ANALOG DEVICES $\pm 15 \text{ V}/12 \text{ V}/\pm 5 \text{ V}, i \text{CMOS}, \text{Dual SPDT Switch}$

Enhanced Product

FEATURES

1.5 Ω on resistance 0.28 Ω on-resistance flatness 0.1 Ω on-resistance match between channels Continuous current per channel up to 260 mA Fully specified at +12 V, ±15 V, and ±5 V No V_{ss} supply required **3 V logic-compatible inputs Rail-to-rail operation** 16-lead TSSOP package

APPLICATIONS

Automatic test equipment **Data acquisition systems Battery-powered systems** Sample-and-hold systems Audio signal routing **Military communications** Aviation

ENHANCED PRODUCT FEATURES

Supports defense and aerospace applications (AQEC standard) Military temperature range (-55°C to +125°C) **Controlled manufacturing baseline** 1 assembly/test site 1 fabrication site **Product change notification** Qualification data available on request

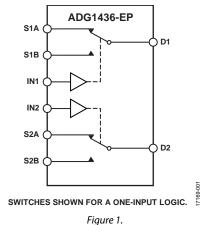
GENERAL DESCRIPTION

The ADG1436-EP is a monolithic complementary metal-oxide semiconductor (CMOS) device containing two independently selectable SPDT switches. Each switch conducts equally well in both directions when on and has an input signal range that extends to the supplies. In the off condition, signal levels up to the supplies are blocked. Both switches exhibit break-beforemake switching action for use in multiplexer applications.

The ADG1436-EP is designed on an iCMOS® process. iCMOS (industrial CMOS) is a modular manufacturing process combining high voltage CMOS and bipolar technologies. It enables the development of a wide range of high performance analog integrated circuits (ICs) capable of 33 V operation in a

footprint that no previous generation of high voltage parts has been able to achieve. Unlike analog ICs using conventional CMOS processes, *i*CMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduced package size.

The on-resistance profile is very flat over the full analog input range, ensuring excellent linearity and low distortion when switching audio signals in military communication. iCMOS construction ensures ultralow power dissipation, making the part ideally suited for avionics and battery-powered instruments. Additional application and technical information can be found in the ADG1436 data sheet.


Rev. 0

Document Feedback

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

FUNCTIONAL BLOCK DIAGRAM

ADG1436-EP

TABLE OF CONTENTS

Features	. 1
Applications	. 1
Enhanced Product Features	. 1
Functional Block Diagram	. 1
General Description	. 1
Revision History	. 2
Specifications	. 3
15 V Dual Supply	. 3
12 V Single Supply	. 4

REVISION HISTORY

8/2018—Revision 0: Initial Version

SPECIFICATIONS

15 V DUAL SUPPLY

 V_{DD} = 15 V \pm 10%, V_{SS} = –15 V \pm 10%, GND = 0 V, unless otherwise noted.

Parameter	25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		V _{DD} to V _{SS}	V	
On Resistance, Ron	1.5		Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$
	1.8	2.6	Ωmax	$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
On-Resistance Match Between Channels, ΔR_{ON}	0.1		Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$
	0.18	0.21	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	0.28		Ωtyp	$V_s = \pm 10 V$, $I_s = -10 mA$
	0.36	0.45	Ωmax	
Continuous Current Per Channel ¹	260	100	mA max	$V_{DD} = +13.5 \text{ V}, \text{ V}_{SS} = -13.5 \text{ V}$
LEAKAGE CURRENTS				$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
Source Off Leakage, I_S (Off)	±0.04		nA typ	$V_{s} = \pm 10 V, V_{s} = \pm 10 V$
	±0.55	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.04		nA typ	$V_{s} = \pm 10 V$, $V_{s} = \pm 10 V$
	±0.55	±12.5	nA max	
Channel On Leakage, I _D , I _S (On)	±0.1		nA typ	$V_S = V_D = \pm 10 \text{ V}$
	±2	±35	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	3.5		pF typ	
DYNAMIC CHARACTERISTICS ¹				
Transition Time, transition	125		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	170	245	ns max	$V_s = 10 V$
Break-Before-Make Time Delay, t _{BBM}	20		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = +10 V$
Charge Injection	-20		pC typ	$V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 1 nF$
Off Isolation	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 kHz$
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 kHz$
Total Harmonic Distortion + Noise	0.011		% typ	$R_L = 110 \Omega$, 15 V p-p, f = 20 Hz to 20 kHz
–3 dB Bandwidth	110		MHz typ	$R_L = 50 \Omega, C_L = 5 pF$
Insertion Loss	-0.18		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
C _s (Off)	23		pF typ	$f = 1 MHz, V_s = 0 V$
C _D (Off)	50		pF typ	$f = 1 MHz, V_S = 0 V$
C _D , C _s (On)	120		pF typ	$f = 1 MHz, V_s = 0 V$
POWER REQUIREMENTS				$V_{DD} = +16.5 \text{ V}, \text{ V}_{SS} = -16.5 \text{ V}$
lod	0.001		μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1	μA max	
I _{DD}	170		μA typ	Digital input = 5 V
		285	μA max	
lss	0.001		μA typ	Digital inputs = $0 V$, $5 V$, or V_{DD}
		1.0	µA max	_ , , , , ,
V _{DD} /V _{SS}		±4.5/±16.5	V min/max	GND = 0 V

