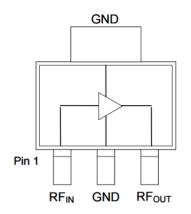
Low Noise Amplifier 5 - 4000 MHz

Features

- Single Stage, Single Ended
- 75 Ω CATV, 5 1218 MHz
- 21 dB Flat Gain
- 1 dB Noise Figure
- 50 Ω System, 5 2000 MHz
- 17 dB Gain
- 1.5 dB NF @ 1.5 GHz
- 17 dB Maximum Available Gain @ 4 GHz
- Adjustable Current, 20 85 mA
- Excellent Return Loss
- Low Distortion Performance
- 3 V to 5 V Operation
- Lead-Free SOT-89 Plastic Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant


Description

The MAAL-011139 is an RF amplifier assembled in a SOT-89 plastic package. In a 75 Ω CATV application, the amplifier provides 21.5 dB of flat gain while biased from 3 to 5 volts. The amplifier provides superior noise figure while maintaining excellent return losses. Gain and current may be optimized with adjustment of external component values.

The MAAL-011139 provides high gain, low noise and low distortion making it ideally suited as input stage for fiber-to-the-home (FTTh) applications and other 75 Ω infrastructure applications. It can support both upstream (5 - 204 MHz) and downstream (45 - 1218 MHz) CATV operation.

The MAAL-011139 can also be matched into a 50-ohm system. In a broadband 50 - 2000 MHz application, the amplifier provides 17 dB of flat gain. The MAAL-011139 offers 17 dB of available gain beyond 4 GHz.

Functional Schematic

Pin Configuration

Pin No.	Pin Name	Function
1	RF _{IN}	RF Input
2	GND	Ground
3	RF _{OUT}	RF Output / V _{DD}

Ordering Information^{1,2}

Part Number	Package
MAAL-011139-TR1000	1000 Part Reel
MAAL-011139-TR3000	3000 Part Reel
MAAL-011139-DSBSMB	Sample Board 45 - 1218 MHz
MAAL-011139-USBSMB	Sample Board 5 - 300 MHz
MAAL-011139-050SMB	Sample Board, 5 - 2000 MHz

1. Reference Application Note M513 for reel size information.

2. All production sample boards include 5 loose parts.

* Restrictions on Hazardous Substances, European Union Directive 2011/65/EU.

1

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Rev. V1

Low Noise Amplifier 5 - 4000 MHz

Rev. V1

Electrical Specifications: $T_A = 25^{\circ}C$, $V_{DD} = 5 V$, $Z_0 = 75 \Omega$, 45 - 1218 MHz Application

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	45 - 1218 MHz	dB	20.5	21.5	22.5
Gain Flatness	45 - 1218 MHz	dB		+/- 0.2	—
Reverse Isolation	45 - 1218 MHz	dB		25	—
Input Return Loss	45 - 1218 MHz	dB	_	23	_
Output Return Loss	45 - 1218 MHz	dB	_	23	_
Noise Figure	45 MHz 1218 MHz	dB	_	1.2 1.4	1.8
Output IP2	45 - 1200 MHz, tone spacing 6 MHz, P_{OUT} per tone = 0 dBm	dBm	_	42	_
Output IP3	45 - 1200 MHz, tone spacing 6 MHz, P_{OUT} per tone = 0 dBm	dBm	_	34	_
P1dB	45 -1218 MHz	dBm	_	19	_
Composite Triple Beat, CTB	79 channels, 0 dB Tilt, 32 dBmV per channel output, QAM to 1000 MHz	dBc	—	-68	_
Composite Second Order, CSO	79 channels, 0 dB Tilt, 32 dBmV per channel output, QAM to 1000 MHz	dBc	_	-61	_
I _{DD}	V _{DD} = 5 V	mA		85	100

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Input Power	17 dBm
Voltage	7 volts
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C
Junction Temperature ⁶	150°C

3. Exceeding any one or combination of these limits may cause permanent damage to this device.

MACOM does not recommend sustained operation near these survivability limits.

