figure 3. CM3120 pin connections

Functional descriptions of many of these pins can be found in the Functional Pin Description section beginning on page 9.

3.2 Pin definitions

Table 2. CM3120 pin definitions

Pin	Pin name	Pin function	Definition			
1	RXD1/ CYCT1	OUT	RXD1: CQ1 input; inverted			
2	TXD1/ SYNC1	IN	TXD1: CQ1 output; internal pull-down; inverted			
3	TXEN1	IN	21 driver enable; active high, internal pull-down			
4	SDX1	OUT	Device 1 short detected; active low			
5, 11, 21, 25, 27, 29, 32, 34, 36, 42, 45	NC	NC	Not Connected			
6	INTX	OUT	SPI interrupt signal; active low			
7	SSX	IN	SPI slave select; active low; internal pull-up			
8	SCLK	IN	SPI clock; internal pull-down			
9	MOSI	IN	SPI data in; internal pull-down			
10	MISO	OUT	SPI data out; tri-state if SSX is high			

Table 2. CM3120 pin definitions (continued)

Pin	Pin name	Pin function	Definition	
12	CLK	OUT	Buffered clock feed through	
13	VDDD	PWR	3.3 V digital voltage supply	
14	VDDA	PWR	.3 V analog voltage supply	
15	GND	PWR	Ground	
16	RXD2/ CYCT2	OUT	RXD2: CQ2 input; inverted	
17	TXD2/ SYNC2	IN	RXD2: CQ2 output; internal pull-down; inverted	
18	TXEN2	IN	CQ2 driver enable; active high, internal pull-down	
19	SDX2	OUT	Device 2 short detected; active low	
20	TP2	OUT	Test Point 2; leave open	
22	VCC	PWR	24 V main voltage supply	
23	SEN1	IN	Sense input channel 1	
24	SEN2	IN	Sense input channel 2	
26	LP2	PWR	Sensor supply channel 1	
28	CQ2	IN/OUT	IO-Link channel 2	
30	LM2	PWR	Sensor ground 2	
31	LM1	PWR	Sensor ground channel 1	
33	CQ1	IN/OUT	IO-Link channel 1	
35	LP1	PWR	Sensor supply channel 1	
37	GATE2	OUT	NMOS gate driver channel 2	
38	GATE1	OUT	NMOS gate driver channel 1	
39	LGND	PWR	LED ground	
40	LED2	IN	LED driver channel 2	
41	LED1	IN	LED driver channel 1	
43	XTAL1	IN	Crystal input; external clock source input	
44	XTAL2	OUT	Crystal feedback	
46	TEMP	OUT	High temperature indication	
47	TP1	IN	Test Point 1; internal pull-down; leave open or tie to ground	
48	CLK_EN	IN	Enable buffered clock feed through; internal pull-down	

4 Electrical characteristics

4.1 Maximum ratings

Stress(es) beyond those listed under Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the following operational sections of the specifications is not implied. Exposure to maximum rating condition(s) for extended periods may affect device reliability.

Table 3. Maximum ratings

T_A = 25 °C ±1.0 °C, unless otherwise specified. All voltages are with respect to ground unless otherwise noted.

Symbol	Rating		Max.	Unit	Notes
Electrical ratings					
V _{CC}	Supply Voltage - Static	-0.7	36	V	
P _{TOT_QFN48}	Power Dissination, OEN48 Package on Multilayer PCB, Pad soldered		2.0	W	

Thermal ratings					
	FIT Rate	_	50	FIT	
V _{ESD}	ESD Voltage • Human Body Model (HBM)	_	2000	V	(2)
LACT_QFN48	T _{AMB} = 60 °C		2.0	vv	

Thermal ratings

T _A	Operating Temperature	-40	85	°C	
TJ	Maximum Temperature Junction	—	150	°C	
T _{JC_QFN48}	Thermal Resistance Case, Junction to Case	—	0.5	°C/W	
T _{JA_QFN48}	Thermal Resistance Ambient, Junction to Ambient		29	°C/W	
T _{STG}	Storage Ambient Temperature		155	°C	
T _{SOLDER}	Lead Soldering Temperature (within 10 s)		260	°C	

Notes

2. Human Body Model (HBM) per EIA/JESD22-A114-B for all pins

4.2 Electrical characteristics

Table 4. CM3120 electrical characteristics

Characteristics noted under conditions: Typical values are at T_A = 25 °C ±1.0 °C, unless otherwise noted.

Symbol	Characteristic		Тур	Max	Unit	Notes
General paramet	ers					
V _{CC}	Main Supply Voltage		24	32	V	
Ivcc	Quiescent Current Main Supply		_	5.0	mA	
V _{DD}	Pad Supply Voltage		3.3	3.5	V	
I _{VDD}	Quiescent Current Pad Supply			5.0	mA	
IO-link channels						
V _{CQ}	Permissible Voltage Range	-0.3	—	V _{CC} + 0.3	V	
I _{CQ_LOAD}	Load or Discharge Current. can be disabled; see CFG1/2 (0x2F/0x4F) on page 25		10	15	mA	
I _{CQH}	DC Driver Current 'H'	_	_	300	mA	
I _{CQL}	DC Driver Current 'L'		_	300	mA	

Table 4. CM3120 electrical characteristics (continued)

Characteristics noted under conditions: Typical values are at T_A = 25 °C \pm 1.0 °C, unless otherwise noted.

