Panasonic _____

MIP0060ME

Туре	Silicon MOSFET type Integrated Circuit			
Application	For Switching Power Supply Control			
Structure	CMOS type			
Equivalent Circuit	Figure 7			
Package	SSOP016-P-0300	Marking	MIP006	

A. ABSOLUTE MAXIMUM RATINGS (Ta= 25°C±3°C)

	(,		
NO.	Item	Symbol	Ratings	Unit	Note
1	VIN Voltage	VIN	-0.3 to 550	V	
2	VCC Voltage	VCC	–0.3 to 45	V	
3	VDD1 Voltage	VDD1	–0.3 to 10	V	
4	VDD2 Voltage	VDD2	–0.3 to 10	V	
5	VGD Voltage	VGD	–0.3 to 15	V	
6	OUT Voltage	VOUT	–0.3 to 15	V	
7	IS Voltage	VIS	-0.3 to 5	v	
8	FB Voltage	VFB	-0.3 to 8	V	
9	OFF Voltage	VOFF	-0.3 to 10	V	
10	CL Voltage	VCL	-0.3 to 10	V	
11	LS Voltage	VLS	–0.3 to 10	V	
12	SO Voltage	VSO	–0.3 to 10	V	
13	SO Current	ISO	1.3	mA	
14	Junction Temperature	Тј	150	°C	
15	Storage Temperature	Tstg	55 to +150	°C	

B. RECOMMENDED OPERATING CONDITIONS

NO.	Item	Symbol	Conditions	Unit	Note
1	Junction Temperature				
		Тј	–40 to +125	°C	

MIP0060ME

C. EL	ECTRICAL CHARACTERISTICS	Measure	e condition (Ta=25°C±3°C)				
No.	Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
[CONT	ROL FUNCTIONS] *Design Guarantee	e Item, **Re	eference Item				·
1	VCC Start Voltage	VCC(ON)		20	18	22	v
2	VCC Stop Voltage	VCC(OFF)		10.3	9.3	11.3	V
3	VCC Start/Stop Hysteresis	D_VCC	VCC(ON) – VCC(OFF)	9.7	8.7	10.7	V
4	VDD1 Reference Voltage	VDD1	VCC = 22 V	6.0	5.5	6.5	V
5	VDD2 Reference Voltage	VDD2	VCC = 22 V, VDD1 : open	5.2	4.7	5.7	v
6	VDD2 Charge Start Voltage	VDD2(OFF)	VIN = 50 V	4.5	4.0	5.0	v
7	Reset Voltage of Power-OFF Mod	VDD2reset		2.1	1.4	2.8	V
8	Voltage Deference for keeping Power-OFF Mode	D_VDD2	VDD2(OFF) – VDD2reset	2.4	1.4	3.4	v
9	VCC Pin Current at Start-up	ICC(SB)	VCC = VCC(ON) – 0.5 V, CL : open, FB : open, SO : open	0.55	0.40	0.70	mA
10	VCC Pin Current at Low Load	ICC(STB)	VCC = 15 V, CL : open, IFB = IFB1 – 5uA, SO : open	0.73	0.63	0.83	mA
11	VCC Pin Current at Operating	ICC(OP)	VCC = 22 V, CL : open, COUT = 1 nF, IFB = –50 μA, SO : open	1.7	1.4	2.0	mA
12	VCC Pin current in Power-OFF	ICC(OFF)	Power-OFF Mode, VIN = 50 V, VCC = 22 V	40	20	60	μA
13	Output Frequency	fosc	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	66	61	71	kHz
14	Jitter Frequency Deviation	d_fosc	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	3	1.8	4.2	kHz
**15	Jitter Frequency Modulation Rate	fM	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	430	-	-	Hz
16	Maximum Duty Cycle	MAXDC	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	66	60	72	%
17	Feedback Threshold Current	IFB1	$ON \rightarrow OFF$, VCC = 22 V, CL : open	-100	-140	-60	μA
**18	Feedback Current Hysteresis	IFBHYS	$OFF \rightarrow ON$ VCC = 22 V, CL : open	1	-	_	μA
19	FB Pin Voltage	VFB1	VCC = 22 V, IFB = IFB1	1.6	1.2	2.0	V
20	FB Pin Grounded Current	IFB0	VCC = 22 V, VFB = 0 V	-330	-410	-250	μA
21	FB Pin Pull-down resistance at Output Stop	RFB(OFF)	VCC = 22 V, VFB = VFB1, ICL < ICL1	370	220	520	Ω