- 5. Operating at nominal conditions with $T_J \le 150^{\circ}$ C will ensure MTTF > 1 x 10⁶ hours.
- 6. Junction Temperature $(T_J) = T_C + \Theta_{JC}*(V*I)$ Typical thermal resistance $(\Theta_{JC}) = 63^{\circ}C/W$. a) For $T_C = 25^{\circ}C$, $T_J = 52^{\circ}C$ @ 5 V, 85 mA b) For $T_C = 85^{\circ}C$,

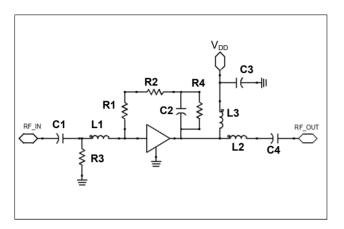
T_J= 108°C @ 5 V, 72 mA

2

Handling Procedures

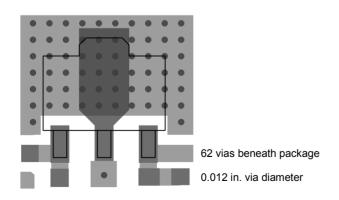
Please observe the following precautions to avoid damage:

Static Sensitivity


Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these Class 1C devices.

Rev. V1

Low Noise Amplifier 5 - 4000 MHz


Schematic Including Off-Chip Components 45 - 1218 MHz Application

Recommended PCB Layout

Recommended PCB Land Pattern

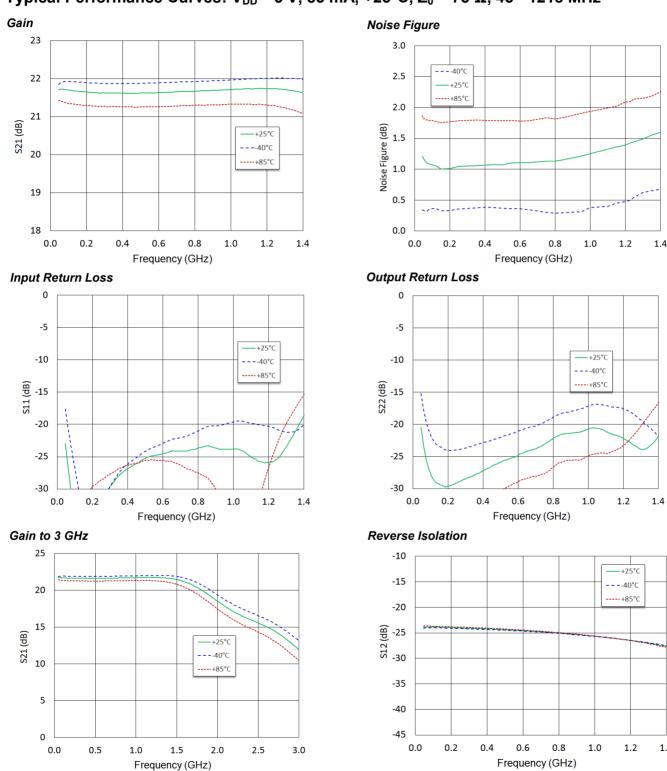
3

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Parts List, V_{DD} = 5 V, 85 mA

Component	Value	Package
C1 - C3	10 nF	0402
C4	270 pF	0402
L1	6.2 nH	0402
L2	3.3 nH	0402
L3	Ferrite Bead ⁷	0402
R1 - R2	510 Ω	0402
R3	10 kΩ	0402
R4	30.1 kΩ	0402

7. Murata, part number BLM15HD182SN.


The bias current can be adjusted to support lower noise figure and lower power consumption by removing external bias resistor R4 and replacing R3 as detailed below.

I _{DD}	R3 Value	Package
55 mA	Do Not Install	0402
40 mA	75 kΩ	0402
30 mA	39 kΩ	0402
20 mA	27 kΩ	0402

Low Noise Amplifier 5 - 4000 MHz

Rev. V1

Typical Performance Curves: V_{DD} = 5 V, 85 mA, +25°C, Z_0 = 75 Ω , 45 - 1218 MHz

4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

For further information and support please visit: https://www.macom.com/support

1.4

Low Noise Amplifier 5 - 4000 MHz

OIP3, Pour = +0 dBm/tone

45

40

35

30

25

20

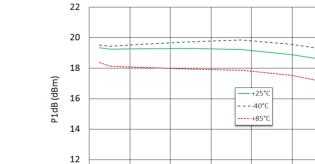
15

-55

-60

0.0

0.2


0 dB tilt, 32 dBmV per channel

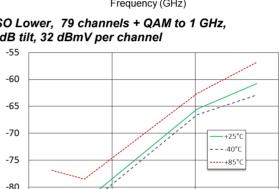
0.4

0.6

Frequency (GHz)

OIP3 (dBm)

0.4


0.6

Frequency (GHz)

