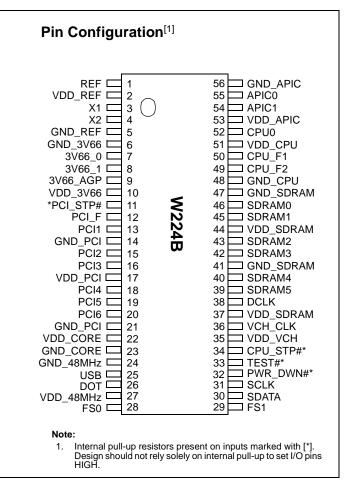


133-MHz Spread Spectrum FTG for Mobile Pentium III Platforms

#### Features

- Maximized EMI suppression using Cypress's Spread Spectrum technology (-0.5% and -1.0%)
- Single chip system FTG for Mobile Intel<sup>®</sup> Platforms
- Three CPU outputs
- Seven copies of PCI clock (one Free Running)
- Seven SDRAM clock (one DCLK for Memory Hub)
- Two copies of 48-MHz clock (non-spread spectrum) optimized for USB reference input and video DOT clock
- Three 3V66 Hublink/AGP outputs
- One VCH clock (48-MHz non-SSC or 66.67-MHz SSC)
- Two APIC outputs
- One buffered reference output
- Supports frequencies up to 133 MHz
- Supports 5% and 10% overclocking
- SMBus interface for programming
- Power management control inputs

# **Key Specifications**


#### Block Diagram VDD\_REF XTAL RFF OSC X2 PLL Ref Freq Divider PLL 1 Network - CPU0 FS0.1 CPU\_F1:2 CPU\_STP# VDD SDRAM SDRAM0:5 DCI K VDD\_APIC APIC0:1 PWR DWN#. VDD\_PCI PCI F Stop PCI1:6 PCI STP# VDD 3V66 3V66 0:1 3V66 AGP VDD 48MHz PLL2 USB (48MHz) DOT (48MHz) SDATA SMBus VCH CLK SCLK Logic

Intel is a registered trademark of Intel Corporation.

| APIC, 48-MHz, 3V66, PCI Outputs       |         |
|---------------------------------------|---------|
| Cycle-to-Cycle Jitter:                | 500 ps  |
| CPU Output Skew:                      | 150 ps  |
| 3V66 Output Skew:                     | 175 ps  |
| APIC, SDRAM Output Skew:              | 250 ps  |
| PCI Output Skew:                      | 500 ps  |
| VDDQ3 (REF, PCI, 3V66, 48 MHz, SDRAM: | 3.3V±5% |
| VDDQ2 (CPU, APIC):                    | 2.5V±5% |

#### Table 1. Pin Selectable Functions

| TEST# | FS1 | FS0 | CPU         | SDRAM       |
|-------|-----|-----|-------------|-------------|
| 0     | х   | 0   | Three-state | Three-state |
| 0     | х   | 1   | Test        | Test        |
| 1     | 0   | 0   | 66 MHz      | 100 MHz     |
| 1     | 0   | 1   | 100 MHz     | 100 MHz     |
| 1     | 1   | 0   | 133 MHz     | 133 MHz     |
| 1     | 1   | 1   | 133 MHz     | 100 MHz     |



**Cypress Semiconductor Corporation** Document #: 38-07191 Rev. \*A



# **Pin Definitions**

| Pin Name                                                                               | Pin No.                       | Pin<br>Type | Pin Description                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------|-------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CPU0,<br>CPU_F1:2                                                                      | 52, 50, 49                    | 0           | <b>CPU Clock Outputs:</b> Frequency is set by the FS0:1 inputs or through serial input interface. The CPU0 output is gated by the CLK_STOP# input.                                                     |
| PCI1:6, PCI_F                                                                          | 13, 15, 16, 18,<br>19, 20, 12 | 0           | <b>33-MHz PCI Outputs:</b> Except for the PCI_F output, these outputs are gated by the PCI_STOP# input.                                                                                                |
| APIC0:1                                                                                | 55, 54                        | 0           | <i>APIC Output:</i> 2.5V fixed 33.33-MHz clock. This output is synchronous to the CPU clock.                                                                                                           |
| SDRAM0:5,<br>DCLK                                                                      | 46, 45, 43, 42,<br>40, 39, 38 | 0           | <b>SDRAM Output Clocks:</b> 3.3V outputs running at either 100MHz or 133MHz depending on the setting of FS0:1 inputs. DCLK is a free-running clock.                                                    |
| 3V66_0:1,<br>3V66_AGP                                                                  | 7, 8, 9                       | 0           | 66MHz Clock Outputs: 3.3V fixed 66-MHz clock.                                                                                                                                                          |
| USB                                                                                    | 25                            | 0           | <b>USB Clock Output:</b> 3.3V fixed 48-MHz, non-spread spectrum USB clock output.                                                                                                                      |
| DOT                                                                                    | 26                            | 0           | Dot Clock Output: 3.3V fixed 48-MHz, non-spread spectrum signal.                                                                                                                                       |
| REF                                                                                    | 1                             | 0           | Reference Clock: 3.3V 14.318-MHz clock output.                                                                                                                                                         |
| VCH_CLK                                                                                | 36                            | 0           | <i>Video Control Hub Clock Output:</i> 3.3V selectable 48MHz non-spread spectrum or 66.67 MHz spread spectrum clock output.                                                                            |
| PWR_DWN#                                                                               | 32                            | I           | <b>Power Down Control:</b> 3.3V LVTTL-compatible input that places the device in power down mode when held low.                                                                                        |
| CPU_STP#                                                                               | 34                            | I           | <b>CPU Output Control:</b> 3.3V LVTTL-compatible input that stops only the CPU0 clock. Output remains in the low state.                                                                                |
| PCI_STP#                                                                               | 11                            | I           | <b>PCI Output Control:</b> 3.3V LVTTL-compatible input that stops PCI1:6 clocks. Output remains in the low state.                                                                                      |
| TEST#                                                                                  | 33                            | I           | <i>Test Mode Control:</i> 3.3V LVTTL-compatible input to place the device into test mode.                                                                                                              |
| FS0:1                                                                                  | 28, 29                        | I           | <i>Frequency Selection Input:</i> 3.3V LVTTL-compatible input used to select the CPU and SDRAM frequencies. See Frequency Table.                                                                       |
| SCLK                                                                                   | 31                            | I           | SMBus Clock Input: Clock pin for SMBus circuitry.                                                                                                                                                      |
| SDATA                                                                                  | 30                            | I/O         | SMBus Data Input: Data pin for SMBus circuitry.                                                                                                                                                        |
| X1                                                                                     | 3                             | I           | <b>Crystal Connection or External Reference Frequency Input:</b> This pin has dual functions. It can be used as an external 14.318-MHz crystal connection or as an external reference frequency input. |
| X2                                                                                     | 4                             | 0           | <i>Crystal Connection:</i> Connection for an external 14.318-MHz crystal. If using an external reference, this pin must be left unconnected.                                                           |
| VDD_REF,<br>VDD_3V66,<br>VDD_PCI,<br>VDD_48MHz,<br>VDD_VCH,<br>VDD_SDRAM,<br>VDD_SDRAM | 2, 10, 17, 27,<br>35, 37, 44  | Ρ           | <b>3.3V Power Connection:</b> Power supply for core logic, PLL circuitry, SDRAM outputs buffers, PCI output buffers, reference output buffers and 48-MHz output buffers. Connect to 3.3V.              |
| VDD_APIC,<br>VDD_CPU                                                                   | 51, 53                        | Р           | <b>2.5V Power Connection:</b> Power supply for APIC and CPU output buffers. Connect to 2.5V.                                                                                                           |



