
IBM PowerPC 970MP RISC Microprocessor

User’s Manual

Version 2.3

 
March 7, 2008  

Title Page



®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2005, 2008

All Rights Reserved
Printed in the United States of America March 2008

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or 
both:

IBM POWER PowerPC
IBM Logo Power Architecture PowerPC Architecture
ibm.com

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or 
both.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document 
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction 
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not 
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied 
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating 
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be 
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®
The IBM Semiconductor solutions home page can be found at ibm.com/chips

970MP_UM_title.fm 
Version 2.3
March 7, 2008 
 

http://www.ibm.com
http://www.ibm.com/chips


User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Contents
Page 3 of 415

Contents

List of Figures ...............................................................................................................  13

List of Tables .................................................................................................................  15

Revision Log .................................................................................................................  19

About This Book ...........................................................................................................  21
Audience ...............................................................................................................................................  21
Organization ..........................................................................................................................................  21
Related Documents ...............................................................................................................................  22

Companion Manuals .......................................................................................................................  22
Additional Documentation ...............................................................................................................  23
General PowerPC Documentation .................................................................................................  24

Conventions ..........................................................................................................................................  25
Acronyms and Abbreviations ................................................................................................................  26
Terminology Conventions .....................................................................................................................  31

1. PowerPC 970MP Overview .......................................................................................  33
1.1 PowerPC 970MP Microprocessor Overview ...................................................................................  33
1.2 PowerPC 970MP Functional Units ..................................................................................................  36

1.2.1 Introduction ............................................................................................................................  36
1.2.1.1 Key Design Fundamentals of the Microprocessor Core .................................................  36
1.2.1.2 Detailed Features of the Microprocessor Core ...............................................................  37

1.3 970MP Dual-Core Module ...............................................................................................................  41

2. Programming Model .................................................................................................  43
2.1 970MP Processor Register Set .......................................................................................................  43

2.1.1 Architected Registers in the 970MP Implementation .............................................................  49
2.1.1.1 MSR Register (MSR) ......................................................................................................  49
2.1.1.2 Machine Status Save/Restore Register (SRR1) ............................................................  49
2.1.1.3 Time Base and Decrementer (TB, DEC) ........................................................................  50
2.1.1.4 Processor ID Register (PIR) ...........................................................................................  50

2.1.2 PowerPC 970MP-Specific Registers .....................................................................................  50
2.1.2.1 Move To and Move From System Register Instructions ................................................  50
2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5) ................................................................  54
2.1.2.3 Data Address Breakpoint Register (DABR) ....................................................................  61
2.1.2.4 Instruction Address Breakpoint Register (IABR) ............................................................  62
2.1.2.5 Instruction Match CAM Array Access Register (IMC) ....................................................  62
2.1.2.6 Performance Monitor Registers (MMCR0, MMCR1, MMCRA, PMC1-8) .......................  63
2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers (SIAR, SDAR) ....  64
2.1.2.8 Scan Communication Registers (SCOMC and SCOMD) ...............................................  64
2.1.2.9 Hypervisor Decrementer Interrupt Register (HDEC) ......................................................  65
2.1.2.10 Hypervisor Save/Restore Register (HSRR0, HSRR1) .................................................  65
2.1.2.11 Hypervisor SPRGs (HSPRG0, HSPRG1) ....................................................................  65



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Contents
Page 4 of 415

Version 2.3
March 7, 2008

2.1.2.12 Trigger Registers (TRIG0, TRIG1, TRIG2) ................................................................... 65
2.1.2.13 Hardware Interrupt Offset Register (HIOR) .................................................................. 66

2.2 Instruction Set Summary ................................................................................................................. 67
2.2.1 Classes of Instructions ........................................................................................................... 67

2.2.1.1 Definition of Boundedly Undefined ................................................................................. 68
2.2.1.2 Defined Instructions ........................................................................................................ 68
2.2.1.3 Illegal Instructions ........................................................................................................... 69
2.2.1.4 Reserved Instructions ..................................................................................................... 69

2.2.2 Instruction Set Overview ........................................................................................................ 69
2.2.3 Fixed-Point Processor ............................................................................................................ 70

2.2.3.1 Fixed-Point Arithmetic and Compare Instructions .......................................................... 70
2.2.3.2 Fixed-Point Logical, Rotate, and Shift Instructions ......................................................... 70
2.2.3.3 Move to and Move from System Register Instructions ................................................... 70
2.2.3.4 Move to and Move from Machine State Register ........................................................... 70
2.2.3.5 Fixed-Point Invalid Forms and Undefined Conditions .................................................... 71

2.2.4 Floating-Point Processor ........................................................................................................ 72
2.2.4.1 Floating-Point Arithmetic Instructions ............................................................................. 72
2.2.4.2 Floating-Point Invalid Forms and Undefined Conditions ................................................ 72

2.2.5 Vector Processor ................................................................................................................... 72
2.2.6 Load Store Processor ............................................................................................................ 73

2.2.6.1 Floating-Point Load-and-Store Instructions .................................................................... 73
2.2.6.2 Fixed-Point Load Instructions ......................................................................................... 73
2.2.6.3 Fixed-Point Store Instructions ........................................................................................ 73
2.2.6.4 Fixed-Point Load-and-Store Multiple Instructions ........................................................... 73
2.2.6.5 Fixed-Point Load-and-Store String Instructions .............................................................. 74
2.2.6.6 Load/Store Invalid Forms and Undefined Conditions ..................................................... 75

2.2.7 Branch Processor .................................................................................................................. 76
2.2.7.1 Branch Processor Instructions ........................................................................................ 76
2.2.7.2 Branch Processor Instructions with Undefined Results .................................................. 76
2.2.7.3 Move To Condition Register Fields Instruction ............................................................... 77

2.2.8 Storage Control Instructions .................................................................................................. 77
2.2.8.1 Key Aspects of Storage Control Instructions .................................................................. 77
2.2.8.2 Instruction Cache Block Invalidate (icbi) ........................................................................ 78
2.2.8.3 Instruction Cache Synchronize (isync) .......................................................................... 78
2.2.8.4 Data Cache Block Touch (dcbt and dcbtst) .................................................................. 78
2.2.8.5 Data Cache Block Zero (dcbz) ....................................................................................... 79
2.2.8.6 Data Cache Block Store (dcbst) .................................................................................... 79
2.2.8.7 Data Cache Block Flush (dcbf) ...................................................................................... 80
2.2.8.8 Load and Reserve and Store Conditional Instructions (lwarx/ldarx, stwcx/stdcx) ....... 80

2.2.9 Memory Synchronization Instructions .................................................................................... 80
2.2.10 Recommended Simplified Mnemonics ................................................................................. 81

3. Storage Subsystem ................................................................................................... 83
3.1 Storage Hierarchy ........................................................................................................................... 83
3.2 Caches ............................................................................................................................................ 84

3.2.1 Store Gathering ...................................................................................................................... 84
3.3 Storage Model ................................................................................................................................. 85

3.3.1 Atomicity ................................................................................................................................ 85
3.3.2 Storage Access Ordering ....................................................................................................... 85

3.3.2.1 Storage Access Alignment Support ................................................................................ 85



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Contents
Page 5 of 415

3.3.3 Atomic Updates and Reservations ........................................................................................  86
3.4 Cache Management ........................................................................................................................  87

3.4.1 Flushing the L1 I-Cache ........................................................................................................  87
3.4.2 Flushing the L1 D-Cache .......................................................................................................  87
3.4.3 L2 Cache Disabling and Enabling .........................................................................................  87
3.4.4 L2 Cache Flushing .................................................................................................................  87

3.4.4.1 L2 Cache Flush in Direct-Mapped Mode ........................................................................  87
3.4.5 L2 Cache Flush Algorithm .....................................................................................................  88

3.5 Functional Units ..............................................................................................................................  90
3.5.1 Core Interface Unit  ...............................................................................................................  91
3.5.2 L2 Cache Controller ...............................................................................................................  91

3.5.2.1 Cache Coherency ...........................................................................................................  93
3.5.2.2 Cache-Coherency Paradoxes ........................................................................................  93
3.5.2.3 Cache State Transition Tables .......................................................................................  93

3.5.3 Data Prefetch .........................................................................................................................  96
3.5.3.1 Optional dcbt Variant .....................................................................................................  96
3.5.3.2 Enhanced dcbt Variant ..................................................................................................  97

4. Exceptions .................................................................................................................  99
4.1 970MP Microprocessor Exceptions ...............................................................................................  100
4.2 Exception Recognition and Priorities ............................................................................................  103

4.2.1 Exception Priorities ..............................................................................................................  103
4.3 Exception Processing ....................................................................................................................  105

4.3.1 Machine Status Save/Restore Register 0 (SRR0) ...............................................................  105
4.3.2 Machine Status Save/Restore Register 1 (SRR1) ...............................................................  105
4.3.3 Machine State Register (MSR) ............................................................................................  106
4.3.4 Enabling and Disabling Exceptions .....................................................................................  108
4.3.5 Exception Processing Steps ................................................................................................  108
4.3.6 Setting the Recoverable Exception in the MSR ...................................................................  109
4.3.7 Returning from an Exception Handler .................................................................................  109

4.4 Process Switching .........................................................................................................................  110
4.5 Exception Definitions .....................................................................................................................  110

4.5.1 System Reset Exception .....................................................................................................  110
4.5.2 Machine Check Exceptions .................................................................................................  111
4.5.3 Data Storage Exception .......................................................................................................  113
4.5.4 Data Segment Exception .....................................................................................................  113
4.5.5 Instruction Storage Exception ..............................................................................................  113
4.5.6 Instruction Segment Exception ............................................................................................  113
4.5.7 External Interrupt Exception ................................................................................................  114
4.5.8 Alignment Exception ............................................................................................................  114
4.5.9 Program Exception ..............................................................................................................  114
4.5.10 Floating-Point Unavailable Exception ................................................................................  115
4.5.11 Decrementer Exception .....................................................................................................  115
4.5.12 System Call Exception .......................................................................................................  115
4.5.13 Trace Exception .................................................................................................................  115
4.5.14 Performance Monitor Exception ........................................................................................  116
4.5.15 VPU Unavailable Exception ...............................................................................................  117
4.5.16 Instruction Address Breakpoint Exception .........................................................................  117



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Contents
Page 6 of 415

Version 2.3
March 7, 2008

4.5.17 Maintenance Exception ...................................................................................................... 117
4.5.18 VPU Assist Exception ........................................................................................................ 118

5. Memory Management .............................................................................................. 119
5.1 MMU Overview .............................................................................................................................. 119

5.1.1 Speculative Storage Accesses ............................................................................................ 120
5.1.2 Storage Protection ............................................................................................................... 121
5.1.3 Storage Access Modes  ....................................................................................................... 121
5.1.4 Support for 32-Bit Operating Systems ................................................................................. 121

5.2 Real Addressing Mode .................................................................................................................. 122

6. Software Optimization Guidelines ......................................................................... 123
6.1 Design Characteristics .................................................................................................................. 123
6.2 Software Considerations for the 970MP Microprocessor .............................................................. 126

7. Signal Description ................................................................................................... 129
7.1 Signal Configuration ...................................................................................................................... 130
7.2 Signal Descriptions ........................................................................................................................ 131

7.2.1 Processor Interface .............................................................................................................. 131
7.2.1.1 Address/Data In (ADIN[0:43])–Input ............................................................................. 131
7.2.1.2 Snoop Response In (SRIN[0:1], SRIN[0:1])–Input ....................................................... 132
7.2.1.3 Clock In (CLKIN/CLKIN)–Input ..................................................................................... 132
7.2.1.4 Address Data Out (ADOUT[0:43])–Output ................................................................... 133
7.2.1.5 Snoop Response Out (SROUT[0:1], SROUT[0:1])–Output .......................................... 133
7.2.1.6 Clock Out (CLKOUT/CLKOUT)–Output ....................................................................... 133

7.2.2 Processor Status and Control .............................................................................................. 133
7.2.2.1 Quiescent Request (CP0_QREQ and CP1_QREQ)–Output ........................................ 133
7.2.2.2 Quiescent Acknowledgment (CP0_QACK and CP1_QACK)–Input ............................. 134
7.2.2.3 Time-Base Enable (TBEN)–Input ................................................................................. 134
7.2.2.4 Processor ID (PROCID[0:1])–Input .............................................................................. 134
7.2.2.5 Bus Configuration Select (BUSCFG[0:2])–Input ........................................................... 134
7.2.2.6 PLL Locked (PLL_LOCK)–Output ................................................................................ 135
7.2.2.7 Clock Receiver Termination (CKTERM_DIS)–Input ..................................................... 135

7.2.3 Clock Control ....................................................................................................................... 135
7.2.3.1 System Clock (SYSCLK/SYSCLK)–Input ..................................................................... 135
7.2.3.2 Phase Synchronization (psync)–Input .......................................................................... 135
7.2.3.3 PLL Bypass (BYPASS)–Input ....................................................................................... 135
7.2.3.4 PLL Multiplier (PLL_MULT)–Input ................................................................................ 136
7.2.3.5 PLL Range Select (PLL_RANGE[0:1])–Input ............................................................... 136

7.2.4 Interrupts and Resets ........................................................................................................... 136
7.2.4.1 Interrupt (CP0_INT and CP1_INT)–Input ..................................................................... 136
7.2.4.2 Machine Check Interrupt (MCP)–Input ......................................................................... 136
7.2.4.3 Checkstop (CHKSTOP) –Bidirectional ......................................................................... 136
7.2.4.4 Hard Reset (CP0_HRESET and CP1_HRESET)–Input ............................................... 137
7.2.4.5 Soft Reset (CP0_SRESET and CP1_SRESET)–Input ................................................. 137

7.2.5 Debug/Test Interface ........................................................................................................... 137
7.2.5.1 Attention (ATTENTION)–Output ................................................................................... 137
7.2.5.2 Processor Interface Disable (EI_DISABLE)–Input ....................................................... 137
7.2.5.3 Trigger Out (TRIGGEROUT)–Output ........................................................................... 137



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Contents
Page 7 of 415

7.2.5.4 JTAG Signals ...............................................................................................................  137
7.2.5.5 I2C Signals ...................................................................................................................  138

7.2.6 Voltage and Ground ............................................................................................................  138

8. Processor Interconnect Bus ..................................................................................  139
8.1 Overview .......................................................................................................................................  140

8.1.1 Packets ................................................................................................................................  141
8.1.2 Bus Segments .....................................................................................................................  141

8.1.2.1 Address/Data Bus Segment .........................................................................................  141
8.1.2.2 Transfer-Handshake Bus Segment ..............................................................................  142
8.1.2.3 Snoop-Response Bus Segment ...................................................................................  142

8.1.3 Transactions ........................................................................................................................  142
8.1.3.1 Read Transaction .........................................................................................................  143
8.1.3.2 Write Transaction .........................................................................................................  144
8.1.3.3 Command-Only Transaction ........................................................................................  145

8.1.4 Memory and Cache Coherency ...........................................................................................  146
8.1.4.1 Physical Memory Size ..................................................................................................  146
8.1.4.2 Coherency Protocol ......................................................................................................  146
8.1.4.3 Coherency Block Size ..................................................................................................  146

8.2 Packet Transfer Protocol ...............................................................................................................  147
8.2.1 Command Packet Definition ................................................................................................  147

8.2.1.1 Address Modifiers .........................................................................................................  147
8.2.1.2 Transfer Type Field ......................................................................................................  149
8.2.1.3 Tag Definition ...............................................................................................................  151
8.2.1.4 Command Pacing .........................................................................................................  151

8.2.2 Data Packet Definition .........................................................................................................  152
8.2.2.1 Two-Beat Transfers ......................................................................................................  153
8.2.2.2 Multi-Beat Transfers .....................................................................................................  153

8.2.3 Transfer-Handshake Packets ..............................................................................................  155
8.2.3.1 Null Transfer Handshake ..............................................................................................  156
8.2.3.2 Transfer-Handshake Acknowledgment ........................................................................  156
8.2.3.3 Transfer-Handshake Retry ...........................................................................................  157
8.2.3.4 Transfer-Handshake Parity Error .................................................................................  158

8.3 Snoop Responses .........................................................................................................................  158
8.3.1 Snoop-Response Bus Implementation ................................................................................  159
8.3.2 Snoop-Response Descriptions ............................................................................................  160

8.3.2.1 SResp Retry Response Code (Priority 1 - highest) ......................................................  160
8.3.2.2 SResp Modified-Intervention Response Code (Priority 2) ............................................  161
8.3.2.3 SResp Shared-Intervention Response Code (Priority 3) ..............................................  161
8.3.2.4 SResp Modified Response Code (Priority 4) ................................................................  162
8.3.2.5 SResp Shared Response Code (Priority 5) ..................................................................  162
8.3.2.6 SResp Null or Clean Response Code (Priority 6 - lowest) ...........................................  162

8.4 Bus Transactions ..........................................................................................................................  163
8.4.1 Terms ..................................................................................................................................  163
8.4.2 Memory Read Transactions (General) ................................................................................  164

8.4.2.1 Read Transaction .........................................................................................................  164
8.4.2.2 Read with No Intent to Cache Transaction ...................................................................  165
8.4.2.3 Read with Intent to Modify Burst Transaction ...............................................................  166
8.4.2.4 LARX-Reserve Transaction ..........................................................................................  166