Symbol	Characteristic		Тур	Max	Unit	Notes
IO-link channels	(continued)					
V _{RESH}	Residual Voltage 'H', Voltage drop at I _{CQH_MAX}	—	—	3.0	V	
V _{RESL}	Residual Voltage 'L', Voltage drop at I _{CQL_MAX}	—	—	3.0	V	
I _{PEAKH}	Output Peak Current 'H', Duration t _{PEAK} = 1.0 ms	0.5	1.0		А	
I _{PEAKL}	Output Peak Current 'L', Duration t _{PEAK} = 1.0 ms	0.5	1.0		А	
C _{LOAD}	Capacitive Load	—	1.0		nF	
t _{RISE}	Output Driver Rise Time, CNOM=1.0 nF	—	—	300	ns	
t _{FALL}	Output Driver Fall Time, CNOM=1.0 nF	—	—	300	ns	
t _{BBM}	Break Before Make Delay	—	—	50	ns	
t _{DETH}	Input Detection Time 'H'	—	_	300	ns	
t _{DETH}	Input Detection Time 'L'	_	_	300	ns	
V _{THH_IOL}	Input Threshold 'H', IO-Link mode; see CFG1/2 (0x2F/0x4F) on page 25	10.5	_	13	V	
V _{THL_IOL}	Input Threshold 'L", IO-Link mode; see CFG1/2 (0x2F/0x4F) on page 25	8.0	—	11.5	V	
V _{HYS_IOL}	Hysteresis Input Threshold, IO-Link mode; see CFG1/2 (0x2F/0x4F) on page 25		2.0	_	V	
V _{THH_RAT}	Input Threshold 'H', Ratiometric mode; see CFG1/2 (0x2F/0x4F) on page 25		_	_	V	
V _{THL_RAT}	Input Threshold 'L', Ratiometric mode; see CFG1/2 (0x2F/0x4F) on page 25		_	0.4 V _{CC}	V	
V _{HYS_RAT}	Hys_RAT Hysteresis Input Threshold, Ratiometric mode; see CFG1/2 (0x2F/ 0x4F) on page 25		0.0125 V _{CC}	_	V	
NMOS gate drive	rs					
t _{GATE_ON}	On Switching Time, CGATE = 1.0 nF	—	1.0		ms	
t _{GATE_OFF}	Off Switching Time, CGATE = 1.0 nF	—	10		μs	
V _{GATE}	Output Voltage, VCC \geq 15 V	V _{CC} +4.0	—	V _{CC} +8.0	V	
C _{GATE}	External Capacitance	—	1.0	_	nF	
I _{TGSL}	Transistor Leakage Current, Gate to Source (external NMOS)	—	—	1.0	μA	
Oscillator						
fosc	Frequency, External crystal	—	14,7456	—	MHz	
t _{OSC_START}	Startup Time	—	30		ms	
t _{OSC_RISE}	Rise Time	—	5.0		ns	
t _{OSC_FALL}	Fall Time	—	5.0		ns	
C _{OUT_MAX}	CLK Pin Driving Capability	—	—	15	pF	
Digital pads						
V _{INH}	Input Voltage 'H'	0.7 V _{DD}	—	—	V	
V _{INL}	Input Voltage 'L'	—	—	0.3 V _{DD}	V	
V _{IHYST}	Input Hysteresis	—	340	—	mV	
C _{IN}	Input Capacitance	—	5.0	—	pF	
I _{ILEAK}	Input Leakage Current, No pull-up/pull-down	-1.0	—	1.0	μA	

Table 4. CM3120 electrical characteristics (continued)

Characteristics noted under conditions: Typical values are at T_A = 25 °C \pm 1.0 °C, unless otherwise noted.

Symbol	Symbol Characteristic		Тур	Max	Unit	Notes
Digital pads (con	tinued)					1
V _{OUTH}	Output Voltage 'H'	0.8 V _{DD}	—	—	V	
V _{OUTL}	Output Voltage 'L'	_		0.4	V	
I _{OLEAK}	Output Leakage Current, Tri-state Active	_	_	1.0	μA	
C _{OUT}	Output Capacitance	_	-5.0	—	pF	
I _{OUT}	Output Driving Current	6.0		—	mA	
I _{IH}	Weak Pull-up Current, V _{IN} = 0 V	_	-30	—	μA	
I _{IL}	Weak Pull-down Current, V _{IN} = V _{DD}	_	30	—	μA	
Serial peripheral	interface					
f _{SPI}	SPI Clock Frequency	1.0		20	MHz	
t _{SPI_CLK}	SPI Clock Period	50	_	1000	ns	
t _{SPI_S}	SPI Start Clock After Select	25	_	—	ns	
t _{SPI_E}	SPI End of Select After Clock	25	_	—	ns	
t _{SPI_I}	SPI Idle Between Access	100	_	—	ns	
Current sensing						
V _{EXT_SD}	Ext. Short Detection Threshold	_	200	—	mV	
I _{EXT_SD}	Ext. Short Detection Current, R_{SHUNT} = 500 m Ω	_	400	_	mA	
I _{INT_SD}	Int. Short Detection Current	_	350	_	mA	
t _{ovlddet}	Driver Overload Detection Time, Configurable, see Error! Reference source not found.	0.1	_	6.4	ms	
tovlddis	Driver Overload Polling Time, see Error! Reference source not found.	1.0		6400	ms	
t _{SHORTDET}	Short-circuit Detection Time, Configurable; see SHRT1/2 (0x22/0x42) on page 19	0.1	_	336	ms	
Monitoring thresh	nolds					
VCC _{OK_MIN}	Min. Voltage Monitor Threshold	_	7.5	_	V	
VCC _{OK_MAX}	Max. Voltage Monitor Threshold	_	34	—	V	
VCC _{OK_HYST}	Voltage Monitor Hysteresis	_	0.6	—	V	
T _{INT}	Temperature Monitor Threshold	_	125	150	°C	
T _{INT_HYST}	Temperature Monitor Hysteresis	_	10	—	°C	
LEDs						1
V _{LED}	LED Permissible Voltage Range	-0.3		V _{DD} +0.3		
I _{LED_5MA}	LED Current 5.0 mA	4.5		5.5		
I _{LED_10MA}	ED_10MA LED Current 10 mA		_	11		
BITS _{LED}	LED Sequence Bite, Configurable: see LHLD1/2 (0x2E/0x4E) on page		8.0	_		
t _{HLDL}	Bit High Hold Time, Configurable; see LHLD1/2 (0x2E/0x4E) on page 25	50	_	800		
t _{HLDH}	Bit Low Hold Time, Configurable; see LHLD1/2 (0x2E/0x4E) on page 25	50	_	800		

5 Functional description

5.1 Clocking

The IC is clocked by connecting an external 14.7456 MHz quartz at the XTAL1 and XTAL2 pins. It is possible to daisy chain or directly connect multiple CM3120 chips to the CLK pin for clocking. The CLK pin is then connected to the XTAL1 pin of the other chip(s). Clock feed through is enabled by default and can be disabled by pulling the CLK_EN pin high.

5.2 Operational modes

There are three possible operational modes for each CM3120 IO-Link Channels - Standard I/O, UART, and Frame Handler mode. The channel mode can be configured in the MODE register.

5.2.1 Standard I/O (SIO)

If a channel is configured in the Standard I/O mode, the mode of the output stage is freely configurable. The SIO register allows the user to choose between an N, P, or Push-Pull driving mode via the DRV bits. The TXEN and TXD bits of this register enable direct control over the output driver. The RXD bit in the MISO status nibble reflects the current state of the CQ pin.

In this mode, it is also possible to control and observe the channel using the TXEN, TXD, and RXD pins. The corresponding pin and register values get logically ORed. Therefore, either the unused pin or register values should be zero, to allow control via the desired interface. Since the sense of TXD to CQ is inverted, it is possible to connect a standard microcontroller UART interface with a high idle state to the TXD/RXD pins.

5.2.2 UART

If a channel is configured in UART mode, the output stage is set into Push-Pull mode and the output cannot be controlled via the SIO register or the external pins. It is required to define the used COM speed in the MODE register. By default, the channel listens for incoming UART transactions at the CQ pin. If a character is received, an interrupt is triggered and the data can be read back from the UART register. A transaction is started by writing the data to the UART register. The received UART data is not buffered. Receiving multiple characters, while not reading them back, causes data loss. This is indicated by the OFLW bit in the MISO status nibble.

