

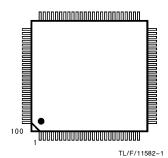
74ABT3284 18-Bit Synchronous Datapath Multiplexer

General Description

The 74ABT3284 is a synchronous datapath buffer designed to transmit four 9-bit bytes of data onto one or two 9-bit bytes in 2:1 or 4:1 multiplexed configurations. In addition, the non-inverting transceiver supports bidirectional data transfer in transparent or registered modes. A data byte from any one of the six ports can be stored during transparent operation for later recall. Data input to any port may also be read back to itself for byte manipulation or system self-diagnostic purposes.

The 74ABT3284 is useful for interleaving data in memory applications or for use in bus-to-bus communications where variations in data word length or construction are required.

- 18-bit 2:1 or 9-bit 4:1 multiplexed modes
- Registered or transparent datapath operation
- Output enables and select lines have the option of being synchronized for pipelined operation
- Independent input, output register and control synchronizing clocks insure maximum timing flexibility
- Independent control signals insure functional flexibility
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed latchup protection
- High impedance glitch free bus loading during entire power up and power down cycle
- Non-destructive hot insertion capability


Features

■ Advanced BiCMOS technology provides high speed at low power consumption

Commercial	Package Number	Package Description							
74ABT3284VJG	VJG100A	100-Lead (14mm x 14mm) Molded Plastic Quad Flatpak, JEDEC							

Connection Diagram

Pin Assignment

Pin		Pin		Pin		Pin	
1	Mode_SO	26	V _{CC}	51	CP_IN	76	V _{CC}
2	CP_AX	27	A ₈	52	OEB	77	D ₈
3	OEC	28	A ₇	53	LDBI	78	D ₇
4	LDCI	29	A ₆	54	LDBO	79	D ₆
5	LDCO	30	GND	55	ModeW	80	GND
6	SA ₂ X ₁	31	A ₅	56	YSEL	81	D ₅
7	SA ₂ X ₀	32	A ₄	57	ŌEY	82	D_4
8	X ₀	33	A ₃	58	Y ₈	83	D ₃
9	X ₁	34	A ₂	59	Y ₇	84	D ₂
10	GND	35	GND	60	GND	85	GND
11	X ₂	36	A ₁	61	Y ₆	86	D ₁
12	X ₃	37	A ₀	62	Y ₅	87	D ₀
13	X ₄	38	V _{CC}	63	Y ₄	88	V _{CC}
14	X ₅	39	B ₀	64	Y ₃	89	C ₀
15	X ₆	40	B ₁	65	Y ₂	90	C ₁
16	GND	41	GND	66	GND	91	GND
17	X ₇	42	B ₂	67	Y ₁	92	C ₂
18	X ₈	43	B ₃	68	Y ₀	93	C ₃
19	ŌEX	44	B ₄	69	LDDO	94	C ₄
20	XSEL ₀	45	B ₅	70	LDDI	95	C ₅
21	XSEL ₁	46	GND	71	ASEL1	96	GND
22	LDAO	47	B ₆	72	ASEL0	97	C ₆
23	LDAI	48	B ₇	73	OED	98	C ₇
24	OEA	49	B ₈	74	CP_XA	99	C ₈
25	V _{CC}	50	V _{CC}	75	Mode_SC	100	V _{CC}

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Functional Description

The 74ABT3284 is a bi-directional registered data-path routing device which can multiplex/de-multiplex four 9-bit "Aside" data ports (Ports A, B, C, D) onto/from one 9-bit "Xside" port (Port X). Alternatively, it can be configured for mux/demux of two 18-bit data paths (Ports A and C, B and D) onto/from one 18-bit data path (Ports X and Y).

Each of the six 9-bit I/O ports have independent active low TRI-STATE® output enable control logic which can be configured to operate asynchronously or synchronously. With MODE_SO low, direct asynchronous output control is provided. With MODE_SO high, output enable control is asserted synchronously on the positive edge of the CP_IN clock. All I/O port inputs are continuously active allowing output state feedback.