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Contents
Page 8 of 415

Version 2.3
March 7, 2008

8.4.3 Memory Write Transactions (General) ................................................................................. 167
8.4.3.1 Write-With-Kill Transaction ...........................................................................................  167
8.4.3.2 Write-With-Clean Transaction ...................................................................................... 168
8.4.3.3 Write-With-Flush Transaction ....................................................................................... 168

8.4.4 Command-Only Transactions .............................................................................................. 168
8.4.4.1 DCLAIM Transaction (Invalidate Others) ...................................................................... 168
8.4.4.2 Flush Transaction ......................................................................................................... 169
8.4.4.3 Clean Transaction ........................................................................................................ 169
8.4.4.4 IKill Transaction ............................................................................................................ 169
8.4.4.5 TLBIE Transaction ........................................................................................................ 170
8.4.4.6 TLBSYNC Transaction ................................................................................................. 170
8.4.4.7 SYNC Transaction ........................................................................................................ 170
8.4.4.8 EIEIO Transaction ........................................................................................................ 171
8.4.4.9 Null Transaction ............................................................................................................ 171

9. Power and Thermal Management .......................................................................... 173
9.1 Definitions ...................................................................................................................................... 173

9.1.1 Full Power Mode .................................................................................................................. 173
9.1.2 Doze Mode ........................................................................................................................... 173
9.1.3 Nap Mode ............................................................................................................................ 173
9.1.4 Deep Nap Mode ................................................................................................................... 174
9.1.5 Dynamic Power Management .............................................................................................. 174

9.2 Power-Management Support ........................................................................................................ 174
9.2.1 Power-Management Control Bits ......................................................................................... 174
9.2.2 Interrupts .............................................................................................................................. 175
9.2.3 Bus Snooping ....................................................................................................................... 175

9.2.3.1 Delay Calculation .......................................................................................................... 178
9.2.4 Thermal Diodes .................................................................................................................... 179
9.2.5 Bus States while in Power Saving Modes ............................................................................ 179

9.3 Software Considerations for Power Management ......................................................................... 180
9.3.1 Entering Power Saving Mode .............................................................................................. 180
9.3.2 External Interrupt Enable ..................................................................................................... 180

9.4 Power Tuning Facility Overview .................................................................................................... 181
9.4.1 Power Tuning Facility Definitions ......................................................................................... 181
9.4.2 Power Modes ....................................................................................................................... 183
9.4.3 Power Transition Latencies .................................................................................................. 186

9.4.3.1 Idle to Run Transitions .................................................................................................. 187
9.4.3.2 Exiting Deep Nap Using a Decrementer Interrupt ........................................................ 188
9.4.3.3 Frequency Transitions in the Power Tuning Facility ..................................................... 188

9.5 PLL Design .................................................................................................................................... 189
9.6 Time-Base and Decrementer Registers ........................................................................................ 191
9.7 I2C Bus Interface ........................................................................................................................... 191
9.8 Frequency and Voltage Scaling .................................................................................................... 191

9.8.1 Frequency Scaling ............................................................................................................... 191
9.8.1.1 Initiating a Frequency Change ...................................................................................... 191
9.8.1.2 Power Control Register ................................................................................................ 194
9.8.1.3 Power Control Register High (PCRH) .......................................................................... 196
9.8.1.4 Power Status Register .................................................................................................. 197

9.8.2 Power Adjustment Bus Transaction ..................................................................................... 198



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Contents
Page 9 of 415

9.8.3 Clock Dithering ....................................................................................................................  200
9.8.4 Voltage Scaling ....................................................................................................................  201
9.8.5 Frequency and Voltage Scaling Latencies ..........................................................................  202

9.9 Reducing Clock Mesh Power ........................................................................................................  203
9.9.1 Power Saving in Deep Nap .................................................................................................  203

9.10 Additional Dynamic Power Management ....................................................................................  204

10. 970MP Performance Monitor ...............................................................................  205
10.1 Instrumentation Facilities Overview ............................................................................................  205

10.1.1 Performance Monitor Facilities ..........................................................................................  206
10.1.2 Performance Monitor Event Selection ...............................................................................  206
10.1.3 Machine States and Enabling the Performance Monitor Counters ....................................  206
10.1.4 Trigger Events and Enabling the Performance Monitor Counters .....................................  206
10.1.5 Performance Monitor Exceptions ......................................................................................  206
10.1.6 Sampling ............................................................................................................................  207
10.1.7 Thresholding ......................................................................................................................  207
10.1.8 Trace Support Facilities .....................................................................................................  207

10.2 Instruction Sampling Facilities .....................................................................................................  207
10.2.1 Special Purpose Registers and Fields Associated with Instrumentation ...........................  207

10.3 Performance Monitor Components .............................................................................................  210
10.4 Performance Monitor Control Registers ......................................................................................  211

10.4.1 Performance Monitor Control Register MMCR0 ................................................................  211
10.4.2 Performance Monitor Control Register MMCR1 ................................................................  214
10.4.3 Performance Monitor Control Register MMCRA ...............................................................  217
10.4.4 Performance Monitor Count Registers PMC1 - 8 ..............................................................  219
10.4.5 Performance Monitor and Trace Related Bits in the Machine State Register (MSR) ........  220
10.4.6 Performance Monitor Related Bits in Hardware Implementation-Dependent 

Register 0 (HID0) .............................................................................................................  221
10.4.7 Performance Monitor Related Bits in the Control Register (CTRL) ...................................  221
10.4.8 Performance Monitor Related Bits in the SCOM0240, 1240 Register (SCOM x‘240’) ......  222
10.4.9 Performance Monitor Related Bits in the SCOM0360,1360 Register (SCOM x‘360’) .......  223
10.4.10 Performance Monitor Related Bits in the IMC Array (IMC) ..............................................  224
10.4.11 Performance Monitor Related Bits in the Sampled Instruction Address Register (SIAR)  224
10.4.12 Performance Monitor Related Bits in the Sampled Data Address Register (SDAR) .......  224
10.4.13 Performance Monitor Related Bits in the SRR1 (SRR1) .................................................  225
10.4.14 Performance Monitor Related Bits in the Time-Base Register (TB) ................................  226

10.5 Performance Monitor Event Selection .........................................................................................  227
10.5.1 Direct Events .....................................................................................................................  228

10.5.1.1 Combined Events .......................................................................................................  228
10.5.1.2 Source-Encoded Events .............................................................................................  228
10.5.1.3 Instruction Counts ......................................................................................................  229

10.5.2 Over 32-Bit Count ..............................................................................................................  232
10.5.2.1 Examples of Over Bit Count .......................................................................................  232

10.5.3 Speculative Count .............................................................................................................  232
10.6 Configuring the Performance Monitor Bus ..................................................................................  233
10.7 Enabling the Performance Monitor Counters ..............................................................................  243

10.7.1 Machine States ..................................................................................................................  243



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Contents
Page 10 of 415

Version 2.3
March 7, 2008

10.7.2 Trigger Events .................................................................................................................... 244
10.7.2.1 Time-Base Transition Events ..................................................................................... 245
10.7.2.2 PMC1 Counter Negative Condition Events ................................................................ 245
10.7.2.3 PMCj (2 ≤ j ≤ 8) Counter Negative Condition Events .................................................. 246

10.7.3 Method for Enabling or Disabling Performance Monitor Counting ..................................... 246
10.8 Performance Monitor Exceptions ................................................................................................ 247
10.9 Instruction Matching and Sampling ............................................................................................. 248

10.9.1 Stage 1 Eligibility ................................................................................................................ 248
10.9.2 Stage 2 Eligibility ................................................................................................................ 248
10.9.3 Stage 3 Eligibility ................................................................................................................ 248

10.10 IFU Instruction Matching Facility ............................................................................................... 249
10.10.1 Overview of the IFU Instruction Matching Facility ............................................................ 249
10.10.2 IMC Array ......................................................................................................................... 250
10.10.3 Reading the IMC SPR with the mfimc Instruction ........................................................... 251
10.10.4 Writing the IMC SPR With the mtimc Instruction ............................................................ 252
10.10.5 The v0 and v1 Mask Criteria ............................................................................................ 253
10.10.6 Instruction Matching Examples ........................................................................................ 254

10.11 IDU Instruction Sampling Facility .............................................................................................. 254
10.11.1 Overview of the IDU Instruction Sampling Facility ........................................................... 254
10.11.2 Stage 1 Eligibility .............................................................................................................. 255
10.11.3 Stage 2 Eligibility .............................................................................................................. 257
10.11.4 Stage 3 Mark/No Mark ..................................................................................................... 258
10.11.5 Complete Masking, Matching, and Marking Cycle ........................................................... 260
10.11.6 Examples of Instruction Sampling Scenarios ................................................................... 261
10.11.7 Enabling and Disabling Marking ...................................................................................... 264

10.12 SIAR and SDAR Registers ........................................................................................................ 265
10.12.1 Instruction Sampling ........................................................................................................ 265

10.12.1.1 Performance Monitor Exceptions ............................................................................. 265
10.12.2  Single Step and Branch Trace Marking Mode ................................................................ 266

10.12.2.1 Single Step Trace Mode ........................................................................................... 266
10.12.2.2 Branch Trace Mode .................................................................................................. 267

10.12.3 Comparison to Previous PowerPC Processors ............................................................... 267
10.13 Thresholding .............................................................................................................................. 267
10.14 Detailed Event Information ........................................................................................................ 270

11. System Design ....................................................................................................... 279
11.1 I2C Interface ................................................................................................................................ 279
11.2 Bus Initialization, Configuration, Power Management, and Test ................................................. 279

11.2.1 Bus Initialization ................................................................................................................. 279
11.2.2 Configurable Parameters ................................................................................................... 279
11.2.3 Configuration Interface ....................................................................................................... 282

11.2.3.1 Processor Configurable Timing Delay Parameter Register (BUSCONF) ................... 283
11.2.3.2 North Bridge Configurable Timing Delay Parameter Register .................................... 284

11.2.4 Power Management ........................................................................................................... 285
11.2.5 Reliability, Availability, and Serviceability (RAS) Requirement .......................................... 287

11.3 Processor Interconnect Electrical Interface ................................................................................. 288
11.3.1 Initialization at Power-On Reset ......................................................................................... 289
11.3.2 Target Cycle ....................................................................................................................... 289



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Contents
Page 11 of 415

11.4 Processor Interconnect Bus Error Detection and Correction ......................................................  291
11.4.1 Error Detection for Balanced Encoding .............................................................................  291
11.4.2 Error Detection for Alternative Encodings .........................................................................  291

11.4.2.1 Single-Error and Double-Error Detection ...................................................................  292
11.4.2.2 Single-Error Correct, Double-Error Detection .............................................................  292

12. SCOM Interface and Registers ............................................................................  295
12.1 Processor Core SCOM SPR Access ..........................................................................................  295

12.1.1 Operating System Protocol to Access SCOM SPRs .........................................................  295
12.1.2 SCOMD Format .................................................................................................................  296
12.1.3 SCOMC Format .................................................................................................................  297

12.2 SCOM Address Allocation ...........................................................................................................  299
12.2.1 Register Description Conventions .....................................................................................  303
12.2.2 SCOM Error Handling ........................................................................................................  303
12.2.3 Access Status Register .....................................................................................................  304

12.3 Core Pervasive SCOM Register Definitions ................................................................................  305
12.3.1 Processor CoreRAS Facilities (x‘02[1:4]XXX’) ..................................................................  305
12.3.2 Processor Core SPR SCOM Access (x‘023XXX’) .............................................................  320
12.3.3 Processor Core Performance Monitor Sampling Control (x‘02400X’) ...............................  327
12.3.4 Processor Core FIR Facilities (x‘03[0:5]XXX’) ...................................................................  328
12.3.5 Instruction Mark Configuration (x‘03600X’) .......................................................................  335

12.4 Storage Subsystem SCOM Register Definition ...........................................................................  337
12.4.1 L2 SCOM Register Definition ............................................................................................  337
12.4.2 BIU SCOM Register Definition ..........................................................................................  340
12.4.3 Processor Interconnect Registers .....................................................................................  347

12.5 Chip Pervasive SCOM Register Definition ..................................................................................  357
12.5.1 Power-On Reset Registers (x‘40XXXX’) ...........................................................................  357
12.5.2 Chip Free-Running Clock Section Control/Status (x‘50[0:4]XXX’) ....................................  367
12.5.3 Chip Parallel SCOM Control (x‘6XXXXX’) .........................................................................  375
12.5.4 Chip Clock/Scan Control (x‘8[0:4]XXXX’) ..........................................................................  381

13. Vector Processing Unit ........................................................................................  401
13.1 970MP Vector and SIMD Multimedia Overview ..........................................................................  401

13.1.1 VPU Implementation ..........................................................................................................  401
13.1.2 Vector ALU ........................................................................................................................  402

13.2 Vector Registers ..........................................................................................................................  403
13.2.1 VRSAVE Register ..............................................................................................................  403
13.2.2 Vector Status and Control Register (VSCR) ......................................................................  403

13.3 Effects on Existing PowerPC Facilities .......................................................................................  405
13.3.1 Control Flow ......................................................................................................................  405

13.3.1.1 Condition Register ......................................................................................................  405
13.3.1.2 Machine State Register ..............................................................................................  406
13.3.1.3 Machine Status Save/Restore Registers (SRR0, SRR1) ...........................................  407

13.4 Exceptions ...................................................................................................................................  407
13.4.1 VPU Unavailable Exception ...............................................................................................  407
13.4.2 VPU Assist Exception ........................................................................................................  407
13.4.3 Data Storage Exception .....................................................................................................  407



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Contents
Page 12 of 415

Version 2.3
March 7, 2008

13.5 Optional Instructions .................................................................................................................... 408
13.5.1 Java Mode Instruction Handling Implementation ............................................................... 408
13.5.2 Least Recently Used Instructions ...................................................................................... 408
13.5.3 Data Stream Instructions ................................................................................................... 408

13.6 Vector Instruction Set .................................................................................................................. 409



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

List of Figures
Page 13 of 415

List of Figures
Figure 1-1. 970MP Block Diagram ........................................................................................................... 34

Figure 1-2. 970MP Dual Core with Common Arbitration Logic ................................................................. 35

Figure 2-1. 970MP Programming Model—Registers ................................................................................ 44

Figure 2-2. Processor Attention Instruction .............................................................................................. 76

Figure 3-1. 970MP Storage Subsystem ................................................................................................... 90

Figure 3-2. Data Flow in the 1MB L2 Cache ............................................................................................ 92

Figure 3-3. Data Cache Block Touch X-Form (Optional Variant) ............................................................. 96

Figure 3-4. Data Cache Block Touch X-Form (Enhanced Variant) .......................................................... 97

Figure 7-1. 970MP Microprocessor Signal Groups ................................................................................ 130

Figure 7-2. Encoding and Selection Logic for the Drive Side of a 970MP Interconnect SSB ................. 132

Figure 8-1. Processor Interconnect Bus Configuration with Two 970MP Microprocessors .................... 139

Figure 8-2. Two Microprocessors Connected to a North Bridge ............................................................ 140

Figure 8-3. Read Transaction Timing Diagram ...................................................................................... 143

Figure 8-4. Write Transaction Timing Diagram ....................................................................................... 144

Figure 8-5. Command-Only Transaction Timing Diagram ...................................................................... 145

Figure 9-1.  Processor QREQ/QACK Signalling ..................................................................................... 176

Figure 9-2. North Bridge QREQ/QACK Signalling .................................................................................. 177

Figure 9-3. Using a 970MP Microprocessor with a Single QREQ/QACK Pair ....................................... 178

Figure 9-4. 970MP Power Mode States ................................................................................................. 183

Figure 9-5. PLL Design ........................................................................................................................... 190

Figure 9-6. Frequency Scaling Event Ordering ...................................................................................... 193

Figure 9-7. Clock Dithering Block Diagram ............................................................................................ 200

Figure 9-8. Sample Shift Pattern ............................................................................................................ 201

Figure 10-1. Performance Monitor Architecture ....................................................................................... 210

Figure 10-2. Event Selection .................................................................................................................... 227

Figure 10-3. 970MP Performance Monitor Bus Configuration .................................................................. 234

Figure 10-4. Patch Map ............................................................................................................................ 251

Figure 10-5. IFU and IDU Instruction Sampling Flow ............................................................................... 259

Figure 10-6. Performance Monitor Threshold Logic ................................................................................. 268

Figure 11-1. Configurable Timing Parameters ......................................................................................... 280

Figure 11-2. North Bridge Configurable Timing Parameters .................................................................... 280

Figure 11-3. Processor Configurable Timing Parameters ........................................................................ 281

Figure 11-4.  Processor QREQ and QACK Signalling .............................................................................. 286

Figure 11-5. North Bridge QREQ and QACK Signalling ........................................................................... 287

Figure 11-6. Bus Diagram of a Dual-Processor 970MP Processor Interconnect-Based System ............. 288

Figure 11-7. Receive-Side FIFO Circuit ................................................................................................... 290

Figure 11-8. Timing Diagram Showing Relationship Between Bclk and the Four Gate Signals .............. 290

Figure 12-1. Processor Unit SCOM Topology .......................................................................................... 295



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

List of Figures
Page 14 of 415

Version 2.3
March 7, 2008

Figure 12-2. SCOMC SPR Format ...........................................................................................................297

Figure 12-3. Format of an SCOM Address ...............................................................................................299

Figure 12-4. Format of an SCOM Address within the BIU ........................................................................299