5.2.3 Frame handler

The Frame Handler mode extends the UART interface. Like in UART mode, the output stage is set into Push-Pull mode and the output cannot be controlled via the SIO register or the external pins. It is required to define the used COM speed in the MODE register. It mostly automates the transaction of frames, defined by the IO-Link protocol. Therefore an automated CRC check for incoming and an automated CRC computation for outgoing messages is integrated. The frame handler also monitors the specified timing constraints and takes care to comply with them as well.

5.2.3.1 Device mode

Configured as a device, the frame handler listens for incoming master transactions and triggers an interrupt, if a part or the complete device message is received. The interrupt behavior can be modified using the IMSK and TRSH register. Parity or checksum errors during the transaction is indicated by the MISO status nibble. The received data can be read back via the FHD register by multiple SPI transactions or single/multiple bulk SPI transactions.

After successfully receiving an incoming master message, the frame handler waits for the user to write the complete message data into the frame buffer via the FHD register. This can be done by multiple SPI transactions or by a single bulk SPI transaction. The transaction always starts immediately after the first byte is written into the frame buffer.

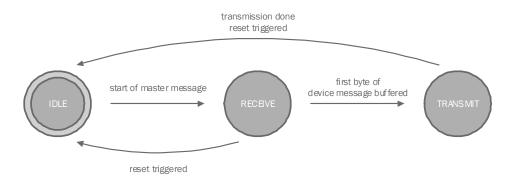


Figure 4. Device mode sequence

5.2.3.2 Skip and reset function

It is possible to reset the frame handler or skip an invalid frame from any state. This can be done by writing one to the RST or the SKIP bit of the FHC register. Skipping a frame causes the frame handler to ignore the rest of an incoming message, without triggering any additional interrupt. A soft reset is done after receiving the rest of invalid message or if a timeout was detected. Skipping a frame has no effect on the cycle timer. Resetting a frame immediately resets the frame handler into its idle state and also causes a reset of the cycle timer.

5.3 Interrupt handling

The chip utilizes two modes of interrupt handling. The active mode can be switched with the IMODE bit in the INT register. Interrupt mode 1 is active by default.

5.3.1 Mode 1

Interrupts are triggered on rising edges of the WURQ, RXRDY, TXRDY, or TOUT bits in the SPI Status. If CQ is configured as an input in SIO mode, interrupts are also triggered on any edge of the RXD bit. Changes of the STATE bits in the SPI Status also trigger interrupts, depending on the IMSK register settings. Trigger conditions can be the start of frame transmission or reception or reaching a defined fill level of the buffer. An interrupt is always triggered after a frame is completely received.

Another trigger condition is any change of values in the STAT register. This is why the microcontroller should always deal with an interrupt by reading back the STAT register. The interrupt is cleared while reading the status register.

5.3.2 Mode 2

The interrupt triggering conditions are the same as described in Interrupt mode 1. Mode 2 differs in how interrupts are handled. First, the interrupt origin can be determined by reading the INT register. The interrupt then needs to be actively cleared by the user. This is done by writing a one to the appropriate bit ISTAT, ICH1, or ICH2 in the INT register. The INTX pin remains in its active state until all interrupts are cleared.

5.3.3 Interrupt masking

To reduce the amount of triggered interrupts in frame handler mode, the user can deactivate the triggering of interrupts at certain conditions in the IMSK register. All frame handler interrupts are listed in the Table 5.

Table 5. Frame handler interrupts

Interrupt	Name	Description
SOT	Start of Transaction Interrupt	Triggers when the chip starts transmitting its message
SOR	Start of Reception Interrupt	Triggers as soon as the chip starts receiving a message
LVL	Message Level Interrupt	Triggers if a defined amount of buffered characters is reached
MSG	End of Message Interrupt	Triggers after the last character of a message was received
CYCT	Cycle Time Interrupt	Triggers when the configured cycle time has passed

The MSG interrupt is always active. By default, all other interrupts are masked. If the LVL interrupt is active, an interrupt is triggered if the input buffer reaches a defined fill level. The current amount of buffered characters can be queried in the BLVL register. The threshold for buffered characters which triggers the LVL interrupt is configured in the TRSH register.

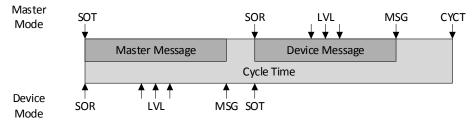
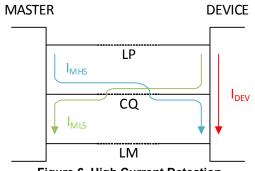


Figure 5. Interrupt Trigger Positions

It is also possible to mask the short detected (SD) interrupt of the STAT register. Otherwise an interrupt gets triggered as soon as a short is detected.

5.4 Protection features

The CM3120 IO-Link Master integrates various features to protect the IO-Link master and connected IO-Link devices. Different configuration options allow the user to take individual safety measures and to prevent damage.


5.4.1 Current sensing

5.4.1.1 Internal/external mode

There are two possible methods implemented to detect a high load at the IO-Link supply voltage - an internal and an external current sensing mechanism. Both mechanisms cannot be active at the same time. The user has to choose, which one should be used for each channel. The current sensing mode is configured by the SDINT bit in the CFG register. The SD bit in the STAT register and the SDX pins always reflect the current sensing state.

The internal current sensing mechanism does not need any external circuitry to work, but has the limitation to only detect currents IMHS and IMLS at the CM3120 CQ pin with a fixed current threshold. High currents IDEV from a connected device cannot be detected. Therefore the short protection feature for devices is not feasible in this mode. The usage of an external NMOS transistor is still possible.

The external current sensing can detect high currents IMHS and IMLS at the CQ pin and IDEV of a connected device. External shunts with a typical resistance of 0.5 Ω needs to be applied for a current threshold of 400 mA. It is possible to adjust the high current detection threshold by changing the shunts resistance value. The voltage drop over the shunt is defined with 200 mV. Current sensing over a shunt and an external NMOS transistor allow the usage of the short protection feature.

Figure 6. High Current Detection

5.4.1.2 Overload/short protection

The Overload Protection protects master and device from high loads at the channel output CQ. The output driver of a channel is automatically disabled if high currents are detected for a time > $t_{OVLDDET}$. The channel stays disabled and gets re-enabled after a time $t_{OVLDDIS}$. If the high load at CQ still persists, the channel is disabled again. This high current polling reduces the power dissipation of the chip and reduces the risk of overheating. The feature can be used in conjunction with the internal and external current sensing. Timing is configured in the OVLD register. It is also possible to disable this feature.

The short protection feature detects shorted or defective devices and disables their power supply, if NMOS transistors are used for power supply switching. If a high current is detected for a time > t_{SHRTDIS}, the gate driver gets disabled and the device is powered down. The gate driver stays disabled, but can be switched on again manually by the user. The feature can only be used in conjunction with the external current sensing. Timing is configured in the SHRT register.