# **Pin Definitions**

| Pin Name                                                                                                        | Pin No.                             | Pin<br>Type | Pin Description                                                                                   |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|-------------|---------------------------------------------------------------------------------------------------|
| GND_REF,<br>GND_3V66,<br>GND_PCI,<br>GND_PCI,<br>GND_48MHz,<br>GND_SDRAM,<br>GND_SDRAM,<br>GND_CPU,<br>GND_APIC | 5, 6, 14, 21, 24,<br>41, 47, 48, 56 | G           | <i>Ground Connection:</i> Connect all ground pins to the common system ground plane.              |
| VDD_CORE                                                                                                        | 22                                  | Ρ           | <b>3.3V Analog Power Connection:</b> Power supply for core logic, PLL circuitry. Connect to 3.3V. |
| GND_CORE                                                                                                        | 23                                  | G           | Analog Ground Connection: Ground for core logic, PLL circuitry.                                   |

#### **Overview**

The W224 is a highly integrated frequency timing generator, supplying all the required clock sources for an Intel architecture platform using graphics integrated core logic.

# **CPU/SDRAM Frequency Selection**

CPU output frequency is selected through pins 28 and 29. For CPU/SDRAM frequency programming information, refer to Table 2. Alternatively, frequency selections are available through the serial data interface.

#### Table 2. Frequency Select Truth Table

| TEST# | FS1 | FS0 | CPU     | SDRAM   | 3V66   | PCI    | 48MHz  | REF        | APIC   | Notes   |
|-------|-----|-----|---------|---------|--------|--------|--------|------------|--------|---------|
| 0     | Х   | 0   | Hi-Z    | Hi-Z    | Hi-Z   | Hi-Z   | Hi-Z   | Hi-Z       | Hi-Z   | 2       |
| 0     | Х   | 1   | TCLK/2  | TCLK/2  | TCLK/3 | TCLK/6 | TCLK/2 | TCLK       | TCLK/6 | 3, 4    |
| 1     | 0   | 0   | 66 MHz  | 100 MHz | 66 MHz | 33 MHz | 48 MHz | 14.318 MHz | 33 MHz | 5, 6, 7 |
| 1     | 0   | 1   | 100 MHz | 100 MHz | 66 MHz | 33 MHz | 48 MHz | 14.318 MHz | 33 MHz | 5, 6, 7 |
| 1     | 1   | 0   | 133 MHz | 133 MHz | 66 MHz | 33 MHz | 48 MHz | 14.318 MHz | 33 MHz | 5, 6, 7 |
| 1     | 1   | 1   | 133 MHz | 100 MHz | 66 MHz | 33 MHz | 48 MHz | 14.318 MHz | 33 MHz | 5, 6, 7 |

Notes:

2.

3. 4.

5.

Provided for board-level "bed of nails" testing. TCLK is a test clock overdriven on the XTAL\_IN input during test mode. Required for DC output impedance verification. "Normal" mode of operation. Range of reference frequency allowed is min. = 14.316 MHz, nominal = 14.31818 MHz, max. = 14.32 MHz. Frequency accuracy of 48 MHz must be +167 PPM to match USB default. 6. 7.



#### **Offsets Among Clock Signal Groups**

*Figure 1* and *Figure 2* represent the phase relationship among the different groups of clock outputs from W224 when it is providing a 66-MHz CPU clock and a 100-MHz CPU clock, re-

spectively. It should be noted that when CPU clock is operating at 100 MHz, CPU clock output is 180 degrees out of phase with SDRAM clock outputs.

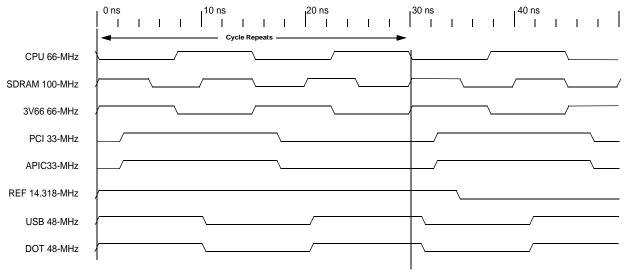
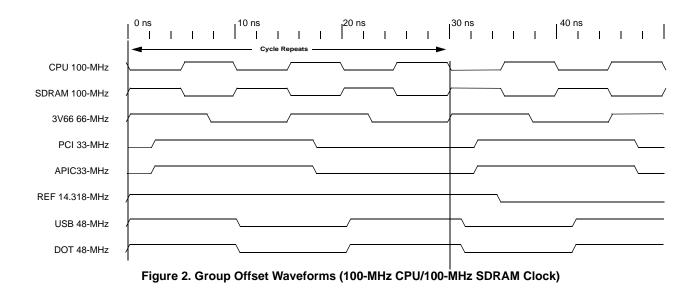



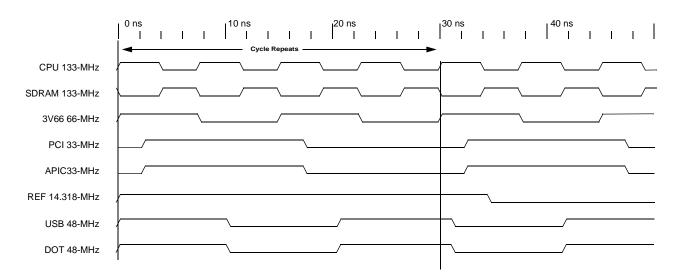

Figure 1. Group Offset Waveforms (66-MHz CPU/100-MHz SDRAM Clock)

| Table 3. | 66 MHz Grou | o Timing | Relationships | and Tolerances |
|----------|-------------|----------|---------------|----------------|
|----------|-------------|----------|---------------|----------------|