Figure 12-5. Format of an SCOM Data Bus ..............................................................................................299

Figure 12-6. Common Clock Commands ..................................................................................................382

Figure 12-7. Example of LBIST Commands using the EPS Engine .........................................................390

Figure 13-1. VPU Block Diagram ..............................................................................................................402

Figure 13-2. VSCR Format .......................................................................................................................403

Figure 13-3. VSCR Moved to a Vector Register .......................................................................................404

Figure 13-4. Condition Register (CR) .......................................................................................................405



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

List of Tables
Page 15 of 415

List of Tables
Table i. Acronyms and Abbreviated Terms ......................................................................................... 26

Table ii. Terminology Conventions ...................................................................................................... 31

Table iii. Instruction Field Conventions ................................................................................................. 31

Table 2-1. MSR Bits ................................................................................................................................ 49

Table 2-2. Additional SRR1 Bit ................................................................................................................ 49

Table 2-3. Implementation-Specific SPRs ............................................................................................... 51

Table 2-4. Move To/Move From SPR Behavior ...................................................................................... 53

Table 2-5. Storage Control Instructions ................................................................................................... 77

Table 2-6. dcbz Actions .......................................................................................................................... 79

Table 3-1. Storage Hierarchy Characteristics ......................................................................................... 83

Table 3-2. Simple Address Decode ......................................................................................................... 87

Table 3-3. Storage Subsystem Functional Units ..................................................................................... 90

Table 3-4. Cache-Coherency Protocol .................................................................................................... 93

Table 3-5. 970MP L2 Cache State Transitions Due to Processor Instructions ....................................... 93

Table 3-6. 970MP L2 Cache State Transitions Due to Bus Operations .................................................. 94

Table 4-1. 970MP Microprocessor Exception Classifications ............................................................... 100

Table 4-2. Exceptions and Conditions ................................................................................................... 101

Table 4-3. IEEE Floating-Point Exception Mode Bits ............................................................................ 108

Table 4-4. Register Settings for Machine Check Exception .................................................................. 112

Table 4-5. Register Settings for Alignment Exception ........................................................................... 114

Table 4-6. Register Settings for Trace Exception .................................................................................. 115

Table 4-7. Register Settings for the Performance Monitor Exception ................................................... 116

Table 4-8. Register Settings for VPU Unavailable Interrupt .................................................................. 117

Table 4-9. Register Settings for Maintenance Exception ...................................................................... 117

Table 4-10. Register Settings for VPU Assist Exception ......................................................................... 118

Table 5-1. MMU Feature Summary ....................................................................................................... 120

Table 5-2. Treatment of WIMG Bits in the 970MP ................................................................................ 121

Table 8-1. Processor Interconnect Signal Description .......................................................................... 141

Table 8-2. Command Packet Description .............................................................................................. 147

Table 8-3. Transfer Type Encoding ....................................................................................................... 149

Table 8-4. Transfer Size Encoding ........................................................................................................ 150

Table 8-5. Tag Definition ....................................................................................................................... 151

Table 8-6. Read-Data Packet Header Description ................................................................................ 152

Table 8-7. Data Beat Description .......................................................................................................... 152

Table 8-8. Two-Beat Data Transfers ..................................................................................................... 153

Table 8-9. Packet Ordering for 128-Byte Interleaved Packets on 32-Byte Boundaries ........................ 154

Table 8-10. Packet Ordering for 32-Byte Interleaved Packets ................................................................ 154

Table 8-11. Transfer-Handshake Definition ............................................................................................ 155



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

List of Tables
Page 16 of 415

Version 2.3
March 7, 2008

Table 8-12. Snoop-Response Bit Definition .............................................................................................158

Table 8-13. Allowed Snoop Responses ...................................................................................................159

Table 8-14. Write-With-Kill Types Supported ..........................................................................................167

Table 9-1. Power-Management Control Bits ..........................................................................................174

Table 9-2. Minimum QAckIdleDelay requirement in bus clocks for 970MP ...........................................179

Table 9-3. Minimum (QAckIdleDelay + QAckMinLowTime) requirement in bus clocks for 970MP .......179

Table 9-4. Power-Management Modes .................................................................................................181

Table 9-5. Power Mode States ..............................................................................................................184

Table 9-6. Transitions between Power Modes ......................................................................................185

Table 9-7. Valid Combinations of Power Modes ....................................................................................186

Table 9-8. Latency of Deep-Nap-to-Run Transitions in Full Frequency Cycles .....................................188

Table 9-9. Power Adjustment Transaction .............................................................................................198

Table 10-1. 970MP Performance Monitor and Trace-Related Special Purpose Registers .....................209

Table 10-2. Performance Monitor Internal Multiplexer PMCxSEL[0:4] Bit Values  ..................................227

Table 10-3. Event Data Source Encodings ..............................................................................................228

Table 10-4. Event Instruction Source Encodings .....................................................................................229

Table 10-5. Direct Events ........................................................................................................................230

Table 10-6. Speculative Count Events ....................................................................................................233

Table 10-7. Performance Monitor Bus Assignments ...............................................................................235

Table 10-8. Examples of Event Counter Enabling States ........................................................................244

Table 10-9. Partial Match Rows in the IMC Array ....................................................................................250

Table 10-10. Complete Match Rows in the IMC Array ..............................................................................250

Table 10-11. IMC SPR Patch Map Sample Results ..................................................................................252

Table 10-12. IMC SPR for a 17-Bit Match .................................................................................................253

Table 10-13. IMC SPR Used when Writing the Second mtimc Instruction for a 32-Bit Match ..................253

Table 10-14. Encoding Bits v0 and v1 of the IMC Array Mask ..................................................................254

Table 10-15. IFU BSFL Predecode Bit Definitions ....................................................................................256

Table 10-16. Start and End Event Select Bits and the Performance Monitor Threshold Logic .................269

Table 10-17. Detailed Event Descriptions .................................................................................................270

Table 11-1. Programmable Delay Parameters ........................................................................................281

Table 11-2. I2C Interface Signals .............................................................................................................282

Table 11-3. I2C Registers Used by the 970MP Processor Interconnect ..................................................282

Table 11-4. Bit Error Position Identifier ....................................................................................................293

Table 12-1. Operating System Code to Access SCOM ...........................................................................296

Table 12-2. SCOM Base Addresses ........................................................................................................300

Table 12-3. SCOM Modifier Addresses ...................................................................................................300

Table 12-4. EPS Engine Description .......................................................................................................389

Table 13-1. VSCR Field Descriptions ......................................................................................................404

Table 13-2. CR6 Field Bit Settings for Vector Compare Instructions .......................................................405



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

List of Tables
Page 17 of 415

Table 13-3. MSR Bit Settings Affecting the VPU ..................................................................................... 406

Table 13-4. Supported Vector Instructions .............................................................................................. 409



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

List of Tables
Page 18 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Revision Log
Page 19 of 415

Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the 
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date Page Description

March 7, 2008

Version 2.3

90 • Revised description in Section 3.5 Functional Units.

123 • Added a new section on software optimization (see Section 6 Software Optimi-
zation Guidelines).

• Removed Section 2.2.1.3 Invalid Forms.

• Removed Section 3.5.3 Non-Cacheable Unit.

• Removed Section 3.5.4.1 Overview of the Hardware-Controlled Data Prefetch.

• Removed Section 3.5.4.2 Hardware Prefetch Engine Implementation.

• Removed Section 3.5.4.4 Vector Prefetch Instruction Support.

• Removed Section 3.5.4.5 Programmability.

• Removed Section 5.3 Memory Segment Model.

March 21, 2007

Version 2.2

61 • Added DABRX bit description table to Section 2.1.2.3 Data Address Breakpoint 
Register (DABR).

112 • Modified DSISR[6] bit setting in Table 4-4 Register Settings for Machine Check 
Exception.

114 • Modified DSISR[6] bit setting in Table 4-5 Register Settings for Alignment 
Exception.

228 • Edited Table 10-3 Event Data Source Encodings.

284 • Defined bit [31] as BCM in Table 11.2.3.2 North Bridge Configurable Timing 
Delay Parameter Register.

345 • Defined “g” as guarded access in the BIU Mode Register section.

297 • Edited SCOMC bit description table in Section 12.1.3 SCOMC Format.

June 2, 2006

Version 2.1

44 • Added SPRG3 to User Model — USIA block in Figure 2-1 970MP Programming 
Model—Registers and added a description.

194, 196 • Corrected the SCOM address of the Power Control Register (PCR).

295 • Added commonly used SCOM registers and their descriptions (Section 12 
SCOM Interface and Registers).

178 • Added Section 9.2.3.1 Delay Calculation



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Revision Log
Page 20 of 415

Version 2.3
March 7, 2008

June 28, 2005

Version 2.0

50 • Clarified the explanation of illegal instructions.

75 • Rewrote the description of the Load with Update instructions. 

153
• Updated Table 8-8 Two-Beat Data Transfers, the description of the data transfer 

format, and Table 8-9 Packet Ordering for 128-Byte Interleaved Packets on 32-
Byte Boundaries. 

173
174

• Expanded the description of Doze mode and how it relates to power manage-
ment. 

281 • Corrected the programmable delay parameters for SNOOPLAT and 
SNOOPACC. 

January 17, 2005 Version 1.0 (Initial release)

Revision Date Page Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

About This Book
Page 21 of 415

About This Book

The primary objective of the IBM PowerPC® 970MP RISC Microprocessor User’s Manual is to define the 
functionality of the PowerPC 970MP microprocessor for software and hardware developers. 

The information in this book is subject to change without notice, as described in the disclaimers on the title 
page. As with any technical documentation, it is the readers’ responsibility to be sure they are using the most 
recent version of the documentation. To locate any published errata or updates for this document, go to 
ibm.com/chips/techlib.

Note:  Soft copies of many of the latest versions of the manuals and documents referred to in this manual that 
are produced by IBM can be accessed on the Web at ibm.com/chips/techlib. 

Audience

This manual is intended for system software and hardware developers and application programmers who 
want to develop products for the 970MP microprocessor. It is assumed that the reader understands operating 
systems, microprocessor system design, basic principles of reduced instruction set computer (RISC) 
processing, and details of the PowerPC Architecture™.

Organization

For ease in reference, the arrangement of topics in this book is similar to that of the PowerPC Microprocessor 
Family: The Programming Environments Manual for 64-Bit Microprocessors and the PowerPC Micropro-
cessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual (see 
Related Documents on page 22). Topics build upon one another, beginning with a description and summary 
of 970MP-specific registers and instructions and progressing to more specialized topics such as 970MP-
specific details regarding the cache, exception, memory management models, and power management. 
Thus, chapters might include information from multiple levels of the architecture. For example, the discussion 
of the cache model uses information from both the virtual environment architecture (VEA) and the operating 
environment architecture (OEA).

A summary and a brief description of the major sections of this manual follows:

• Chapter 1 PowerPC 970MP Overview is useful for readers who want a general understanding of the fea-
tures and functions of the PowerPC Architecture and the 970MP processor. This chapter describes the 
flexible nature of the PowerPC Architecture definition, and provides an overview of how the PowerPC 
Architecture defines the register set, operand conventions, addressing modes, instruction set, cache 
model, exception model, and memory management model.

• Chapter 2 Programming Model is useful for software engineers who need to understand the 970MP-spe-
cific registers, operand conventions, and details regarding how the PowerPC instructions are imple-
mented on the 970MP microprocessor. Instructions are organized by function.

• Chapter 3 Storage Subsystem discusses the storage subsystem as implemented on the 970MP micro-
processor. The storage subsystem includes the core interface logic, the non-cacheable unit, the L2 cache 
and controls, and the bus interface unit. 

• Chapter 4 Exceptions describes the exception model defined in the PowerPC OEA and the specific 
exception model implemented on the 970MP microprocessor.

http://ibm.com/chips/techlib
http://www.ibm.com/chips/techlib


User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

About This Book
Page 22 of 415

Version 2.3
March 7, 2008

• Chapter 5 Memory Management describes the 970MP implementation of the memory management unit 
specifications provided by the PowerPC OEA for PowerPC processors.

• Chapter 6 Software Optimization Guidelines describes key design characteristics of the 970MP micropro-
cessor. 

• Chapter 7 Signal Description describes the individual signals of the 970MP microprocessor.

• Chapter 8 Processor Interconnect Bus describes the processor interface (PI), which is a bus architecture 
providing high-speed, high-performance interconnections for processors, I/O devices, memory sub-
systems, and bridge chips. 

• Chapter 9 Power and Thermal Management provides information about power saving and thermal man-
agement modes for the 970MP microprocessor.

• Chapter 10 970MP Performance Monitor describes the operation of the performance monitor diagnostic 
tool incorporated in the 970MP microprocessor and provides detailed event information.

• Chapter 11 System Design describes system-related features such as power-on reset and reliability, 
availability, and serviceability (RAS) considerations.

• Chapter 12 SCOM Interface and Registers describes the scan communication (SCOM) facility that is 
used to access processor debug and diagnostic facilities. 

• Chapter 13 Vector Processing Unit provides a general understanding of the features and functions of the 
vector processing unit (VPU) used on the 970MP microprocessor.

Related Documents

Companion Manuals

This manual is intended as a companion to the following reference manuals: 

• PowerPC Architecture1 books:

Note:  The PowerPC Architecture books supersede the PowerPC Programming Environments Manual 
for the 970MP implementation. However, not all features available in the PowerPC Architecture are sup-
ported in the 970MP microprocessor (such as, logical partitioning).

– PowerPC User Set Architecture (Book I, Version 2.01). Covers the base user instruction set architec-
ture (UISA), user-level registers, data types, memory conventions, memory and programming mod-
els, and related facilities available to the application programmer.

– PowerPC Virtual Environment Architecture (Book II, Version 2.01). Defines the storage model and 
related instructions and facilities available to the programmer, and the time-keeping facilities avail-
able to the application programmer. The VEA, which is the smallest component of the PowerPC 
Architecture, defines additional user-level functionality that falls outside typical user-level software 
requirements. The VEA describes the memory model for an environment in which multiple proces-
sors or other devices can access external memory and define aspects of the cache model and cache 
control instructions from a user-level perspective. The resources defined by the VEA are particularly 
useful for optimizing memory accesses and for managing resources in an environment in which other 
processors and other devices can access external memory.

1. PowerPC Architecture refers to the instructions and facilities described in Books I, II, and III. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

About This Book
Page 23 of 415

Implementations that conform to the PowerPC VEA also conform to the PowerPC UISA, but might 
not necessarily adhere to the operating environment architecture (OEA).

– PowerPC Operating Environment Architecture (Book III, Version 2.01). Defines the system (privi-
leged) instructions and related facilities. The OEA defines supervisor-level resources typically 
required by an operating system. The OEA defines the PowerPC memory management model, 
supervisor-level registers, and the exception model. 

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

• PowerPC Microprocessor Family: Programming Environments Manual for 64-Bit Microprocessors 
(referred to as the Programming Environments Manual). Provides information about resources defined by 
the PowerPC Architecture that are common to PowerPC processors. This manual describes the function-
ality of the 64-bit architecture model.

• PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Programming Environ-
ments Manual. Describes how the vector/SIMD technology relates to both the 64-bit and the 32-bit por-
tions of the PowerPC Architecture.

• The PowerPC Architecture: A Specification for a New Family of RISC Processors by C. May, E. Silha, R. 
Simpson, and H. Warren, Morgan Kaufman, May 1994. Defines the architecture from the perspective of 
the three programming environments and remains the defining document for the PowerPC Architecture. 

Because the PowerPC Architecture is designed to be flexible in order to support a broad range of processors, 
these documents provide a general description of features that are common to PowerPC processors and indi-
cate those features that are optional or that might be implemented differently in the design of each processor. 

It is important to note that some resources are defined more generally at one level in the architecture and 
more specifically at another. For example, conditions that cause a floating-point unavailable exception are 
defined by the UISA, while the exception mechanism itself is defined by the OEA.

Additional Documentation

Some additional PowerPC documentation is available at ibm.com/chips/techlib through IBM Customer 
Connect at http://ibm.com/technologyconnect.

• IBM PowerPC 970MP RISC Microprocessor Datasheet. This datasheet provides specific data about bus 
timing, signal behavior, and ac, dc, and thermal characteristics, as well as other design considerations for 
the 970MP implementation. 

• PowerPC 970MP Power On Reset Application Note. This document contains information about required 
power-on-reset design and initialization.

• PowerPC Microprocessor Family: The Programmer’s Reference Guide (MPRPPCPRG-01). This is a con-
cise reference that includes the register summary, memory control model, exception vectors, and the 
PowerPC instruction set.

• Application notes. These short documents contain information about specific design issues useful to pro-
grammers and engineers working with PowerPC processors.

http://www.ibm.com/chips/techlib
http://ibm.com/technologyconnect
http://ibm.com/technologyconnect


User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

About This Book
Page 24 of 415

Version 2.3
March 7, 2008

General PowerPC Documentation

The following documentation provides useful information about the PowerPC Architecture and computer 
architecture in general:

Ferraiolo, F., E. Cordero, D. Dreps, M. Floyd, “Power4: Synchronous Wave-Pipelined Interface.” Hot Chips 
1999, Stanford, CA.

Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative Approach. 2nd ed.

I2C-Bus Specification. Version 2.1. Philips Semiconductors, 2000.

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1a-1993.

McClanahan, Kip. PowerPC Programming for Intel Programmers. Foster City, CA: IDG Books Worldwide, Inc.

