

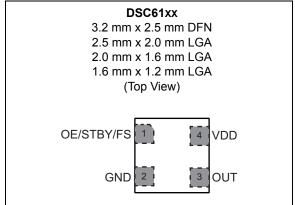
DSC61XX

Ultra-Small, Ultra-Low Power MEMS Oscillator

Features

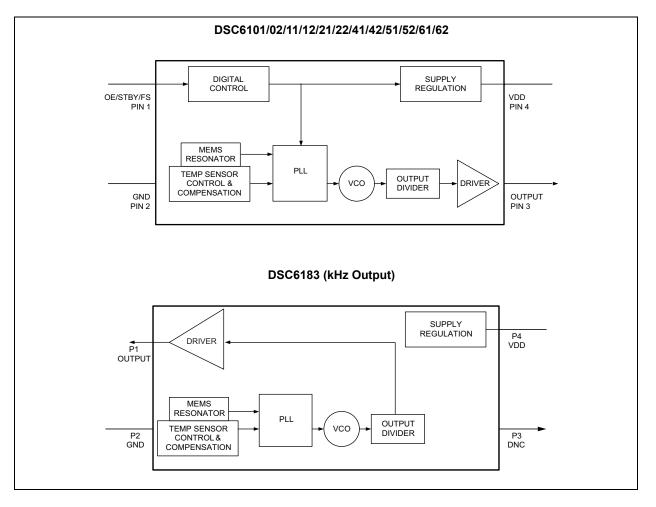
- Wide Frequency Range: 2 kHz to 100 MHz
- Ultra-Low Power Consumption: 3 mA/12 µA (Active/Standby)
- Ultra-Small Footprints
 - 1.6 mm imes 1.2 mm
 - 2.0 mm \times 1.6 mm
 - 2.5 mm imes 2.0 mm
 - 3.2 mm × 2.5 mm
- Frequency Select Input Supports Two Pre-Defined Frequencies
- High Stability: ±25 ppm, ±50 ppm
- Wide Temperature Range
 - Industrial: -40°C to 85°C
 - Ext. Commercial: -20° to 70°C
- Excellent Shock and Vibration Immunity
 - Qualified to MIL-STD-883
- High Reliability
 - 20x Better MTF Than Quartz Oscillators
- Supply Range of 1.71V to 3.63V
- Short Sample Lead Time: <2 weeks
- Lead Free & RoHS Compliant

Applications


- Low Power/Portable Applications: IoT, Embedded/Smart Devices
- Consumer: Home Healthcare, Fitness Devices, Home Automation
- Automotive: Rear View/Surround View Cameras, Infotainment System
- Industrial: Building/Factory Automation, Surveillance Camera

General Description

The DSC61xx family of MEMS oscillators combines the industry leading low power consumption and ultra-small packages with exceptional frequency stability and jitter performance over temperature. The single-output DSC61xx MEMS oscillators are excellent choices for use as clock references in small, battery-powered devices such as wearable and Internet of Things (IoT) devices in which small size, low power consumption, and long-term reliability are paramount. They also meet the stringent mechanical durability and reliability requirements within Automotive Electronics Council standard Q100 (AEC-Q100), so they are well suited for under-hood applications as well.


The DSC61xx family is available in ultra-small 1.6 mm x 1.2 mm and 2.0 mm x 1.6 mm packages. Other package sizes include: 2.5 mm x 2.0 mm and 3.2 mm x 2.5 mm. These packages are "drop-in" replacements for standard 4-pin CMOS quartz crystal oscillators.

