

TDA7372A

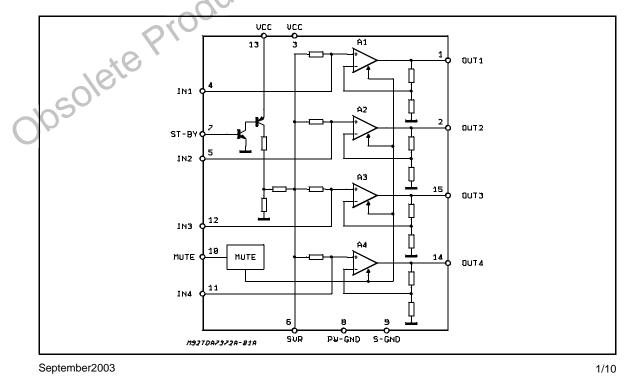
4 x 6W POWER AMPLIFIER FOR CAR RADIO

- HIGH POWER CAPABILITY: 4x6W min/4Ω @14.4V, 1KHz, 10% 4x10W typ/2Ω @14.4V, 1KHz, 10%
- MINIMUM EXTERNAL COMPONENT COUNT
 INTERNALLY FIXED GAIN (20dB)
 NO BOOTSTRAP CAPACITORS
 - NO EXTERNAL COMPENSATION
- ST-BY FUNCTION (CMOS COMPATIBLE)
- MUTE FUNCTION (CMOS COMPATIBLE)
- NO AUDIBLE POP DURING MUTE/ST-BY OPERATIONS
- LOW SUPPLY SELF MUTING
- PROGRAMMABLE TURN ON DELAY

PROTECTIONS:

- AC OUTPUT SHORT CIRCUIT TO GND
- DC OUTPUT SHORT CIRCUIT TO GND AND TO V_S AT POWER ON
- SOFT THERMAL LIMITER
- OVERRATING CHIP TEMPERATURE
- LOAD DUMP VOLTAGE

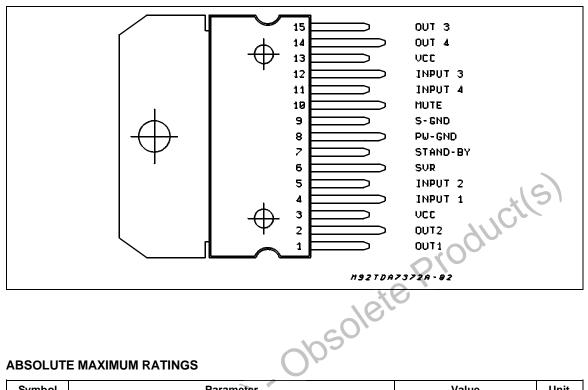
BLOCK DIAGRAM



- FORTUITOUS OPEN GND
- REVERSED BATTERY
- ESD PROTECTION

DESCRIPTION

The TDA7372A is a new technology class AB quad channels Audio Power Amplifier in Multiwatt15 package designed for car radio applications.


Thanks to the fully complementary PNP/NPN output configuration the TDA7372A delivers a rail to rail voltage swing with no need of boostrap capacitors.

This is advanced information on a new product now in development or undergoing evaluation. Details are subject to change without notice.

TDA7372A

PIN CONNECTION (Top view)

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	DC Supply Voltage	28	V
VOP	Operating Supply Voltage	18	V
V_{PEAK}	Peak Supply Voltage (t = 50ms)	50	V
lo	Output Peak Current (not rep. t = 100µs)	4	А
lo	Output Peak Current (rep. f > 10Hz)	3	А
P _{tot}	Power Dissipation (T _{case} = 85°C)	32	W
T _{stg} , T _j	Storage and Junction Temperature	-40 to 150	°C
psol			

THERMAL DATA

Symbol	Description	Value	Unit	
R _{th j-case}	Thermal Resistance Junction-case	Max	2	°C/W