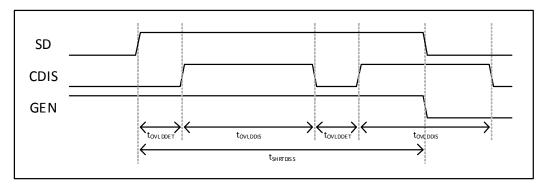


Figure 7. Overload/short protection timing

The current state of the channel (CDIS) and the gate driver (GEN) is always reflected in the STAT register. The IO-Link specification allows high currents while powering on a device. To avoid automatic disabling of the gate driver during power-on, t_{SHRTDIS} should be configured > 50 ms. Time can be reduced again after the power-on phase.

5.4.2 Voltage/temperature monitoring

The chip is equipped with a voltage monitor which observes the VCC supply voltage of the chip and a temperature monitor which observes the die temperature. By default, the chip is configured to automatically disable all channels if the die temperature is too high or the VCC supply voltage is out of range. The monitor states can be read back from the PROT register. The automatic protection feature is also controlled via the PROT register.

5.5 Additional IO-link features

5.5.1 Automated wake-up

The automated wake-up procedure is started, if the chip is configured in SIO mode and a one is written to the WURQ bit in the SIO register. If the procedure is active, the WURQ bit is set to one and can be aborted by writing a one to the WURQ bit. During the procedure, the chip is set into frame Handler mode and runs the wake-up procedure which complies to the IO-Link standard (CM3120 reference documents on page <u>36</u> - IO-Link Spec v1.1, 7.3.2.2). After the procedure is finished, an interrupt is triggered and the chip stays in IO-Link mode. If a timeout is indicated, the procedure failed. Otherwise the chip is configured and the detected COM mode can be read back using the CFG register.

5.5.2 Cycle timer

A cycle timer is available for channels configured as a frame handler in master mode. It enables the user to comply with the configured IO-Link cycle times without further effort. The cycle time is set up in the CYCT register. The format of this register resembles the defined structure in the IO-Link.

It is possible to configure cycle times that are shorter than 400 µs. Although this is not recommended, since the standard states 400 µs as minimum cycle time (CM3120 reference documents on page <u>36</u> - IO-Link Spec v1.1, A.3.7). If the register is zero, the cycle timer gets disabled.

When the cycle timer is active, a new master message transaction will not start until the configured cycle time has passed. If the cycle time is over and no new data is available to start the message transaction, the EOC bit in the MISO Status Nibble will indicate the end of a cycle.

It is possible to reset the frame handler without resetting the cycle timer by triggering a soft reset, using the SKIP bit in the FHC register. The cycle timer will be reset together with the frame handler when a hard reset is triggered using the RST bit in the FHC register.

5.5.3 Channel synchronization

The CM3120 provides a synchronization feature which can be enabled by the SYNC bit in the FHC register. If enabled, TXD (SYNC) and RXD (CYCT) pins are used for synchronization purposes and do not have their default behavior in frame handler mode. The CYCT pins indicate if the cycle time has passed with a high level. It is also possible to enable the cycle time interrupt for a channel over the CYCT bit in the IMSK register. If this interrupt is enabled the TOUT bit in the MISO status nibble is also used to indicate the end of a cycle.

The channels waits for the start of transmission until a configured cycle time has passed. The output buffer is filled and the SYNC pin is toggled or a synchronization request is triggered over the SYNC register. This requests can be broadcasted to different chips, specifically triggering different channels on each chip by using the SMSK register. This gives a fine granularity for synchronizing channels, even over multiple chips.

Chip	MODE1/2	FHC1/2 CYCT1/2		SMSK
IC1	0h0A / 0h0A	0h0E / 0h0E	0h14 / 0h00	0h09
IC2	0h0A / 0h0A	0h0E / 0h0E	0h14 / 0h00	0h09
IC3	0h0A / 0h0A	0h0E / 0h06	0h00 / 0h00	0h04

Table 6. Sample configuration

As an example, there are three CM3120 chips with the configurations from Table 6. If a synchronization request is broadcast via the SPI by writing a one to the ST1 bit in the SYNC register, channel 1 from IC1 and IC2 start their transactions as soon as the configured cycle time has passed. If a one is written to the ST2 bit of the sync register, channel 2 of IC1 and IC2 and channel 1 of IC3 start their transactions immediately.

5.5.4 LED drivers

The chip integrates an LED driver for each of the two channels. The LEDs are controlled by the LSEQ and LHLD registers. There are various ways of influencing the timing of a blinking sequence. It is also possible to synchronize the LED blinking sequences over each channel or various chips. This is done by writing one to the SYNC registers PRE and LED bits. The user can choose between two driver strengths of 5.0 mA or 10 mA using the ILED bit in the CFG register.

As an example, writing LSEQ 0hCC and LHLD 0h80 resembles the specified blinking sequence for channels operating in IO-Link mode, starting with the "LED off" state (CM3120 reference documents on page <u>36</u> - IO-Link Spec v1.1, 10.9.3).

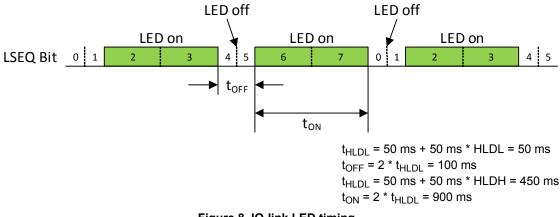


Figure 8. IO-link LED timing

5.6 Serial peripheral interface

5.6.1 Transaction format

The CM3120 is configured as an SPI slave and uses the CPOL=0, CPHA=0 configuration. During each transaction, a minimum number of two bytes must be transferred. For bulk access to the frame handler buffers via the FHD1/2 registers, n bytes can be transferred. The first byte after a falling SSX edge reflects always the current state of the two channels. The format depends on the configured modes.

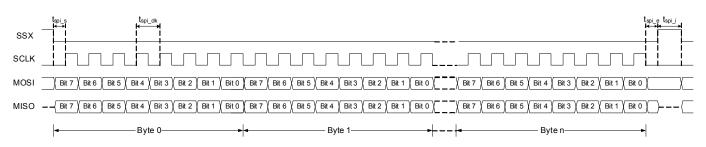


Figure 9. SPI timing diagram

5.6.2 MOSI format

Table 7. Mosi Format

Bit	7	6	5	4	3	2	1	0		
1 st Byte		ADR								
2 nd Byte		DATA								
n th Byte				DA	ТА					

ADR		Address for register access
	0x20-0x3F	Channel 1 registers
	0x40-0x5F	Channel 2 registers
	0x60-0x7F	Control registers
RW		Register access type
	0b0	write to address
	0b1	read from address
DATA		Value for write access
	0x00-0xFF	3^{rd} -n th byte is optional; ignored on read access