Shanley, Tom. PowerPC System Architecture. Richardson, TX: Mindshare, Inc. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

About This Book
Page 25 of 415

Conventions

This document uses the following notational conventions: 

& AND logical operator.

| OR logical operator.

‘0’ Binary values in text are either spelled out (zero and one) or appear in single quotation 
marks. For example: ‘10101’. In tables, these quotation marks are omitted.

¬ NOT logical operator.

crfD Instruction syntax used to identify a destination CR field.

crfS Instruction syntax used to identify a source Condition Register (CR) field.

frA, frB, frC Instruction syntax used to identify a source Floating-Point Register (FPR).

frD Instruction syntax used to identify a destination FPR.

italics Italics indicate variable command parameters. For example, bcctrx. Book titles in text are 
set in italics. 

mnemonics Instruction mnemonics are shown in lowercase bold.

n Used to express an undefined numeric value.

overbar Overbars designate active-low (non-differential) signals. 

rA, rB Instruction syntax used to identify a source General-Purpose Register (GPR).

rD Instruction syntax used to identify a destination GPR.

REG[FIELD] Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, fields, 
or ranges appear in brackets. For example, MSR[POW] refers to the Power-Management 
bit in the Machine State Register.

Reserved Indicates reserved bits or bit fields in a register. Although these bits can be written to as 
either ones or zeros, they are always read as zeros.

vA, vB, vC Instruction syntax used to identify a source Vector Register (VR).

vD Instruction syntax used to identify a destination VR.

x In certain contexts, such as a signal encoding, this indicates a don’t care.

x‘0’ A lowercase x precedes hexadecimal values. For example, x‘0B00’.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

About This Book
Page 26 of 415

Version 2.3
March 7, 2008

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms  (Page 1 of 5)

Term Meaning

ALU arithmetic logic unit

AS application system

ASR Address Space Register

BAT block address translation

BCM balanced coding method

BHT branch history table

BIST built-in self test

BIU bus interface unit

BPU branch processing unit

BSDL boundary-scan description language

CAM content-addressable memory

CDF critical data forward

CIU core interface unit

CMOS complementary metal-oxide semiconductor

COP common on-chip processor

CQ completion queue

CR Condition Register

CRA custom register array

CTR Count Register

DABR Data Address Breakpoint Register

DAR Data Address Register

D-cache data cache

DCMP data translation lookaside buffer (TLB) compare

DEC Decrementer Register

DMISS data TLB miss address

DPM dynamic power management

DSI data storage interrupt

DSISR Data Storage Interrupt Status Register. Register used to determine the source of a DSI exception.

DTLB data translation lookaside buffer

EA effective address

EAR External Access Register

ECC error checking and correction

eCR emulation CR

eFPR emulation FPR



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

About This Book
Page 27 of 415

eGPR emulation GPR

ERAT effective-to-real-address translation

FIFO first-in-first-out

FPECR Floating-Point Exception Cause Register

FPR Floating-Point Register

FPSCR Floating-Point Status and Control Register

FPU floating-point unit

GCT global completion table

GPIO general-purpose I/O pins

GPR General-Purpose Register

HIDn Hardware Implementation-Dependent Register

I2C inter-integrated circuit

IABR Instruction Address Breakpoint Register

IAP initial alignment pattern

I-cache instruction cache

IEEE Institute for Electrical and Electronics Engineers

IFU instruction fetch unit

IMC Instruction Match CAM Register

IQ instruction queue

ISI instruction storage interrupt

ISU instruction sequencer unit

ITLB instruction translation lookaside buffer

JTAG Joint Test Action Group

L2 secondary cache (level 2 cache)

L2C L2 cache controller

LHR load-hit-reload. A load presented through a load/store port to the LMQ matches an existing entry that has already 
initiated a request to the L2.

LHS

load-hit-store. A load presented through a load/store port to the store reorder queue (SRQ) matches an existing 
entry. Store forwarding may be attempted. If the store contains all the data required by the load, store forwarding 
can occur. If the store does not contain all the data required by the load, store forwarding cannot occur and the 
load is rejected or flushed.

LIFO last-in-first-out

LMQ load miss queue. An 8-entry queue, which tracks loads that miss the L1 and are awaiting data from the 970MP 
storage subsystem (STS). Each entry can handle two loads associated with a cache line.

LR Link Register

LRU least recently used

LSb least-significant bit

LSB least-significant byte

LSU load/store unit. The unit in the microprocessor that executes load-and-store instructions.

Table i. Acronyms and Abbreviated Terms  (Page 2 of 5)

Term Meaning



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

About This Book
Page 28 of 415

Version 2.3
March 7, 2008

MERSI modified/exclusive/recent/shared/invalid cache-coherency protocol

MMCRn Monitor Mode Control Registers

MMU memory management unit

MRU most recently used

MSb most-significant bit

MSB most-significant byte

MSR Machine State Register

NaN not a number

NCU non-cacheable unit

NIA next instruction address

no-op no operation

NSA next sequential address

NTC next to complete

OEA operating environment architecture

PFQ data prefetch filter queue. Filter queue of 12 entries, which can detect data streams for prefetching.

PI processor interface

PID processor identification tag

PLL phase-locked loop

PMCn Performance Monitor Counter Registers

POR power-on reset

POWER™ Performance Optimized with Enhanced Reduced Instruction Set Computing (RISC) Architecture

PRQ data prefetch request queue. A prefetch queue of eight streams, which will be prefetched. 

PTE page table entry

PTEG page table entry group

PVR Processor Version Register

RAS reliability, availability, and serviceability

RAW read-after-write

RCQ read/claim queue

RISC reduced instruction set computing

RLM random logic macro

RMCI real mode cache inhibited

RTL register transfer language

RWITM read with intent to modify

RWNITM read with no intent to modify

SCOM scan communications

SCOMC SCOM control

SCOMD SCOM data

Table i. Acronyms and Abbreviated Terms  (Page 3 of 5)

Term Meaning



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

About This Book
Page 29 of 415

SDA sampled data address register

SDQ store data queue

SDR1 Register that specifies the page table base address for virtual-to-physical address translation.

SHL store-hit-load

SHR store-hit-reload. A committed store ready to write to the L1 data cache (D-cache) line that matches an existing 
LMQ entry. The store is stalled until the reload is complete.

SIAR Sampled Instruction Address Register

SIMD single-instruction, multiple-data

SIMM signed immediate value

SLB segment lookaside buffer

SMP symmetric multiprocessor

SPR Special Purpose Register

SRn Segment Register

SRQ store reorder queue. A 32-entry queue that tracks all stores active in the LSU.

SRR0 Machine Status Save/Restore Register 0

SRR1 Machine Status Save/Restore Register 1

SSB source-synchronous bus

STE segment table entry

STQ store queue

STS 970MP storage subsystem, which includes core interface logic, a noncacheable unit, the L2 cache and controls, 
and the bus interface unit. 

TB timebase facility

TBL Timebase Lower Register

TBU Timebase Upper Register

TLB translation lookaside buffer

TType transfer type

UIMM unsigned immediate value

UISA user instruction set architecture

UMMCRn User Monitor Mode Control Registers

UPMCn User Performance Monitor Counter Registers

USIA User Sampled Instruction Address Register

VA virtual address

VALU vector unit arithmetic logic unit (ALU)

VEA virtual environment architecture

VPERM vector permute unit

VPU, vector units vector processing units within the core. 

VR Vector Register

Table i. Acronyms and Abbreviated Terms  (Page 4 of 5)

Term Meaning



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

About This Book
Page 30 of 415

Version 2.3
March 7, 2008

VRF Vector Register file

VRSAVE Vector Save/Restore Register

VSCR Vector Status and Control Register

WAR write-after-read

WAW write-after-write

WIMG write-through/caching-inhibited/memory-coherency enforced/guarded bits

XER Integer Exception Register, used to indicate conditions such as carries and overflows for integer operations.

Table i. Acronyms and Abbreviated Terms  (Page 5 of 5)

Term Meaning



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

About This Book
Page 31 of 415

Terminology Conventions

Table ii describes terminology conventions used in this manual and the equivalent terminology used in the 
PowerPC Architecture specification.

Table iii describes instruction field notation used in this manual.

Table ii. Terminology Conventions 

Architecture Specification Current Manual

Data storage interrupt (DSI) DSI exception

Extended mnemonics Simplified mnemonics

Instruction storage interrupt (ISI) ISI exception

Interrupt Exception

Privileged mode (or privileged state) Supervisor-level privilege 

Problem mode (or problem state) User-level privilege 

Real address Physical address 

Relocation Translation

Storage (locations) Memory 

Storage (the act of) Access

Store in Write back

Store through Write through

Swizzling Double-word swap

Table iii. Instruction Field Conventions 

Architecture Specification Equivalent to:

BA, BB, BT crbA, crbB, crbD 

BF, BFA crfD, crfS 

D d

DS ds

FLM FM

FRA, FRB, FRC, FRT, FRS frA, frB, frC, frD, frS 

FXM CRM

RA, RB, RT, RS rA, rB, rD, rS

SI SIMM

U IMM

UI UIMM

VA, VB, VT, VS vA, vB, vD, vS 

VEC Vector/SIMD multimedia extension technology



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

About This Book
Page 32 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

PowerPC 970MP Overview
Page 33 of 415

1. PowerPC 970MP Overview

The IBM PowerPC 970MP reduced instruction set computer (RISC) microprocessor is an implementation of 
the PowerPC Architecture. This chapter provides an overview of the features of the 970MP microprocessor 
and includes two block diagrams showing the major functional components.

Note:  The 970MP microprocessor incorporates two complete microprocessors on a single chip, along with 
some common logic to connect these microprocessors to a system. The terms microprocessor, processor, 
and processing unit are used interchangeably to describe each of the two individual processors. The term 
core refers to the instruction fetch and execution logic, including the L1 cache, but excluding the storage sub-
system, of each processor. The term PowerPC 970MP or 970MP refers to the single chip module comprising 
the two processing units and the common logic.

1.1 PowerPC 970MP Microprocessor Overview

The 970MP microprocessor is a dual core, 64-bit PowerPC RISC microprocessor with vector processing unit 
(VPU) extensions—the single-instruction, multiple-data (SIMD) operations that accelerate data intensive 
processing tasks. This processor is designed to support multiple system configurations ranging from desktop 
and low-end server applications, up through 4-way symmetric multiprocessor (SMP) configurations. 

Each processing unit of the IBM PowerPC 970MP RISC Microprocessor consists of three main components:

• The core, which includes the VPUs

• The storage subsystem (STS), which includes the core interface logic, noncacheable unit, L2 cache and 
controls, and bus interface unit

• Pervasive functions

The block diagram in Figure 1-1 on page 34 shows the major functional units comprising the core and storage 
subsystem. In the core, these units include instruction fetch, decode and dispatch units, plus the register files 
and execution units. The storage subsystem includes the second level (L2) cache and interface units.

The block diagram in Figure 1-2 on page 35 shows how the two processing units (PU0 and PU1) are 
connected through the common logic to the processor interface.



U
ser’s M

anual
 IB

M
 P

o
w

erP
C

 970M
P

 R
IS

C
 M

icro
p

ro
cesso

r
 

P
ow

erP
C

 970M
P

 O
verview

P
age 34 of 415

01_970M
P

.fm
V

ersion 2.3
M

arch 7, 2008

Figure 1-1. 970MP Block Diagram 

Core Interface Unit

1MB

Bus Interface Unit

970MP Bus

L2 Cache

Global
Completion Table

Instruction
Decode Unit

64KB
I-Cache

Instruction
Fetch Unit

Dispatch Buffer

Register Maps - GPR, FPR, VRF, CR, CTR, LK

CR
Issue Queue

CR

cr RF

BR
Issue Queue

FPU
Issue Queue

VPU Permute
Issue Queue

VPU ALU
Issue Queue

FXU1/LSU1
Issue Queue

FXU2/LSU2
Issue Queue

FXU1 LSU1

GPR GPR

FXU2 LSU2VALU

VRF

VPERM

VRF

FPU1 FPU2

FPR

BR

ctr/lk RF

32KB
D-Cache

STS

CORE

NCU L2 Dir/Cntl



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

PowerPC 970MP Overview
Page 35 of 415

Figure 1-2. 970MP Dual Core with Common Arbitration Logic 

 
 

 

Processing Unit 0 Processing Unit 1

Header Packet Header Packet

Arbiter

DecodeAresp

Multiplexer

Encode

3636

3636

36

44 to I/O

to I/O
from I/O



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

PowerPC 970MP Overview
Page 36 of 415

01_970MP.fm Version 2.3
March 7, 2008

1.2 PowerPC 970MP Functional Units

1.2.1 Introduction

This section provides an overview of the 970MP microprocessor core, VPU, storage, and bus interface units 
of each processing unit. It includes a summary and details of key design fundamentals. 

1.2.1.1 Key Design Fundamentals of the Microprocessor Core

• 64-bit implementation of the PowerPC Architecture (version 2.01)

– Binary compatibility with all PowerPC Architecture application level code (user [problem] state)
– Support for the 32-bit operating system bridge facility
– Vector/SIMD multimedia extension

• Layered implementation strategy for very high-frequency operation

– Deeply pipelined design
• 16 stages for most fixed-point register-to-register operations
• 18 stages for most load-and-store operations (assuming an L1 D-cache hit)
• 21 stages for most floating-point operations
• 19 stages for fixed-point, 22 stages for complex-fixed, and 25 stages for floating-point operations 

in the vector arithmetic logic unit (VALU)
• 19 stages for VPU permute operations

– Dynamic instruction cracking1 for some instructions allows for simpler inner core dataflow
• Dedicated dataflow for cracking one instruction into two internal operations
• Microcoded templates for longer emulation sequences

• Speculative superscalar inner core organization

– Aggressive branch prediction
• Prediction for up to two branches per cycle
• Support for up to 16 predicted branches in flight
• Prediction support for branch direction and branch addresses

– In-order dispatch of up to five operations into the distributed issue queue structure

– Out-of-order issue of up to 10 operations into 10 execution pipelines
• Two load or store operations
• Two fixed-point register-to-register operations
• Two floating-point operations
• One branch operation
• One Condition Register operation
• One VPU permute operation
• One VPU arithmetic logic unit (ALU) operation

– Register renaming on General Purpose Registers (GPRs), Floating-Point Registers (FPRs), Vector 
Registers (VRs), Condition Register (CR) fields, two bits of the Integer Exception Register (XER), 
Floating-Point Status and Control Register (FPSCR), the Vector Save/Restore Register (VRSAVE), 
Vector Status and Control Register (VSCR), Link Register (LR), and Count Register (CTR)

1. Process by which some complex instructions are broken into two simpler, more RISC-like instructions.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

PowerPC 970MP Overview
Page 37 of 415

• Large number of instructions in flight (theoretical maximum of 215 instructions)

– Up to 16 instructions in the instruction fetch unit (fetch buffer and overflow buffer)
– Up to 32 instructions in the instruction fetch buffer in the instruction decode unit
– Up to 35 instructions in three decode pipe stages and four dispatch buffers
– Up to 100 instructions in the inner core (after dispatch)
– Up to 32 stores queued in the store queue (STQ) (available for forwarding)
– Fast, selective flush of incorrect speculative instructions and results

• Specific focus on storage latency management

– Out-of-order and speculative issue of load operations
– Support for up to eight outstanding L1 cache line misses
– Hardware-initiated instruction prefetching from the L2 cache
– Software-initiated data stream prefetching with support for up to eight active streams
– Critical word forwarding—critical sector first
– New branch processing—Prediction hints on branch instructions

• Power management

– Static power management
• Software initiated Doze, Nap, and Deep Nap low-power modes

– Dynamic power management
• Parts of the design stop their clocks when not in use under hardware control

– Power tuning through frequency scaling
• Software initiated slow down of the processor; selectable to a half or quarter of the nominal oper-

ating frequency
• Programmable latency for power mode transitions to control current spikes

1.2.1.2 Detailed Features of the Microprocessor Core

• Instruction fetching and branch prediction

– 64KB, direct-mapped instruction cache (I-cache)
• 128-byte lines (broken into four 32-byte sectors)
• Dedicated 32-byte read/write interface from the L2 cache with a critical-sector-first reload policy
• Effective-address index, real address tags
• Cache supports one read or one write per cycle
• Five additional predecode bits per word to aid in fast decoding and group formation
• Parity protected with a force invalidate and reload on parity error

– 128 total entries in the effective-to-real-address translation (ERAT) cache; 2-way, set-associative
• Organization is 64 entries by two ways
• Each entry translates 4 KB (no large page support; large pages take multiple entries)

– 4-entry, 128-byte, instruction prefetch queue above the I-cache; hardware-initiated prefetches

– Fetch a 32-byte aligned block of eight instructions per cycle

– Branch prediction
• Scan all eight fetched instructions for branches each cycle
• Predict up to two branches per cycle
• 3-table prediction structure: global, local, and selector (16 K entries x 1 bit each)
• 16-entry link stack for address prediction (with stack recovery)
• 32-entry count cache for address prediction (indexed by the address of the Branch Conditional to 

Count Register [bcctr] instructions)



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

PowerPC 970MP Overview
Page 38 of 415

01_970MP.fm Version 2.3
March 7, 2008

• Instruction decode and preprocessing

– 3-cycle pipeline to decode and preprocess instructions
• Dedicated dataflow for cracking one instruction into two internal operations
• Microcoded templates for longer emulation sequences of internal operations
• All internal operations expanded into 86-bit internal form to simplify subsequent processing and 

explicitly expose register dependencies for all register pools
• Dispatch groups (up to five instructions) formulated along with inter-instruction dependence 

masks

– Cracked and microcoded instructions have access to four renamed emulation GPRs (eGPRs), one 
renamed emulation FPR (eFPR), and one renamed emulation CR (eCR) field (in addition to archi-
tected facilities)

– 8-entry (16 bytes per entry) instruction fetch buffer (up to eight instructions in and five instructions out 
during each cycle)

– Microcode patch facility allows most instructions other than branches to trap to microcode, which can 
be programmed to either emulate the effects of the instruction or cause an interrupt.