Supply Range		Min.	Тур.	Max.	Unit
Total Quiacoant Drain Current		8		18	V
Total Quiescent Drain Current				150	mA
Output Power	$R_L = 4\Omega$; THD = 10% each channel	6	6.5		W
	$R_L = 2\Omega$; THD = 10% each channel		10		W
Distortion			0.04	0.3	%
Cross Talk	f = 1kHz; R _g = 0 f = 10kHz; R _g = 0	54	60 55		dB dB
Input Impedance		35		.19	ΚΩ
Voltage Gain		19	20	21	dB
Voltage Gain Match.			11	1	dB
	@ -3dB	100	0		KHz
Output Noise Voltage (*)	$R_{q} = 0$	~	5	120	μV
Supply Voltage Rejection		48			dB
		80			dB
	Vpin7 = 1.5V			100	μA
				30	μA
·	Output Under Short (Max			5	mA
ST-BY IN Threshold Voltage				1.5	V
ST-BY OUT Threshold Voltage		3.5			V
MUTE Attenuation			80		dB
MUTE IN Threshold Voltage				1.5	V
MUTE OUT Threshold Voltage		3.5			V
	Cross Talk Input Impedance Voltage Gain Voltage Gain Match. Bandwidth Output Noise Voltage (*) Supply Voltage Rejection Stand-by Attenuation ST-BY Current Consumption ST-BY Pin Current ST-BY IN Threshold Voltage ST-BY OUT Threshold Voltage	Distortion $R_L = 4\Omega;$ $P_O = 0.1 to 3W$ Cross Talk $f = 1kHz; R_g = 0$ $f = 10kHz; R_g = 0$ Input Impedance $Voltage Gain$ Voltage Gain Match. $@$ -3dBBandwidth $@$ -3dBOutput Noise Voltage (*) $R_g = 0$ Supply Voltage Rejection $R_g = 0; f = 100Hz$ Stand-by Attenuation $Vpin7 = 1.5V$ ST-BY Current ConsumptionVpin7 = 1.5VST-BY Pin CurrentPlay mode; Vpin7 = 5VOutput Under Short (Max driving current under fault)ST-BY OUT Threshold VoltageMUTE AttenuationMUTE IN Threshold Voltage	Distortion $R_L = 4\Omega;$ $P_O = 0.1 to 3W$ Cross Talk $f = 1kHz; R_g = 0$ $f = 10kHz; R_g = 0$ 54Input Impedance35Voltage Gain19Voltage Gain Match.9Bandwidth@ -3dB100Output Noise Voltage (*) $R_g = 0$ Supply Voltage Rejection $R_g = 0; f = 100Hz$ 48Stand-by Attenuation80ST-BY Current ConsumptionVpin7 = 1.5VST-BY Pin CurrentPlay mode; Vpin7 = 5VOutput Under Short (Max driving current under fault)3.5ST-BY OUT Threshold Voltage3.5MUTE Attenuation3.5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Distortion $R_L = 4\Omega;$ $P_O = 0.1 to 3W$ 0.040.3Cross Talk $f = 1kHz; R_g = 0$ $f = 10kHz; R_g = 0$ 5460 55Input Impedance3510Voltage Gain192021Voltage Gain Match.192021Bandwidth@ -3dB1001Output Noise Voltage (*) $R_g = 0$ 120Supply Voltage Rejection $R_g = 0; f = 100Hz$ 48Stand-by Attenuation80100ST-BY Current ConsumptionVpin7 = 1.5V100ST-BY Pin CurrentPlay mode; Vpin7 = 5V30Output Under Short (Max driving current under fault)5ST-BY OUT Threshold Voltage3.51.5MUTE Attenuation801.5

ELECTRICAL CHARACTERISTICS (Refer to the test circuit; $V_S = 14.4V$; $R_L = 4\Omega$, $T_{amb} = 25^{\circ}C$, f = 1kHz, unless otherwise specified)