5.6.3 MISO format

Table 8. MISO Format

Bit	7	6	5	4	3 2 1 0				
1 st Byte	STAT2 STAT1								
2 nd Byte		DATA							
n th Byte		DATA							

STAT1/2		Status code for channel 1/2
	0x0-0xF	Format is dependent on configured mode
DATA		Current value on read access to register
	0x00-0xFF	3^{rd} -n th byte is optional; not valid on write access

5.6.4 MISO status nibble

Table 9. MISO status nibble

Name	STAT Bit 3	STAT Bit 2	STAT Bit 1	STAT Bit 0
Standard I/O	WURQ	RXD	TXEN	TXD
UART	OFLW	RXERR RXRDY TXRDY		
Frame Handler	TOUT/EOC	STATE		

TXD		Current channel output value
	0b0	Channel is driven high
	0b1	Channel is driven low
TXEN		Current output enable state
	0b0	Channel driver is disable
	0b1	Channel driver is enabled
RXD		Current channel input value
	0b0	Channel input is driven high
	0b1	Channel input is driven low
WURQ		Wake-up pulse indicator
	0b0	No wake-up pulse is detected
	0b1	Wake-up pulse is detected
TXRDY		UART transmit state indicator
	0b0	TX is busy
	0b1	TX us ready for transmission
RXRDY		UART receive state indicator
	0b0	RX is busy
	0b1	RX is ready for receiving
RXERR		UART RX parity error
	0b0	no parity error detected
	0b1	parity error detected
OFLW		UART RX overflow indicator
	0b0	no data overflow detected
	0b1	data overflow is detected, byte is lost
STATE		Reflects the current frame handler state
	0b000	ldle
	0b001	transmission output required
	0b010	transmission active; no further output required
	0b011	transmission active; further output required
	0b100	receiving active
	0b101	receiving active; new input available
	0b110	receiving active; message erroneous
	0b111	receiving active; message erroneous; new input available

Table 9. MISO status nibble (continued)

TOUT/EOC

	Frame timeout / End of cycle time
0b0	no timeout detected / cycle time not passed
0b1	timeout detected / cycle time passed

5.7 Register description

5.7.1 Register overview

Table 10. Register description

Address	Name	Description	Access
0x00-0x1F	-	Reserved	-
0x20	MODE1	Channel 1 – Mode	R/W
0x21	OVLD1	Channel 1 – Overload Protection	R/W
0x22	SHRT1	Channel 1 – Short Protection	R/W
0x23	SIO1	Channel 1 – SIO Control	R/W
0x24	UART1	Channel 1 – UART Data	R/W
0x25	FHC1	Channel 1 – FH Control	R/W
0x26	OD1	Channel 1 – On-Request Length	R/W
0x27	MPD1	Channel 1 – Master PD Length	R/W
0x28	DPD1	Channel 1 – Device PD Length	R/W
0x29	CYCT1	Channel 1 – Cycle Time	R/W
0x2A	FHD1	Channel 1 – FH Data	R/W
0x2B	BLVL1	Channel 1 – FH Buffer Level	R
0x2C	IMSK1	Channel 1 – Interrupt Masking	R/W
0x2D	LSEQ1	Channel 1 – LED Sequence	R/W
0x2E	LHLD1	Channel 1 – LED Hold Times	R/W
0x2F	CFG1	Channel 1 – Configuration	R/W
0x30	TRSH1	Channel 1 – Threshold Level	R/W
0x31-0x3F	-	Reserved	-
0x40	MODE2	Channel 2 – Mode	R/W
0x41	OVLD2	Channel 2 – Overload Protection	R/W
0x42	SHRT2	Channel 2 – Short Protection	R/W
0x43	SIO2	Channel 2 – SIO Control	R/W
0x44	UART2	Channel 2 – UART Data	R/W
0x45	FHC2	Channel 2 – FH Control	R/W
0x46	OD2	Channel 2 – On-Request Length	R/W
0x47	MPDL2	Channel 2 – Master PD Length	R/W
0x48	DPDL2	Channel 2 – Device PD Length	R/W
0x49	CYCT2	Channel 2 – Cycle Time	R/W
0x4A	FHD2	Channel 2 – FH Data	R/W

Address Name Description Access BLVL2 0x4B Channel 2 – FH Buffer Level R 0x4C IMSK2 R/W Channel 2 - Interrupt Masking LSEQ2 0x4D Channel 2 – LED Sequence R/W 0x4E LHLD2 Channel 2 – LED Hold Times R/W CFG2 Channel 2 – Configuration R/W 0x4F R/W 0x50 TRSH2 Channel 2 - Threshold Level 0x51-0x5F reserved -IC Status 0x60 STAT R 0x61 SMSK **Channel Synchronization Masks** R/W Synchronization Triggers W 0x62 SYNC 0x63 PROT **Channel Protection** R/W 0x64 INT Interrupt Register R/W 0x65-0x6F Reserved --0x70 REV **Revision Code** R 0x71-0x7F Reserved --

Table 10. Register description (continued)

5.7.2 MODE1/2 (0x20/0x40)

Table 11. MODE1/2 (0x20/0x40)

Bit	7	6	5	4	3	2	1	0
Name	Reserved				COM M			DE
Access	-				R/	W	R/	W

Default:0b0000000 MODE Selects the channel operation mode Standard I/O 0b00 0b01 UART 0b10 Frame Handler 0b11 reserved COM Selects the UART communication speed 0b00 Disabled 0b01 COM1 - 4.8 kBd 0b10 COM2 - 38.4 kBd 0b11 COM3 - 230.4 kBd

OVLD1/2 (0x21/0x41) 5.7.3

Table 12. OVLD1/2 (0x21/0x41)

Bit	7	6	5	4	3	2	1	0
Name	A	DIS		MULT				
Access	F	R/W			R/\	N		
			C	efault:0b100000	0			
ADIS		Channel overlo	ad protection mo	ode				
	0b00	Disabled						
	0b01	Enabled; FACT	ror=10					
	0b10	Enabled; FACT	OR=100					
	0b11	Enabled; FACT	OR=1000					
MULT		Multiplier for ov	verload detection	/disable time				
	0-63	Multiplier value	•					

NOTE: disabling this feature may cause damage to master and/or device $t_{OVLDDET}$ = 100 µs + 100 µs * MULT $t_{OVLDDIS}$ = $t_{OVLDDET}$ * FACTOR

SHRT1/2 (0x22/0x42) 5.7.4

Table 13. SHRT1/2 (0x22/0x42)

Bit	7	6	5	4	3	2	1	0	
Name	BA	ASE MULT							
Access	R	/W			R/	W			
			D	efault:0b000001)1				
BASE		Base/offset for	channel short de	tection time					
	0b00	BASE is 100 µs	s; OFFSET is 100) μ s; disabled if N	IULT is 0				
	0b01	BASE is 400 µs	s; OFFSET is 6.8	ms					
	0b10	BASE is 1.6 ms	s; OFFSET is 33.	6 ms					
	0b11	BASE is 3.2 ms	s; OFFSET is 134	1.4 ms					
MULT		Multiplier for short detection time							
	0-63	Multiplier value	alue						