Package Types

DSC61XX

Block Diagram

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings

Supply Voltage	
Input Voltage (V _{IN})	
ESD Protection	

ELECTRICAL CHARACTERISTICS

Electrical Characteristics	Unless othe	erwise indica	ated, V _{DI}	₀ = 1.8V –5% to	o 3.3V +1	0%, T _A = −40°C to 85°C.
Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Supply Voltage, Note 1	V _{DD}	1.71	_	3.63	V	—
Power Supply Ramp	t _{PU}	0.1		100	ms	Note 8
Active Supply Current	I _{DD}	_	3.0	—	mA	F _{OUT} = 27 MHz, V _{DD} = 1.8V, No Load
Standby Supply Current	lorny (_	12	—		V _{DD} = 1.8/2.5V
Note 2	I _{STBY}		80	—	μA	V _{DD} = 3.3V
Frequency Stability Note 3	Δf	_		±25 ±50	ppm	All temp ranges
Aging	٨f			±5	222	1st year @ 25°C
Aging	Δf	_	_	±1	ppm	Per year after first year
Startup Time	t _{SU}	_	_	1.3	ms	From 90% V _{DD} to valid clock output, T = 25°C
	V _{IH}	$0.7 \times V_{DD}$	_	—	V	Input Logic High
Input Logic Levels Note 4	V _{IL}	_		0.3 x V _{DD}	V	Input Logic Low
Output Disable Time Note 5	t _{DA}	_	_	200+Period	ns	—
Output Enable Time Note 6	t _{EN}	_	_	1	μs	_
Enable Pull-up Resistor Note 7	_	_	300	_	kΩ	If configured
	N					Output Logic High, I = 3 mA, Std. Drive
	V _{OH}	0.8 x V _{DD}	_	_	V	Output Logic High, I = 6 mA, High Drive
Output Logic Levels	V			0.2 × 1/	M	Output Logic Low, I = –3 mA, Std. Drive
	V _{OL}			0.2 x V _{DD}	V	Output Logic Low, I = -3 mA, High Drive

Note 1: Pin 4 V_{DD} should be filtered with 0.1 μ F capacitor.

- 2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at >3.3V V_{DD} .
- **3:** Includes frequency variations due to initial tolerance, temp. and power supply voltage.
- 4: Input waveform must be monotonic with rise/fall time < 10 ms
- 5: Output Disable time takes up to one period of the output waveform + 200 ns.
- 6: For parts configured with OE, not Standby.
- 7: Output is enabled if pad is floated or not connected.
- 8: Time to reach 90% of target V_{DD}. Power ramp rise must be monotonic.

ELECTRICAL CHARACTERISTICS (CONTINUED)

Electrical Characteristics	: Unless othe	erwise indica	ated, V _{DD}	₀ = 1.8V –5% te	o 3.3V +1	0%, T _A = -40°	C to 85°C.
Parameters	Sym.	Min.	Тур.	Max.	Units	Со	nditions
	L /L	_	1	1.5	ns	DSC61x2 High Drive,	V _{DD} = 1.8V
Output Transition Time	t _{RX} /t _{FX}	_	0.5	1.0	ns	20% to 80% C _L = 15 pF	V _{DD} = 2.5V/3.3V
Rise Time/Fall Time	1 <i>1</i> 1		1.2	2.0	ns	DSC61x1 Std Drive,	V _{DD} = 1.8V
	t _{RY} /t _{FY}	_	1.5	2.2	ns	20% to 80% C _L = 10 pF	V _{DD} = 2.5V/3.3V
Frequency	f ₀	0.002	_	100	MHz	Output on F	Pin 1 for < 1 MHz
Output Duty Cycle	SYM	45	_	55	%		_
Dariad litter DMO	1	_	9.5	11		F _{OUT} =	V _{DD} = 1.8V
Period Jitter, RMS	J _{PER}	_	7.5	9	ps _{RMS}	27 MHz	V _{DD} = 2.5V/3.3V
Cycle-to-Cycle Jitter		_	50	70		F _{OUT} =	V _{DD} = 1.8V
(peak)	J _{Cy–Cy}	_	35	60	ps	27 MHz	V _{DD} = 2.5V/3.3V

Note 1: Pin 4 V_{DD} should be filtered with 0.1 μF capacitor.

2: Not including current through pull-up resistor on EN pin (if configured). Higher standby current seen at >3.3V V_{DD} .

3: Includes frequency variations due to initial tolerance, temp. and power supply voltage.

4: Input waveform must be monotonic with rise/fall time < 10 ms

5: Output Disable time takes up to one period of the output waveform + 200 ns.

6: For parts configured with OE, not Standby.

7: Output is enabled if pad is floated or not connected.

8: Time to reach 90% of target V_{DD} . Power ramp rise must be monotonic.

TEMPERATURE SPECIFICATIONS (Note 1)

Parameters	Sym.	Min.	Тур.	Max.	Units	Conditions
Temperature Ranges						
Junction Operating Temperature	TJ	_	_	+150	°C	—
Ambient Operating Temperature	T _A	-40	_	+85	°C	Industrial
Ambient Operating Temperature	T _A	-20	—	+70	°C	Extended Commercial
Storage Ambient Temperature Range	T _A	-55	—	+150	°C	—
Soldering Temperature	Τ _S		+260	_	°C	40 sec. max.