¹ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V _{DD}	V	
On Resistance, Ron	2.8		Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	3.5	4.8	Ωmax	$V_{DD} = 10.8 V$, $V_{SS} = 0 V$
On-Resistance Match Between Channels, ΔR_{ON}	0.13		Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	0.21	0.25	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	0.6		Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	1.1	1.3	Ωmax	
Continuous Current Per Channel ¹	240	100	mA max	$V_{DD} = 10.8 V, V_{SS} = 0 V$
LEAKAGE CURRENTS				$V_{DD} = 13.2 \text{ V}, \text{V}_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.04		nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}$
	±0.55	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.04		nA typ	$V_{S} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}$
	±0.55	±12.5	nA max	
Channel On Leakage, I _D , I _s (On)	±0.1		nA typ	$V_{S} = V_{D} = 1 V \text{ or } 10 V$
	±1	±35	nA max	
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001		μA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
		±0.1	μA max	
Digital Input Capacitance, C _{IN}	3.5		pF typ	
DYNAMIC CHARACTERISTICS ¹				
Transition Time, transition	200		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	270	350	ns max	$V_{\rm S} = 8 V$
Break-Before-Make Time Delay, tBBM	70		ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
		10	ns min	$V_{S1} = V_{S2} = 8 V$
Charge Injection	30		pC typ	$V_{s} = 6 V, R_{s} = 0 \Omega, C_{L} = 1 nF$
Off Isolation	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 \text{ kHz}$
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$
–3 dB Bandwidth	78		MHz typ	$R_L = 50 \Omega, C_L = 5 pF$
Insertion Loss	-0.3		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
Cs (Off)	40		pF typ	$f = 1 MHz, V_s = 6 V$
C _D (Off)	80		pF typ	$f = 1 MHz$, $V_s = 6 V$
C _D , C _s (On)	140		pF typ	$f = 1 MHz$, $V_s = 6 V$
POWER REQUIREMENTS				V _{DD} = 13.2 V
lod	0.001		μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	μA max	
lod	170		μA typ	Digital inputs = 5 V
		285	µA max	
V _{DD}		5/16.5	V min/max	$GND = 0 V, V_{ss} = 0 V$

¹ Guaranteed by design, not subject to production test.