C. ELECTRICAL CHARACTERISTICS Measure cor

Measure condition (Ta=25°C±3°C)

MIP0060ME

C. ELECTRICAL CHARACTERISTICS (continued) Measure condition (Ta=25°C±3°C)

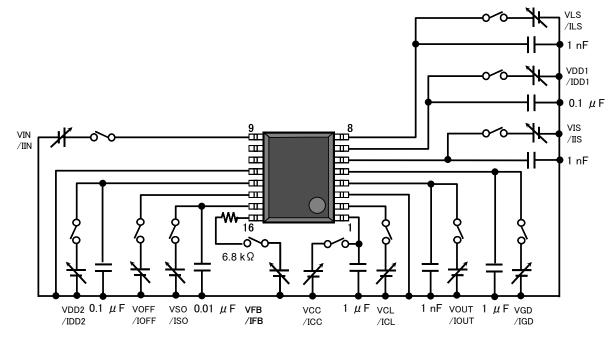
C. EL	ECTRICAL CHARACTERISTICS (continuea) Measure condition (Ta=25°C	し±3°し)			
No.	Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
22	VCC Pin Charging Current	ICCH1	VCC = 0 V, CL : open, FB : open, , SO : open, VIN = 50 V	-11.0	-15.4	-6.6	mA
		ICCH2	VCC = VCC(ON) - 0.5 V, CL : open, FB : open, , SO : open, VIN = 50 V	-3.6	-5.1	-2.1	mA
23	VDD2 Pin Charging Current	IDD2CH	Power-OFF Mode, Detection of AC input cutoff, VDD2 = VDD2(OFF) – 0.5 V,	-8.0	-	-4.0	mA
24	LS Pin Detect Voltage	VLSH	VCC = 22 V, VFB = 3 V	1.27	1.11	1.43	V
25	LS Pin Detect Voltage Hysteresis	VLSHYS	VCC = 22 V, VFB = 3 V	0.37	0.27	0.47	V
26	LS Pin Leakage Current	ILS(LEAK)	VCC = 22 V, VLS = 10 V	0	-	0.1	μA
27	LS Pin Detect Filter Time	Td(LS)1	VCC = 22 V	36	23	55	ms
		Td(LS)2	Power-OFF Mode, VIN = 50 V	32	22	48	ms
28	VIN Current in LS Undetected State	IIN(ACCUT)1	Detection of AC input cutoff, VCC = 22 V, SO : open, VIN = 30 V	2.4	1.4	3.4	mA
		IIN(ACCUT)2	Power-OFF Mode, Detection of AC input cutoff, VCC = 22 V, SO : open, VIN = 30 V	2.2	1.2	3.2	mA
29	OFF Pin Detect Voltage	VTH(OFF)	VIN = 50 V	1.27	1.04	1.50	V
*30	Power-OFF Mode Detect Filter Time	Td(OFF)	VOFF = 0 V \rightarrow VTH(OFF) + 0.2 V VIN = 50 V	1.2	0.7	1.7	ms
31	SO Pin Output Voltage	VSO1	Detection of AC input cutoff, VCC = 22 V, ISO = 0 µA, VIN = 50 V	3.7	2.7	4.7	V
		VSO2	Power-OFF Mode, Detection of AC input cutoff, ISO = 0 μA, VIN = 50 V	2.9	1.9	3.9	V
32	SO Pin Output Current	ISO	Detection of AC input cutoff, VCC = 22 V, VSO = 1 V, VIN = 50 V	-0.75	-1.2	-0.3	mA
33	SO Pin Disable Threshold	VTH(SO)		VDD2 -1.0	VDD2 -1.5	VDD2 -0.5	V
*34	Soft Start Time	Tsoft	VCC = VCC(OFF) \rightarrow VCC(ON), CL : open, VFB = 3 V, SO : open	5	2.5	7.5	ms
[CIRC	UIT PROTECTIONS] *Design Guara	ntee Item, *	*Reference Item				-
35	Current Limit Detection Maximum		VCC = 22 V, CL : open ,				
26	Voltage	VLIMIT(MAX)	VFB = 3 V	775	720	830	mV
36	Current Limit Detection Voltage at ICL = $-150 \mu A$	VLIMIT150	VCC = 22 V, ICL = -150 μA , VFB = 3 V	390	350	430	mV
37	Remote ON/OFF Threshold Current	ICL1	$ON \rightarrow OFF$, VCC = 22 V, VFB = 3 V	-300	-390	-210	μA