Note 1: The maximum allowable power dissipation is a function of ambient temperature, the maximum allowable junction temperature and the thermal resistance from junction to air (i.e., T_A, T_J, θ_{JA}). Exceeding the maximum allowable power dissipation will cause the device operating junction temperature to exceed the maximum +150°C rating. Sustained junction temperatures above +150°C can impact the device reliability.

2.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 2-1 and Table 2-2.

TABLE 2-1: DSC6101/02/11/12/21/22/41/42/51/52/61/62 PIN FUNCTION TABLE (OUTPUT FREQUENCY ≥1 MHZ)

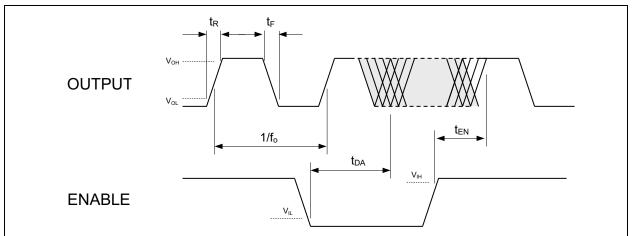
Pin Number	Pin Name	Pin Type	Description
	OE		Output Enable: H = Specified Frequency Output, Note 1 L = Output is high impedance
1	STBY	I	Standby: H = Specified Frequency Output, Note 1 L = Output is high impedance. Device is in low power mode, supply current is at I _{STBY}
	FS		Frequency Select: H = Output Frequency 1, Note 2 L = Output Frequency 2
2	GND	Power	Power supply ground
3	Output	0	Oscillator clock output
4	VDD	Power	Power supply

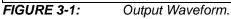
Note 1: DSC610x/1x/2x has 300 kΩ internal pull-up resistor on pin1. DSC614x/5x/6x has no internal pull-up resistor on pin1 and needs external pull-up or being driven by other chip.

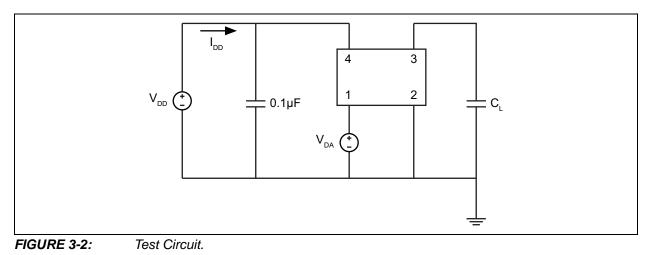
- 2: Two pre-programmed frequencies can be configured at http://clockworks.microchip.com/timing/
- 3: Bypass with 0.1 μ F capacitor placed as close to V_{DD} pin as possible.

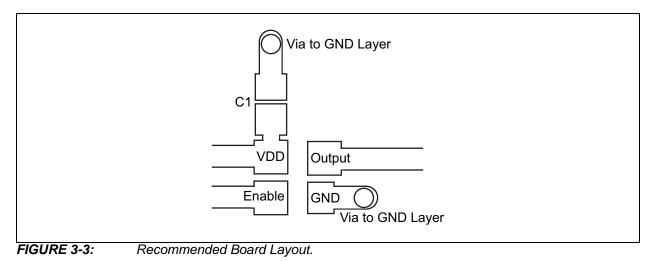
TABLE 2-2: DSC6183 PIN FUNCTION TABLE (OUTPUT FREQUENCY <1 MHZ)

Pin Number	Pin Name	Pin Type	Description
1	Output	0	Kilohertz Oscillator clock output
2	GND	Power	Power supply ground
3	DNC	DNC	Do Not Connect
4	VDD	Power	Power supply, Note 1

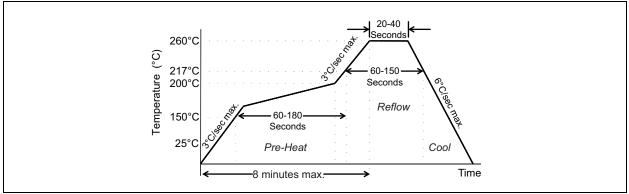

Note 1: Bypass with 0.1 μ F capacitor placed as close to V_{DD} pin as possible.

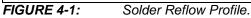

2.1 Output Buffer Options


DSC61xx family is available in multiple output driver configurations.