TEST AND APPLICATION CIRCUIT

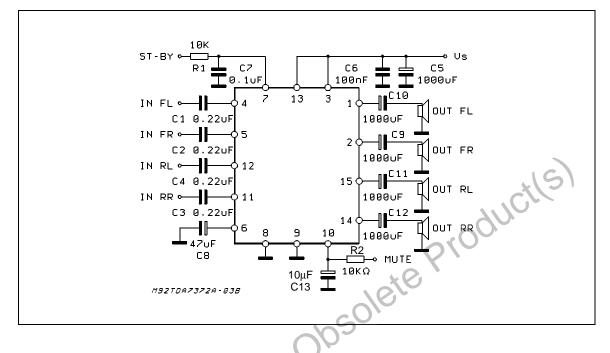
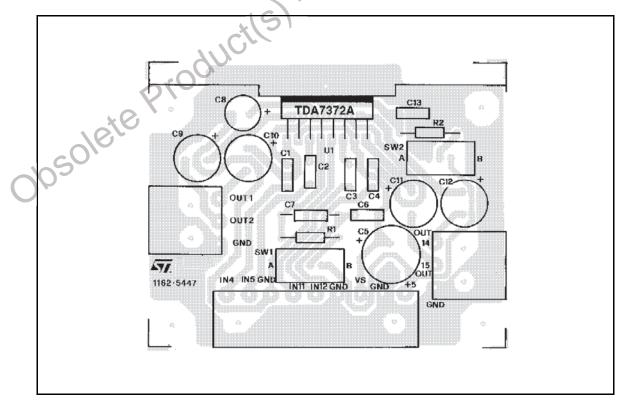



Figure 1: P.C. Board and components layout of the Test and Application Circuit (1:1 scale)

10

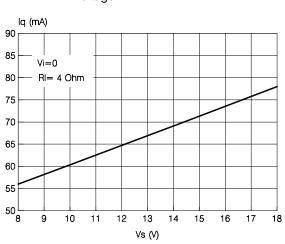


Figure 4: Output Power vs Supply Voltage

THD= 10 %

THD= 1 %

Po (W)

RL= 2 Ohm

f= 1 KHz

14

13

12

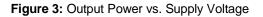
11

10

9 8

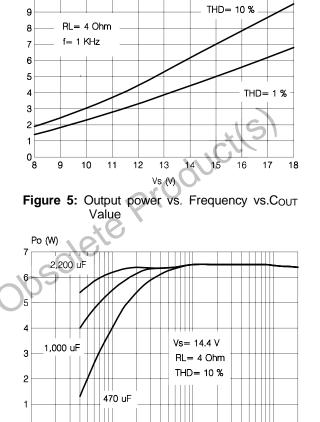
7

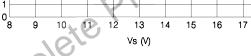
6

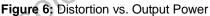

5

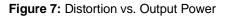
4

З

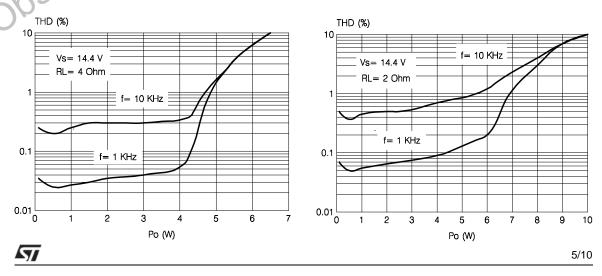

2


Figure 2: Quiescent Drain Current vs. Supply Voltage




Po (W)

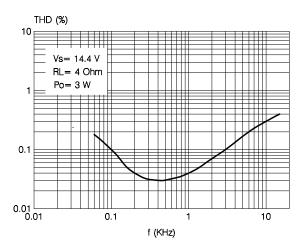
11 10



1

f (KHz)

0.1



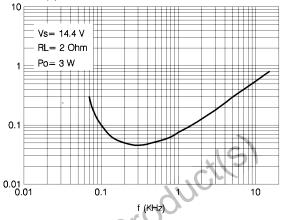
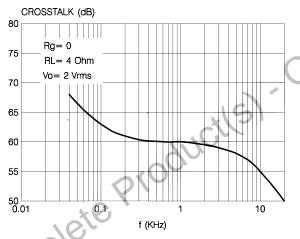
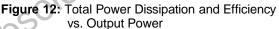