|           | CPU to<br>SDRAM | CPU to 3V66 | SDRAM to<br>3V66 | 3V66 to PCI | PCI to APIC | USB & DOT |
|-----------|-----------------|-------------|------------------|-------------|-------------|-----------|
| Offset    | –2.5 ns         | 7.5 ns      | 0.0 ns           | 1.5–3.5 ns  | 0.0 ns      | Async     |
| Tolerance | 500 ps          | 500 ps      | 500 ps           | 500 ps      | 1.0 ns      | N/A       |






|                |                  | CPU to<br>SDRAM | CPU to<br>3V66              | SDRAM to<br>3V66        | 3V66 to PCI         | PCI to APIC             | USB & DOT |
|----------------|------------------|-----------------|-----------------------------|-------------------------|---------------------|-------------------------|-----------|
| Offset         |                  | 5.0 ns          | 5.0ns                       | 0.0 ns                  | 1.5–3.5 ns          | 0.0 ns                  | Async     |
| Tolerance      |                  | 500 ps          | 500 ps                      | 500 ps                  | 500 ps              | 1.0 ns                  | N/A       |
|                | 0 r              | is<br>          | 10 ns<br>       <br>Cycle R | 20 n<br>     <br>epeats | s<br>         <br>▶ | 30 ns<br>         <br>► | 40 ns<br> |
| CPU 133-MHz    | $\left[ \right]$ |                 |                             |                         |                     |                         |           |
| SDRAM 100-MHz  |                  |                 | /                           | \/                      |                     |                         | /         |
| 3V66 66-MHz    |                  |                 | \                           |                         |                     |                         | /         |
| PCI 33-MHz     |                  | _/              |                             |                         |                     |                         | \         |
| APIC33-MHz     |                  | _/              |                             |                         |                     |                         |           |
| REF 14.318-MHz |                  |                 |                             |                         |                     |                         |           |
| USB 48-MHz     | $\left  \right $ |                 |                             |                         |                     | <u> </u>                |           |
| DOT 48-MHz     |                  |                 |                             | /                       |                     | ╋                       |           |

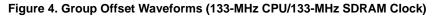

# Table 4. 100-MHz Group Timing Relationships and Tolerances

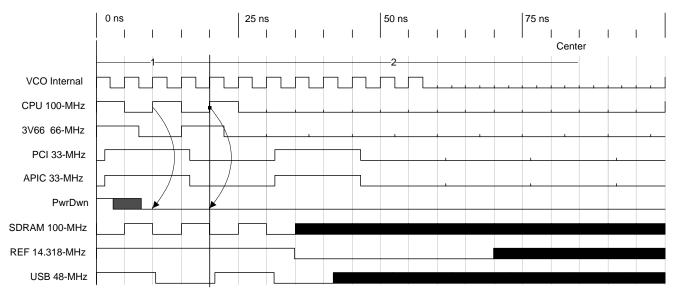
Figure 3. Group Offset Waveforms (133-MHz CPU/100-MHz SDRAM Clock)

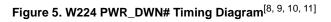
| Table 5. 133-MHz/SDRAM 100-MHz Group Timing Relationships and Tolerand |
|------------------------------------------------------------------------|
|------------------------------------------------------------------------|

|           | CPU to<br>SDRAM | CPU to 3V66 | SDRAM to<br>3V66 | 3V66 to PCI | PCI to APIC | USB & DOT |
|-----------|-----------------|-------------|------------------|-------------|-------------|-----------|
| Offset    | 0.0 ns          | 0.0 ns      | 0.0 ns           | 1.5–3.5 ns  | 0.0 ns      | Async     |
| Tolerance | 500 ps          | 500 ps      | 500 ps           | 500 ps      | 1.0 ns      | N/A       |









|           | CPU to<br>SDRAM | CPU to 3V66 | SDRAM to<br>3V66 | 3V66 to PCI | PCI to APIC | USB& DOT |
|-----------|-----------------|-------------|------------------|-------------|-------------|----------|
| Offset    | 3.75 ns         | 0.0 ns      | 3.75 ns          | 1.5–3.5 ns  | 0.0 ns      | Async    |
| Tolerance | 500 ps          | 500 ps      | 500 ps           | 500 ps      | 1.0 ns      | N/A      |

#### Table 6. 133 MHz/SDRAM Test Mode Group Timing Relationships and Tolerance

#### **Power Down Control**

W224 provides one PWR\_DWN# signal to place the device in low-power mode. In low-power mode, the PLLs are turned off and all clock outputs are driven LOW.





#### Table 7. W224 Maximum Allowed Current

| W224<br>Condition                                | Max. 2.5V supply consumption<br>Max. discrete cap loads,<br>V <sub>DDQ2</sub> = 2.625V<br>All static inputs = V <sub>DDQ3</sub> or V <sub>SS</sub> | Max. 3.3V supply consumption<br>Max. discrete cap loads<br>V <sub>DDQ3</sub> = 3.465V<br>All static inputs = V <sub>DDQ3</sub> or V <sub>SS</sub> |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Powerdown Mode<br>(PWR_DWN# = 0)                 | <u>&lt;</u> 1 mA                                                                                                                                   | <u>&lt;</u> 1 mA                                                                                                                                  |
| Full Active 66 MHz<br>FS1:0 = 00 (PWR_DWN# = 1)  | 60 mA                                                                                                                                              | 160 mA                                                                                                                                            |
| Full Active 100 MHz<br>FS1:0 = 01 (PWR_DWN# = 1) | 75 mA                                                                                                                                              | 160 mA                                                                                                                                            |
| Full Active 133 MHz<br>FS1:0 = 11 (PWR_DWN# = 1) | 90 mA                                                                                                                                              | 160 mA                                                                                                                                            |

Notes:

Once the PWR\_DWN# signal is sampled LOW for two consecutive rising edges of CPU, clocks of interest will be held LOW on the next HIGH-to-LOW transition. PWR\_DWN# is an asynchronous input and metastable conditions could exist. This signal is synchronized inside W224. The shaded sections on the SDRAM, REF, and USB clocks indicate "don't care" states. Diagrams shown with respect to 100 MHz. Similar operation when CPU is 66 MHz. 8.

9.

10. 11.



# Spread Spectrum Frequency Timing Generation

The device generates a clock that is frequency modulated in order to increase the bandwidth that it occupies. By increasing the bandwidth of the fundamental and its harmonics, the amplitudes of the radiated electromagnetic emissions are reduced. This effect is depicted in *Figure 6*.

As shown in *Figure 6*, a harmonic of a modulated clock has a much lower amplitude than that of an unmodulated signal. The reduction in amplitude is dependent on the harmonic number and the frequency deviation or spread. The equation for the reduction is:

 $dB = 6.5 + 9*log_{10}(P) + 9*log_{10}(F)$ 

Where P is the percentage of deviation and F is the frequency in MHz where the reduction is measured.