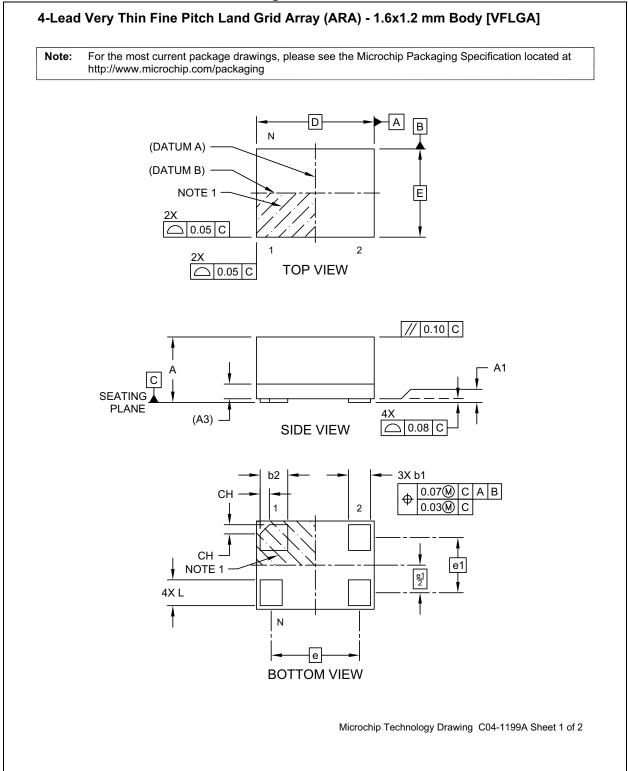

The standard-drive (61x1) and high-drive (61x2) deliver respective output currents of greater than 3 mA and 6 mA at 20%/80% of the supply voltage. For heavy loads of 15 pF or higher, the high-drive option is recommended.

3.0 DIAGRAMS



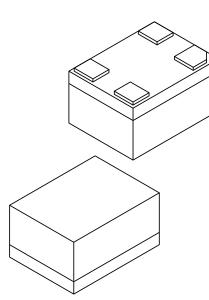


4.0 SOLDER REFLOW PROFILE



MSL 1 @ 260°C refer to JS	TD-020C
Ramp-Up Rate (200°C to Peak Temp)	3°C/sec. max.
Preheat Time 150°C to 200°C	60 to 180 sec.
Time maintained above 217°C	60 to 150 sec.
Peak Temperature	255°C to 260°C
Time within 5°C of actual Peak	20 to 40 sec.
Ramp-Down Rate	6°C/sec. max.
Time 25°C to Peak Temperature	8 minutes max.

5.0 PACKAGING INFORMATION


4-Lead VFLGA 1.6 mm x 1.2 mm Package Outline

4-Lead VFLGA 1.6 mm x 1.2 mm Package Outline

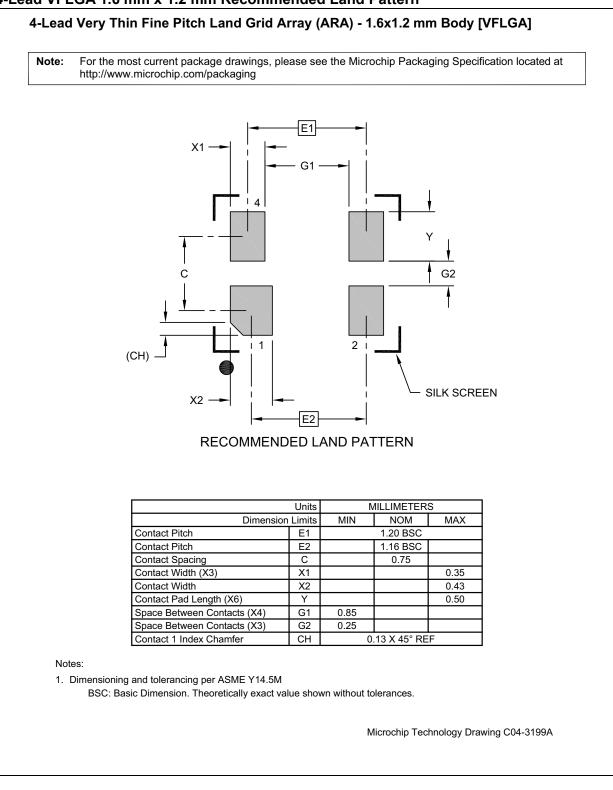
4-Lead Very Thin Fine Pitch Land Grid Array (ARA) - 1.6x1.2 mm Body [VFLGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