The four A-side ports (A, B, C, D) contain independently enabled input and output data registers for storage of data passing in either direction. The input register (AIR, BIR, CIR, DIR) is loaded/held on the positive edge of CP_AX when the respective Load Control pin (LDAI, LDBI, LDCI, LDDI) is asserted high/low. The Input Registers can be loaded with data from the corresponding A-side port. The output register (AOR, BOR, COR, DOR) is loaded/held on the positive edge of CP_XA when the respective Load Control pin (LDAO, LDBO, LDCO, LDDO) is asserted high/low. The Output Registers can be loaded with data from Port X when MODE_WS is asserted high, the Output Registers A and C can be loaded with Port X data and the B and D Output Registers can be loaded with data from Port Y.

When routing data from A-side to X-side, Data Path Control is provided for the following options via the SA2X inputs; Transparent mode where Input Register is bypassed but can simultaneously monitor A-side data; Registered Mode where X-side receives data from the selected Input Registers; Readback Mode where X-side receives data from the selected Output Registers. A-side data from Ports A, B, C, or D can be selected to Port X via the XSEL data path select inputs. Ports B or D can be selected to Port Y via the YSEL data path select input.

When routing data from X-side to A-side, Data Path Control is provided for the following options via the ASEL inputs; Transparent mode where Output Register is bypassed but can simultaneously monitor X-side data; Registered Mode where the A-side Port receives data from the corresponding Output Register; Readback Mode where the A-side Port receives data from the corresponding Input Registers. MODE_WS asserted low selects Port X data to be passed to Ports A, B, C, and D. With MODE_WS asserted high, Port X data is passed to Ports A and C with Port Y data passed to Ports B and D.

All Data Path Control Inputs and Input/Output Register Load Enable Inputs are active high and can be asserted asynchronously or synchronously. When MODE_SC is low, these inputs operate asynchronously. When MODE_SC is high, the inputs are asserted synchronously on the positive edge of the CP_IN clock.

When operating the Data Path Control and/or the Output Enable Input groups with MODE_SC and/or MODE_SO "hard wired" high for synchronous mode, a single pre-clock of CP_IN will be required following power-up to insure that all internal synchronous control registers are in the appropriate known state. If the application requires "on the fly" changes from asynchronous to synchronous operation, then the respective control/enable pin data must be pre-clocked via CP_IN and held steady prior to and during any low to high transition of the MODE_SO or MODE_SC to properly initiate the sync control registers for synchronous control mode.

Pin Descriptions

•											
Pin Name	Description	Operation									
OEa	Output Enable Inputs (Active Low)	Sync/Async									
LDal	LDal Load Enable Inputs for the Input Registers										
LDaO	LDaO Load Enable Inputs for the Output Registers										
ASEL(0,1)	A-Side Data Path Select Inputs	Sync/Async									
SA2X(0,1)	X-Side Data Path Select Inputs	Sync/Async									
XSEL(0,1)	X-Port Data Path Select Inputs	Sync/Async									
YSEL	Y-Port Data Path Select Input	Sync/Async									
MODE_W	Word Mode Select Input for the X/Y to A-Side Direction	Sync/Async									
MODE_SO	Enable Input for Synchronous Output Enable Control	Async									
MODE_SC	Enable Input for Synchronous Data Path Control	Async									
CP_IN	Clock Input for Synchronous Control (Positive Edge Trigger)										
CP_AX	Clock Input for Input Registers (Positive Edge Trigger)										
CP_XA	Clock Input for Output Registers (Positive Edge Trigger)										

Function Tables

Output Enable Control Table

In	Inputs							
OE (A, B, C, D, X, Y)	MODE_SO	CP_IN	Port A, B, C, D, X, Y	Control Mode	Function			
ļ			A, B, C, D, A, 1					
L	L	Х	ENABLE	ASYNC	ENABLED OUTPUT, I/O input always active			
Н	H L X		DISABLE	ASYNC	DISABLED OUTPUT, I/O input always active			
(Notes 2, 3)	(Notes 2, 3) H (Note 1)		(Note 3)	SYNC	(Note 3)			

Note 1: Low to High transitions of MODE_SO must be immediately preceded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs OE (A, B, C, D, X, Y) steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.

Note 2: $\overline{\text{OE}}$ (A, B, C, D, X, Y) levels are synchronously asserted by the positive transition of CP_IN when MODE_SO is high.

Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

A Side Data Path Select Function Table

	Input	ts		Data P	ath	Control		
ASEL(1)	ASEL(0)	MODE_SC	CP_IN	From Reg/Port	To Port	Control Mode	Function	
L	L	L	X	(A, B, C, D) IR	A, B, C, D	ASYNC	Readback; Contents of Input Register (A, B, C, D) IR to Port (A, B, C, D)	
L	Н	L	X	(A, B, C, D) OR A, B,		ASYNC	Clocked Path; Contents of Output Register (A, B, C, D) OR to Port (A, B, C, D)	
Н	L	L	Х	Port X	A, B, C, & D	ASYNC	Transparent Path; Port X to Port A, B, C, & D	
Н	Н	L	Х	Port X	A&C B&D	ASYNC	Transparent Path; Port X to Port A & C	
				FUIL Y	D & D		Transparent Path; Port Y to Port B & D	
(Notes 2, 3)	(Notes 2, 3)	H (Note 1)	\	(Note 3)	(Note 3)	SYNC	(Note 3)	

Note 1: Low to High transitions of MODE_SC must be immediately preceded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs ASEL(0) and ASEL(1) steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.

Note 2: ASEL(0) and ASEL(1) levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.

Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

Input Register Control Table

	Ir	puts			Register	Control	Function	
Port (A, B, C, D)	LD(A, B, C, D) I	MODE_SC	CP_IN	CP_XA	(A, B, C, D) IR	Mode		
Х	L	L	Х		HOLD	ASYNC	HOLD; Input Register holds previous state.	
L (H)	Н	L	Х		L (H)	ASYNC	LOAD; Port A, B, C, D clocked to Input Register (A, B, C, D) IR via CP_AX positive edge	
(Note 3)	(Notes 2, 3)	H (Note 1)		(Note 3)	(Note 3)	SYNC	(Note 3)	

Note 1: Low to High transitions of MODE_SO must be immediately preceded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs LDAI, LDBI, LDCI, and LDDI steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.

Note 2: LDAI, LDBI, LDCI and LDDI levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.

Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

Function Tables (Continued)

Output Register Control Table

			Inputs				Output I	Register	Control	Function
Port X	Port Y	LD(A, B, C, D) O	MODE_W	MODE_SC	CP_IN	CP_XA	(A, C) OR	(B, D) OR	Mode	Function
Х	Х	L	Х	L	Х	\	HOLD	HOLD	ASYNC	HOLD OR
L (H)	х	н	L	L	х	<i></i>	L (H)	L (H)	ASYNC	LOAD OR Port X to OR (A, B, C, D)
L (H)	L (H)	Н	Н	L	Х	<i></i>	L (H)	L (H)	ASYNC	LOAD OR Port X to OR (A, C) Port Y to OR (B, D)
(Note 3)	(Note 3)	(Notes 2, 3)	(Notes 2, 3)	H (Note 1)		(Note 3)	(Note 3)	(Note 3)	SYNC	(Note 3)

Note 1: Low to High transitions of MODE_SC must be immediately preceded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs LDAO, LDBO, LDCO, LDDO and MODE_W steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.

Note 2: LDAO, LDBO, LDCO, LDDO and MODE_W levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.

Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

Function Tables (Continued)

1st Level X Side Data Path Select Function Table

	Input	ts		Data	Path	Comtral		
SA2X(1)	SA2X(0)	MODE_SC	CP_IN	From Reg/Port	To Internal Node	Control Mode	Function	
L	L	L	X	A, B, C, D	(A, B, C, D) X	ASYNC	Transparent datapath from Port (A, B, C, D) to internal node (A, B, C, D) X	
L	Н	L	X	(A, B, C, D) IR	(A, B, C, D) X	ASYNC	Clocked Path; Contents of Input Register (A, B, C, D) IR to internal node (A, B, C, D) X	
н	L	L	X	(A, B, C, D) OR	(A, B, C, D) X	ASYNC	Readback; contents of Output register (A, B, C, D) OR to internal node (A, B, C, D) X	
Н	Н	L	Х	GND	(A, B, C, D) X	ASYNC	Diagnostic; Select all 36 bits as low and pass to the internal node (A, B, C, D) X	
(Notes 2, 3)	(Notes 2, 3)	H (Note 1)		(Note 3)	(Note 3)	SYNC	(Note 3)	

Note 1: Low to High transitions of MODE_SC must be immediately preceded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs SA2X(0) and SA2X(1) steady to preset internal sync registers and assure predictable operation during the control mode change from asynchronous to synchronous.

Note 2: SA2X(0) and SA2X(1) levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.

Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

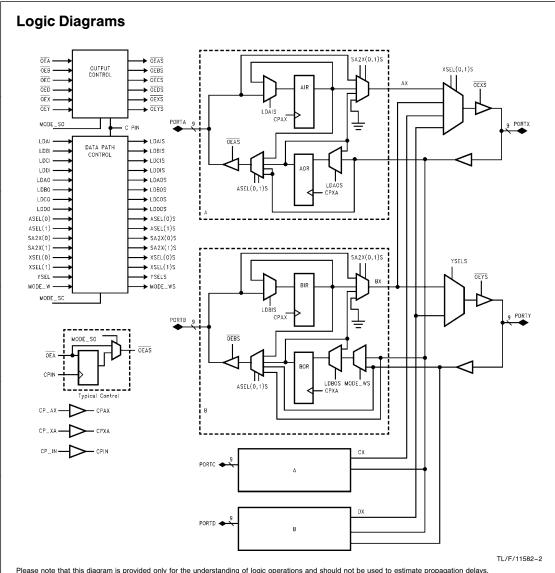
2nd Level X Side Data Path Select Function Table for Port X

	Input	ts		Data Pa	th	Control	Function	
XSEL(1)	XSEL(0)	MODE_SC	CP_IN	From Internal Node	To Port	Mode		
L	L	L	Х	AX	Х	ASYNC	Internal Node AX to Port X	
L	Н	L	Х	BX X		ASYNC	Internal Node BX to Port X	
Н	L	L	Х	CX	Х	ASYNC	Internal Node CX to Port X	
Н	Н	L	Х	DX	Х	ASYNC	Internal Node DX to Port X	
(Notes 2, 3)	(Notes 2, 3)	H (Note 1)		(Note 3)	(Note 3)	SYNC	(Note 3)	

Note 1: Low to High transitions of MODE_SC must be immediately preceded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs XSEL(0) and XSEL(1) steady to preset internal sync registers and assure predictable operation during the control mode change from asynchronous to synchronous

Note 2: XSEL(0) and XSEL(1) levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.

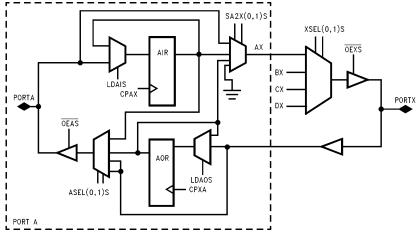
Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.


2nd Level X Side Data Path Select Function Table for Port Y

	Inputs			th	Control					
YSEL	MODE_SC	CP_IN	From Internal Node	To Port	Mode	Function				
L	L	Х	BX	Υ	ASYNC	Internal Node BX to Port Y				
Н	L	х	DX	Υ	ASYNC	Internal Node DX to Port Y				
(Notes 2, 3)	H (Note 1)		(Note 3)	(Note 3)	SYNC	(Note 3)				

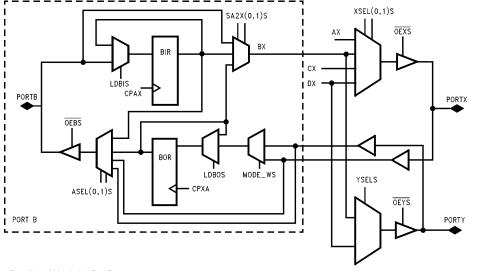
Note 1: Low to High transitions of MODE_SC must be immediately preceeded by a low to high transition (clock edge) on CP_IN while holding Synchronous Control Inputs YSEL steady to preset internal registers and assure predictable operation during the control mode change from asynchronous to synchronous.

Note 2: YSEL levels are synchronously asserted by the positive transition of CP_IN when MODE_SC is high.


Note 3: Synchronous Control Mode Functions are same as Asynchronous at time T + 1 of CP_IN.

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

FIGURE 1. 18-Bit Synchronous Datapath Multiplexer


Logic Diagrams (Continued)

Note: Port C configured identical to Port A.

TL/F/11582-3

FIGURE 2. Synchronous Bus Multiplexer A-X Datapath

Note: Port D configured identical to Port B.