The output clock is modulated with a waveform depicted in *Figure 7*. This waveform, as discussed in "Spread Spectrum Clock Generation for the Reduction of Radiated Emissions" by Bush, Fessler, and Hardin produces the maximum reduction in the amplitude of radiated electromagnetic emissions. The deviation selected for this chip is –0.5% or -1.0% of the selected frequency. *Figure 7* details the Cypress spreading pattern. Cypress does offer options with more spread and greater EMI reduction. Contact your local Sales representative for details on these devices.

Spread Spectrum clocking is activated or deactivated by selecting the appropriate value for bit 3 in data byte 0 of the SMBus data stream. Refer to page 9 for more details.

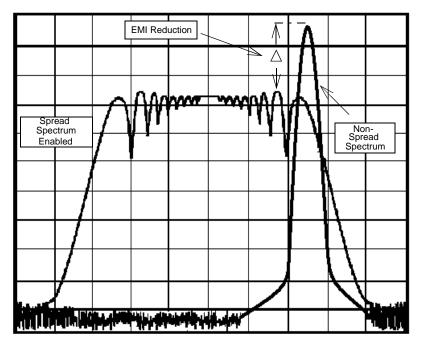
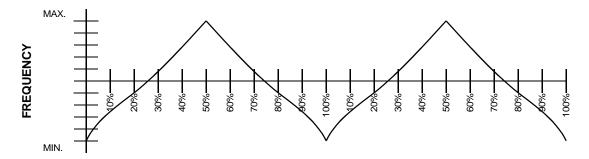




Figure 6. Clock Harmonic with and without SSCG Modulation Frequency Domain Representation



**Figure 7. Typical Modulation Profile** 



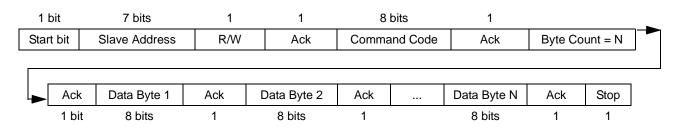



Figure 8. An Example of a Block Write<sup>[12]</sup>

#### **Serial Data Interface**

The W224 features a two-pin, serial data interface that can be used to configure internal register settings that control particular device functions.

#### **Data Protocol**

The clock driver serial protocol accepts only block writes from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. Indexed bytes are not allowed.

A block write begins with a slave address and a write condition. After the command code the core logic issues a byte count which describes how many more bytes will follow in the message. If the host had 20 bytes to send, the first byte would be

#### Table 8. Example of Possible Byte Count Value

the number 20 (14h), followed by the 20 bytes of data. The byte count may not be 0. A block write command is allowed to transfer a maximum of 32 data bytes. The slave receiver address for W224 is 11010010. *Figure 8* shows an example of a block write.

The command code and the byte count bytes are required as the first two bytes of any transfer. W224 expects a command code of 0000 0000. The byte count byte is the number of additional bytes required for the transfer, not counting the command code and byte count bytes. Additionally, the byte count byte is required to be a minimum of 1 byte and a maximum of 32 bytes to satisfy the above requirement. *Table 8* shows an example of a possible byte count value.

A transfer is considered valid after the acknowledge bit corresponding to the byte count is read by the controller.

| Byte Co | unt Byte | Notes                                                                        |
|---------|----------|------------------------------------------------------------------------------|
| MSB     | LSB      |                                                                              |
| 0000    | 0000     | Not allowed. Must have at least one byte                                     |
| 0000    | 0001     | Data for functional and frequency select register (currently byte 0 in spec) |
| 0000    | 0010     | Writes first two bytes of data (byte 0 then byte 1)                          |
| 0000    | 0011     | Writes first three bytes (byte 0, 1, 2 in order)                             |
| 0000    | 0100     | Writes first four bytes (byte 0, 1, 2, 3 in order)                           |
| 0000    | 0101     | Writes first five bytes (byte 0, 1, 2, 3, 4 in order)                        |
| 0000    | 0110     | Writes first six bytes (byte 0, 1, 2, 3, 4, 5 in order)                      |
| 0000    | 0111     | Writes first seven bytes (byte 0, 1, 2, 3, 4, 5, 6 in order)                 |
| 0010    | 0000     | Max. byte count supported = 32                                               |

Note:

12. The acknowledgment bit is returned by the slave/receiver (W224).



# W224 Serial Configuration Map

- 1. The serial bits will be read by the clock driver in the following order:
  - Byte 0 Bits 7, 6, 5, 4, 3, 2, 1, 0
  - Byte 1 Bits 7, 6, 5, 4, 3, 2, 1, 0
  - Byte N Bits 7, 6, 5, 4, 3, 2, 1, 0

#### Byte 0: Control Register (1 = Enable, 0 = Disable)<sup>[13]</sup>

- 2. All unused register bits (reserved and N/A) should be written to a "0" level.
- 3. All register bits labeled "Initialize to 0" must be written to zero during initialization. Failure to do so may result in higher than normal operating current.

| Bit   | Pin# | Name                         | Pin Description    |
|-------|------|------------------------------|--------------------|
| Bit 7 | 36   | VCH                          | (Disabled/Enabled) |
| Bit 6 | 49   | CPU_F2                       | (Disabled/Enabled) |
| Bit 5 | 50   | CPU_F1                       | (Disabled/Enabled) |
| Bit 4 | 52   | CPU0                         | (Disabled/Enabled) |
| Bit 3 | -    | Spread Spectrum (1=On/0=Off) | (Active/Inactive)  |
| Bit 2 | 26   | DOT                          | (Disabled/Enabled) |
| Bit 1 | 25   | USB                          | (Disabled/Enabled) |
| Bit 0 |      | Reserved Drive to '0'        | (Active/Inactive)  |

# Byte 1: Control Register (1 = Enable, 0 = Disable)<sup>[13]</sup>

| Bit   | Pin# | Name                      | Pin Description    |
|-------|------|---------------------------|--------------------|
| Bit 7 |      | Reserved Drive to '0'     | (Active/Inactive)  |
| Bit 6 |      | Reserved Drive to '0'     | (Active/Inactive)  |
| Bit 5 | 39   | SDRAM5                    | (Disabled/Enabled) |
| Bit 4 | 40   | SDRAM4                    | (Disabled/Enabled) |
| Bit 3 | 42   | SDRAM3                    | (Disabled/Enabled) |
| Bit 2 | 43   | SDRAM2                    | (Disabled/Enabled) |
| Bit 1 | 45   | SDRAM1 (Disabled/Enabled) | (Disabled/Enabled) |
| Bit 0 | 46   | SDRAM0                    | (Disabled/Enabled) |