• Instruction dispatch, sequencing, and completion control

– Four dispatch buffers, which can hold up to four dispatch groups when the global completion table 
(GCT) is full

– 20-entry global completion table
• Group-oriented tracking associates a 5-operation dispatch group with a single GCT entry
• Tracks internal operations from dispatch to completion for up to 100 operations
• Capable of restoring the machine state for any of the instructions in flight

— Very fast restoration for instructions on group boundaries (that is, branches)
— Slower for instructions contained within a group 

– Supports precise exceptions (including machine check interrupt)

– Register renaming resources
• 80-entry GPR rename mapper (32 architected GPRs plus four eGPRs and VRSAVE)
• 80-entry FPR rename mapper (32 architected FPRs plus one eFPR)
• 80-entry Vector Register file (VRF) rename mapper (32 architected VRFs)
• 24-entry XER rename mapper (the XER is broken into mappable and nonmappable fields)

— Two mappable fields: ov and ca
— Nonmappable field: string-count

• 16-entry LR/CTR rename mapper (one architected LR and one architected CTR)
• 32-entry CR rename mapper (eight architected CR fields plus one eCR field)
• 20-entry FPSCR rename mapper
• VRSAVE 
• VSCR 

– Instruction queuing resources:
• Two 18-entry issue queues for fixed-point and load/store instructions
• Two 10-entry issue queues for floating-point instructions
• 12-entry issue queue for branch instructions
• 10-entry issue queue for CR-logical instructions
• 16-entry issue queue for vector permute instructions
• 20-entry issue queue for vector ALU instructions and VPU stores



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

PowerPC 970MP Overview
Page 39 of 415

• Two fixed-point execution pipelines
• Both capable of basic arithmetic, logical, and shifting operations
• Both capable of multiplies
• One capable of divides; the other capable of SPR operations

– Out-of-order issue with bias towards oldest operations first 

– Symmetric forwarding between fixed-point and load/store execution pipelines

• Load/store execution pipelines

– Two 6-stage load/store execution pipelines

– Out-of-order issue with bias towards oldest operations first 
• Stores issue twice—an address generation operation (load/store), and a data steering operation 

(FXU/FPU/VPU) 

– 32KB, 2-way, set-associative D-cache
• Triple ported to support two reads and one write every cycle (no banking)
• 2-cycle load-use penalty for FXU loads 
• 4-cycle load-use penalty for FPU loads
• 3-cycle load-use penalty for loads to vector permute unit (VPERM)
• 4-cycle load-use penalty for loads to VALU
• Store-through policy; no allocation on store misses
• 128-byte cache line 
• Least recently used (LRU) replacement policy
• Dedicated 32-byte reload interface from the L2 cache
• Effective-address index, real address tags (hardware fix up on alias cases)
• Parity protected; precise machine check interrupt on parity error; software fix if HID5[50] equals 

‘1’. Otherwise, recovery is done by hardware (default).

– 128-entry (total) ERAT cache, 2-way, set-associative
• Organization is 64 entries by two ways
• Each entry translates 4 KB (no large page support; large pages take multiple entries)

– 32-entry store queue logically above the D-cache (real address based; content-addressable memory 
[CAM] structure)

• Store addresses and store data can be supplied on different cycles
• Stores wait in this queue until they are completed; then they write the cache
• Supports store forwarding to inclusive subsequent loads (even if both are speculative)

– 32-entry load reorder queue (real address based; CAM structure)
• Keeps track of out-of-order loads and watches for hazards

— Previous store to the same address that gets executed after the load causes a flush
— Previous load from the same address when a cross-invalidate has occurred causes a flush

– 8-entry load miss queue (LMQ) (real address based)
• Keeps track of loads that have missed in the L1 D-cache
• Allows a second load from the same cache line to merge onto a single entry



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

PowerPC 970MP Overview
Page 40 of 415

01_970MP.fm Version 2.3
March 7, 2008

• Branch and Condition Register execution pipelines

– One branch execution pipeline
• Computes actual branch address and branch direction for comparison with prediction
• Redirects instruction fetching if either prediction was incorrect
• Assists in training and maintaining the branch table predictors, the link stack, and the count 

cache

– One Condition Register logical pipeline
• Executes CR logical instructions and the CR movement operations
• Executes some Move To Special Purpose Register (mtspr) and Move From Special Purpose 

Register (mfspr) instructions also

– Out-of-order issue with a bias towards oldest operations first 

• Floating-point execution pipelines

– Two 9-stage floating-point execution pipelines (6-stage execution)
• Both capable of the full set of floating-point instructions
• All data formats supported in hardware (no floating-point assist interrupts)

– Out-of-order issue with bias towards oldest operations first 

– Symmetric forwarding between the floating-point pipelines

– No support for the non-IEEE mode

• VPU execution pipelines

– Two dispatchable units: 
• VALU contains three subunits:

— Vector simple fixed: 1-stage execution 
— Vector complex fixed: 4-stage execution 
— Vector floating point: 7-stage execution 

• VPERM: 1-stage execution 

– Out-of-order issue with a bias towards oldest operations first

– Symmetric forwarding between the permute and VALU pipelines

• Unified second-level memory management (address translation)

– 1024-entry, 4-way, set-associative translation lookaside buffer (TLB)
• Supports new large page architecture (16MB large pages supported)
• Hardware-based reload (from the L2 cache interface; no L1 D-cache impact)
• Hardware-based update of the referenced (R) and changed (C) bits in a page table entry (PTE)
• Parity protected; precise machine check interrupt on parity error (software fix up)

– 64-entry fully associative segment lookaside buffer (SLB)
• SLB miss results in an interrupt; software reload of the SLB
• SLB can also be loaded by the 32-bit PowerPC Segment Register instructions

– Supports a 65-bit virtual address and a 42-bit real address

• Data stream prefetch

– Eight data prefetch streams supported in hardware. Eight hardware streams are only available if VPU 
prefetch instructions are disabled.

– Four VPU prefetch streams supported using four of the eight hardware streams. The VPU prefetch 
mapping algorithm supports most commonly used forms of vector prefetch instructions. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

PowerPC 970MP Overview
Page 41 of 415

1.3 970MP Dual-Core Module

The 970MP chip consists of two processing units, each containing an execution core with L1 caches, a 
storage subsystem including an L2 cache, and pervasive functions. In addition, a small amount of common 
logic that is outside either processing unit is included to connect each processing unit to the single bus inter-
face.

Generally, the two processing units function as would two processing units on separate chips. For example, 
they maintain memory coherence through the North Bridge; they are able to Doze independently; they have 
private access to most processor resources, including their own L2 cache. Also, like processors on separate 
chips, they scale frequency together, using the power tuning facility.

However, sharing the same chip constrains the behavior of the two processing units in several ways. First, 
the two processing units have separate voltage planes for power, but the processing unit voltages will always 
be the same when the two processors are running. Similarly, the processing unit frequencies will always be 
the same. The two 970MP processing units must go into and come out of Deep Nap together.

The other difference between having dual processing units on a single chip, versus two separate chips, is that 
they share a single processor interface (PI) to the North Bridge. This requires that the interface between the 
bus interface unit (BIU) and the PI logic be enhanced with buffers and multiplexers to support the sharing of 
the PI between the two processing units. Figure 1-2 on page 35 shows the relationship among the two 
processing units and the common logic.

For incoming PI data and commands, the output of the PI decoder is passed directly to both processors. For 
outgoing PI data and commands, an arbiter and multiplexer are introduced in front of the PI encoder to give 
one or the other processor access to the outgoing PI bus at any given time. The arbiter implements a round 
robin scheme, with provisions for adjusting priorities when one processing unit receives repeated serial 
retries. Logic in the BIU of each processing unit is modified to allow the arbiter to prevent that processing unit 
from sending data to the PI bus when a transaction from the other processor is in progress. The PI bus 
configuration parameters apply to a single bus, not to the individual processors. The arbiter enforces those 
parameters, such as the command pipeline delay (COMPACE) timing. To minimize dead time on the bus, 
header packets for each processor are queued at the arbiter. Finally, snoop responses from the two proces-
sors are combined on chip, and sent as a single response over the PI bus to the North Bridge, as indicated in 
the lower left corner of Figure 1-2 on page 35.

The additional logic at the PI/BIU interface might require different values for the programmable bus delay 
parameters than those used for the previous design. The range of some of these parameters has therefore 
been increased (see Table 11-1 on page 281).

Intercommunication between the processors on chip occurs just as if they were on separate chips, through 
the North Bridge. In particular, on-chip L2-to-L2 intervention is not supported.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

PowerPC 970MP Overview
Page 42 of 415

01_970MP.fm Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 43 of 415

2. Programming Model

This chapter describes the 970MP programming model, emphasizing those features specific to the 970MP 
microprocessor and summarizing those that are common to PowerPC processors. It consists of two major 
sections, which describe the following:

• Registers implemented in each 970MP processing unit
• 970MP instruction set

2.1 970MP Processor Register Set 

This section describes the registers implemented in each 970MP processing unit. It includes an overview of 
registers defined by the PowerPC Architecture, highlighting differences in how these registers are imple-
mented in the 970MP processing units. It also includes a detailed description of 970MP-specific registers.

Registers are defined at all three levels of the PowerPC Architecture—user instruction set architecture 
(UISA), virtual environment architecture (VEA), and operating environment architecture (OEA). The PowerPC 
Architecture defines register-to-register operations for all computational instructions. Source data for these 
instructions is accessed from the on-chip registers or is provided as immediate values embedded in the 
opcode. The 3-register instruction format allows specification of a target register distinct from the two source 
registers, thus preserving the original data for use by other instructions and reducing the number of instruc-
tions required for certain operations. Data is transferred between memory and registers with explicit load-and-
store instructions only.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by the oper-
ating system) and user mode of operation (used by the application software; also called problem state). The 
programming models incorporate 32 General Purpose Registers (GPRs), 32 Floating-Point Registers 
(FPRs), 32 Vector Registers (VRs), Special-Purpose Registers (SPRs), and several miscellaneous registers. 
Each PowerPC microprocessor also has its own unique set of Hardware Implementation-Dependent (HID) 
Registers.

While running in supervisor mode, the operating system is able to execute all instructions and access all 
registers defined in the PowerPC Architecture. In this mode, the operating system establishes all address 
translations and protection mechanisms, loads all Processor State Registers, and sets up all other control 
mechanisms defined on the 970MP microprocessor. While running in user mode (problem state), many of 
these registers and facilities are not accessible. Any attempt to read or write to these registers in user mode 
results in a program exception.

The registers implemented on each of the 970MP processing units are shown in Figure 2-1 970MP Program-
ming Model—Registers on page 44. The number to the right of the SPRs indicates the number that is used in 
the syntax of the instruction operands to access the register (for example, the number used to access the 
Integer Exception Register (XER) is SPR 1). These registers can be accessed using the Move To Special 
Purpose Register (mtspr) and Move From Special Purpose Register (mfspr) instructions. The inclusion of 
the vector processing unit (VPU) involves additional registers, and affects bit settings in some of the PowerPC 
registers (including the Machine State Register [MSR], Machine Status Save/Restore Register 1 [SRR1], and 
Condition Register [CR]) when the VPU facility is in use.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 44 of 415

Version 2.3
March 7, 2008

Figure 2-1. 970MP Programming Model—Registers 

Miscellaneous Registers

VR0 

VR1 

VR31

SPR 256VRSAVE
IMC SPR 799

SPR 771
SPR 772
SPR 773
SPR 774
SPR 775
SPR 776
SPR 777
SPR 778

Performance
Counters3

Data Address RegisterSPRGs

Exception Handling Registers

Save and Restore Registers2

Memory Management Registers

Machine Status 
Register2

MSR 

Processor Version
Register3

SPR 287PVR

Configuration Registers

Hardware Implementation
Registers

SPR 1

USER MODEL UISA

FPSCR 

Condition Register2, 3

General-Purpose 
Registers 

Fixed-Point 
Exception Register 

XER 

SPR 8

Link Register

LR 

SUPERVISOR MODEL—OEA

Decrementer3

SDR1

SPR 9

Count Register

CR

Performance Monitor 
Registers 

(For Reading)

Performance Counters3

Monitor Control

Monitor Control

Timebase Facility 
(For Writing)3

USER MODEL—VEA

TBL TBR 268

CTR 
GPR0

GPR1

GPR31 

TBU TBR 269

SDR1 SPR 25

HID0

HID1

HID4

HID5

UPMC1
UPMC2
UPMC3
UPMC4
UPMC5
UPMC6
UPMC7
UPMC8

UMMCR0

UMMCR1

UMMCRA

SPR 779

SPR 782

SPR 770

SPR 787

SPR 788

SPR 789

SPR 790

SPR 791

SPR 792

SPR 793

SPR 794

PMC1

PMC2

PMC3

PMC4

PMC5

PMC6

PMC7

PMC8

MMCR0

MMCR1

MMCRA

SPR 795

SPR 798

SPR 786

SPRG0 

SPRG1 

SPRG2

SPRG3 

SPR 272

SPR 273

SPR 274

SPR 275 SRR0 SPR 26

SRR1 SPR 27

TBL SPR 284

TBU SPR 285

DEC SPR 22

Data Address Breakpoint 
Register

DABR 

DABRX

SPR 1013

SPR 1015

Performance Monitor Registers

SPR 1008

SPR 1009

SPR 1012

SPR 1014

 Notes: 1. TBR268 is read as a 64-bit value.
 2. PowerPC registers affected by vector instructions.
 3. 32-bit registers

Floating-Point Registers 

FPR0 

FPR1 

FPR31

VSCR

Vector Registers

Address Space Register

ASR SPR 280

DAR SPR 19

Processor
Identification

Register3

PIR SPR 1023

Sampled Address 
Registers2

SIAR

SDAR

SPR 796

SPR 797

IMC Array Address

Trigger Registers

TRIG0

TRIG1

TRIG2

SPR 976

SPR 977

SPR 978

Scan Communications 
Facility

SCOMC

SCOMD

SPR 276

SPR 277

SPR 311HIOR

Vector Save 
Restore Register3

Vector Status and 
Control Register3

Floating-Point Status
and Control Register3

UIMC SPR 783

Sampled Address 
Registers

USIAR

USDAR

SPR 780

SPR 781

IMC Array Address

Hardware Interrupt 
Offset Register

DSISR3

DSISR SPR 18

Timebase Facility (for Reading)1,3 

LPAR Function Registers

HSRR0HDEC

HYPERVISOR MODEL

Save and Restore Registers2Hypervisor Decrementer
SPR 310

HSRR1
SPR 314
SPR 315HIOR

Hardware Interrupt

SPR 311

Offset Register
HSPRG0

Hypervisor SPRGs

HSPRG1
SPR 304
SPR 305

 
Exception Handling 

Register 

SPR 259USPRG3



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 45 of 415

The PowerPC UISA registers are user-level. GPRs, FPRs, and VRs are accessed through instruction oper-
ands. Access to registers can be explicit (by using instructions for that purpose such as mtspr and mfspr) or 
implicit as part of the execution of an instruction. Some registers are accessed both explicitly and implicitly. 

Implementation Note: The 970MP microprocessor fully decodes the special purpose register (SPR) field of 
the instruction. If the SPR specified is undefined, an illegal instruction program exception occurs. 

• User-level registers (UISA)—The user-level registers can be accessed by all software with either user or 
supervisor privileges. They include the following registers:

– General-Purpose Registers (GPRs). The 32 GPRs (GPR0–GPR31) serve as data source or destina-
tion registers for fixed-point instructions and provide data for generating addresses. 

– Floating-Point Registers (FPRs). The 32 FPRs (FPR0–FPR31) serve as the data source or destina-
tion for all floating-point instructions. 

– Condition Register (CR). The 32-bit CR consists of eight 4-bit fields, CR0–CR7, that reflect results of 
certain arithmetic operations and provide a mechanism for testing and branching. 

– Floating-Point Status and Control Register (FPSCR). The FPSCR contains all floating-point excep-
tion signal bits, exception summary bits, exception enable bits, and rounding control bits needed for 
compliance with the IEEE 754 standard. 

– Vector Registers (VRs). The vector register file consists of 32 VRs (VR0-VR31). The VRs serve as 
vector source and vector destination registers for all vector instructions. 

– Vector Status and Control Register (VSCR). The VSCR contains the non-Java™ control bit and the 
saturation status bit associated with vector operations. 

The remaining user-level registers are SPRs. Note that the PowerPC Architecture provides a separate 
mechanism for accessing SPRs (the mtspr and mfspr instructions). These instructions are commonly 
used to explicitly access certain registers, while other SPRs might be more typically accessed as a side 
effect of executing other instructions. 