5 V DUAL SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 3.

Parameter	25°C	–55°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		VDD to Vss	V	
On Resistance, Ron	3.3		Ωtyp	$V_{s} = \pm 4.5 \text{ V}, I_{s} = -10 \text{ mA}$
	4	5.4	Ωmax	$V_{DD} = +4.5 V, V_{SS} = -4.5 V$
On-Resistance Match Between Channels, ΔR_{ON}	0.13		Ωtyp	$V_{s} = \pm 4.5 \text{ V}, I_{s} = -10 \text{ mA}$
	0.22	0.25	Ωmax	
On-Resistance Flatness, R _{FLAT(ON)}	0.9		Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
	1.1	1.31	Ωmax	
Continuous Current Per Channel ¹	240	100	mA max	$V_{DD} = +4.5 \text{ V}, \text{V}_{SS} = -4.5 \text{ V}$
LEAKAGE CURRENTS				$V_{DD} = +5.5 \text{ V}, \text{V}_{SS} = -5.5 \text{ V}$
Source Off Leakage, Is (Off)	±0.03		nA typ	$V_{S} = \pm 4.5 V$, $V_{D} = \mp 4.5 V$
	±0.2	±12.5	nA max	
Drain Off Leakage, I _D (Off)	±0.03		nA typ	
	±0.2	±12.5	nA max	$V_{S} = \pm 4.5 V, V_{D} = \mp 4.5 V$
		±12.5	-	$V_{\rm S} = V_{\rm D} = \pm 4.5 \rm V$
Channel On Leakage, I _D , I _S (On)	±0.05	1.25	nA typ	$v_{\rm S} \equiv v_{\rm D} \equiv \pm 4.5 v$
	±0.25	±35	nA max	
DIGITAL INPUTS		2.0	V main	
Input High Voltage, V _{INH}		2.0	V min	
Input Low Voltage, VINL	0.001	0.8	V max	
Input Current, I _{INL} or I _{INH}	0.001	101	µA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
Digital Input Capacitance, C _{IN}	3.5	±0.1	µA max	
	5.5		pF typ	
DYNAMIC CHARACTERISTICS ¹	210			
Transition Time, transition	310 445		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Dural Defeue Males Times Delay A	-	565	ns max	$V_s = 3V$
Break-Before-Make Time Delay, t	80	10	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Chaves Injection	20	10	ns min	$V_{51} = V_{52} = 3V$
Charge Injection Off Isolation	30		pC typ	$V_{s} = 0 V, R_{s} = 0 \Omega, C_{L} = 1 nF$
Channel-to-Channel Crosstalk	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 kHz$
	-80		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 100 kHz$
Total Harmonic Distortion + Noise –3 dB Bandwidth	0.03 85		% typ	$R_L = 110 \Omega$, 2.5 V pp, f = 20 Hz to 20 kHz
			MHz typ	$R_{L} = 50 \Omega, C_{L} = 5 pF$
Insertion Loss	-0.28		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$
$C_{\rm S}$ (Off)	33		pF typ	$V_s = 0 V, f = 1 MHz$
C_{D} (Off)	65		pF typ	$V_s = 0 V_s f = 1 MHz$
C _D , C _S (On)	145		pF typ	$V_s = 0 V, f = 1 MHz$
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}, V_{SS} = -5.5 \text{ V}$
IDD	0.001		µA typ	Digital inputs = $0 V \text{ or } V_{DD}$
		1.0	µA max	
lss	0.001		µA typ	Digital inputs = $0 V \text{ or } V_{DD}$
N/		1.0	μA max	
V _{DD} /V _{SS}		±4.5/±16.5	V min/max	GND = 0 V

¹ Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4. Parameter Ratings VDD to Vss 35 V V_{DD} to GND -0.3 V to +25 V Vss to GND +0.3 V to -25 V Analog Inputs¹ $V_{SS} - 0.3 V$ to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first Digital Inputs¹ GND - 0.3 V to $V_{DD} + 0.3 V$ or 30 mA, whichever occurs first Peak Current, S or D 600 mA (pulsed at 1 ms, 10% duty cycle maximum) Continuous Power Dissipation² See Figure 2 **Operating Temperature Range** -55°C to +125°C Storage Temperature Range -65°C to +150°C Junction Temperature 150°C **Reflow Soldering Peak** 260(+0/-5)°C Temperature, Pb-Free

¹ Overvoltages at IN, S, and D are clamped by internal diodes. Current must be limited to the maximum ratings given.

² Calculated based on Table 3 model.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Enhanced Product

THERMAL RESISTANCE

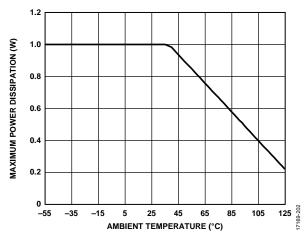
Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

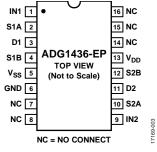
 θ_{JA} is the natural convection junction to ambient thermal resistance measured in a one cubic foot sealed enclosure.