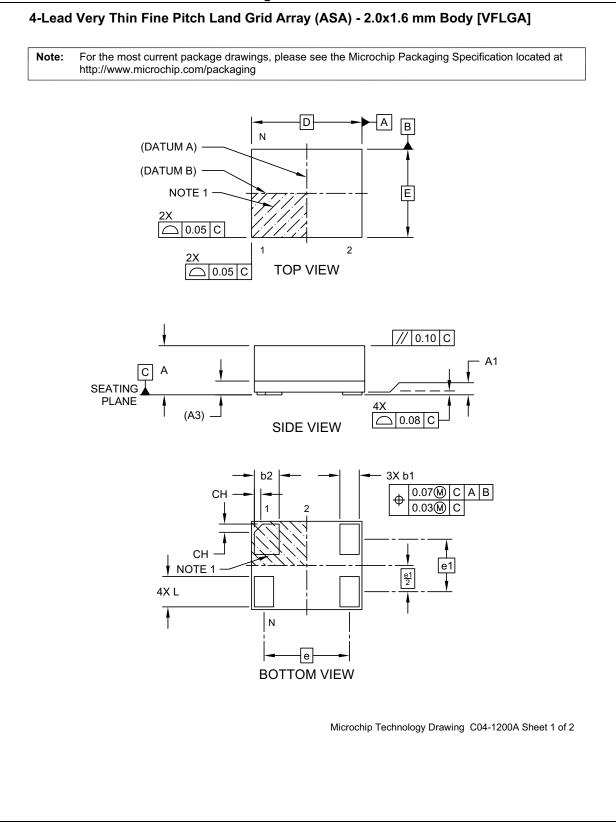
	Units	N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Terminals	N		4	
Terminal Pitch	е		1.20 BSC	
Terminal Pitch	e1		0.75 BSC	
Overall Height	Α	0.79	0.84	0.89
Standoff	A1	0.00	0.02	0.05
Substrate Thickness (with Terminals)	A3		0.20 REF	
Overall Length	D		1.60 BSC	
Overall Width	Е		1.20 BSC	
Terminal Width	b1	0.25	0.30	0.35
Terminal Width	b2	0.325	0.375	0.425
Terminal Length	L	0.30	0.35	0.40
Terminal 1 Index Chamfer	СН	-	0.125	-

Notes:

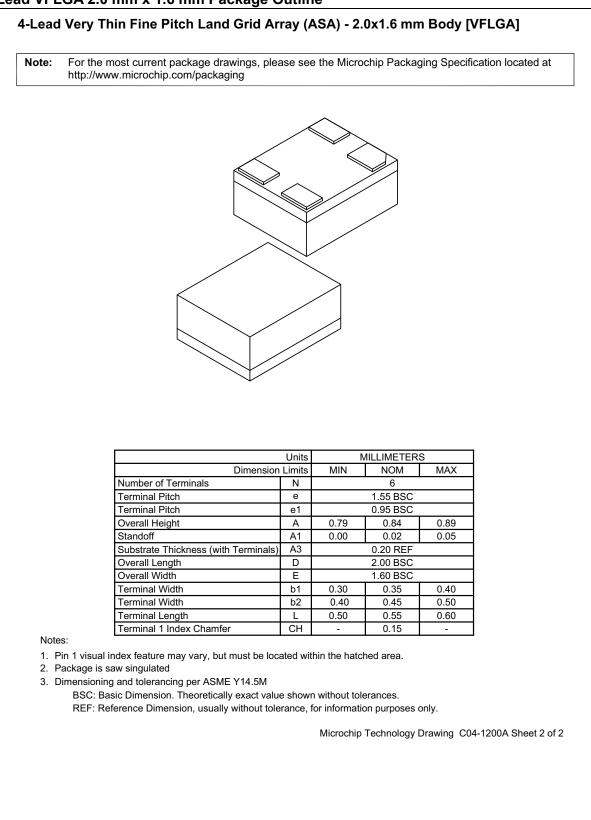
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