– Link Register (LR). The LR provides the branch target address for the Branch Conditional to Link 
Register (bclrx) instruction. It can be used to hold the logical address of the instruction that follows a 
branch and link instruction, typically used for linking to subroutines. 

– Count Register (CTR). The CTR holds a loop count that can be decremented during execution of 
appropriately coded branch instructions. The CTR can also provide the branch target address for the 
Branch Conditional to Count Register (bcctrx) instruction. 

– Vector Save/Restore Register (VRSAVE). The VRSAVE assists the application and operating system 
software in saving and restoring the Vector Register architectural state across context-switching 
events. 

– User Performance Monitor Counter Registers (UPMC1-UPMC8). UPMC1-UPMC8 provide user-level 
read access to the Performance Monitor Counter Registers (PMC1–PMC8). 

– User Monitor Mode Control Registers (UMMCR0, UMMCR1, UMMCRA). These registers provide 
user-level read access to the Monitor Mode Control Registers (MMCR0, MMCR1, MMCRA). 

– User Instruction Match Content-Addressable Memory (CAM) Register (UIMC). The UIMC provides 
user-level read access to the Instruction Match CAM Register (IMC).

– User Sampled Instruction Address Register (USIAR). The USIA provides user-level read access to 
the Sampled Instruction Address Register (SIAR). 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 46 of 415

Version 2.3
March 7, 2008

– User Sampled Data Address Register (USDAR). The USDA provides user-level read access to the 
Sampled Data Address Register (SDAR). 

– Integer Exception Register (XER). The XER indicates overflow and carries for integer operations and 
the number of bytes to be transferred by the indexed instructions of the load/store string. 

Implementation Note: The architecture defines XER[44:56] as reserved. 

– Software Use Special Purpose Register 3 (SPRG3). SPRG3 can be read in problem state using 
SPR 259. 

• User-level registers (VEA)—The PowerPC VEA defines the time-base facility (TB), which consists of 
two 32-bit registers—Time-Base Upper (TBU) and Time-Base Lower (TBL). The Time-Base Registers 
can be written to only by supervisor-level instructions, but can be read by both user and supervisor-level 
software. 

• Supervisor-level registers (OEA)—The OEA defines the registers that an operating system uses for 
memory management, configuration, exception handling, and other operating system functions. The OEA 
defines the following supervisor-level registers:

– Configuration registers

• Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be 
modified by the Move to Machine State Register (mtmsr), Move to Machine State Register Dou-
bleword (mtmsrd), System Call (sc), and Return from Exception Doubleword (rfid) instructions. 
It can be read by the Move from Machine State Register (mfmsr) instruction. When an exception 
is taken, the contents of the MSR are saved to the Machine Status Save/Restore Register 1 
(SRR1). See Section 2.1.1.1 MSR Register (MSR) on page 49 for more information. 

• Processor Version Register (PVR). This is a read-only register that identifies the version (model) 
and revision level of the PowerPC processor. See the IBM PowerPC 970MP RISC Microproces-
sor Datasheet for details of the PVR.

– Memory management registers

• Address Space Register (ASR). In the 970MP microprocessor, the Address Space Register is 
supported. Due to the software reload of the segment lookaside buffers (SLBs) on the 970MP 
microprocessor, this register does not actually participate in any other specific hardware func-
tions on the chip. It has been included as a convenience (and performance enhancement) for the 
SLB reload software.

• Storage Description Register (SDR1). SDR1 specifies the page-table base address used in vir-
tual-to-physical address translation. 

– Exception-handling registers

• Data Address Register (DAR). After a data storage interrupt (DSI) exception or an alignment 
exception, the DAR is set to the effective address (EA) generated by the faulting instruction. 

• Software Use Special Purpose Registers 0 - 3 (SPRG0–SPRG3). SPRG0–SPRG3 are provided 
for operating system use. 

• Data Storage Interrupt Status Register (DSISR). DSISR defines the cause of DSI and alignment 
exceptions. 

• Machine Status Save and Restore Register 0 (SRR0). SRR0 is used to save the address of the 
instruction at which execution continues when rfid executes at the end of an exception handler 
routine. See Section 2.1.1.2 Machine Status Save/Restore Register (SRR1) on page 49 for more 
information.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 47 of 415

• Machine Status Save and Restore Register 1 (SRR1). SRR1 is a 64-bit register used to save 
machine status on exceptions and restore the Machine Status Register when an rfid instruction 
is executed. See Section 2.1.1.2 Machine Status Save/Restore Register (SRR1) on page 49 for 
more information.

Note:  For information about how specific exceptions affect SRR1, see the individual exception in 
Section 4.5 Exception Definitions on page 110.

– Miscellaneous registers

• Time Base (TB). This register is a 64-bit structure provided for maintaining the time of day and 
operating interval timers. The TB consists of two 32-bit registers—Time-Base Upper (TBU) and 
Time-Base Lower (TBL). The Time-Base Registers can be written to only by supervisor-level 
software, but can be read by both user- and supervisor-level software. See Section 2.1.1.3 Time 
Base and Decrementer (TB, DEC) on page 50 for more information.

Implementation Note: In the 970MP microprocessor, the Time-Base Register is incremented 
once every sixteen full frequency processor clocks. Alternatively, when HID0[19] is set to ‘1’, the 
Time-Base Register is incremented at the input frequency of the timebase_enable input pin 
(TBEN).

• Decrementer Register (DEC). This register is a 32-bit decrementing counter that provides a 
mechanism for causing a decrementer exception after a programmable delay. See 
Section 2.1.1.3 Time Base and Decrementer (TB, DEC) on page 50 for more information.

Implementation Note: In the 970MP microprocessor, the Decrementer Register is decremented 
once every 16 full frequency processor clocks. Alternatively, when HID0[19] is set to ‘1’, the Dec-
rementer Register is decremented at the TBEN input frequency.

• Processor ID Register (PIR). The PIR Register is used to differentiate between individual proces-
sors in a multiprocessor environment. See Section 2.1.1.4 Processor ID Register (PIR) on 
page 50 for more information.

– Performance Monitor Registers. The following registers are used to define and count events for use 
by the performance monitor:

• The Performance Monitor Counter Registers (PMC1–PMC8) are used to record the number of 
times a certain event has occurred. See Section 2.1.2.6 Performance Monitor Registers 
(MMCR0, MMCR1, MMCRA, PMC1-8) on page 63 for more information.

• The Monitor Mode Control Registers (MMCR0, MMCR1, MMCRA) are used to identify what 
events will be monitored and to enable various performance monitor interrupt functions. See 
Section 2.1.2.6 Performance Monitor Registers (MMCR0, MMCR1, MMCRA, PMC1-8) on 
page 63 for more information.

• The Sampled Instruction Address Register (SIAR) contains the effective address of an instruction 
executing at or around the time that the processor signals the performance-monitor interrupt con-
dition. See Section 2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers 
(SIAR, SDAR) on page 64 for more information.

• The Sampled Data Address Register (SDAR) contains the effective address of the storage 
access instruction executing at or around the time that the processor signals the performance 
monitor interrupt condition. See Section 2.1.2.7 Sampled Instruction Address and Sampled Data 
Address Registers (SIAR, SDAR) on page 64 for more information. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 48 of 415

Version 2.3
March 7, 2008

• 970MP-specific registers—The PowerPC Architecture allows implementation- specific SPRs. The fol-
lowing registers are incorporated in each 970MP processing unit: 

Note:  In the 970MP microprocessor, these registers are all supervisor-level registers.

– Hardware Implementation-Dependent Register 0 (HID0). This register controls various functions, 
such as enabling checkstop1 conditions, locking, enabling, invalidating the instruction and data 
caches, and power modes. See Section 2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5) on 
page 54 for more information.

– Hardware Implementation-Dependent Register 1 (HID1). HID1 contains additional mode bits that are 
related to the instruction fetch and instruction decode functions in the 970MP microprocessor. See 
Section 2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5) on page 54 for more information.

– Hardware Implementation-Dependent Register 4 (HID4). HID4 contains bits related to the load/store 
function in the 970MP microprocessor. See Section 2.1.2.2 HID Registers (HID0, HID1, HID4, and 
HID5) on page 54 for more information.

– Hardware Implementation-Dependent Register 5 (HID5). HID5 contains bits related to the load/store 
function in the 970MP microprocessor. See Section 2.1.2.2 HID Registers (HID0, HID1, HID4, and 
HID5) on page 54 for more information.

– Data Address Breakpoint Register (DABR) and Data Address Breakpoint Register Extension 
(DABRX). The DABR controls the data address breakpoint mechanism, which provides a means of 
detecting load-and-store accesses to a designated double word. See Section 2.1.2.3 Data Address 
Breakpoint Register (DABR) on page 61 for more information. 

– Scan Communications Register (SCOMC). SCOMC is a control register that includes a command 
field, a destination field, and a set of status bits. See Section 2.1.2.8 Scan Communication Registers 
(SCOMC and SCOMD) on page 64 for more information. 

– Scan Communications Register (SCOMD). SCOMD is an associated data register that acts as either 
a source of data or as a destination for data depending on the command placed into the SCOMC. 
See Section 2.1.2.8 Scan Communication Registers (SCOMC and SCOMD) on page 64 for more 
information. 

– Instruction Match CAM Registers (IMCs). The IMC SPRs are used to access the IMC array, which 
contains the mask values used for instruction matching. The mtimc and mfimc instructions can be 
executed only in supervisor mode. See Section 2.1.2.5 Instruction Match CAM Array Access Register 
(IMC) on page 62 for more information. 

– Trigger Registers (TRIG0-TRIG2). Writes to the Trigger Registers, named TRIG0, TRIG1, and 
TRIG2, can be inserted in the instruction stream to cause triggers to the on-chip trace array debug 
logic. These are intended to be used for debug and bring-up only and architecturally behave as no-
ops. See Section 2.1.2.12 Trigger Registers (TRIG0, TRIG1, TRIG2) on page 65 for more informa-
tion.

– Hardware Interrupt Offset Register (HIOR). The HIOR is used for interrupt vector relocation. See 
Section 2.1.2.13 Hardware Interrupt Offset Register (HIOR) on page 66 for more information.

Note:  While it is not guaranteed that the implementation of 970MP-specific registers is consistent among 
PowerPC processors, other processors might implement similar or identical registers.

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 49 of 415

2.1.1 Architected Registers in the 970MP Implementation

Several architected registers are implemented in each 970MP processing unit in a way that varies from, or 
extends, the definition in the PowerPC Architecture.

2.1.1.1 MSR Register (MSR)

The PowerPC Architecture describes the MSR bits 2, 4:47, 57, 60, and 63 as either optional or reserved. In 
the 970MP microprocessor, bit 38 is used as the vector processor available (VP) enable and bit 45 is used as 
the power management (POW) enable. The other bits are not implemented and will return the value ‘0’ when 
read.

Note:  Little-endian mode is not supported (that is, MSR[LE] and MSR[ILE] are treated as reserved).

Implementation Note: Table 2-1 describes MSR bits that the 970MP microprocessor implements that 
deviate from the PowerPC Architecture.

2.1.1.2 Machine Status Save/Restore Register (SRR1)

This register is used to save machine status during interrupts. In the 970MP microprocessor, SRR1 bits 1:2, 
4:32, 37, 39:41, 47, 56:57, 60, and 63 are treated as reserved. These bits are not implemented and will return 
the value ‘0’ when read. See Section 4.3.2 Machine Status Save/Restore Register 1 (SRR1) on page 105 for 
additional information. 

Table 2-1. MSR Bits 

Bit Name Description

3 — Reserved; returns a value of ‘1’ when read.

38 VP

VP available. 
0 The processor prevents execution of all vector instructions including loads, stores, and moves. If 

such execution is attempted, a VP unavailable exception is raised. 
1 The processor can execute all vector instructions.
The VRSAVE Register is not protected by MSR [VP]. The data streaming family of instructions (dst, dstt, 
dstst, dststt, dss, and dssall) are not affected by the MSR[VP].

45 POW Activates power management. The 970MP microprocessor will clear the POW bit when it leaves a power 
saving mode. See Chapter 9 Power and Thermal Management for more information.

47 — Reserved. The ILE bit is not implemented in the 970MP microprocessor.

48 EE

External interrupt enable 
0 The processor delays recognition of external interrupts and decrementer exception conditions. 
1 The processor is enabled to take an external interrupt or the decrementer exception.
Note:  Resetting MSR[EE] masks not only the architecture-defined external interrupt and decrementer 
exceptions, but also the 970MP-specific instrumentation, debug, and performance monitor exceptions.

63 — Reserved. The LE bit is not implemented in the 970MP microprocessor.

Table 2-2. Additional SRR1 Bit 

Bit Function

33 SIAR and SDAR contents synchronized. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 50 of 415

Version 2.3
March 7, 2008

2.1.1.3 Time Base and Decrementer (TB, DEC)

The time-base counter and the decrementer are clocked at 1/16 (one-sixteenth) of the full frequency 
processor. The 970MP microprocessor supports two modes of operation (controlled by HID0[19] and the 
time-base enable input pin) for updating the time base and decrementer. When HID0[19] is zero, then the 
counters constantly update as long as the TBEN is high (traditional mode of operation). When HID0[19] is 
one, the counters update only on the rising edge of the TBEN input pin.

When the processor is stopped due to various breakpoint, debug and support processor functions, an addi-
tional mode bit, HID0[18], determines whether the time base and the decrementer continue counting. Note 
that some support processor operations require the use of an alternate clocking mode for scan, and in these 
cases, the time base and the decrementer will not continue counting.

2.1.1.4 Processor ID Register (PIR)

The Processor Identification Register (PIR) is a 32-bit register that holds a processor identification tag. In the 
970MP processing unit, this tag is in the three least-significant bits (29:31). The least-significant bit of the 
processor identification tag (PID) is hardwired to ‘0’ for PU0 and to ‘1’ for PU1. This tag is used to tag bus 
transactions and to differentiate processors in multiprocessor systems. The PIR is a read-only register. The 
format of the register is as follows: 

During power-on reset, PID is set to a unique value for each processor in a multi processor system. For more 
information about the power-on reset configuration process, see Section 11.3.1 Initialization at Power-On 
Reset on page 289.

2.1.2 PowerPC 970MP-Specific Registers

This section describes registers that are defined for the 970MP microprocessor, but are not included in the 
PowerPC Architecture. 

2.1.2.1 Move To and Move From System Register Instructions

The 970MP architecture defines several new implementation-specific system registers. Note that some of 
these registers are also readable in user mode through a second set of SPR encodings, and that some of 
these registers have special software synchronization requirements. 

The encoded SPR values for these implementation-specific registers are shown in Table 2-3. Note that the 
SPR is encoded in the mfspr and mtspr instructions. Bits 5:9 of the SPR field represent the 5 high-order bits 
of the SPR number, and bits 0:4 of the SPR field represent the 5 low-order bits of the SPR number.

Zeros PID

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:28 — Reserved (read as zeros)

29:31 PID 3-bit processor ID value (least-significant bit hardwired to differentiate PU0 and PU1)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 51 of 415

Table 2-3. Implementation-Specific SPRs 

SPR

Register Name R/W

Synchronization Requirements

Decimal 
(privileged)

Decimal 
(user)

SPR(5:9) 
SPR(0:4) Before Reads After Writes Before Writes

1023 11111 11111 PIR R none N/A N/A

1013 11111 10101 DABR R/W none

context 
synchronizing

instruction 
(CSI)

sync

1015 11111 10111 DABRX R/W

1008 11111 10000 HID0 R/W none Note 1 Note 1

1009 11111 10001 HID1 R/W none Note 2 Note 2

1012 11111 10100 HID4 R/W none Note 3 Note 3

1014 11111 10110 HID5 R/W none Note 4 Note 4

795 779 11000 n1011 MMCR0 R/W none Note 5 Note 5

798 782 11000 n1110 MMCR1 R/W none Note 5 Note 5

786 770 11000 n0010 MMCRA R/W none Note 5 Note 5

787 771 11000 n0011 PMC1 R/W sync none none

788 772 11000 n0100 PMC2 R/W sync none none

789 773 11000 n0101 PMC3 R/W sync none none

790 774 11000 n0110 PMC4 R/W sync none none

791 775 11000 n0111 PMC5 R/W sync none none

792 776 11000 n1000 PMC6 R/W sync none none

793 777 11000 n1001 PMC7 R/W sync none none

794 778 11000 n1010 PMC8 R/W sync none none

276 01000 10100 SCOMC R/W none CSI none

277 01000 10101 SCOMD R/W none CSI none

796 780 11000 n1100 SIAR R/W sync none none

797 781 11000 n1101 SDAR R/W sync none none

799 783 11000 n1111 IMC R/W none CSI none

976 11110 10000 TRIG0 W N/A none none

977 11110 10001 TRIG1 W N/A none none

978 11110 10010 TRIG2 W N/A none none

256 01000 00000 VRSAVE R/W N/A none none

311 01001 10111 HIOR R/W



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 52 of 415

Version 2.3
March 7, 2008

Table 2-3. Implementation-Specific SPRs (Continued)

For mtspr, n must be ‘1’. For mfspr, reading the SPR is privileged if and only if n equals ‘1’.

Notes:  
1. The following sequence must be used when modifying HID0:

sync
mtspr HID0,Rx
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
After modifying HID0, executing six mfspr instructions specifying HID0 as the source and specifying the same target General Pur-
pose Register (GPR) (Rx) in all six instructions is necessary to ensure that the modification is effective and that the processor is in 
a valid state to continue executing subsequent instructions.