0└─ 0.01

Figure 8: Distortion vs. Frequency


Figure 9: Distortion vs. Frequency


THD (%)

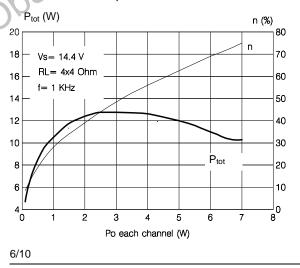


Figure 11: Supply Voltage Rejection vs. Frequency

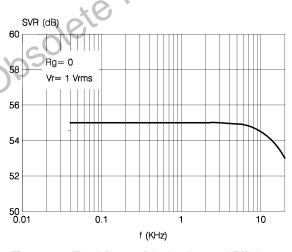
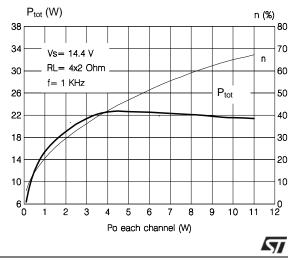



Figure 13: Total Power Dissipation and Efficiency vs. Output Power

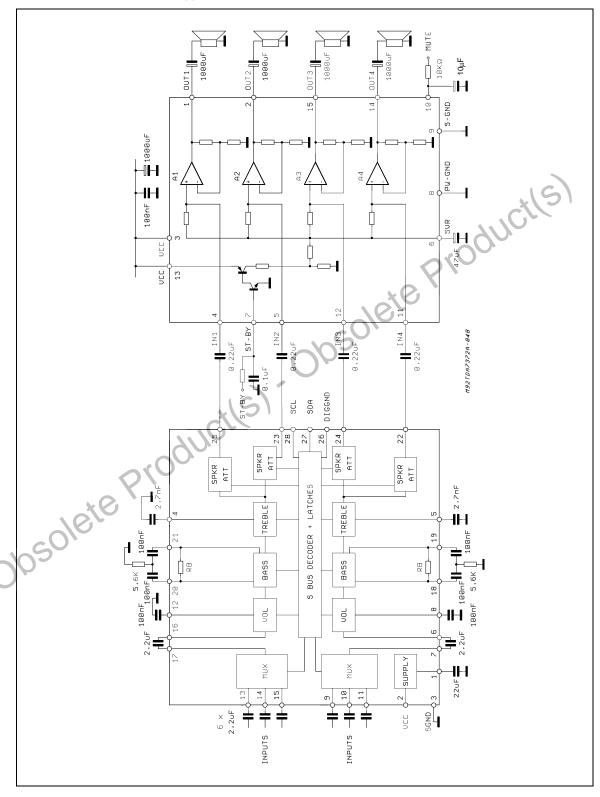
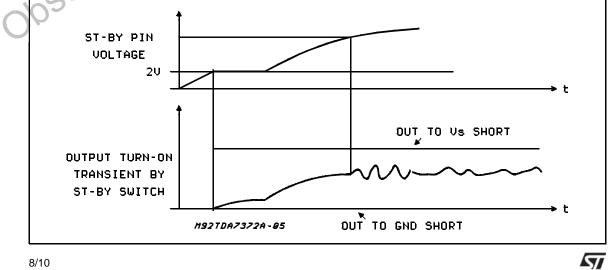
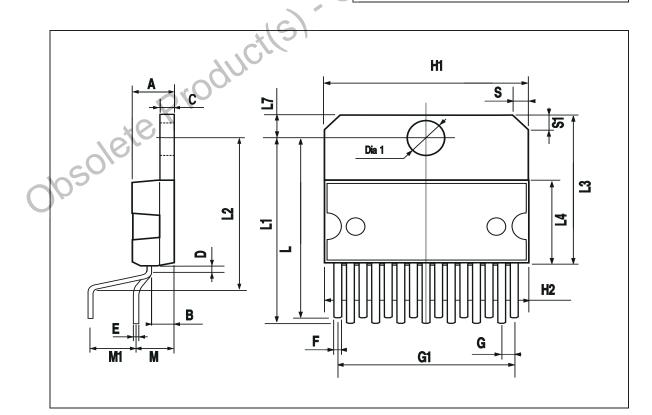