0.8

0.2

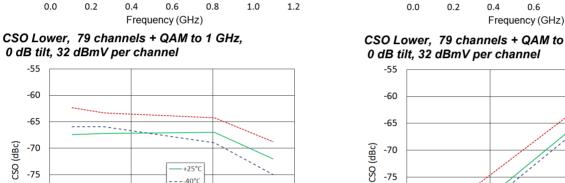
Frequency (GHz)

CSO Lower, 79 channels + QAM to 1 GHz,

OIP2, POUT = +0 dBm/tone

65 60

55


45

40

35

30

OIP2 (dBm) 50

-85

-90

10

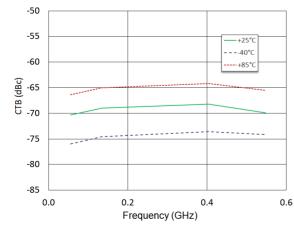
0.0

0.2

P1dB

0.0

Typical Performance Curves: V_{DD} = 5 V, 85 mA, +25°C, Z_0 = 75 Ω , 45 - 1218 MHz


+25°(

--40°0 -+85°0

0.8

-65 CSO (dBc) -70 -+25°C -75 ---40°C ----+85°(-80 -85 -90 0.0 0.2 0.4 0.6 Frequency (GHz)

CTB Lower, 79 channels + QAM to 1 GHz, 0 dB tilt, 32 dBmV per channel

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

5

1.2

1.0

+25°

-40°C

+85°(

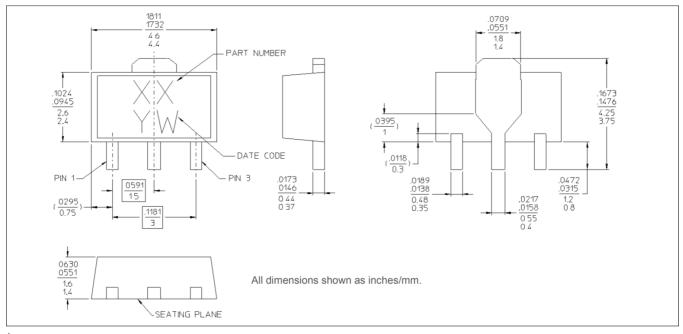
1.0

1.2

0.6

0.8

0.4


Rev. V1

Low Noise Amplifier 5 - 4000 MHz

Rev. V1

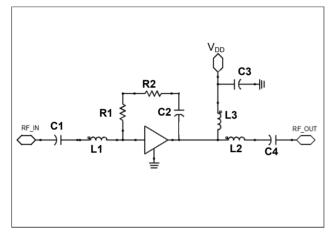
MACOM

Lead Free SOT-89[†]

 Reference Application Note S2083 for lead-free solder reflow recommendations. Meets JEDEC moisture sensitivity level 1 requirements. Plating is 100% matte tin over copper.

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Low Noise Amplifier 5 - 4000 MHz

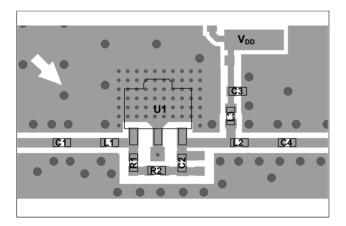


Rev. V1

Low Current and Low Noise Application Section

The MAAL-011139 can also be operated with lower current to support lower noise figure by removing 2 bias resistors, R3 and R4, as detailed below.

Schematic Including Off-Chip Components 45 - 1218 MHz Application



Parts List, V_{DD} = 5 V, 55 mA

Component	Value	Package
C1 - C3	10 nF	0402
C4	270 pF	0402
L1	6.2 nH	0402
L2	3.3 nH	0402
L3	Ferrite Bead ⁸	0402
R1 - R2	510 Ω	0402