#### Byte 2: Control Register (1 = Enable, 0 = Disable)<sup>[13]</sup>

| Bit   | Pin# | Name                  | Pin Description    |
|-------|------|-----------------------|--------------------|
| Bit 7 | 9    | 3V66_AGP              | (Disabled/Enabled) |
| Bit 6 | 8    | 3V66_1                | (Disabled/Enabled) |
| Bit 5 | 7    | 3V66_0                | (Disabled/Enabled) |
| Bit 4 |      | Reserved Drive to '0' | (Active/Inactive)  |
| Bit 3 |      | Reserved Drive to '0' | (Active/Inactive)  |
| Bit 2 |      | Reserved Drive to '0' | (Active/Inactive)  |
| Bit 1 |      | Reserved Drive to '0' | (Active/Inactive)  |
| Bit 0 |      | Reserved Drive to '0' | ((Active/Inactive) |

Note:

13. Inactive means outputs are held LOW and are disabled from switching. These outputs are designed to be configured at power-on and are not expected to be configured during the normal modes of operation.



| Bit   | Pin# | Name                                                                  | Pin Description    |
|-------|------|-----------------------------------------------------------------------|--------------------|
| Bit 7 | -    | Reserved Drive to '0'                                                 | (Active/Inactive)  |
| Bit 6 | 20   | PCI6                                                                  | (Disabled/Enabled) |
| Bit 5 | 19   | PCI5                                                                  | (Disabled/Enabled) |
| Bit 4 | 18   | PCI4                                                                  | (Disabled/Enabled) |
| Bit 3 | 16   | PCI3                                                                  | (Disabled/Enabled) |
| Bit 2 | 15   | PCI2                                                                  | (Disabled/Enabled) |
| Bit 1 | 13   | PCI1                                                                  | (Disabled/Enabled) |
| Bit 0 |      | SDRAM 133 MHz Mode Enable<br>Default is Disabled = '0', Enabled = '1' | (Active/Inactive)  |

#### Byte 3: Control Register (1 = Enable, 0 = Disable)

#### Byte 4: Control Register (1 = Enable, 0 = Disable)

| Bit   | Pin# | Name                                                 | Pin Description    |
|-------|------|------------------------------------------------------|--------------------|
| Bit 7 | 36   | VCH_CLK SSC Mode Enable<br>Default is Disabled = '0' | (Disabled/Enabled) |
| Bit 6 | -    | Reserved Drive to '0'                                | (Active/Inactive)  |
| Bit 5 | -    | Reserved Drive to '0'                                | (Active/Inactive)  |
| Bit 4 | -    | Reserved Drive to '0'                                | (Active/Inactive)  |
| Bit 3 | -    | Reserved Drive to '0'                                | (Active/Inactive)  |
| Bit 2 | -    | Reserved Drive to '0'                                | (Active/Inactive)  |
| Bit 1 |      | Reserved Drive to '0'                                | (Active/Inactive)  |
| Bit 0 | -    | Reserved Drive to '0'                                | (Active/Inactive)  |

#### Byte 5: Control Register (1 = Enable, 0 = Disable)

| Bit   | Pin# | Name                                  | Pin Description   |  |  |
|-------|------|---------------------------------------|-------------------|--|--|
| Bit 7 | -    | Reserved Drive to '0'                 | (Active/Inactive) |  |  |
| Bit 6 | -    | Spread Spectrum and Overclocking Mode | (Active/Inactive) |  |  |
| Bit 5 | -    | Select. See Table 9                   | (Active/Inactive) |  |  |
| Bit 4 | -    | Reserved Drive to '0'                 | (Active/Inactive) |  |  |
| Bit 3 | -    | Reserved Drive to '0'                 | (Active/Inactive) |  |  |
| Bit 2 | -    | Reserved Drive to '0'                 | (Active/Inactive) |  |  |
| Bit 1 |      | Reserved Drive to '0'                 | (Active/Inactive) |  |  |
| Bit 0 | -    | Reserved Drive to '0'                 | (Active/Inactive) |  |  |

Byte 5 has been provided as an optional register to enable a greater degree of spread spectrum and overclocking performance for all PLL1 outputs. (CPU, SDRAM, DCLK, APIC, PCI, 3V66 and VCH\_CLK)

By enabling Byte 5, (bits 5 and 6) spread spectrum can be increased to -1.0% and /or overclocking of either 5% or 10% can be enabled. Although the default values are '0' for all bits, the part can be placed into either Tri-State or Test Mode by

programming both bits 5 and 6 to '1'. The part will enter this mode irrespective of pin 33, TEST#.

It is not necessary to access Byte 5 if these additional features are not implemented. All outputs will default to 0% overclocking upon power up, with either 0% or -0.5% spread spectrum. (Spread spectrum ON/OFF remains under Byte 0, bit 3 control). Note that 10% overclocking can only be enabled with Spread Spectrum turned OFF.



| Byte 0          | Byt   | te 5  |             |                     |                                      |
|-----------------|-------|-------|-------------|---------------------|--------------------------------------|
| Bit 3           | Bit 5 | Bit 6 | SS %        | Overclock %         | Description and Comments             |
| Spread          | 0     | 0     | -0.5%       | 0%                  | No overclocking                      |
| Spectrum<br>ON  | 0     | 1     | -1.0%       | 0%                  | No overclocking                      |
|                 | 1     | 0     | -0.5%       | 5% <sup>[14]</sup>  |                                      |
|                 | 1     | 1     | -1.0%       | 5% <sup>[14]</sup>  |                                      |
| Spread          | 0     | 0     | -           | 0%                  |                                      |
| Spectrum<br>OFF | 0     | 1     | -           | 10% <sup>[13]</sup> |                                      |
| 011             | 1     | 0     | -           | 5% <sup>[14]</sup>  |                                      |
|                 | 1     | 1     | Three-state | or Test Mode        | Mode determined by FS0 (see Table 1) |

Table 9. Spread Spectrum and Overclocking Mode  ${\rm Select}^{[14]}$ 

Note:

14. Overclocking not tested; characterized at room temperature only. Base Frequency determined through hardware select pins, FS0 & FS1.