FIGURE 3. Synchronous Bus Multiplexer B PORT Datapath

TL/F/11582-4

Absolute Maximum Ratings (Note 1)

Storage Temperature -65°C to $+150^{\circ}\text{C}$ Ambient Temperature under Bias -55°C to $+125^{\circ}\text{C}$

Junction Temperature under Bias

 $\begin{array}{lll} & -55^{\circ}\text{C to} + 175^{\circ}\text{C} \\ & \text{Plastic} & -55^{\circ}\text{C to} + 150^{\circ}\text{C} \\ & V_{\text{CC}} \text{ Pin Potential to Ground Pin} & -0.5\text{V to} + 7.0\text{V} \\ \end{array}$

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Any Output

 $\begin{array}{ll} \text{in the Disabled or Power-off State} & -0.5 \text{V to } + 5.5 \text{V} \\ \text{in the HIGH STATE} & -0.5 \text{V to } \text{V}_{\text{CC}} \end{array}$

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

DC Latchup Source Current
Over Voltage Latchup (I/O)

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

-300~mA

10V

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Recommended Operating Conditions

Free Air Ambient Temperature

Commercial $-40^{\circ}\text{C to } +85^{\circ}\text{C}$

Supply Voltage

Commercial +4.5V to +5.5V

DC Electrical Characteristics

Symbol	Parameter	-	ABT328	4	Units	V	Conditions	
Syllibol	Parameter	Min	Тур	Max	Units	V _{CC}	Conditions	
V _{IH}	Input HIGH Voltage	2.0			V		Recognized HIGH Signal	
V _{IL}	Input LOW Voltage			0.8	V		Recognized LOW Signal	
V _{CD}	Input Clamp Voltage			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	2.5 2.0			V	Min	$I_{OH} = -3 \text{ mA}$ $I_{OH} = -32 \text{ mA (Note 3)}$	
V_{OL}	Output LOW Voltage			0.55	V	Min	I _{OL} = 64 mA (Note 4)	
I _{IH}	Input HIGH Current			5	μΑ	Max	$V_{IN} = V_{CC}$	
I _{BVI}	Input HIGH Current Breakdown Test			7	μΑ	Max	V _{IN} = 7.0V Control Inputs	
I _{BVIT}	Input HIGH Current Breakdown Test (I/O)			100	μΑ	Max	$V_{IN} = 5.5V (A_n, B_n, C_n, D_n, X_n, Y_n)$	
I _{IL}	Input LOW Current			-5	μΑ	Max	V _{IN} = 0.5V Control Inputs	
V _{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID}=1.9~\mu A$ Control Inputs All Data Pins Grounded	
I _{IH} + I _{OZH}	Output Leakage Current			50	μΑ	0-5.5	$V_{OUT} = 2.7V (A_n, B_n, C_n, D_n, X_n, Y_n)$ All Output Enables = 2.0V	
I _{IL} +	Output Leakage Current			-50	μΑ	0-5.5	$V_{OUT} = 0.5V (A_n, B_n, C_n, D_n, X_n, Y_n)$ All Output Enables = 2.0V	
los	Output Short-Circuit Current	-100		-275	mA	Max	$V_{OUT} = 0.0V (A_n, B_n, C_n, D_n, X_n, Y_n) (Note 5)$	
I _{CEX}	Output High Leakage Current			50	μΑ	Max	$V_{OUT} = V_{CC} (A_n, B_n, C_n, D_n, X_n, Y_n)$	
I _{ZZ}	Bus Drainage Test			100	μΑ	0.0	$V_{OUT} = 5.5V (A_n, B_n, C_n, D_n, X_n, Y_n)$	
Icch	Power Supply Current			2.5	mA	Max	All Outputs HIGH	
ICCL	Power Supply Current			140	mA	Max	36 Outputs LOW	
I _{CCZ}	Power Supply Current			2.5	mA	Max	Output Enables = V _{CC} ; All Others at GND	
Ісст	Additional I _{CC} /Input			2.5	mA	Max	$V_{IN} = V_{CC} - 2.1V$ All Others at V_{CC} or GND	
I _{CCD}	Dynamic I _{CC} No Load			0.35	mA/ MHz	Max	Outputs Open, Transparent Mode Output Enables = GND One Bit Toggling, 50% Duty Cycle	

Note 3: Up to 18 outputs can each source 32 mA continuously, or any combination of outputs can source up to a total of 324 mA. For example, 36 outputs can continuously each source 16 mA.

Note 4: Up to 18 outputs can each sink 64 mA continuously, or any combination of outputs can sink up to a total of 648 mA. For example, 36 outputs can continuously each sink 32 mA.

Note 5: One output at a time, duration 1 second maximum.