8. Murata, part number BLM15HD182SN.

Recommended PCB Layout

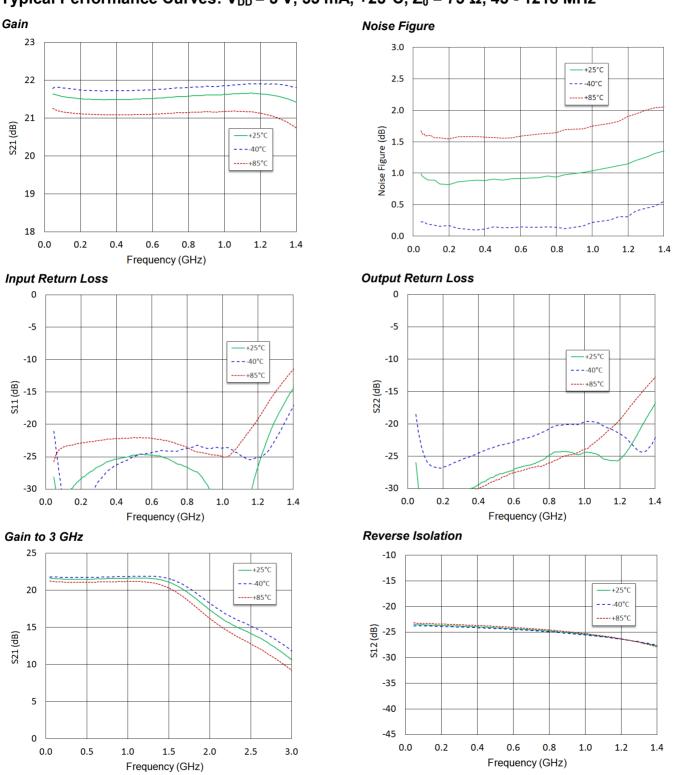
7

Low Noise Amplifier 5 - 4000 MHz

Low Current and Low Noise Application Section

Typical Performance: $T_A = 25^{\circ}C$, $V_{DD} = 5 V$, 55 mA, $Z_0 = 75 \Omega$, 45 - 1218 MHz Application

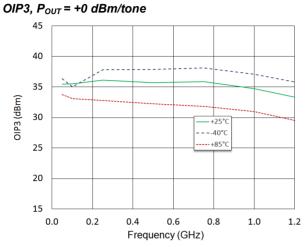
Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	45 - 1218 MHz	dB	_	21.5	
Gain Flatness	45 - 1218 MHz	dB	_	+/- 0.2	
Reverse Isolation	45 - 1218 MHz	dB	—	25	
Input Return Loss	45 - 1218 MHz	dB	_	23	
Output Return Loss	45 - 1218 MHz	dB		23	_
Noise Figure	45 MHz 1218 MHz	dB	_	1.0 1.2	_
Output IP2	45 - 1200 MHz, tone spacing 6 MHz, P_{OUT} per tone = 0 dBm	dBm	_	44	_
Output IP3	45 - 1200 MHz, tone spacing 6 MHz, P_{OUT} per tone = 0 dBm	dBm	_	35	_
P1dB	45 -1218 MHz	dBm		18	_
Composite Triple Beat, CTB	79 channels, 0 dB Tilt, 18 dBmV per channel output, QAM to 1000 MHz	dBc	_	-80	_
Composite Second Order, CSO	79 channels, 0 dB Tilt, 18 dBmV per channel output, QAM to 1000 MHz	dBc	—	-63	—
I _{DD}	V_{DD} = 5 V	mA	_	55	

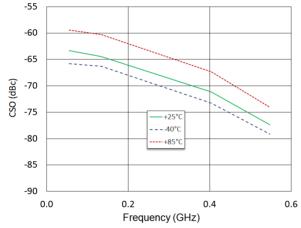

8

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

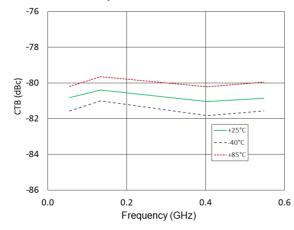
МАСОМ

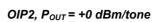
Low Noise Amplifier 5 - 4000 MHz


Rev. V1

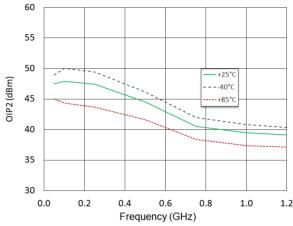

Typical Performance Curves: V_{DD} = 5 V, 55 mA, +25°C, Z_0 = 75 Ω , 45 - 1218 MHz

9

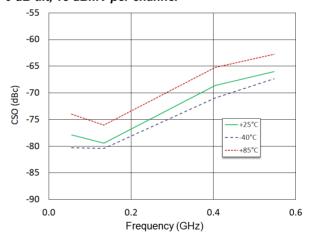

Low Noise Amplifier 5 - 4000 MHz

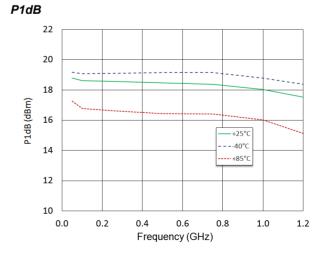


CSO Lower, 79 channels + QAM to 1 GHz, 0 dB tilt, 18 dBmV per channel



CTB Lower, 79 channels + QAM to 1 GHz, 0 dB tilt, 18 dBmV per channel





Typical Performance Curves: V_{DD} = 5 V, 55 mA, +25°C, Z_0 = 75 Ω , 45 - 1218 MHz