2. The following sequence must be used when modifying HID1:
mtspr HID1,Rx
mtspr HID1,Rx
isync
Executing two mtspr instructions is necessary to ensure that updates to all portions of HID1 will be complete before the Instruction 
Cache Synchronize (isync) instruction completes.

3. The following sequence must be used when modifying HID4:
sync
mtspr HID4,Rx
isync
When HID4[23] is changed, the previous sequence should be preceded by a Move to Segment Register (mtsr) and Synchronize 
(sync) instruction, which will cause the effective-to-real-address translations (ERATs) to be flushed.

4. The following sequence must be used when modifying HID5:
sync
mtspr HID5,Rx
isync
Whenever HID5[56] or HID5[57] is changed, the entire instruction cache must be flushed to ensure that any succeeding Data 
Cache Block Set to Zero (dcbz) instruction is executed in the context of the new HID5 bit settings.

5. Although it is not necessary to use synchronizing instructions when modifying the MMCR(0,1,A) registers, it is recommended that 
the following sequence be used:
sync
mtspr MMCRz,Rx
isync



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 53 of 415

Table 2-4 describes the behavior of the 970MP microprocessor for the mtspr and mfspr instructions.

Table 2-4. Move To/Move From SPR Behavior 

Condition

Resulting ActionSPR
MSR[PR] R/W

SPR(0) Register

1 Any invalid SPR encoding 0 mfspr No-op (target register is unchanged)

1 Any invalid SPR encoding 0 mtspr No action (write is inhibited)

1

Address Compare Control Register (ACCR), ASR, 
Control Register (CTRL), DABR, DAR, DEC, DSISR, 
HID0, HID1, HID4, HID5, IMC, SCOMC, SCOMD, 
SDR1, SDAR, SIAR, SRR0, SRR1, SPRG0, 
SPRG1, SPRG2, SPRG3, TBL, TBU, Performance 
Monitor Registers

0 mfspr Returns a value to a GPR.

0 mtspr Target SPR is updated.

1 TRIG0, TRIG1, TRIG2
0 mfspr Causes an illegal instruction type of program 

interrupt.

0 mtspr Causes a trigger to the trace array debug logic.

1 PIR

0 mfspr Returns a value to a GPR.

0 mtspr Causes an illegal instruction type of program 
interrupt.

1 Any SPR encoding (with SPR(0) equal to ‘1’) 1 mtspr
mfspr

Causes a privileged instruction type of program 
interrupt.

0

Any invalid SPR encoding except:
spr(0:9) = ‘00000 00000’
spr(0:9) = ‘00100 00000’
spr(0:9) = ‘00101 00000’
spr(0:9) = ‘00110 00000’

X mfspr No-op (target register is unchanged)

X mtspr No action (write is inhibited)

0

spr(0:9) = ‘00000 00000’
spr(0:9) = ‘00100 00000’
spr(0:9) = ‘00101 00000’
spr(0:9) = ‘00110 00000’

X mtspr
mfspr

Causes an illegal instruction type of program 
interrupt.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 54 of 415

Version 2.3
March 7, 2008

2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5)

The 970MP microprocessor includes many implementation-dependent mode bits that allow various features 
of the chip to be enabled and disabled. These bits are included in the Hardware Implementation-Dependent 
Registers (HID0, HID1, HID4, and HID5). In general, HID0 attempts to line up the 970MP microprocessor 
modes with the relevant ones from earlier PowerPC implementations and then adds a few new ones. HID1 
contains additional mode bits that are related to the instruction fetch and instruction decode functions in the 
970MP microprocessor. HID4 and HID5 contain bits related to the load/store function in the 970MP micropro-
cessor. All of these registers are supervisor resources.

The state of each of the HID Registers after a normal scan-based POR is all zeros. The preferred state of 
these registers for optimal performance and function is also all zeros, except where indicated.

HID0 Bit Functions

on
e_

pp
c

do
_s

in
gl

e

is
yn

c_
sc

se
r-

gp

Reserved de
ep

 n
ap

do
ze

na
p

R
es

er
ve

d

dp
m

R
es

er
ve

d

tg ha
ng

_d
is

nh
r

in
or

de
r

R
es

er
ve

d

tb
_c

tr
l

ex
t_

tb
_e

n

R
es

er
ve

d

ci
ab

r_
en

hd
ic

e_
en

R
es

er
ve

d

Reserved en
_a

ttn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

en
_m

ck

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 one_ppc One PowerPC Architecture instruction per dispatch group mode. An instruction might span more than 
one group.

1 do_single
Single group completion mode.
Flush and refetch after the completion of each group or the completion of each microcoded instruction, if 
the instruction spans multiple groups.

2 isync_sc Disable isync scoreboard optimization.

3 ser-gp Serialize group dispatch. The next group is not dispatched until the previous group completes.

4:6 — Reserved

7 deep nap Deep nap

8 doze Doze

9 nap Nap

10 — Reserved

11 dpm Enable dynamic power management.

12 — Reserved

13 tg Performance monitor threshold granularity control.

14 hang_dis Disable processor hang-detection mechanism.

15 nhr Not hard reset. Check after snoop response in (SRI) to see if hard or soft.

16 inorder Serialized group issue mode. The next group is not issued until the previous group completes. Does not 
include branch or CR-logical instructions.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 55 of 415

17 — Reserved

18 tb_ctrl Enable time-base counting when the processor is stopped.

19 ext_tb_en
External time-base enable.
0 Use TBEN input as enable. TB is clocked at 1/8 of the full processor frequency.
1 Use TBEN input to clock time base (external clock).

20:21 — Reserved

22 ciabr_en Enable Completion Instruction Address Breakpoint Register (CIABR).

23 hdice_en
Enable hypervisor decrementer interrupt conditionally (HDICE). The initial reset value must be
‘0’ and disables hypervisor interrupts. 

24:30 — Reserved

31 en_attn Enable support processor attention instruction.

32 en_mck Enable external machine check interrupts (preferred state equals ‘1’).

33:63 — Reserved

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 56 of 415

Version 2.3
March 7, 2008

HID1 Bit Functions

bh
t_

pm

en
_l

s

en
_c

c

en
_i

c

R
es

er
ve

d

pf
_m

od
e

en
_i

cb
i

en
_i

f_
ca

ch

en
_i

c_
re

c

en
_i

d_
re

c

en
_e

r_
re

c

ic
_p

e

ic
d0

_p
e

ic
d1

_p
e

ie
r_

pe

en
_s

p_
itw

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:2 bht_pm

Branch history table (BHT) prediction mode.
000 Static prediction
001 Unused (same as 000)
010 Global BHT prediction only
011 Global prediction with history compression
100 Local BHT prediction only
101 Unused (same as 100)
110 Full global/local prediction with global selection (gsel)
111 Full global/local prediction with gsel and history compression (preferred state)

3 en_ls Enable link stack (preferred state equals ‘1’).

4 en_cc Enable count cache (preferred state equals ‘1’).

5 en_ic Enable instruction cache (must be ‘1’ for proper functioning).

6 — Reserved

7:8 pf_mode

Prefetch mode.
00 No instruction prefetch.
01 Select next sequential address (NSA) instruction prefetch.
10 Select NSA and NSA + 1 instruction prefetch (preferred state).
11 Disable prefetch buffer.

9 en_icbi Enable forced Instruction Cache Block Invalidate (icbi) match mode.

10 en_if_cach

Enable instruction fetch cacheability control.
0 All instruction fetch accesses are treated as cache inhibited regardless of the state of the I bit in 

the page table.
1 Instruction fetch cacheability is controlled by the state of the I bit in the page table (preferred 

state).

11 en_ic_rec Enable I-cache parity error recovery (preferred state equals ‘1’).

12 en_id_rec Enable I-directory parity error recovery (preferred state equals ‘1’).

13 en_er_rec Enable instruction ERAT (I-ERAT) parity error recovery (preferred state equals ‘1’).

14 ic_pe Force instruction cache parity error (error inject).

15 icd0_pe Force instruction cache directory 0 parity error (error inject).

16 icd1_pe Force instruction cache directory 1 parity error (error inject).

17 ier_pe Force I-ERAT parity error (error inject).

18 en_sp_itw Enable speculative tablewalks. The ERAT is never loaded using a page table entry (PTE) if PTE[G] is set 
to ‘1’ (preferred state equals ‘1’).

19:63 — Reserved



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 57 of 415

HID4 Bit Functions

lp
es

0

rm
lr(

1:
2)

lpid(2:5) rmor(0:15) rm
_c

i

fo
rc

e_
ai

di
s_

pr
ef

re
s_

pr
ef

en
_s

p_
dt

w

l1
dc

_f
ls

h

di
s_

de
rp

c

di
s_

de
rp

g

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

di
s_

de
ra

t

di
s_

dc
tp

c

di
s_

dc
tp

g

di
s_

dc
se

t

di
s_

dc
pc

di
s_

dc
pg

di
s_

dc
rt

pc

dis_tlbpc di
s_

tlb
pg

dis_tlbset di
s_

sl
bp

c

di
s_

sl
bp

g

m
ck

_i
nj

di
s_

st
fw

d

lp
es

1

rm
lr0

R
es

er
ve

d

di
s_

sp
la

rx

lg
_p

g_
di

s

lp
id

(0
:1

)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 lpes0
LPAR environment selector bit [0]. LPES[0:1] are located in HID4[0, 57]. 
LPES[0:1] determine how MSR[HV] is set using interrupts and how memory access is performed when 
not in hypervisor mode. This is described in the PowerPC Architecture version 2.01. 

1:2 rmlr(1:2) LPAR real mode limit register (see HID4[58] for bit [0]).

3:6 lpid(2:5) LPAR partition identity bits [2:5] (see also bits [62:63] for lpid(0:1)). 

7:22 rmor(0:15) LPAR real mode offset register [0:15].

23 rm_ci Data accesses in real mode are treated as cache-inhibited. 

24 force_ai Force alignment interrupt instead of microcoding unaligned operations (that is instead of breaking 
unaligned operations into multiple smaller operations).

25 dis_pref Disables data prefetching.

26 res_pref
Setting HID4[26] to ‘1’ resets the data prefetch mechanism, suppressing subsequent prefetch requests 
and clearing the stream detection logic, therefore stream detection is not affected by accesses performed 
before setting the bit back to ‘0’.

27 en_sp_dtw Enable speculative load tablewalk.

28 l1dc_flsh
L1 data cache flash invalidate.
0 Normal operation
1 All sectors set to invalid and held invalid

29:30 dis_derpc Disable data ERAT (D-ERAT) parity checking (one bit for each set). 

31 dis_derpg Disable D-ERAT parity generation (force parity to ‘0’ on EA[0:45] only).

32:33 dis_derat Disable one or more ways of the 4-way set associative D-ERAT (one bit per set); valid states are 00, 01, 
and 10.

34:35 dis_dctpc Disable data cache tag parity checking (one bit for each set). 

36 dis_dctpg Disable data cache tag parity generation.

37:38 dis_dcset Disable data cache set (one bit for each set).

39:40 dis_dcpc Disable parity checking in one or more ways of the 4-way set-associative data cache (one bit per set).

41 dis_dcpg Disable data cache parity generation.

42:43 dis_dcrtpc Disable parity checking on the physical address tag of the data cache (one bit per set).

44:47 dis_tlbpc Disable parity checking in one or more ways of the 4-way set-associative translation lookaside buffer 
(TLB) (one bit per set). 

48 dis_tlbpg Disable TLB parity generation.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 58 of 415

Version 2.3
March 7, 2008

49:52 dis_tlbset Disable set in one or more ways of the 4-way set associative TLB (one bit per set); valid states are x‘0’, 
x‘7’, x‘B’, x‘D’, and x‘E’.

53 dis_slbpc Disable SLB parity checking.

54 dis_slbpg Disable SLB parity generation.

55 mck_inj Enable machine-check error injection.

56 dis_stfwd Disable store forwarding (cause reject).

57 lpes1
LPAR environment selector bit [1]. LPES[0:1] are located in HID4[0, 57]. 
LPES[0:1] determine how MSR[HV] is set using interrupts and how memory access is performed when 
not in hypervisor mode. This is described in the PowerPC Architecture version 2.01. 

58 rmlr0

HID4 bits [58, 1:2] are real mode limit register bits [0:2].
011 64 MB
111 128 MB
100 256 MB
x10 1 GB
x01 16 GB
000 256 GB

59 — Reserved

60 dis_splarx Disable speculative Load Word and Reserve Indexed (lwarx) and Load Double Word and Reserve 
Indexed (ldarx) instructions.

61 lg_pg_dis Disable large page support. The large page (L) bit input to SLB will be forced to zero (software will read a 
zero L bit). 

62:63 lpid(0:1) LPAR partition identity bits [0:1]. HID4[62:63, 3:6] are LPID[0:5] respectively.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 59 of 415

HID5 Bit Functions

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

hrmor(0:15) R
es

er
ve

d

D
C

_m
ck

di
s_

pw
rs

av
e

fo
rc

e_
G

D
C

_r
ep

l

hw
r_

st
m

s

ds
t_

no
op

D
C

B
Z

_s
iz

e

D
C

B
Z

32
_i

ll

tlb
_m

ap

lm
q_

po
rt

lm
q_

si
ze

(0
)

R
es

er
ve

d

tc
h_

no
p

lm
q_

si
ze

(1
)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 — Reserved

32:47 hrmor(0:15) LPAR hypervisor real mode offset register.

48:49 — Reserved

50 DC_mck Machine check enabled for data cache and data cache tag parity errors (software recovery enabled). 

51 dis_pwrsave L1 data cache (D-cache), L1 D-cache tag, D-ERAT power savings disable.

52 force_G Force guarded (G equals ‘1’) load.

53 DC_repl
Data cache replacement algorithm.
0 Least recently used (LRU) (default)
1 First-in-first-out (FIFO)

54 hwr_stms
Number of available hardware prefetch streams. 
0 Four hardware streams and four VPU streams
1 Eight hardware streams (HID5[55] must also be ‘1’)

55 dst_noop
Data Stream Touch (DST) instructions no-op.
0 DSTs are enabled.
1 DSTs are a no-ops and discarded in the load/store unit (LSU).

56 DCBZ_size Makes dcbz a 32-byte store when bit 10 of the dcbz instruction is set to ‘0’.

57 DCBZ32_ill Makes a dcbz instruction with bit 10 equal to ‘0’ an illegal instruction.

58 tlb_map

TLB mapping.
0 4-way set associative
1 Direct mapped
Note:  When setting HID5[58] to make the TLB direct mapped, the TLB set disable bits, HID4[49:52], 
must be cleared; otherwise, translation will not work.

59 lmq_port
Demand miss (load miss queue [LMQ] to 970MP storage subsystem [STS]).
0 Permit two per cycle.
1 Permit only one per cycle (this setting is not currently supported).

60 lmq_size(0)

Number of outstanding requests to STS. 
Maximum

HID5 outstanding 
[60, 63] requests

00  8
01  1 (this setting is not currently supported)
10  2
11  4

61 — Reserved



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 60 of 415

Version 2.3
March 7, 2008

62 tch_nop Make the Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) instructions 
act like no-ops.

63 lmq_size(1) See description of HID5[60].

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 61 of 415

2.1.2.3 Data Address Breakpoint Register (DABR)

The data address breakpoint facility provides a means of detecting load-and-store accesses to a designated 
double word. The address comparison is done on an effective address. The data address breakpoint facility is 
controlled by the architected Data Address Breakpoint Register (DABR) and the 970MP microprocessor-
specific Data Address Breakpoint Register Extension (DABRX). 

Data Address Breakpoint Register Extension (DABRX)

The DABRX register is only active in hypervisor mode.

Data Address Compare

The 970MP microprocessor supports the address compare control facility and the Address Compare Control 
Register (ACCR) as defined in the architecture. In addition, the 970MP microprocessor supports the optional 
data address breakpoint facility and associated Data Address Breakpoint Register (DABR) described in the 
architecture. In either case, upon taking a data storage interrupt, the 970MP processing unit sets the DAR 
correctly.

The architecture allows some flexibility on whether an ACCR match, a DABR match, or both actually occurs 
for certain conditions. More specifically, in the 970MP processing unit, store conditional instructions that are 
executed but not successful (that is, the store does not actually occur) will cause either an ACCR match or a 
DABR match if the appropriate match conditions are met. String instructions with zero length will not cause 
ACCR or DABR matches. The dcbz instruction will cause a DABR match if the appropriate match conditions 
are met.

As an alternative to causing an interrupt, a DABR match can be made to cause various forms of hard stops or 
soft stops for use as a debug aid (these controls are available through special SCOM commands). In general, 
this capability is not recommended for use in normal system operation because it might require the presence 
of an engineering support processor to restart the processing unit.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved br
kp

t_
ig

su
p_

st

R
es

er
ve

d

pr
ob

_s
t

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Name Description

0:59 — Reserved

60 BTI Breakpoint translation ignore

61 HYP Hypervisor state

62 PNH Privileged but non-hypervisor state

63 PRO Problem state (user mode)

Note:  Bits [61:63] are termed the privileged mask (PRIVM).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 62 of 415

Version 2.3
March 7, 2008

2.1.2.4 Instruction Address Breakpoint Register (IABR)

The Instruction Address Breakpoint Register can be used as a debug tool to trigger an event upon the fetch of 
a particular instruction address. The address in the IABR is compared to the Instruction Fetch Address 
Register, which will also contain addresses of speculative instruction fetches. The IABR is set up as 
described in the PowerPC Microprocessor Family: The Programming Environments manual, except, in the 
970MP microprocessor, the IABR is only available as a trigger to the debug logic. This trigger can be 
programmed to perform functions such as quiesce or checkstop. If the word specified in the IABR is fetched, 
the instruction breakpoint handler is invoked. The instruction that triggers the breakpoint does not execute 
before the handler is invoked. 