MIP0060ME

C. ELECTRICAL CHARACTERISTICS (continued) Measure condition (Ta=25°C±3°C)

C. ELI	ECTRICAL CHARACTERISTICS (continueu	inteasure condition (Ta=25°C	J±3°U)			
No.	Item	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
**38	Remote ON/OFF Threshold Current Hysteresis	ICLHYS	$OFF \rightarrow ON$, VCC = 22 V, VFB = 3 V	10	-	-	μA
39	CL Pin Voltage at ICL = 0 μA	VCL	VCC = 22 V, ICL = 0 μA , VFB = 3 V	1.30	0.90	1.70	V
40	CL Pin Voltage at ICL = 150 μA	VCL150	VCC = 22 V, ICL = -150 μA , VFB = 3 V	1.15	0.80	1.50	V
41	CL Pin Voltage at ICL = ICL1	VCL1	VCC = 22 V, ICL = ICL1, VFB = 3 V	1.00	0.65	1.35	V
42	CL Pin Grounded Current	ICL0	VCC = 22 V, VCL = 0 V, VFB = 3 V	-380	-560	-200	μA
43	CL Pin Current Difference	D_ICL	ICL1 - ICL0	80	30	130	μA
*44	Current Detection Minimum Voltage at IFB = IFB1	VIS(OFF)min	VCC = 22 V, ICL : open, IFB = IFB1	200	150	250	mV
**45	Jitter Deviation of Current Detection Voltage at IFB = IFB1	D_VIS(OFF)	VCC = 22 V, ICL : open, IFB = IFB1	40	-	-	mV
46	Sense Offset Current at Heavy Load	IIS1	VCC = 22 V , VFB = 3 V, VIS = 0 V	0	-2	2	μA
**47	Sense Offset Minimum Current at IFB = IFB1	IIS2	VCC = 22 V , IFB = IFB1, VIS = 0 V	-90	-	-	μA
48	Minimum On Time	Ton(MIN)	VCC = 20 V, COUT = 1 nF	800	500	1100	ns
**49	Leading Edge Blanking Delay	Ton(BLK)	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	650	-	-	ns
**50	Current Limit Delay	Td(OCL)	VCC = 22 V, CL : open, COUT = 1 nF, VFB = 3 V	150	-	-	ns
51	FB Pin Over Load Protection Voltage	VFB(OL)	VCC = 22 V	4.4	3.9	4.9	V
52	FB Pin Charging Current at Over	IFB(OL)	VCC = 22 V, VFB = 3 V	-10	-13	-7	μA
53	VDD1 Latch Stop Threshold Voltage	VDD1(OV)	VCC = 22 V, VFB = 3 V	7.7	7.0	8.4	V
54	VDD1 Latch Stop Threshold Current	IDD1(OV)	VCC = 22 V, VFB = 3 V	1.4	0.8	2.0	mA
55	VDD1 clamp Current	IDD1(CLP)	VCC = 22 V, VDD1 = 10 V	9.3	7.5	11.1	mA
**56	VDD1 Latch Reset Threshold Voltage	Td(LAT)	VCC = 22 V	125	-	-	μs
57	Thermal Shutdown Temperature	VDD1reset		2.7	1.7	3.7	V
*58	Thermal Shutdown Temperature Hysteresis	TOTP		140	130	150	°C
**59	Minimum On Time	TOTPHYS		70	-	-	°C