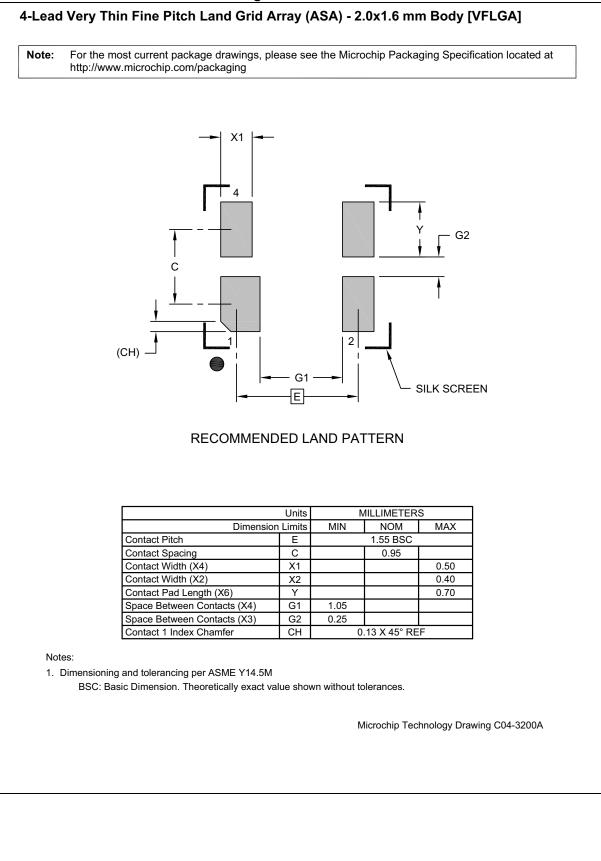

2. Package is saw singulated

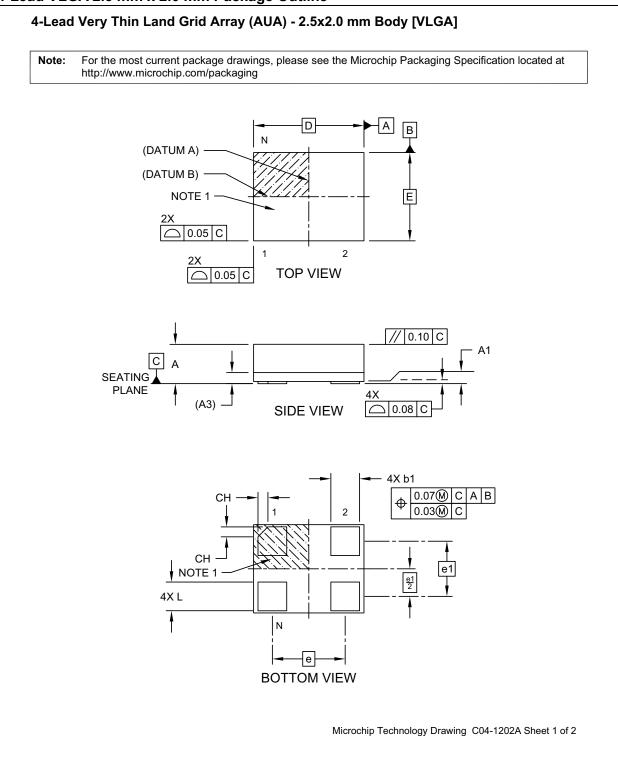
3. Dimensioning and tolerancing per ASME Y14.5M