# **DC Electrical Characteristics**<sup>[15]</sup>

#### Absolute Maximum DC Power Supply

| Parameter         | Description              | Min. | Max. | Unit |
|-------------------|--------------------------|------|------|------|
| V <sub>DD3</sub>  | 3.3V Core Supply Voltage | -0.5 | 4.6  | V    |
| V <sub>DDQ2</sub> | 2.5V I/O Supply Voltage  | -0.5 | 3.6  | V    |
| V <sub>DDQ3</sub> | 3.3V Supply Voltage      | -0.5 | 4.6  | V    |
| Τ <sub>S</sub>    | Storage Temperature      | -65  | 150  | °C   |

#### Absolute Maximum DC I/O

| Parameter        | Description             | Min. | Max. | Unit |
|------------------|-------------------------|------|------|------|
| V <sub>ih3</sub> | 3.3V Input High Voltage | -0.5 | 4.6  | V    |
| V <sub>il3</sub> | 3.3V Input Low Voltage  | -0.5 |      | V    |
| ESD prot.        | Input ESD Protection    | 2000 |      | V    |

#### **DC Operating Requirements**

| Parameter                 | Description                           | Condition                             | Min.                 | Max.                  | Unit |
|---------------------------|---------------------------------------|---------------------------------------|----------------------|-----------------------|------|
| V <sub>DD3</sub>          | 3.3V Core Supply Voltage              | 3.3V±5%                               | 3.135                | 3.465                 | V    |
| V <sub>DDQ3</sub>         | 3.3V I/O Supply Voltage               | 3.3V±5%                               | 3.135                | 3.465                 | V    |
| V <sub>DDQ2</sub>         | 2.5V I/O Supply Voltage               | 2.5V±5%                               | 2.375                | 2.625                 | V    |
| $V_{DD3} = 3.3V \pm 5\%$  |                                       |                                       |                      |                       |      |
| V <sub>ih3</sub>          | 3.3V Input High Voltage               | V <sub>DD3</sub>                      | 2.0                  | V <sub>DD</sub> + 0.3 | V    |
| V <sub>il3</sub>          | 3.3V Input Low Voltage                |                                       | V <sub>SS</sub> -0.3 | 0.8                   | V    |
| l <sub>il</sub>           | Input Leakage Current <sup>[16]</sup> | 0 <v<sub>in<v<sub>DD3</v<sub></v<sub> | -5                   | +5                    | μA   |
| $V_{DDQ2} = 2.5V \pm 5\%$ |                                       |                                       |                      |                       |      |
| V <sub>oh2</sub>          | 2.5V Output High Voltage              | I <sub>oh</sub> =(-1 mA)              | 2.0                  |                       | V    |
| V <sub>ol2</sub>          | 2.5V Output Low Voltage               | l <sub>ol</sub> =(1 mA)               |                      | 0.4                   | V    |
| $V_{DDQ3} = 3.3V \pm 5\%$ | ,                                     |                                       |                      |                       |      |
| V <sub>oh3</sub>          | 3.3V Output High Voltage              | I <sub>oh</sub> =(-1 mA)              | 2.4                  |                       | V    |
| V <sub>ol3</sub>          | 3.3V Output Low Voltage               | l <sub>ol</sub> =(1 mA)               |                      | 0.4                   | V    |
| $V_{DDQ3} = 3.3V \pm 5\%$ | ,                                     |                                       |                      |                       |      |
| V <sub>poh3</sub>         | PCI Bus Output High Voltage           | I <sub>oh</sub> =(-1 mA)              | 2.4                  |                       | V    |
| V <sub>pol3</sub>         | PCI Bus Output Low Voltage            | l <sub>ol</sub> =(1 mA)               |                      | 0.55                  | V    |
|                           | •                                     |                                       |                      |                       |      |
| C <sub>in</sub>           | Input Pin Capacitance                 |                                       |                      | 5                     | pF   |
| C <sub>xtal</sub>         | Xtal Pin Capacitance                  |                                       | 13.5                 | 22.5                  | pF   |
| C <sub>out</sub>          | Output Pin Capacitance                |                                       |                      | 6                     | pF   |
| L <sub>pin</sub>          | Pin Inductance                        |                                       | 0                    | 7                     | nH   |
| T <sub>a</sub>            | Ambient Temperature                   | No Airflow                            | 0                    | 70                    | °C   |

#### Note

15. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
 16. Input Leakage Current does not include inputs with pull-up or pull-down resistors.



# AC Electrical Characteristics<sup>[15]</sup>

# $T_A$ = 0°C to +70°C, $V_{DDQ3}$ = 3.3V±5%, $V_{DDQ2}$ = 2.5V±5% $f_{XTL}$ = 14.31818 MHz Spread Spectrum function turned off

AC clock parameters are tested and guaranteed over stated operating conditions using the stated lump capacitive load at the clock output.<sup>[17]</sup>