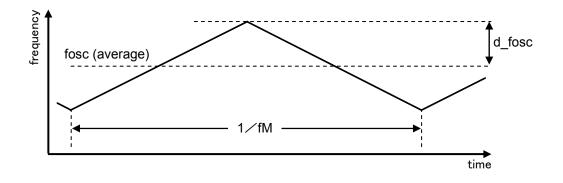
MIP0060ME


C. ELI	ECTRICAL CHARACTERISTICS (continueu) Measure condition (1a=25 C	±3 C)			
No.	ltem	Symbol	Measure Conditions	Тур.	Min.	Max.	Unit
[OUTF	PUT] **Reference Item				1	J	1
60	VGD Reference Voltage	VGDref	VCC = 22 V	12	11	13	v
61	VGD Minimum Voltage	VGD(MIN)	VCC = VCC(OFF)	9.4	8.4	10.4	v
**62	Output Sink Current	IOUTL	VCC = 22 V, VGD = VGDref + 0.2 V, VOUT = 12 V	1.2	-	-	А
**63	Output Source Current	IOUTH	VCC = 22 V, VGD = VGDref + 0.2 V, VOUT = 0 V	-0.6	-	_	А
64	Low Level Output Voltage	VOUTL	VCC = 22 V, VGD = VGDref + 0.2 V, IOUT = 10 mA	0.05	-	0.2	v
65	High Level Output Voltage	VOUTH	VCC = 22 V, VGD = VGDref + 0.2 V, IOUT = -10 mA	VGD -0.1	VGD -0.3	-	v
**66	Rise Time	tr	VCC = 22 V, COUT = 1 nF VGD = VGDref + 0.2 V	40	-	-	ns
**67	Fall Time	tf	VCC = 22 V, COUT = 1 nF VGD = VGDref + 0.2 V	20	-	-	ns
[HIGH	VOLTAGE INPUT]		•	<u>.</u>			<u>.</u>
68	VIN Pin Leakage Current	IIN(LEAK)	VIN = 500 V, VCC > VCC(ON),	2.5	-	10	μA
69	VIN Pin Current in Power-OFF Mode	IIN(OFF)	Power-OFF Mode, VIN = 500 V, VCC : open	12.5	-	30	μA
70	VIN Pin Breakdown Voltage	BVVIN	IIN = 100 µA, VCC > VCC(ON)	_	550	-	v
71	Minimum VIN Supply Voltage	VIN(MIN)		26	21	31	v

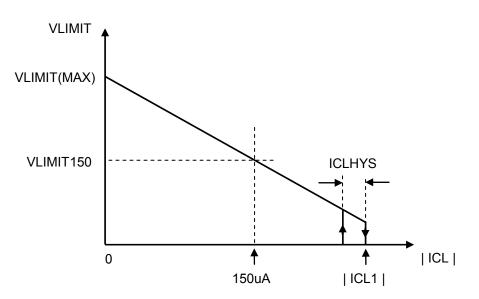
C. ELECTRICAL CHARACTERISTICS (continued) Measure condition (Ta=25°C±3°C)

MIP0060ME

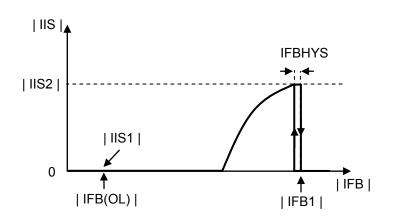
[Figure 1: Measure circuit / Pin Layout]



Pin No.	Pin Name	Function
1	VCC	Power supply from bias winding
2	CL	VLIMIT adjustment (Input correction)
3	GND1	Ground (*)
4	OUT	Output for gate drive
5	VGD	Power supply for gate drive
6	IS	Current detection
7	VDD1	Power Supply Voltage for circuits, External latch
8	LS	AC input cutoff detection
9	VIN	Power supply for start-up
10	NC	-
11	NC	-
12	GND2	Ground (*)
13	VDD2	Power Supply Voltage for power off mode
14	OFF	Power-off mode control
15	SO	AC input signal detection signal output
16	FB	Feedback control

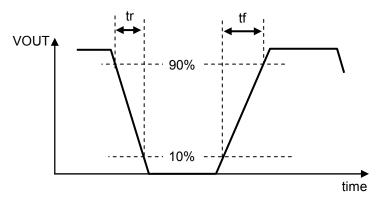

* GND1 and GND2 should be shorted on this power supply board.