DC Electrical Characteristics (Continued)

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	
V _{OLP}	Quiet Output Maximum Dynamic VOL		0.7	1.0	V	5.0	T _A = 25°C (Note 1)
V _{OLV}	Quiet Output Minimum Dynamic V _{OL}	-0.8	-0.5		V	5.0	T _A = 25°C (Note 1)
V _{OHV}	Minimum High Level Dynamic Output Voltage	2.5	3.0		V	5.0	T _A = 25°C (Note 3)
V _{IHD}	Minimum High Level Dynamic Input Voltage	2.0	1.7		V	5.0	T _A = 25°C (Note 2)
V _{ILD}	Maximum Low Level Dynamic Input Voltage		1.2	0.8	V	5.0	T _A = 25°C (Note 2)

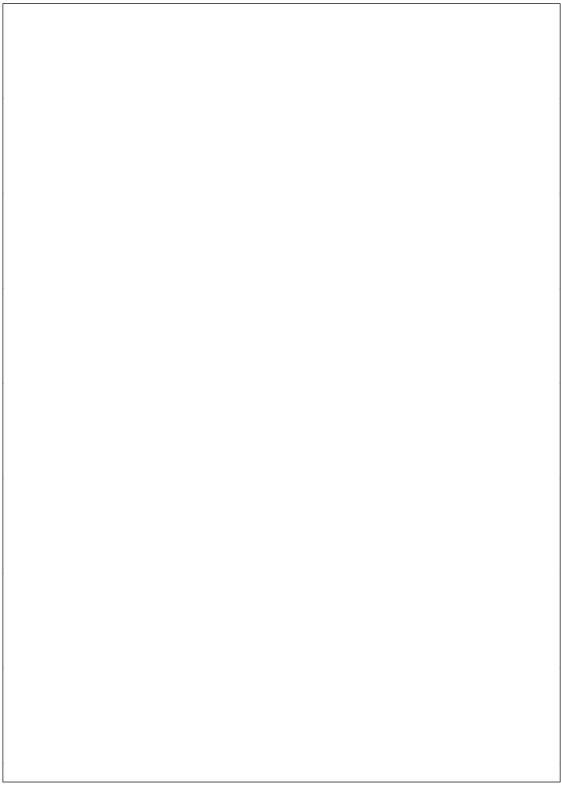
Note 1: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. One output at LOW. Guaranteed, but not tested.

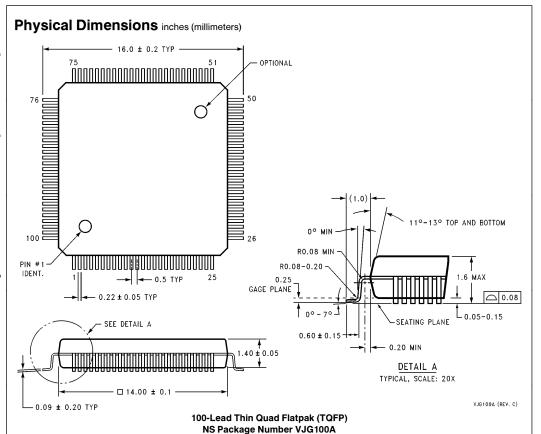
Note 2: Max number of data inputs (n) switching. n-1 inputs switching 0V to 3V. Input-under-test switching: 3V to the shold (V_{ILD}), 0V to threshold (V_{IHD}). Guaranteed, but not tested.

Note 3: Max number of outputs defined as (n), n - 1 data inputs are driven 0V to 3V. One output HIGH. Guaranteed, but not tested.