Table 5. Thermal Resistance

Package Type ¹	θ _{JA}	Unit
RU-16	112	°C/W

¹ Thermal impedance simulated values are based on a JEDEC 2S2P thermal test board. See JEDEC JESD-51.




Figure 2. Maximum Power Dissipation vs. Ambient Temperature

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 3. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Function
1	IN1	Logic Control Input.
2	S1A	Source Terminal. Can be an input or output.
3	D1	Drain Terminal. Can be an input or output.
4	S1B	Source Terminal. Can be an input or output.
5	Vss	Most Negative Power Supply Potential.
6	GND	Ground (0 V) Reference.
7, 8, 14 to 16	NC	No Connect.
9	IN2	Logic Control Input.
10	S2A	Source Terminal. Can be an input or output.
11	D2	Drain Terminal. Can be an input or output.
12	S2B	Source Terminal. Can be an input or output.
13	V _{DD}	Most Positive Power Supply Potential.

TRUTH TABLE FOR SWITCHES

Table 7. Truth Table

INx	SxA	SxB
0	Off	On
_1	On	Off

ADG1436-EP

TYPICAL PERFORMANCE CHARACTERISTICS

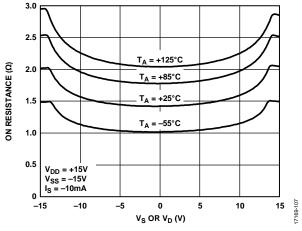


Figure 4. On Resistance vs. V_s or V_D for Different Temperatures, 15 V Dual Supply

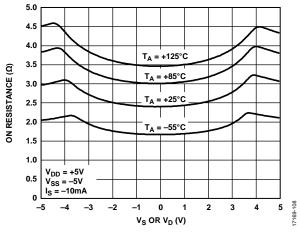


Figure 5. On Resistance vs. Vs or VD for Different Temperatures, 5 V Dual Supply

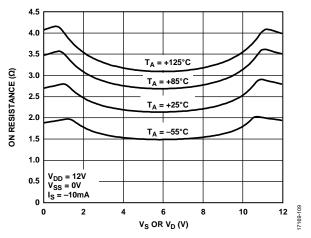


Figure 6. On Resistance vs. V_s or V_D for Different Temperatures, Single Supply

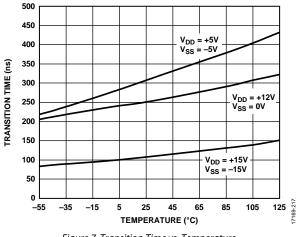


Figure 7. Transition Time vs. Temperature

Enhanced Product

ADG1436-EP

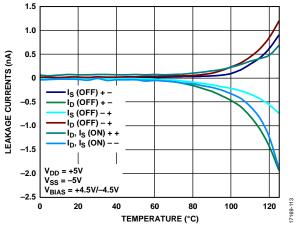


Figure 8. Leakage Currents vs. Temperature, 5 V Dual Supply

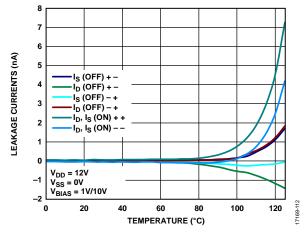


Figure 9. Leakage Currents vs. Temperature, 12 V Single Supply

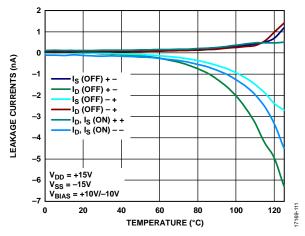
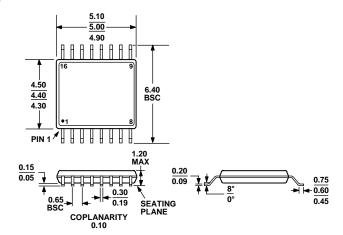



Figure 10. Leakage Currents vs. Temperature, 15 V Dual Supply

ADG1436-EP

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MO-153-AB

Figure 11. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADG1436TRUZ-EP	–55°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG1436TRUZ-EPR7	–55°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16

 1 Z = RoHS Compliant Part.

©2018 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D17169-0-8/18(0)

www.analog.com

Rev. 0 | Page 10 of 10