CSO Lower, 79 channels + QAM to 1 GHz, 0 dB tilt, 18 dBmV per channel

10

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

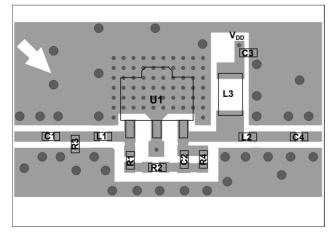
For further information and support please visit: <u>https://www.macom.com/support</u>

Rev. V1

МАСОМ

Low Noise Amplifier 5 - 4000 MHz

Rev. V1


5 - 300 MHz Application Section

The MAAL-011139 can be tuned for operation in the 5-300 MHz band for CATV reverse path (upstream) applications using alternate external tuning components.

Typical Performance: $T_A = 25^{\circ}C$, $V_{DD} = 5 V$, 85 mA, $Z_0 = 75 \Omega$, 5 - 300 MHz Application

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	5 - 300 MHz	dB	_	21.6	_
Gain Flatness	5 - 300 MHz	dB		+/- 0.2	—
Reverse Isolation	5 - 300 MHz	dB	-	25	_
Input Return Loss	5 - 300 MHz	dB	-	25	_
Output Return Loss	5 - 300 MHz	dB	-	22	_
Noise Figure	10 - 50 MHz 50 - 300 MHz	dB	-	3.1 1.2	—
Output IP2	5 - 300 MHz, tone spacing 6 MHz, P _{OUT} per tone = 0 dBm	dBm	—	55	_
Output IP3	5 - 300 MHz, tone spacing 6 MHz, P _{OUT} per tone = 0 dBm	dBm	-	34	_
P1dB	5 - 300 MHz	dBm	—	19	—
Noise Power Ratio	5 - 85 MHz, 41 MHz Notch, Peak NPR 5 - 204 MHz, 100 MHz Notch, Peak NPR	dB	_	65 61	_
I _{DD}	V_{DD} = 5 V	mA	—	85	—

Recommended PCB Layout 5 - 300 MHz Application

Parts List, V_{DD} = 5 V, 85 mA

Component	Value	Package
C1 - C3	10 nF	0402
C4	2200 pF	0402
L1	0 Ω	0402
L2	6.8 nH	0402
L3	22 μΗ ⁹	0806
R1 - R2	510 Ω	0402
R3	10 kΩ	0402
R4	30.1 kΩ	0402

9. Inductor from Murata, part number LQH2MCN220K02

11

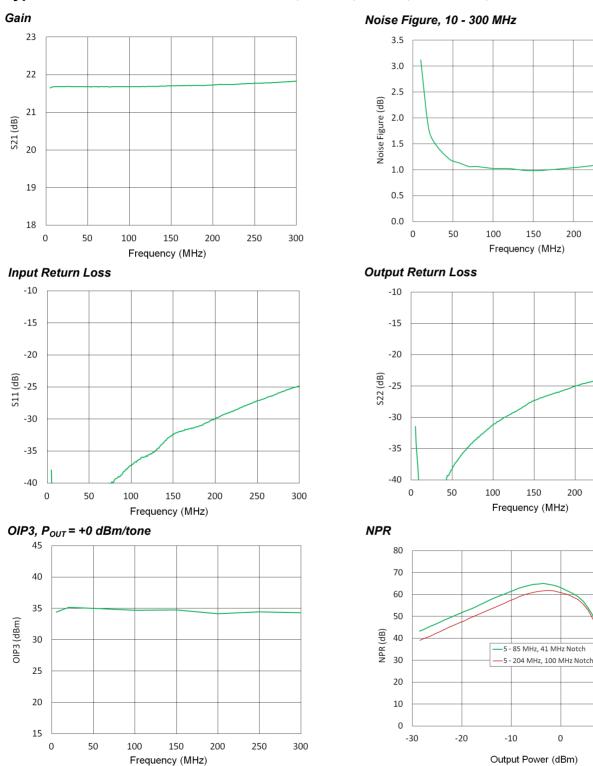
Low Noise Amplifier 5 - 4000 MHz

200

200

0

10


250

300

250

300

Rev. V1

Typical Performance Curves: V_{DD} = 5 V, 85 mA, +25°C, Z_0 = 75 Ω , 5 - 300 MHz

12

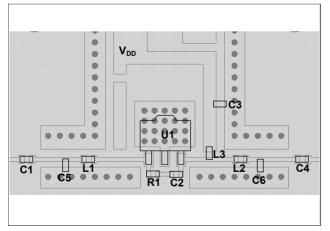
MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