AC Electrical Characteristics Single Output Switching

Symbol	Parameter	74ABT T _A = 25°C V _{CC} = 5.0V C _L = 50 pF		$74ABT$ $T_{A} = -40^{\circ}C \text{ to } +85^{\circ}C$ $V_{CC} = 4.5V \text{ to } 5.5V$ $C_{L} = 50pF$		Units
f _{MAX}	Max Operating Frequency	150				
t _{PHL} t _{PLH}	Propagation Delay A, B, C, D or X Inputs to X or A, B, C, D Outputs. Transparent Mode	1.5	5.5	1.5	5.5	ns
t _{PHL} t _{PLH}	Propagation Delay B, D or Y Inputs to Y or B, D Outputs. Transparent Mode	1.0	5.0	1.0	5.0	ns
t _{PHL} t _{PLH}	Propagation Delay CP_XA ↑ to A, B, C, or D. Registered Mode	1.5	6.0	1.5	6.0	ns
t _{PHL} t _{PLH}	Propagation Delay CP_AX ↑ to X. Registered Mode	1.5	7.0	1.5	7.0	ns
t _{PHL} t _{PLH}	Propagation Delay CP_AX ↑ to Y. Registered Mode	1.5	6.5	1.5	6.5	ns
t _{PHL} t _{PLH}	Propagation Delay ASELn to A, B, C or D. Asynchronous Mode	2.0	7.5	2.0	7.5	ns
t _{PHL} t _{PLH}	Propagation Delay CP_IN ↑ to A, B, C or D. ASELn Synchronous Mode	2.5	8.5	2.5	8.5	ns
t _{PHL} t _{PLH}	Propagation Delay SA2Xn to X or Y. Asynchronous Mode	1.5	7.5	1.5	7.5	ns
t _{PHL} t _{PLH}	Propagation Delay CP_IN ↑ to X or Y. SA2Xn Synchronous Mode	2.0	8.5	2.0	8.5	ns
t _{PHL} t _{PLH}	Propagation Delay XSELn to X. Asynchronous Mode	1.5	6.0	1.5	6.0	ns
t _{PHL} t _{PLH}	Propagation Delay CP_IN↑ to X. XSELn Synchronous Mode	2.0	7.5	2.0	7.5	ns
t _{PHL} t _{PLH}	Propagation Delay YSELn to Y. Asynchronous Mode	1.0	5.5	1.0	5.5	ns
t _{PHL} t _{PLH}	Propagation Delay CP_IN↑ to Y. YSELn Synchronous Mode	1.5	6.5	1.5	6.5	ns
t _{PZH} t _{PZL}	Asynchronous Enable Time	1.0	6.0	1.0	6.0	ns
t _{PZH} t _{PZL}	Synchronous Enable Time	1.5	7.0	1.5	7.0	ns
t _{PHZ}	Asynchronous Disable Time	1.0	7.5	1.0	7.5	ns
t _{PHZ}	Synchronous Disable Time	1.5	8.5	1.5	8.5	ns


AC Operating Requirements Single Output Switching


	Parameter	74ABT	74ABT	Units
Symbol		$T_A=25^{\circ}C$ $V_{CC}=5.0V$ $C_L=50$ pF	$T_{ extsf{A}} = -40^{\circ} ext{C to } +85^{\circ} ext{C}$ $V_{ extsf{CC}} = 4.5 ext{V to } 5.5 ext{V}$ $C_{ extsf{L}} = 50 ext{ pF}$	
		Min	Max	
t _S (H) t _S (L)	Setup Time High or Low A, B, C, D X or Y. Data to CP_AX ↑ or CP_XA ↑ (Registered Mode)	4.0	4.0	ns
t _h (H) t _h (L)	Hold Time High or Low A, B, C, D X or Y. Data to CP_AX↑ or CP_XA↑ (Registered Mode)	0.0	0.0	ns
t _s (H) t _s (L)	Setup Time High or Low Control Inputs to CP_IN ↑. (Synchronous Mode)	3.0	3.0	ns
t _h (H) t _h (L)	Hold Time High or Low Control Inputs to CP_IN ↑. (Synchronous Mode)	0.0	0.0	ns
t _s (H)	Setup Time High, CP_IN↑ to CP_AX↑ or CP_XA↑.	5.0	5.0	ns
t _h (L)	Hold Time Low, CP_IN ↑ to CP_AX ↑ or CP_XA ↑.	0.0	0.0	ns
t _w (H) t _w (L)	CLK Pulsewidth High CLK Pulsewidth Low	3.0 4.0	3.0 4.0	ns

Capacitance

Symbol	Parameter	Тур	Units	Conditions T _A = 25°C
C _{IN}	Input Capacitance	5	pF	V _{CC} = 0V Control Inputs
C _{I/O} (Note 1)	I/O Capacitance	11	pF	$V_{CC} = 5.0V$ $(A_n, B_n, C_n, D_n, X_n, Y_n)$

Note 1: $C_{I/O}$ is measured at frequency $f\,=\,1\,$ MHz, per MIL-STD-883B, Method 3012.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor

National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) 0-180-530 85 86 Email: cnjwge@tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 35 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.

13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.
Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408