NOTE: disabling this feature may cause damage to master and/or device $t_{SHRTDET}$ = OFFSET + BASE * MULT

5.7.5 SIO1/2 (0x23/0x43)

Table 14. SIO1/2 (0x23/0x43)

Bit	7	6	5	4	3	2	1	0	
Name	WURQ		reserved			RV	TXEN	TXD	
Access	R/W		-		R	/W	R/W	R/W	
			C	Default:0b000011	00				
TXD		Driver output va	alue						
	0b0	Drive CQ high							
	0b1	Drive CQ low							
TXEN		Driver output st	Driver output state						
	0b0	Disable output driver							
	0b1	Enable output o	lriver						
DRV		Driver output m	ode						
	0b00	Multiplier value							
	0b01	N-mode							
	0b10	P-mode							
	0b11	Push-Pull							
WURQ		Start/abort auto	mated wake-up	procedure					
	0b0	Automated wak	e-up is not runn	ing; writing 0b1 s	tarts procedure				
	0b1	Automated wak	Automated wake-up is running; writing 0b1 aborts procedure						

5.7.6 UART1/2 (0x24/0x44)

Table 15. UART1/2 (0x24/0x44)

Bit	7 6 5 4 3 2 1									
Name		DATA								
Access		R/W								
Default:0b0000000										

Received/transmitted value over UART

0-255

DATA

.

read returns received value, write transmits value

5.7.7 FHC1/2 (0x25/0x45)

Table 16. FHC1/2 (0x25/0x45)

Bit	7	6	5	4	3	2	1	0			
Name	RST	SKIP	res	erved	SYNC	MAS	CRC	TOUT			
Access	W	W	-		R/W	R/W	R/W	R/W			
I		•	. [Default:0b00000	110			1			
TOUT		Timeout behav	ior								
	0b0	Strict timeout d	etection								
	0b1	Relaxed timeou	ut detection (+ 3	t _{BIT})							
CRC		Automatic chec	cksum calculation	n							
	0b0	Disabled, send	ing a master me	ssage will start i	nmediately						
	0b1	Enabled	Enabled								
MAS		Frame handler	mode								
	0b0	Slave mode									
	0b1	Master mode									
SYNC		Channel synch	ronization								
	0b0	Disabled									
	0b1	Enabled; maste	er mode only								
SKIP		Skip a frame									
	0b1	Resets frame h	nandler without re	esetting cycle tin	ne counter						
RST		Reset frame ha	andler								
	0b1	Resets frame h	andler and cycle								

5.7.8 OD1/2 (0x26/0x46)

1-32

Table 17. OD1/2 (0x26/0x46)

Bit	7	6	5	4	3	2	1	0		
Name		LEN								
Access		R/W								
		Default:0b0000001								
LEN		On-Request Data length								

ΕN

n-Request Data length

Data length in bytes; valid values according to IO-Link spec: 1, 2, 8, 32. See CM3120 reference documents on page 36

5.7.9 MPD1/2 (0x27/0x47)

Table 18. MPD1/2 (0x27/0x47)

Bit	7	6	5	4	3	2	1	0		
Name		LEN								
Access		R/W								
Default:0b0000000										

LEN

Master Process Data length

0-32 Data length in bytes

5.7.10 DPD1/2 (0x28/0x48)

Table 19. DPD1/2 (0x28/0x48)

Bit	7	6	5	4	3	2	1	0		
Name		LEN								
Access		R/W								
		Default:0b0000000								
LEN	Device Process Data length									

0-32 Data length in bytes

5.7.11 CYCT1/2 (0x29/0x49)

Table 20. CYCT1/2 (0x29/0x49)

Bit	7	6	5	4	3	2	1	0			
Name	BA	SE	MULT								
Access	R/	W		R/W							

Default:0b00000000

BASE		Base/offset for cycle time
	0b00	BASE is 100 $\mu \text{s};$ no OFFSET; disabled if MULT is 0
	0b01	BASE is 400 μs; OFFSET is 6.4 ms
	0b10	BASE is 1.6 ms; OFFSET is 32 ms
	0b11	Reserved
MULT		Multiplier for cycle time
	0-63	Multiplier value

 t_{CYC} = OFFSET + BASE * MULT

5.7.12 FHD1/2 (0x2A/0x4A)

Table 21. FHD1/2 (0x2A/0x4A)

Bit	7	6	5	4	3	2	1	0		
Name		DATA								
Access		R/W								
Default:0b0000000										

Received/transmitted value over frame handler

0-255

Read returns buffed input data, write buffers output data

5.7.13 BLVL1/2 (0x2B/0x4B)

0-64

Table 22. BLVL1/2 (0x2B/0x4B)

Bit	7	6	5	4	3	2	1	0		
Name		FCNT								
Access	R/W									
		Default:0b0000000								

FCNT

DATA

Fill count of frame handler input buffer

Current input buffer fill count

5.7.14 IMSK1/2 (0x2C/0x4C)

Table 23. IMSK1/2 (0x2C/0x4C)

Bit	7	6	5	4	3	2	1	0		
Name		reserved		SD	SOR	SOT	CYCT	LVL		
Access		-		R/W	R/W	R/W	R/W	R/W		
			D	efault:0b000111	11	•				
LVL		Level interrupt								
	0b0	Enabled; interro	upt trigger level is	defined in corre	sponding TRSH r	egisters				
	0b1	Disabled; no in	errupt is triggere	d						
CYCT		Cycle time inter	rupt							
	0b0	0b0 Enabled; interrupt is triggered after end of cycle, only in master mode								
	0b1	Disabled; no in	Disabled; no interrupt is triggered							
SOT		Start of transmi	ssion interrupt							
	0b0	Enabled; interro	upt is triggered or	n start of transmis	sion					
	0b1	Disabled; no in	errupt is triggere	d						
SOR		Start of reception	on interrupt							
	0b0	Enabled; interro	upt is triggered or	n start of receptio	n					
	0b1	Disabled; no in	errupt is triggere	d						
SD		Short detection	interrupt							
	0b0	Enabled; interro	upt is directly trige	gered when a sho	ort gets detected					
	0b1	Disabled; no in	errupt is triggere	d						

5.7.15 LSEQ1/2 (0x2D/0x4D)

Table 24. LSEQ1/2 (0x2D/0x4D)

	-	,									
Bit	7	6	5	4	3	2	1	0			
Name		SEQ									
Access	R/W										
			D	efault:0b0000000	00						
SEQ	LED blinking sequence										

0x00 Always off

0x01-0xFE Blinking; 0b0 represents off-state; 0b1 represents on-state; LSB processed first

0xFF Always on

5.7.16 LHLD1/2 (0x2E/0x4E)

Table 25. LHLD1/2 (0x2E/0x4E)