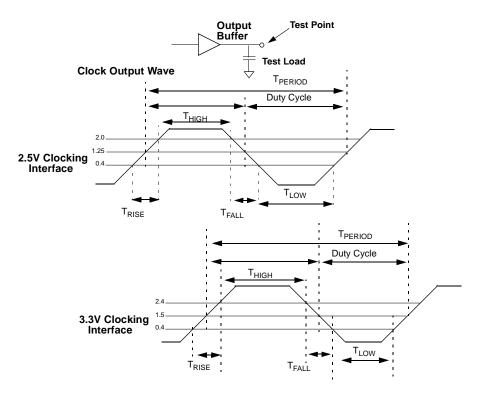
#### **AC Electrical Characteristics**

|                                     |                                       | 66.6-M | Hz Host | 100-MH | Iz Host | 133-MF | Iz Host |      |       |
|-------------------------------------|---------------------------------------|--------|---------|--------|---------|--------|---------|------|-------|
| Parameter                           | Description                           | Min.   | Max.    | Min.   | Max.    | Min.   | Max.    | Unit | Notes |
| T <sub>Period</sub>                 | Host/CPUCLK Period                    | 15.0   | 15.5    | 10.0   | 10.5    | 7.5    | 8.0     | ns   | 17    |
| T <sub>HIGH</sub>                   | Host/CPUCLK High Time                 | 5.2    | N/A     | 3.0    | N/A     | 1.87   | N/A     | ns   | 16    |
| T <sub>LOW</sub>                    | Host/CPUCLK Low Time                  | 5.0    | N/A     | 2.8    | N/A     | 1.67   | N/A     | ns   | 17    |
| T <sub>RISE</sub>                   | Host/CPUCLK Rise Time                 | 0.4    | 1.6     | 0.4    | 1.6     | 0.4    | 1.6     | ns   | 19    |
| T <sub>FALL</sub>                   | Host/CPUCLK Fall Time                 | 0.4    | 1.6     | 0.4    | 1.6     | 0.4    | 1.6     | ns   | 19    |
| T <sub>Period</sub>                 | SDRAM CLK Period (100-MHz)            | 10.0   | 10.5    | 10.0   | 10.5    | 10.0   | 10.5    | ns   | 17    |
| T <sub>HIGH</sub>                   | SDRAM CLK High Time (100-MHz)         | 3.0    | N/A     | 3.0    | N/A     | 3.0    | N/A     | ns   | 16    |
| T <sub>LOW</sub>                    | SDRAM CLK Low Time (100-MHz)          | 2.8    | N/A     | 2.8    | N/A     | 2.8    | N/A     | ns   | 17    |
| T <sub>RISE</sub>                   | SDRAM CLK Rise Time (100-MHz)         | 0.4    | 1.6     | 0.4    | 1.6     | 0.4    | 1.6     | ns   | 19    |
| T <sub>FALL</sub>                   | SDRAM CLK Fall Time (100-MHz)         | 0.4    | 1.6     | 0.4    | 1.6     | 0.4    | 1.6     | ns   | 19    |
| T <sub>Period</sub>                 | APIC 33-MHz CLK Period                | 30.0   | N/A     | 30.0   | N/A     | 30.0   | N/A     | ns   | 17    |
| T <sub>HIGH</sub>                   | APIC 33-MHz CLK High Time             | 12.0   | N/A     | 12.0   | N/A     | 12.0   | N/A     | ns   | 16    |
| T <sub>LOW</sub>                    | APIC 33-MHz CLK Low Time              | 12.0   | N/A     | 12.0   | N/A     | 12.0   | N/A     | ns   | 17    |
| T <sub>RISE</sub>                   | APIC CLK Rise Time                    | 0.4    | 1.6     | 0.4    | 1.6     | 0.4    | 1.6     | ns   | 19    |
| T <sub>FALL</sub>                   | APIC CLK Fall Time                    | 0.4    | 1.6     | 0.4    | 1.6     | 0.4    | 1.6     | ns   | 19    |
| T <sub>Period</sub>                 | 3V66 CLK Period                       | 15.0   | 16.0    | 15.0   | 16.0    | 15.0   | 16.0    | ns   | 17    |
| T <sub>HIGH</sub>                   | 3V66 CLK High Time                    | 5.25   | N/A     | 5.25   | N/A     | 5.25   | N/A     | ns   | 16    |
| T <sub>LOW</sub>                    | 3V66 CLK Low Time                     | 5.05   | N/A     | 5.05   | N/A     | 5.05   | N/A     | ns   | 17    |
| T <sub>RISE</sub>                   | 3V66 CLK Rise Time                    | 0.5    | 2.0     | 0.5    | 2.0     | 0.5    | 2.0     | ns   | 19    |
| T <sub>FALL</sub>                   | 3V66 CLK Fall Time                    | 0.5    | 2.0     | 0.5    | 2.0     | 0.5    | 2.0     | ns   | 19    |
| T <sub>Period</sub>                 | PCI CLK Period                        | 30.0   | N/A     | 30.0   | N/A     | 30.0   | N/A     |      | 17    |
| T <sub>HIGH</sub>                   | PCI CLK High Time                     | 12.0   | N/A     | 12.0   | N/A     | 12.0   | N/A     |      | 16    |
| T <sub>LOW</sub>                    | PCI CLK Low Time                      | 12.0   | N/A     | 12.0   | N/A     | 12.0   | N/A     |      | 17    |
| T <sub>RISE</sub>                   | PCI CLK Rise Time                     | 0.5    | 2.0     | 0.5    | 2.0     | 0.5    | 2.0     |      | 19    |
| T <sub>FALL</sub>                   | PCI CLK Fall Time                     | 0.5    | 2.0     | 0.5    | 2.0     | 0.5    | 2.0     |      | 19    |
| tp <sub>ZL</sub> , tp <sub>ZH</sub> | Output Enable Delay (All outputs)     | 1.0    | 10.0    | 1.0    | 10.0    | 1.0    | 10.0    | ns   |       |
| tp <sub>LZ</sub> , tp <sub>ZH</sub> | Output Disable Delay (All outputs)    | 1.0    | 10.0    | 1.0    | 10.0    | 1.0    | 10.0    | ns   |       |
| t <sub>stable</sub>                 | All Clock Stabilization from Power-Up |        | 3       |        | 3       |        | 3       | ms   | 18    |

Notes:

19.  $T_{LOW}$  is measured at 0.4V for all outputs.

Period, jitter, offset, and skew measured on rising edge at 1.25 for 2.5V clocks and at 1.5V for 3.3V clocks.
 T<sub>HIGH</sub> is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.


<sup>20.</sup> The time specified is measured from when  $V_{DDQ3}$  achieves its nominal operating level (typical condition  $V_{DDQ3} = 3.3V$ ) until the frequency output is stable

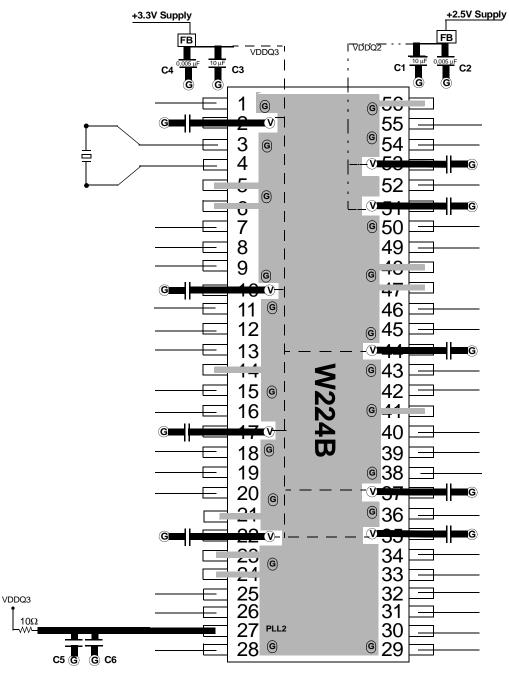
and operating within specification. 21.  $T_{RISE}$  and  $T_{FALL}$  are measured as a transition through the threshold region  $V_{ol} = 0.4V$  and  $V_{oh} = 2.0V$  (1 mA) JEDEC specification for 2.5V outputs and  $V_{OL} = 0.4V$  and  $V_{OH} = 2.4V$  for 3.3V outputs.



#### Group Skew and Jitter Limits

| Output Group | Pin-Pin Skew Max. | Cycle-Cycle Jitter | Duty Cycle | Nom Vdd | Skew, Jitter<br>Measure Point |
|--------------|-------------------|--------------------|------------|---------|-------------------------------|
| CPU          | 150 ps            | 250 ps             | 45/55      | 2.5V    | 1.25V                         |
| SDRAM        | 250 ps            | 250 ps             | 45/55      | 3.3V    | 1.5V                          |
| APIC         | 250 ps            | 500 ps             | 45/55      | 2.5V    | 1.25V                         |
| 48MHz        | N/A               | 500 ps             | 45/55      | 3.3V    | 1.5V                          |
| 3V66         | 175 ps            | 500 ps             | 45/55      | 3.3V    | 1.5V                          |
| PCI          | 500 ps            | 500 ps             | 45/55      | 3.3V    | 1.5V                          |
| REF          | N/A               | 1000 ps            | 45/55      | 3.3V    | 1.5V                          |
| VCH_CLK      | N/A               | 250ps              | 45/55      | 3.3V    | 1.5V                          |