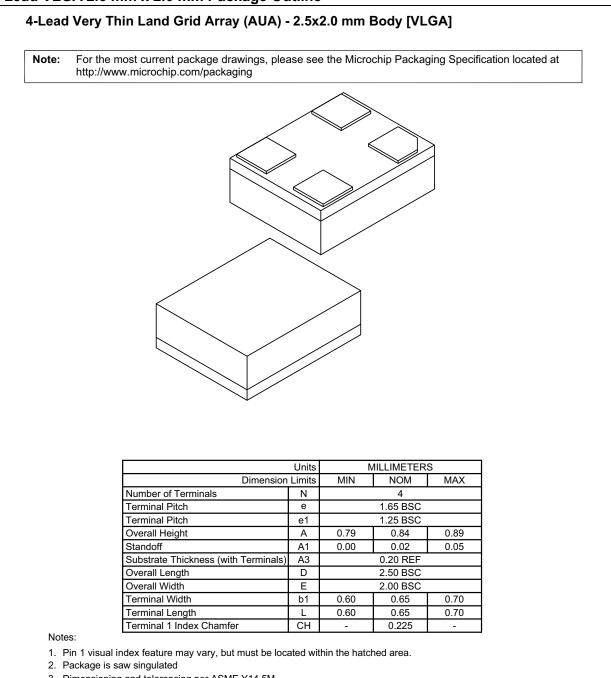

BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1199A Sheet 2 of 2


4-Lead VFLGA 1.6 mm x 1.2 mm Recommended Land Pattern

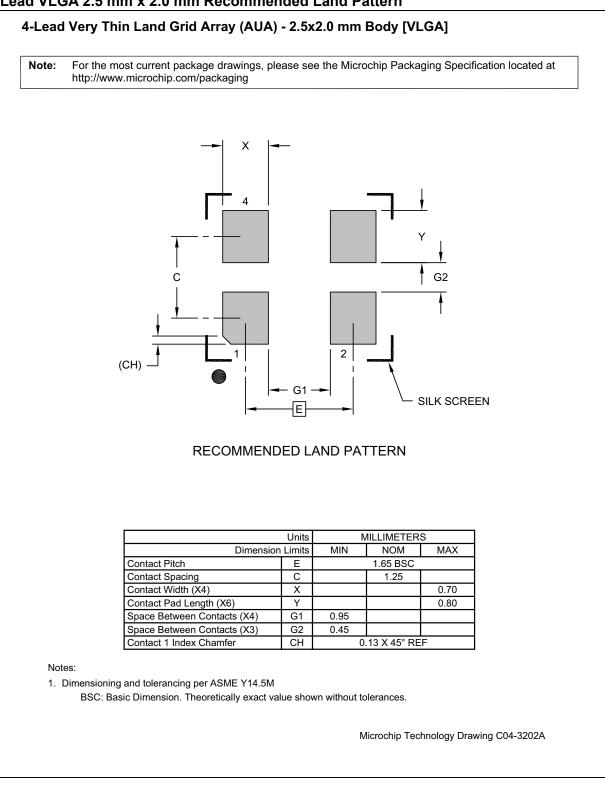

4-Lead VFLGA 2.0 mm x 1.6 mm Package Outline


4-Lead VFLGA 2.0 mm x 1.6 mm Package Outline

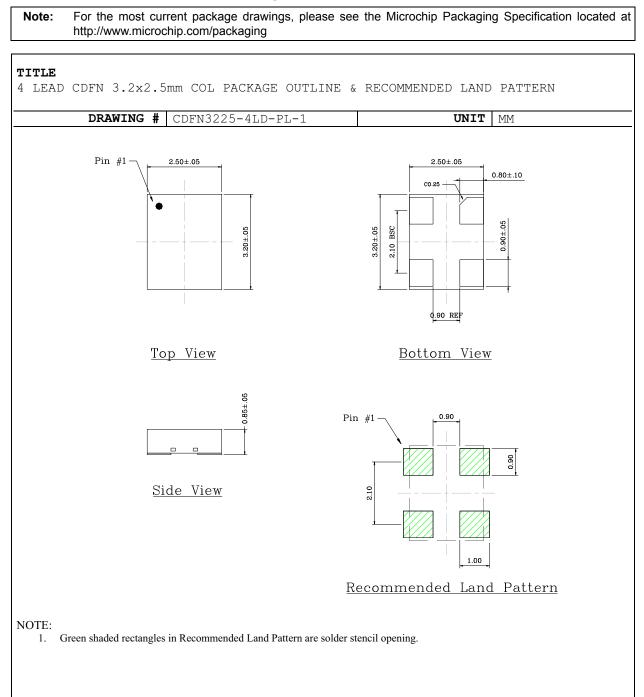

4-Lead VFLGA 2.0 mm x 1.6 mm Package Outline

4-Lead VLGA 2.5 mm x 2.0 mm Package Outline

4-Lead VLGA 2.5 mm x 2.0 mm Package Outline



 Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-1202A Sheet 2 of 2

4-Lead VLGA 2.5 mm x 2.0 mm Recommended Land Pattern

4-Lead CDFN 3.2 mm x 2.5 mm Package Outline and Recommended Land Pattern

APPENDIX A: REVISION HISTORY

Revision A (September 2016)

Initial release of DSC61xx Microchip data sheet DS20005624A.

Revision B (September 2017)

- Added Power Supply Ramp value in Electrical Characteristics table.
- Redrew diagrams for clarity. No technical content affected.

DSC61XX

NOTES:

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, contact your local Microchip representative or sales office.