Bit	7	6	5	4	3	2	1	0		
Name		HL	DH		HLDL					
Access		R	R	/W						
	Default:0b0000000									
HLDL		LED hold time	configuration for	off-state						
	0-15 Base time multiplier									
HLDH		LED hold time configuration for on-state								

t_{HLDL} = 50 ms + 50 ms * HLDL

t_{HLDH} = 50 ms + 50 ms * HLDH

5.7.17 CFG1/2 (0x2F/0x4F)

0-15

Base time multiplier

Table 26. CFG1/2 (0x2F/0x4F)

Bit	7	6	5	4	3	2	1	0	
Name	GEN		reserved		ILED	SDINT	RAT	ICQ	
Access	R/W		-		R/W	R/W	R/W	R/W	
			De	fault:0b00000	000				
ICQ		Current sink	configuration f	for C/Q					
	0b0	Current sink	disabled						
	0b1	10 mA curre	nt sink enabled	d					
RAT		Input thresho	old configuration	on for C/Q					
	0b0	Static input t page <u>36</u>	Static input threshold according to IO-Link specification. See CM3120 reference docume page <u>36</u>						
	0b1	Ratiometric i	nput threshold	for lower LP	voltages				
SDINT		Short detecti	ion mode						
	0b0	External sho	rt detection; sh	nunt required					
	0b1	Internal shor	t detection; no	shunt require	d				
ILED		LED driving	current						
	0b0	5.0 mA drivir	ng current						
	0b1	10 mA drivin	10 mA driving current						
GEN		Gate driver e	Gate driver enable						
	0b0	Disabled							
	0b1	Enabled							

5.7.18 TRSH1/2 (0x30/0x50)

0-63

Table 27. TRSH1/2 (0x30/0x50)

Bit	7	6	5 4 3 2				1	0			
Name		TLVL									
Access	R/W										

Default:0b00000000

TLVL

Input buffer threshold level

Trigger interrupt after TLVL received characters; activate in IMSK register

5.7.19 STAT (0x60)

Table 28. STAT (0x60)

Bit	7	6	5	4	3	2	1	0				
Name	TEMP	VCCOK	GDIS2	CDIS2	SD2	GDIS1	CDIS1	SD1				
Access	R	R	R	R	R	R	R	R				
			C	efault:0b011001	00							
SD1/2		Short detected	indicator									
	0b0	No short detect	No short detected									
	0b1	Short detected	Short detected									
CDIS1/2		Channel disable	Channel disabled indicator									
	0b0	Channel driver	Channel driver enabled									
	0b1	Channel driver disabled										
GDIS1/2		Gate disabled i	Gate disabled indicator									
	0b0	Gate driver ena	bled									
	0b1	Gate driver disa	abled									
VCCOK		VCC Voltage m	onitor									
	0b0	Voltage too hig	h/low									
	0b1	Voltage inside	Voltage inside valid range; (VCC _{OK_MIN} < VCC) or (VCC > VCC _{OK_MAX})									
TEMP		Temperature monitor										
	0b0	Temperature okay; $\vartheta_{JUNC} \le \vartheta_{INT}$										
	0b1	High temperatu	re detected;	_{IC} > ϑ _{INT}								

5.7.20 SMSK (0x61)

Table 29. SMSK (0x61)

Bit	7	6	5	4	3	2	1	0		
Name	SC4		SC3		SC2		SC1			
Access	R	/W	R/W		R	W	R/W			
	Default:0b0000000									
SC1-4	Synchronization masks 1-4									
	0b00	disable synchronization signals								

0b01	enable synchronization signal for channel 1
0b10	enable synchronization signal for channel 2

0b11 enable synchronization signals for channels 1 and 2

5.7.21 SYNC (0x62)

Table 30. SYNC (0x62)

Bit	7	6	5	4	3	2	1	0		
Name	rese	reserved		LED	ST4	ST3	ST2	ST1		
Access		-	W	W	W	W	W	W		
		Default:0b0000000								
ST1-4		Synchronous s	Synchronous start of transmission trigger							
	0b1	Write 0b1 to trig	Write 0b1 to trigger start of transmission; depends on corresponding SC1-4 mask							
LED		LED output syn	chronization							
	0b1	Write 0b1 to trig	Write 0b1 to trigger synchronization							
PRE		LED prescaler synchronization								
	0b1	Write 0b1 to trigger synchronization								

5.7.22 PROT (0x63)

Table 31. PROT (0x63)

Bit	7	6	5	4	3	2	1	0				
Name	reserved	TEMP	VCCH	VCCL	reserved	PTEMP	PVCCH	PVCCL				
Access	-	R	R	R	-	R/W	R/W	R/W				
			D	efault:0b000001	11	•						
PVCCL		VCC low voltag	e protection									
	0b0	Protection disa	bled									
	0b1	Protection enab	oled; disable outp	outs driver if VCC	C < VCC _{OK_MIN}							
PVCCH		VCC high volta	CC high voltage protection									
	0b0	Protection disa	rotection disabled									
	0b1	Protection enab	rotection enabled; disable outputs driver if VCC > VCC _{OK_MAX}									
PTEMP		High temperatu	High temperature protection									
	0b0	Protection disa	bled									
	0b1	Protection enab	oled; disable outp	out driver if ϑ_{JUNC}	> ϑ _{INT}							
VCCL		VCC low voltag	je monitor									
	0b0	Voltage not too	low									
	0b1	Voltage too low	r; VCC < VCC _{OK_}	MIN								
VCCH		VCC high volta	ge monitor									
	0b0	Voltage not too	high									
	0b1	Voltage too hig	h; VCC > VCC _{OK}	_MAX								
TEMP		Temperature m	onitor									
	0b0	Temperature of	kay; ϑ _{JUNC} ≤ ϑ _{INT}									
	0b1	High temperatu	ire detected;	_C > ឋិ _{INT}								

5.7.23 INT (0x64)

Table 32. INT (0x64)

Bit	7	6	5	4	3	2	1	0			
Name	IMODE		rese	erved		ISTAT	ICH2	ICH1			
Access	R/W		- R/W R/W R/W								
			Default:0b0000000								
ICH1/2		Channel 1/2 inte	Channel 1/2 interrupt								
	0b0	No channel 1/2	No channel 1/2 interrupt								
	0b1	Channel 1/2 inte	Channel 1/2 interrupt occurred; write 0b1 to clear								
ISTAT		Status interrupt	Status interrupt								
	0b0	No status interr	upt								
	0b1	Status interrupt	occurred; write	0b1 to clear							
IMODE		Interrupt mode	Interrupt mode								
	0b0	Interrupt mode	Interrupt mode 1								
	0b1	Alternative interrupt mode 2									