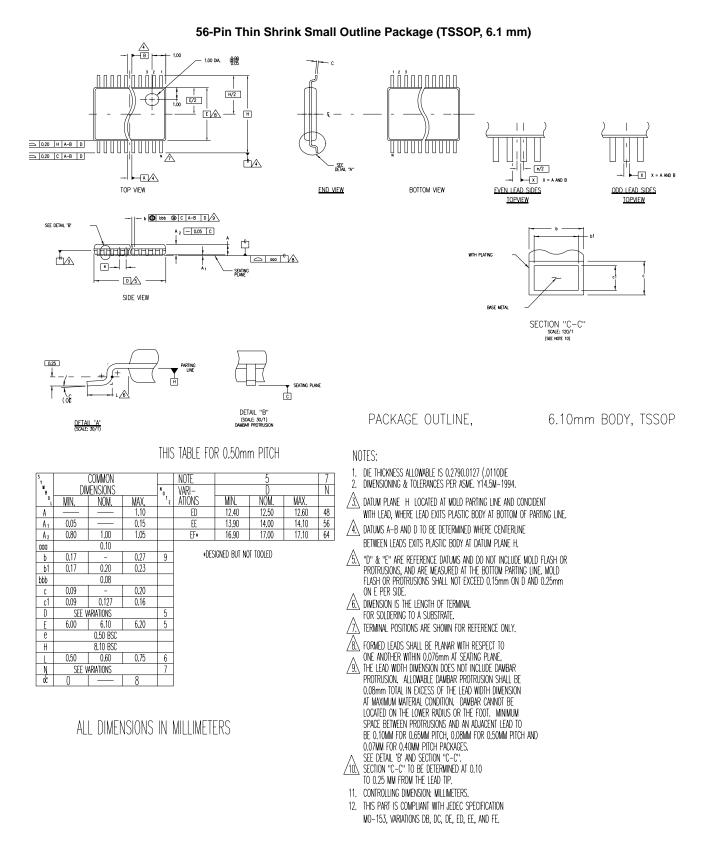



# **Ordering Information**

| Ordering Code | Package<br>Name | Package Type                                  |
|---------------|-----------------|-----------------------------------------------|
| W224B         | H<br>X          | 56-pin SSOP (7.5 mm)<br>56-pin TSSOP (6.1 mm) |



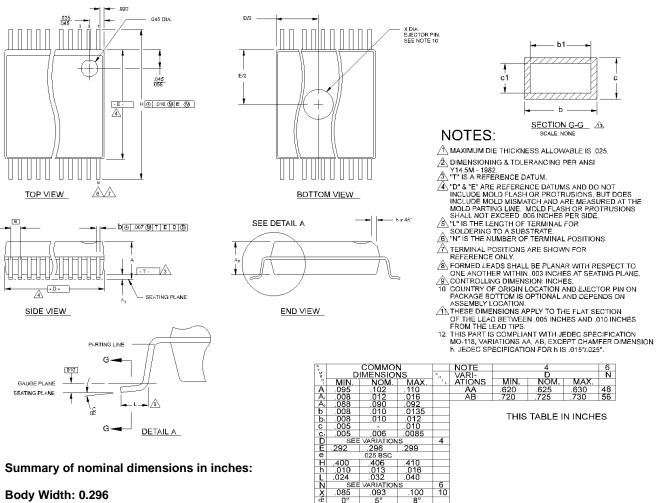
# Layout Example




#### FB = Dale ILB1206 - 300 (300Ω @ 100 MHz)

 $\label{eq:ceramic Caps: C1, C3 & C5 = 10-22 \ \mu F \quad C2 & C4 = 0.005 \ \mu F \quad C6 = 0.1 \ \mu F \\ \hline (G) = VIA \ to \ GND \ plane \ layer \quad (V) = VIA \ to \ respective \ supply \ plane \ layer \\ \hline Note: \ Each \ supply \ plane \ or \ strip \ should \ have \ a \ ferrite \ bead \ and \ capacitors \\ \hline$ 




# Package Diagrams





# W224B

# Package Diagrams (continued)



#### 56-Pin Shrink Small Outline Package (SSOP, 7.5 mm)

Body Width: 0.296 Lead Pitch: 0.025 Body Length: 0.725 Body Height: 0.102

| S, | COMMON     |           |       |     | NOTE                  | 4       |          |        | 6   |
|----|------------|-----------|-------|-----|-----------------------|---------|----------|--------|-----|
| M  | DIMENSIONS |           |       | No. | VARI-                 | D       |          |        | N   |
| 2  | MIN.       | NOM.      | MAX.  | 1 E | ATIONS                | MIN.    | NOM.     | MAX.   |     |
| A  | 2.41       | 2.59      | 2.79  |     | AA                    | 15.75   | 15.88    | 16.00  | 48  |
| A, | 0.20       | 0.31      | 0.41  |     | AB                    | 18.29   | 18.42    | 18.54  | 56  |
| A, | 2.24       | 2.29      | 2.34  |     |                       |         |          |        |     |
| b  | 0.203      | 0.254     | 0.343 |     | THIS TABLE IN MILLIME |         |          |        |     |
| b1 | 0.203      | 0.254     | 0.305 |     |                       | THIS TA | BLE IN N | ILLIME | ERS |
| С  | 0.127      | -         | 0.254 |     |                       |         |          |        |     |
| Ci | 0.127      | 0.152     | 0.216 |     |                       |         |          |        |     |
| D  |            |           |       | 4   |                       |         |          |        |     |
| E  | 7.42       | 7.52      | 7.59  |     |                       |         |          |        |     |
| e  |            | 0.635 BSC |       |     |                       |         |          |        |     |
| H  | 10.16      | 10.31     | 10.41 |     |                       |         |          |        |     |
| h  | 0.25       | 0.33      | 0.41  |     |                       |         |          |        |     |
| L  | 0.61       | 0.81      | 1.02  |     |                       |         |          |        |     |
| N  |            |           |       | 6   |                       |         |          |        |     |
| X  | 2.16       | 2.36      | 2.54  | 10  |                       |         |          |        |     |
| æ  | 0°         | 5°        | 8°    |     |                       |         |          |        |     |

Document #: 38-07191 Rev. \*A

Page 17 of 18

© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor against all charges.



# **Revision History**

| Document Title: W224B 133-MHz Spread Spectrum FTG for Mobile Pentium III Platforms<br>Document Number: 38-07191 |         |               |                    |                                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------|---------|---------------|--------------------|---------------------------------------------------------------------|--|--|
| REV.                                                                                                            | ECN NO. | Issue<br>Date | Orig. of<br>Change | Description of Change                                               |  |  |
| **                                                                                                              | 110592  | 12/16/01      | DSG                | Change from Spec number: 38-00926 to 38-07191                       |  |  |
| *A                                                                                                              | 122822  | 12/22/02      | RBI                | Add Power up Requirements to Electrical Characteristics Information |  |  |