Figure 14: TDA7313 + 7372 Application Circuit


FUNCTIONAL DESCRIPTION

Function	Description
GENERAL	The TDA7372A is a quad channel single package audio power amplifier intended to reduce the mismatch in the electrical characteristics among the four different channels and to consistently drop the external component count. It contains four non inverting stages capable to operate down to 20dB gain so minimizing the output noise and optimizing SVR and distortion.
OUTPUT STAGE	The output stage is a single ended type suitable to drive 4Ω loads. It consists of a class AB fully complementary PNP/NPN stages short circuit protected. A rail to rail output swing is achieved without need of boostrap capacitors. Moreover, the external compensation is not necessary.
ST-BY	The device features a St-BY function which shuts down the internal bias generators when the ST-BY input is low. In ST-BY mode the amplifier sinks a small current (in the range of few μ As). When the St-BY pin is high the IC becomes fully operational.
MUTE	A mute function is also provided. This reduces the gain of the input stage to a level effectively eliminating any audio input influence on the output stage when the mute line is low. When the mute line is high the normal input path is restored. The device goes automatically into mute state when the supply voltage goes below the minimum allowable value. This prevents pop noises whenever the battery voltage drops below a fixed threshold. When the supply voltage rises to it nominal value the device recovers the play condition with a delay fixed by the C_{SVR} capacitor.
THERMAL PROTECTION	The Thermal protection principle involves two different steps a) Soft thermal limitation b) Shutdown As long as the junction temperature remains below a preset threshold, the I.C. will deliver the full power. Once the threshold has been reached, the device automatically goes into mute status. The play to mute transition is internally controlled so producing a soft muting without unpleasant effect. Supposing the junction temperature does not reduce to safe levels, a complete shutdown will occur.
BUILT-IN SHORT CIRCUIT PROTECTION	A built-in protection circuit assures reliable and safe operation in presence of: - AC short circuit to GND - DC short circuit to GND and to V _S during power-on phase The DC short protector acts in a way to avoid that the device is being turned on (by ST-BY) when a DC short is present from OUT to GND or OUT to V _S . Due to this reason it is necessary to introduce a proper delay on the st-by pin (expecially when it is driven by V _S .) Moreover, as the involved circuitry is normally disabled when a current higher than 5mA is fed into the st-by pin, it is important, in order not to disable it, to have the external current source driving the pin itself limited to 5mA. (figure 1 is shows the relevant waveforms).
10to	

Figure 15: Fault (DC short) waveforms

	1						
DIM.		mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
А			5			0.197	MECHANICAL DATA
В			2.65			0.104	
С			1.6			0.063	
D		1			0.039		
Е	0.49		0.55	0.019		0.022	
F	0.66		0.75	0.026		0.030	
G	1.02	1.27	1.52	0.040	0.050	0.060	
G1	17.53	17.78	18.03	0.690	0.700	0.710	
H1	19.6			0.772			
H2			20.2			0.795	
L	21.9	22.2	22.5	0.862	0.874	0.886	
L1	21.7	22.1	22.5	0.854	0.870	0.886	
L2	17.65		18.1	0.695		0.713	
L3	17.25	17.5	17.75	0.679	0.689	0.699	
L4	10.3	10.7	10.9	0.406	0.421	0.429	
L7	2.65		2.9	0.104		0.114	
Μ	4.25	4.55	4.85	0.167	0.179	0.191	XC
M1	4.63	5.08	5.53	0.182	0.200	0.218	
S	1.9		2.6	0.075		0.102	c'U'
S1	1.9		2.6	0.075		0.102	Multiwatt15 V
Dia1	3.65		3.85	0.144		0.152	