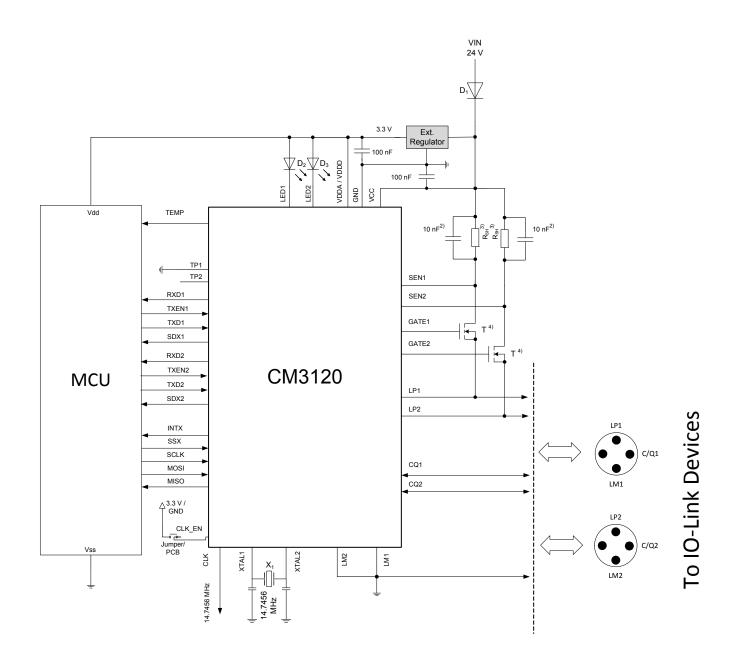
5.7.24 REV (0x70)

Table 33. REV (0x70)


Bit	7	6	5	4	3	2	1	0			
Name		M	AJ	•	MIN						
Access	R R										
		Default:0b00100001									
MAJ		Major revision	code								
	2	Latest major re	vision code								
MIN		Minor revision code									
	1	Latest minor revision code									

6 Typical applications

6.1 Introduction


The CM3120 can be configured in different applications. Figure 10 and Figure 11 show the CM3120 in a typical application.

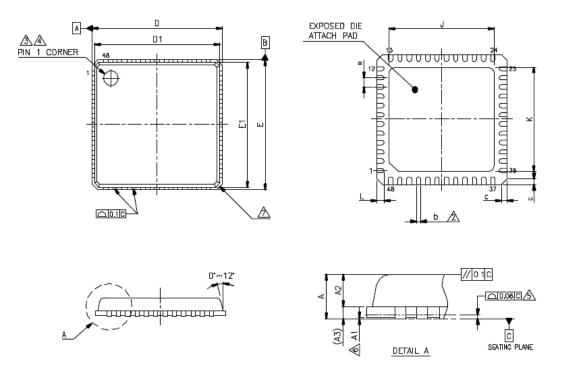
6.1.1 Application diagram

1) Surge protection circuitry for channels needs to be applied externally.

Figure 10. Application diagram using internal drivers/internal current sense

1) Surge protection circuitry for channels needs to be applied externally.

2) Optional


3) Typically 0.5 Ω

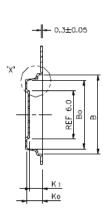
4) e.g. PMPB85ENEA

Figure 11. Application diagram using external drivers/external current sense

7 Packaging

7.1 Package mechanical dimensions

Symbol	Α	A1	A2	A3	b	С	D	D1	E	E1	е	J	к	L
Min	0.80	0.00	0.65		0.18	0.24						3.50	3.50	0.30
Тур	0.90	0.02	-	0.203 REF.	0.25	0.42	7.00 BSC.	6.75 BSC.	7.00 BSC.	6.75 BSC.	0.50 BSC.	3.70	3.70	0.40
Max	1.00	0.05	1.00		0.30	0.60						3.90	3.90	0.50


UNIT: mm

NOTES :

- 1. JEDEC : MO-220-J.
- DIE THICKNESS ALLOWABLE IS 0.305mm MAXIMUM (0.012 INCHES MAXIMUM).
- ▲ DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.2 AND 0,25mm FROM TERMINAL TIP.
- ▲ THE PIN #1 IDENTIFIER NUST BE PLACED ON THE TOP SURFACE OF THE PACKAGE BY USING INDENTATION MARK OR OTHER FEATURE OF PACKAGE BODY.
- A EXACT SHAPE AND SIZE OF THIS FEATURE IS OPTIONAL
- APPLIED FOR EXPOSED PAD AND TERMINALS. EXCLUDE EMBEDDING PART OF EXPOSED PAD FROM MEASURING.
- APPLIED ONLY TO TERMINALS.
- A EXACT SHAPE OF EACH CORNER IS OPTIONAL.

8 Tape and reel information

8.1 Tape package

9.50 +/- 0.1

10.80 +/- 0.1

2.20 +/- 0.1

1.70 +/- 0.1

12.00 +/- 0.1 16.00 +/- 0.3

+/- 0.1

+/- 0.1

+/- 0.1

10,80

9.50

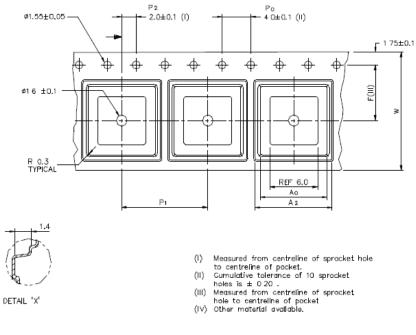
7.50

Αo

Α2

Bo

B 2

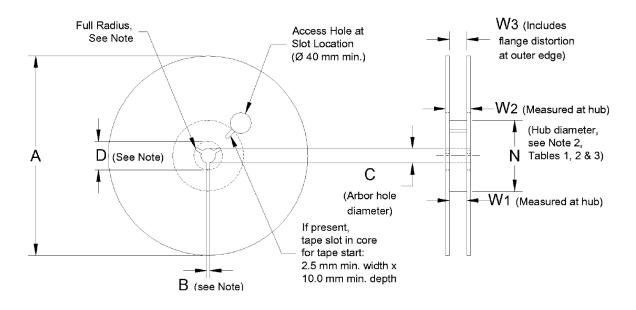

Ko

Κ1

F

P 1

W



ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 12. Tape package

8.2 Reel information

Symbol	Α	В	С	D	W ₁ QFN48
Min	-	1.5	12.8	20.2	17.25
Тур	-	-	13.0	-	-
Max	330	-	13.5	-	17.75

Figure 13. Reel package

9 Reference section

Table 34. CM3120 reference documents

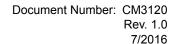
Description	URL
Reference web sites	Reference URL locations
IO-Link Interface and System	http://www.io-link.com/share/Downloads/Spec-Interface/IOL-Interface-Spec_10002_V112_Jul13.pdf

10 Revision history

Revision	Date	Description of changes						
1.0	9/2015 • Initial release							
1.0	7/2016	Updated to NXP document form and style						

How to Reach Us:

Home Page: NXP.com


Web Support: http://www.nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved. © 2016 NXP B.V.

2010104 211