X Package GC61xx: election	Range Ultra-Low Pin 1 OE STBY FS OE STBY FS KHz Output Standard High 4-Lead 3.2 4-Lead 2.5 4-Lead 2.0	X X - XXX.X Frequency Revision Frequency Stability w Power MEMS Oscillator Internal Pull-Up Register Pull-up Pull-up Pull-up None	XX X Inncy Tape and Reel	Ultra- with li 2.5 m ±25 p 100/B b) DSC61 Ultra- Intern 1.6 m Temp Frequ c) DSC61 Ultra- with li 2.0 m ±25 p	 I12JI2A-100.0000: -Low Power MEMS Oscillator, Pin1 = Standby internal Pull-Up, High Drive Strength, 4-Lead im x 2.0 mm VLGA, Industrial Temperature, up Stability, Revision A, 100 MHz Frequency, Bag I01HE1A-016.0000T: -Low Power MEMS Oscillator, Pin1 = OE with the Pull-Up, Standard Drive Strength, 4-Lead im x 1.2 mm VFLGA, Extended Commercial, ±50 ppm Stability, Revision A, 16 MHz uency, 1,000/Reel I21MI2A-005Q: -Low Power MEMS Oscillator, Pin1 = Freq. Select internal Pull-Up, Standard Drive Strength, 4-Lead im x 1.6 mm VFLGA, Industrial Temperature, up Stability, Revision A, Two Frequencies gured through ClockWorks, 100/Bag Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option.
=	OE STBY FS OE STBY FS kHz Output Standard High 4-Lead 3.2 4-Lead 2.5 4-Lead 2.0	Pull-up Pull-up Pull-up None None None None Semm x 2.5 mm DFN 5 mm x 2.5 mm VLGA		b) DSC61 Ultra- Intern 1.6 m Temp Frequ C) DSC61 Ultra- with li 2.0 m ±25 p Config	I01HE1A-016.0000T: -Low Power MEMS Oscillator, Pin1 = OE with Ial Pull–Up, Standard Drive Strength, 4-Lead Im x 1.2 mm VFLGA, Extended Commercial ., ±50 ppm Stability, Revision A, 16 MHz Iency, 1,000/Reel I21MI2A-005Q: -Low Power MEMS Oscillator, Pin1 = Freq. Selec Internal Pull-Up, Standard Drive Strength, 4-Lead Im x 1.6 mm VFLGA, Industrial Temperature, Im Stability, Revision A, Two Frequencies gured through ClockWorks, 100/Bag Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package
=	High 4-Lead 3.2 4-Lead 2.5 4-Lead 2.0	5 mm x 2.0 mm VLGA) mm x 1.6 mm VFLGA		Note 1:	catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package
=	4-Lead 2.5 4-Lead 2.0	5 mm x 2.0 mm VLGA) mm x 1.6 mm VFLGA			with your Microchip Sales Office for package
=	4-Leau 1.0	S mm x 1.2 mm VFLGA			
= =		-70°C (Extended Commercia +85°C (Industrial))		
= =	± 50 ppm ± 25 ppm				
=	Revision A	۱.			
xkxxx =	001.0000 l User-Define and 999.99	MHz and 100.0000 MHz ed Frequency between 002.0 99 kHz onfiguration code when pin 1	= FS.		
lank>= =	100/Bag 1,000/Ree	I			
×	kkxxx = kx = F lank>=	<pre>k.xxxx = User-Defin 001.0000 kkxxx = User-Defin and 999.9 cx = Frequency cx Configure lank>= 100/Bag</pre>	and 999.999 kHz x = Frequency configuration code when pin 1 Configure the part online through Clock lank>= 100/Bag	 xxxx = User-Defined Frequency between 001.0000 MHz and 100.0000 MHz user-Defined Frequency between 002.000 kHz and 999.999 kHz Frequency configuration code when pin 1 = FS. Configure the part online through ClockWorks lank>= 100/Bag 	 xxxx = User-Defined Frequency between 001.0000 MHz and 100.0000 MHz xxxx = User-Defined Frequency between 002.000 kHz and 999.999 kHz xx = Frequency configuration code when pin 1 = FS. Configure the part online through ClockWorks lank>= 100/Bag

Note 1: Please visit Microchip ClockWorks[®] Configurator Website to configure the part number for customized frequency. http://clockworks.microchip.com/timing/.

DSC61XX

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR, AVR logo, AVR Freaks, BeaconThings, BitCloud, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KEELoa, KEELoa logo, Kleer, LANCheck, LINK MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC, SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company, EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS, mTouch, Precision Edge, and Quiet-Wire are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BodyCom, chipKIT, chipKIT logo, CodeGuard, CryptoAuthentication, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix, RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2017, Microchip Technology Incorporated, All Rights Reserved. ISBN: 978-1-5224-0961-8

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway

Harbour City, Kowloon Hong Kong Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

Fax: 852-2401-3431

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-3326-8000 Fax: 86-21-3326-8021

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256 ASIA/PACIFIC

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

France - Saint Cloud Tel: 33-1-30-60-70-00

Germany - Garching Tel: 49-8931-9700 **Germany - Haan** Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-67-3636

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7289-7561

Poland - Warsaw Tel: 48-22-3325737

Romania - Bucharest Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820