20

MACOM

Low Noise Amplifier 5 - 4000 MHz

Rev. V1


50 Ω System Application Section

The MAAL-011139 can be used for 50-ohm system by using a 50 Ω evaluation board and alternate external tuning components.

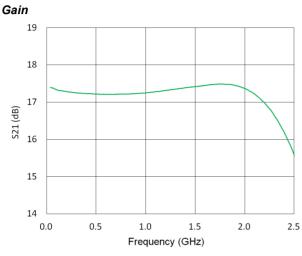
Typical Performance: $T_A = 25^{\circ}C$, $V_{DD} = 5 V$, 55 mA, $Z_0 = 50 \Omega$, 45 - 2000 MHz Application

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	45 - 2000 MHz	dB	_	17	_
Gain Flatness	45 - 2000 MHz	dB	-	+/- 0.2	—
Reverse Isolation	45 - 2000 MHz	dB	-	19	—
Input Return Loss	45 - 2000 MHz	dB	-	15	_
Output Return Loss	45 - 2000 MHz	dB	-	17	—
Noise Figure	45 MHz 2000 MHz	dB	_	1.5 1.8	
Output IP2	45 - 2000 MHz, tone spacing 6 MHz, P_{OUT} per tone = 0 dBm	dBm		40	—
Output IP3	45 - 2000 MHz, tone spacing 6 MHz, P_{OUT} per tone = 0 dBm	dBm	_	32	_
P1dB	45 - 2000 MHz	dBm	—	16.5	—
I _{DD}	$V_{DD} = 5 V$	mA	-	55	_

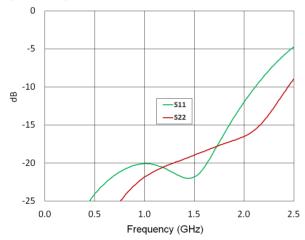
Recommended PCB Layout 50 Ω, 45 - 2000 MHz Application

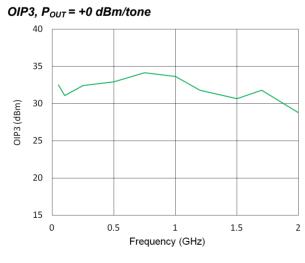
Parts List, V_{DD} = 5 V, 55 mA

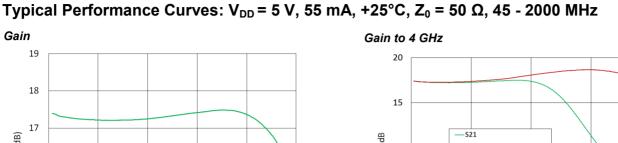
Component	Value	Package
C1 - C3	10 nF	0402
C4	220 pF	0402
C5	0.7 pF	0402
C6	0.5 pF 0402	
L1 - L2	3.3 nH	0402
L3	Ferrite Bead ¹⁰	0402
R1	430 Ω	0402

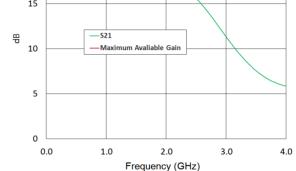

10. Murata, part number BLM15HD182SN.

13

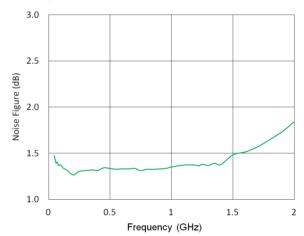


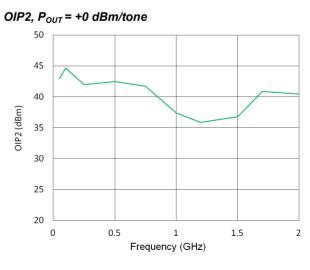

Rev. V1


Low Noise Amplifier 5 - 4000 MHz



Input & Output Return Losses





Noise Figure

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

For further information and support please visit: <u>https://www.macom.com/support</u>

Low Noise Amplifier 5 - 4000 MHz

Rev. V1

MACOM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with MACOM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁵

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.