MIP0060ME

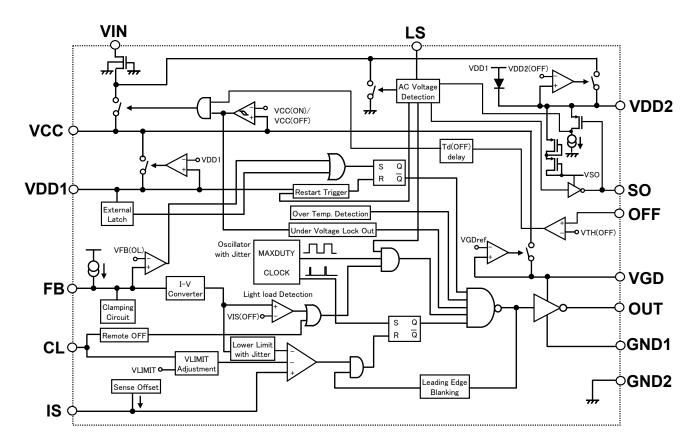

[Figure 2: fosc, d_fosc, fM measurement]

[Figure 3: ICL-VLIMIT Characteristics]

[Figure 4: IFB-IIS Characteristics]


MIP0060ME

[Figure 5: VCC-VGD Characteristics]


[Figure 6: tr, tf measurement]

Panasonic _

MIP0060ME

[Figure 7: Block Diagram]

[Precautions for Use 1]

Connect GND1 and GND2 on the power supply board.

[Precautions for Use 2]

Connect a ceramic capacitor with value $\ge 0.1 \mu$ F between VDD1 pin and GND, and between VDD2 pin and GND.

[Precautions for Use 3]

The product has risks for break-down or burst or giving off smoke in following conditions. Avoid the following use. Fuse should be added at the input side or connect zener diode between control pin and GND, etc as a countermeasure to pass regulatory Safety Standard. Concrete countermeasure could be provided individually. However, customer should make the final judgment.

- 1. Reverse the VIN pin and VCC pin connection to the power supply board.
- 2. Connect to pins in which different Maximum ratings.

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:
 - Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

Precautions on the Sales of IPDs

- The sale and/or the export of IPD products to customers located in certain countries is restricted by the Agreement made and executed by and between Power Integrations, Inc. and Panasonic Corporation. For details, refer to the following Attached table "IPD availability by customer."
- 2) IPD products purchased from our company, or its authorized agents, hereinafter referred to as our company, shall be used only for production purposes by those parties who have duly purchased IPD products. Those who have purchased IPD products shall not use such IPD products in unmodified form for re-sale, loan, or sample shipment for evaluation purposes to any other parties.
- 3) If a party who has duly purchased IPD products subcontracts its production to any other parties, including its subsidiaries or any other third parties inside and/or out of Japan, and the IPD products are consigned to such subcontracting parties thereat, such party is obligated to monitor and control the quantity of IPD products to prevent any of the aforementioned re-sale, loan or sample shipments from taking place.
- 4) In the event that any actual or threatened breach or violation of any of the above mentioned 2) or 3) has occurred or is about to occur, our company will hold all shipments of IPD products and may request the customer to disclose necessary documentation describing the status of our end-users and/or distribution channels.

Note) The products of MIP50**, MIP51**, and MIP7** are excluded from above-mentioned precautions, 1) to 3).

Attached table "IPD availability by customer"

	Parts No.		Companies/areas to which products can be sold	Companies/areas to which products cannot be sold	Application
MIP01** MIP2** MIP9A**	MIP02** MIP3** MIP9L**	MIP1** MIP4**	 Japanese companies in Japan Japanese companies in Asia (50% or more owned) 	 Companies in European and American countries Asian companies in Asia Other local companies 	 For power supply For DC-DC converter
MIP00** MIP55** MIP816/826	MIP52** MIP56** MIP9E**	MIP53** MIP803/804	 Japanese companies in Japan Japanese companies in Asia (50% or more owned) Asian companies in Asia 	Companies in European and American countries Other local companies	 For power supply For EL driver For LED lighting driver
MIP50**	MIP51**	MIP7**	• No restrictions in terms of contract	• No restrictions in terms of contract	For lamp driver/ car electronics accessories

Note) For details, contact our sales division.