## DESCRIPTION

Demonstration circuit DC823B-B features the LTM ${ }^{\circledR} 4600 \mathrm{HVEV}$, a 10 A high efficiency, high density switch mode step-down power module. The input voltage is from 4.5 V to 28 V . The output voltage is programmable from 0.6 V to 5 V . The rated load current is 10 A , while derating is necessary for different $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, and thermal conditions. Integrated input and output filters enable a simple PCB layout. Only bulk input and output capacitors are needed.

The LTM 4600 HV data sheet must be read in conjunction with this demo manual prior to working on or modifying demo circuit DC823B-B.

Design files for this circuit board are available at http://www.linear.com/demo

[^0]
## PGRFORMANCE SUMMARY ( $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

| PARAMETER | TEST CONDITION | VALUE |
| :--- | :--- | :--- |
| Input Voltage Range |  | 4.5 V to 28 V |
| Output Voltage $\mathrm{V}_{\text {OUT }}$ | Selectable with Jumpers (Open for 0.6 V ) | $1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$ |
| Maximum Continuous Output Current | 5 V to 28 V IN, 1.5 V OUT | $10 \mathrm{~A}_{\text {DC }}$ |
| Efficiency | $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}$, I OUT $=10 \mathrm{~A}$ | $83 \%$, See Figure 2 |

## BOARD PHOTO



## DEMO MANUAL DC823B-B

## PUICK START PROCEDURE

Demonstration circuit DC823B-B is easy to set up to evaluate the performance of the LTM4600HVEV. Refer to Figure 1 for proper measurement equipment set-up and follow the procedure below:

1. Place jumpers in the following positions for a typical $1.5 \mathrm{~V}_{\text {OUT }}$ application :

| FCB | RUN/SS | $V_{\text {OUT }}$ Select |
| :---: | :---: | :---: |
| CCM | ON | 1.5 V |

2. With power off, connect the input power supply, load, optional 5 V bias supply and meters as shown in Figure 1. Preset the load to 0 A and $\mathrm{V}_{\text {IN }}$ supply to be less than 28 V . The optional 5 V bias supply applied to the EXTVCC pin must be off while the main $\mathrm{V}_{\text {IN }}$ is turned off.
3. Turn on the power at the input. The output voltage should be $1.5 \mathrm{~V} \pm 2 \%$.
4. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters. Output voltage ripple should be measured at J6 with a BNC cable.
5. For optional load transient test, apply an adjustable pulse signal between IOSTEP CLK and GND pins. Pulse amplitude sets the current step. The pulse signal should have very small duty cycle ( $<15 \%$ ) to limit the thermal stress of the transient load circuit. The output transient current can be monitored at BNC connector J5 (10mV/A).


Figure 1. Test Set-Up of DC823B-B (EXTVCC $\mathrm{V}_{\text {BIAS }}$ Supply is Optional)

## PUICK START PROCEDURE



Figure 2. Measured Supply Efficiencies with Different $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$


Figure 3. Measured Load Transient Response (OA to 5A Step)

## DEMO MANUAL DC823B-B

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :---: | :---: | :---: |
| Required Circuit Components |  |  |  |  |
| 1 | 1 | C1 | CAP, 150 ${ }^{\text {F 20\% 35V ALUM }}$ | SANY0 35MV150WXV (now SUNCON 35ME150WXV) |
| 2 | 2 | C5, C2 | CAP, 1206 10ヶF 20\% 35V X5R | TAIYO YUDEN GMK316BJ106ML-T |
| 3 | 2 | C7, C6 | CAP, 1812 100⿲F 20\% 6.3V X5R | TDK C4532X5R0J107M |
| 4 | 1 | C10 | CAP, 1206 22 $\mu \mathrm{F} 20 \% 6.3 \mathrm{~V}$ X5R | TAIYO YUDEN JMK316BJ226ML-T |
| 5 | 1 | C12 | CAP, 0603 100pF 10\% 50V X7R | AVX 06035C101KAT1A |
| 6 | 1 | R1 | RES, 0603 49.9k 1\% 1/10W | AAC CR16-4992FM |
| 7 | 1 | R8-ALTERNATE | RES, $06030 \Omega$ JUMPER | ACC CJ06-000M |
|  |  | R8 | RES, $06030 \Omega$ JUMPER | VISHAY CRCW06030000Z0EA |
| 8 | 1 | U1 | IC, LTM4600HVEV | LINEAR TECHNOLOGY LTM4600HVEV |

Additional Demo Board Circuit Components

| 1 | 0 | C4, C3 | CAP, 1206 OPTION | TAIYO YUDEN EMK316BJ475ML-T |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 0 | C8 | CAP, 1812 OPTION | TAIYO YUDEN JMK432BJ107MU-T |
| 3 | 0 | $\begin{aligned} & \text { C11, C14, C18, } \\ & \text { C19 } \end{aligned}$ | CAP, 0603 OPTION | OPTION |
| 4 | 1 | C13 | CAP, 0603 100pF 10\% 50V NPO | AVX 06035A101KAT |
| 5 | 2 | C15, C16 | CAP, 0603 1 $\mu \mathrm{F} 20 \%$ 10V X5R | TAIYO YUDEN LMK107BJ105MA-T |
| 6 | 0 | C17 | CAP, 0805 1 $\mu \mathrm{F}$ 20\% 16V X5R OPTION | TAIYO YUDEN EMK212BJ105MG-T |
| 7 | 1 | D1 | DIODE, ZENER 4.7V | DIODES INC. BZX84C4V7-7-F |
| 8 | 1 | Q14 | XSTR, SUD50N03-10CP MOSFET | SILICONIX SUD50N03-10CP-E3 |
| 9 | 1 | R2 | RES, 0603 66.5k 1\% 1/10W | AAC CR16-6652FM |
| 10 | 1 | R3 | RES, 0603 31.6k 1\% 1/10W | AAC CR16-3162FM |
|  |  | R3-ALTERNATE | RES, 0603 31.6k 1\% 1/10W | PANASONIC ERJ-3GEY512V |
| 11 | 1 | R4 | RES, 0603 22.1k 1\% 1/10W | AAC CR16-2212FM |
| 12 | 1 | R5 | RES, 0603 13.7k 1\% 1/10W | AAC CR16-1372FM |
| 13 | 3 | R6, R10, R12 | RES, 0603 10k 5\% 1/10W | VISHAY CRCW060310KOJNEA |
|  |  | $\begin{aligned} & \text { R6, R10, } \\ & \text { R12- ALTERNATE } \end{aligned}$ | RES, 0603 10k 5\% 1/10W | VISHAY CRCW0603103J |
| 14 | 1 | R7 | RES, 0603 5.1k 5\% 1/10W | AAC CR16-512JM |
|  |  | R7 | RES, 0603 5.1k 5\% 1/10W | PANASONIC ERJ-3GEY512V |
| 15 | 1 | R9 | RES, 0603 1M 2 5\% 1/16W | AAC CR16-105JM |
| 16 | 1 | R11 | RES, 2512 0.01 3 \% 1W | IRC LRF2512-01-R010-J |
| 17 | 0 | R13 | RES, 0603 OPTION | OPTION |
| 18 | 1 | R14 | RES, 0603 100k 1\% 1/10W | AAC CR16-1003FM |

## Hardware

| 1 | 6 | JP0 T0 JP5 | HEADER, 2-PIN, 2mm | COMM CON 2802S-02G2 |
| :---: | :---: | :--- | :--- | :--- |
| 2 | 2 | JP6, JP7 | HEADER, 3-PIN, 2mm | COMM CON 2802S-03G2 |
| 3 | 4 | J1, J2, J3, J4 | JACK, BANANA | KEYSTONE 575-4 |
| 4 | 2 | J5, J6 | CONN, BNC, 5 PINS | CONNEX 112404 |
| 5 | 14 | TP1 T0 TP14 | TURRET | MILL-MAX 2501-2-00-80-00-00-07-0 |
| 6 | 3 | JP3, JP6, JP7 | SHUNT | SAMTEC 2SN-BK-G |
| 7 | 4 |  | STANDOFF, SNAP ON | KEYSTONE_8831 |

## SCHEmATIC DIAGRAM


dc823bbf
$\mathcal{C T}$ UNER

## DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.
The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation
dc823bbf


[^0]:    $\boldsymbol{\square}$, LT, LTC, LTM, $\mu$ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