CIABR can be enabled by either HID0[22] (software accessible) or scan/SCOM override. 

The IABR uses the IFU FETCH address, not the current instruction address (CIA) that is executing. An IABR 
match occurs on the fetch of any instruction, even a speculative instruction.

Note:  There can be multiple IABR matches for a single instruction before it is actually executed (or com-
pleted). 

During power-on reset, all bits are reset to ‘0’.

2.1.2.5 Instruction Match CAM Array Access Register (IMC)

The instruction match CAM (IMC) array facility is used for performance monitoring instrumentation. This latter 
use is restricted for the support processor and is not available through SPR access to this register array. The 
array has privileged write access and user-level read access through this SPR. Writes to the register array 
are used to configure the IMC, and reads return information about the availability of registers within the 
facility. See Instruction Match CAM (IMC) Register on page 323 for additional details on the IMC register.

Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Address BE TE

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:61 Address Word address to be compared

62 BE Breakpoint enabled. An address match causes a trigger to the debug logic.

63 TE Translation enabled. An IABR match is signaled if this bit matches MSR[IR].



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 63 of 415

2.1.2.6 Performance Monitor Registers (MMCR0, MMCR1, MMCRA, PMC1-8)

The Performance Monitor Counter Registers (PMC1-PMC8) and the Performance Monitor Control Registers 
(MMCR0, MMCR1, MMCRA) are supported in the 970MP microprocessor.

The Performance Monitor Control Registers, MMCR0, MMCR1, and MMCRA, are used with the MSR and 
other SPRs to set up the performance monitor enable states, interrupt conditions, threshold values, match 
criteria, and selection of the events counted in each of the Performance Monitor Counter Registers, 
PMC1-PMC8. 

The MMCRx Register bit assignments are shown in Section 10.4.1 on page 211; Section 10.4.2 on page 214; 
and Section 10.4.3 on page 217. All of the MMCRx and PMCx Registers flush to zero unless otherwise noted 
in the MMCRx and PMCx tables. 

The MSR bits that relate to performance monitor functions are shown in Section 4.3.3 on page 106. The 
value of the SRR1 Registers when a performance monitor interrupt is taken is shown in Chapter 10 970MP 
Performance Monitor. 

Performance Monitor Counter Registers (PMC1-8)

C
T

R
_N

E
G

CTRDATA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 CTR_NEG Counter negative bit

1:31 CTRDATA Count data



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 64 of 415

Version 2.3
March 7, 2008

2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers (SIAR, SDAR)

The Sampled Instruction Address Register (SIAR) and the Sampled Data Address Register (SDAR) are 
supported in the 970MP microprocessor. The SIAR is used to save the effective address of a sampled 
instruction and the SDAR is used the effective address of a storage operand for a sampled instruction, when 
the processor is in either trace-marking mode or performance-marking mode. The terms ‘sampled’ and 
‘marked’ are used interchangeably in this document.

Sampled Instruction Address Register (SIAR) 

Sampled Data Address Register (SDAR) 

2.1.2.8 Scan Communication Registers (SCOMC and SCOMD)

Each 970MP processing unit includes a pair of registers to aid in communicating with the Scan Communica-
tions facility (SCOM). The SCOMC Register is a control register that includes a command field, a destination 
field, and a set of status bits. The SCOMD Register is an associated data register that acts as either a source 
of data or as a destination for data depending on the command placed into the SCOMC Register. 

The SCOM facility contains an arbiter, which serializes use of the facility among the bus masters (processor 
cores and core service processor). However, there are very specific programming conventions associated 
with the use of this facility. See Chapter 12 SCOM Interface and Registers on 295 for a detailed description of 
the SCOM facility.

samp_iaddr

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

samp_iaddr

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 samp_iaddr Sampled Instruction Address

samp_daddr

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

samp_daddr

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 samp_daddr Sampled Data Address



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 65 of 415

2.1.2.9 Hypervisor Decrementer Interrupt Register (HDEC)

The Hypervisor Decrementer Interrupt Register (HDEC) is a 32-bit decrementing counter that provides a 
mechanism for causing a hypervisor decrementer interrupt after a programmable delay.

The HDEC is driven by the same frequency as the Time Base Register, and in the same manner as the 
Decrementer Register. The Hypervisor Decrementer Register counts down, causing an interrupt and is imple-
mented in SPR 310.

2.1.2.10 Hypervisor Save/Restore Register (HSRR0, HSRR1)

The Hypervisor Machine Status Save/Restore Register 0 (HSRR0) is located in SPR 314 and HSRR1 is 
located in SPR 315. When a hypervisor decrementer interrupt occurs, the state of the machine is saved in the 
Hypervisor Machine Status Save/Restore Registers (HSRR0 and HSRR1). The effective address is stored in 
HSRR0 and the MSR in HSRR1. The contents of these registers is used to restore machine state when a 
hrfid instruction is executed.

2.1.2.11 Hypervisor SPRGs (HSPRG0, HSPRG1)

HSPRG0 and HSPRG1 are 64-bit registers provided for use by hypervisor programs. HSPRG0 is located at 
SPR 304 and HSPRG1 is located at SPR 305.

Note:  Neither the contents of the HSPRGs, nor accessing them using mtspr or mfspr, has a side effect on 
the operation of the processor. One of more of the registers is likely to be needed by hypervisor interrupt han-
dler programs (for example, as scratch registers, pointers, or both to processor save areas).

2.1.2.12 Trigger Registers (TRIG0, TRIG1, TRIG2) 

Writes to the Trigger Registers, named TRIG0, TRIG1, and TRIG2, can be inserted in the instruction stream 
to cause triggers to the on-chip debug logic of the trace array. These are intended to be used for lab debug 
and bring-up only and architecturally behave as a no-op. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 66 of 415

Version 2.3
March 7, 2008

2.1.2.13 Hardware Interrupt Offset Register (HIOR)

The Hardware Interrupt Offset Register (HIOR) should be scanned (the HIOR is on the mode ring) to the 
system’s starting address during initialization. Subsequently, the HIOR should be set to zero. 

The physical address of the interrupt vector is found using HIOR[22:43] combined with the 20-bit vector offset 
for the particular exception.

Reserved offset

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

offset Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:21 — Reserved

22:43 offset Offset

44:63 — Reserved



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 67 of 415

2.2 Instruction Set Summary

This section describes instructions and addressing modes defined for the 970MP microprocessor. These 
instructions are divided into the following execution unit categories: 

• Fixed-Point Processor
• Floating-Point Processor
• Vector Processor
• Load-and-Store Processor
• Branch and Flow Control 
• Storage Control 
• Memory Synchronization

Fixed-point instructions operate on byte, half-word, word, and double-word operands. Floating-point instruc-
tions operate on single-precision and double-precision floating-point operands. The PowerPC Architecture 
uses instructions that are 4 bytes long and word-aligned. It provides for byte, half-word, word, and 
double-word operand loads and stores between memory and a set of 32 General-Purpose Registers (GPRs). 
It provides for word and double-word operand loads and stores between memory and a set of 32 
Floating-Point Registers (FPRs). The VPU extension to the PowerPC Architecture provides for quadword 
operand loads and stores between memory and a set of 32 Vector Registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in 
a computation and then modify the same or another memory location, the memory contents must be loaded 
into a register, modified, and then written to the target location using load-and-store instructions. 

2.2.1 Classes of Instructions

The 970MP microprocessor instructions belong to one of the following three classes:

• Defined
• Illegal
• Reserved 

Note:  While the definitions of these terms are consistent among the PowerPC processors, the assignment of 
these classifications is not.

The class is determined by examining the primary opcode and the extended opcode, if any. If the opcode or 
the combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruc-
tion, then the instruction is illegal. Instruction encodings that are now illegal might become assigned to 
instructions in the architecture or might be reserved by being assigned to processor-specific instructions. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 68 of 415

Version 2.3
March 7, 2008

2.2.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in the reserved fields, the results of execution can be said 
to be boundedly undefined. If a user-level program executes the incorrectly coded instruction, the resulting 
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and the 
level of privilege exercised by the program in relation to memory access and other system resources cannot 
be exceeded. Boundedly-undefined results for a given instruction can vary between implementations, and 
between execution attempts in the same implementation.

2.2.1.2 Defined Instructions

The 970MP microprocessor provides support for the following optional instructions:

The 970MP microprocessor does not provide support for the following optional or obsolete instructions (or 
instruction forms). Attempted use of these will result in an illegal instruction type of program interrupt. 

fsqrt Floating-Point Square Root

fsqrts Floating-Point Square Root Single

fres Floating-Point Reciprocal Estimate Single

frsqrte Floating-Point Reciprocal Square Root Estimate A-Form

fsel Floating-Point Select

mfsr Move from Segment Register

mfsrin Move from Segment Register Indirect

mtmsr Move to Machine State Register (32-bit)

mtsr Move to Segment Register

mtsrin Move to Segment Register Indirect

slbie SLB Invalidate Entry

slbia SLB Invalidate All

tlbie TLB Invalidate Entry

tlbsync TLB Synchronize

bccbr Branch Conditional to CBR (obsolete)

dcba Data Cache Block Allocate (obsolete)

dcbi Data Cache Block Invalidate (obsolete)

eciwx External Control In Word Indexed

ecowx External Control Out Word Indexed

mcrxr Move to Condition Register from XER Register (obsolete)

mtsrd Move to Segment Register Double Word (obsolete)

mtsrdin Move to Segment Register Double Word Indirect (obsolete)

rfi Return from Interrupt (obsolete)

tlbia TLB Invalidate All

tlbiex TLB Invalidate Entry by Index (obsolete)

slbiex SLB Invalidate Entry by Index (obsolete)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 69 of 415

2.2.1.3 Illegal Instructions

Illegal instructions can be grouped into the following categories:

• Instructions not defined in the PowerPC Architecture. The following primary opcodes are defined as ille-
gal, but might be used in future extensions to the architecture: 1, 5, 6, 56, 57, 60, 61.

Note:  Primary opcode 4 is used in the 970MP microprocessor to implement the vector extensions that 
are described in Chapter 10 970MP Performance Monitor.

• Instructions defined in the PowerPC Architecture but not implemented in a specific PowerPC implementa-
tion. For example, the following primary opcodes that are legal on 64-bit PowerPC processors are consid-
ered illegal by 32-bit processors: 30, 62. 

Note:  On the 970MP microprocessor, these instructions are executed in 32-bit mode. 

• All unused extended opcodes for instructions. Notice that extended opcodes for instructions defined only 
for 64-bit implementations are illegal in 32-bit implementations. The following primary opcodes have 
unused extended opcodes: 19, 30, 31, 56, 57, 59, 60, 61, 62, 63. (Primary opcodes 30 and 62 are illegal 
for 32-bit implementations, but as 64-bit opcodes they have some unused extended opcodes.)

• An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases the 
probability that an attempt to execute data or uninitialized memory invokes the system illegal instruction 
error handler (a program exception).

See Section 4.5.9 Program Exception on page 114 for additional information about illegal and invalid instruc-
tion exceptions. Except for an instruction consisting of binary zeros, illegal instructions are available for addi-
tions to the PowerPC Architecture.

2.2.1.4 Reserved Instructions

The PowerPC Architecture breaks the reserved instruction class down into several categories. The 970MP 
microprocessor behaves as described below for each category of reserved instructions: 

• Primary opcode equals zero. The 970MP processing unit will take an illegal instruction type of program 
interrupt for all cases except the Support Processor Attention (attn) instruction when HID0[31] is set to 
‘1’.

• Power Architecture® instructions not in the PowerPC Architecture. The 970MP processing unit will take 
an illegal instruction type of program interrupt.

• Implementation-specific instructions used to conform to the architecture. No action taken.

• Other instructions. The 970MP processing unit supports the implementation-specific instruction, tlbiel 
(the processor local form of the TLB Invalidate entry used for managing TLB parity errors).

In addition, several implementation-specific registers are available for access through the mtspr and mfspr 
instructions. These are described in Section 2.1.2.1 Move To and Move From System Register Instructions 
on page 50.

2.2.2 Instruction Set Overview

The following sections provide a brief overview of the PowerPC instructions implemented in the 970MP 
microprocessor and highlight how a 970MP microprocessor implements a particular instruction. Note that the 
categories used in this section correspond to those used in “Addressing Modes and Instruction Set Summary” 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 70 of 415

Version 2.3
March 7, 2008

in the PowerPC Microprocessor Family: The Programming Environments manual. These categorizations are 
somewhat arbitrary and are provided for the convenience of the programmer. They do not necessarily reflect 
the PowerPC Architecture specification.

Note:  Some instructions have the following optional features:

• CR Update. The dot (.) suffix on the mnemonic enables the update of the CR.
• Overflow option. The o suffix indicates that the overflow bit in the XER is enabled.

2.2.3 Fixed-Point Processor

2.2.3.1 Fixed-Point Arithmetic and Compare Instructions

The architecture states that instructions that have the overflow exception (OE) bit set, or instructions that can 
set the carry (CA) bit, might execute more slowly than instructions that do not. In the 970MP microprocessor, 
the summary overflow (SO) bit in the XER is not renamed. For instructions with the OE set, it is initially 
assumed that no overflow will occur and that the SO bit does not need to be changed. If the instruction does 
cause an overflow and the SO bit was not set before the instruction executed (and therefore needs to be set), 
the machine will flush this instruction and those beyond this instruction, set the non-renamed SO bit, and then 
refetch and re-execute the instructions that follow. In general, if no overflow occurs or the SO bit has already 
been set, this strategy will not have an adverse effect on performance. 

Alternatively most instructions that set and use the CA bit do not have any particular performance consider-
ations. This field of the XER is renamed, and many of the common dependence hazards are minimized. 

2.2.3.2 Fixed-Point Logical, Rotate, and Shift Instructions

The architecture defines the preferred no-op to be OR Immediate (ori) 0,0,0. In the 970MP microprocessor, 
this no-op form is recognized by the hardware and allowed to complete without taking any execution 
resources. This makes the instruction valuable for padding other instructions to achieve better alignment or 
better separation. 

2.2.3.3 Move to and Move from System Register Instructions

The mtspr instruction provide access to system registers using a GPR as the source register. The mfspr 
instruction provides access to the system registers using a GPR as the destination register. Table 2-3 Imple-
mentation-Specific SPRs on page 51 lists the SPR numbers for both user-level and supervisor-level access 
to 970MP-specific registers.

2.2.3.4 Move to and Move from Machine State Register

The 970MP microprocessor supports both the 32-bit mtmsr instruction and the 64-bit mtmsrd instruction. 
The 970MP microprocessor works to optimize the mtmsr instruction to help speed up cases where little or no 
synchronization is required (that is, updates to the MSR[EE] bit).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 71 of 415

2.2.3.5 Fixed-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a fixed-point instruction or an instance of a fixed-point instruction 
for which the architecture specifies that some results are undefined are described below for the cases in 
which executing an instruction does not cause an exception. Only results that differ from those specified by 
the architecture are described in the following list.

• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved 
bits are ‘1’ is the same as if the bits were ‘0’.

• Divide Word (divw), Divide Word Overflow (divwo), Divide Word Unsigned (divwu), and Divide 
Word Unsigned Overflow (divwuo) Instructions
Bits 0:31 of the rD1 are set to x‘0000 0000’.

• Multiply High Word (mulhw) and Multiply High Word Unsigned (mulhwu) Instructions
rD bits 0:31 contain the same result as rD[32:63].

• Divide Instructions (divide by zero)
If the divisor is zero, rD is set to zero. If, in addition, the record bit (RC) in the vector instruction field 
equals ‘1’, CR0 is set to ‘0010’.

• Move To and Move From Special Purpose Register Instructions
Table 2-4 on page 53 describes the results of specifying an SPR value that is not defined for 
the implementation. 

• Move From Time-Base Instruction 
The mftb instruction is treated as an alias for the mfspr instruction; the results are the same as for exe-
cuting an mfspr instruction.

• Move From Condition Register Instruction (bit 11 is set to ‘1’)
One CR field is copied into the associated bits of the rD, and the remaining bits of the rD are set to zeros.

• Move From Condition Register Instruction (bit 11 is set to ‘1’, and multiple bits of the FXM2 field are 
set to ‘1’)
The source is CR(n), where n is the CR field specified by the bit in the FXM that is set and has the small-
est index value. If no bit in FXM is set to ‘1’, the results will be the same as if the FXM was set to 
‘00000001’.

• Move To Condition Register Fields Instruction (bit 11 is set to ‘1’, and multiple bits of the FXM field are 
set to ‘1’)
CR(n) is updated where n is the CR field specified by the bit in FXM that is set and has the smallest index 
value. If no bit in the FXM is set to ‘1’, executing the instruction does not modify the CR.

1. Field used to specify a General Purpose Register (GPR) to be used as a target.
2. Field mask used to identify the CR fields to be updated by the mtcrf instructions.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 72 of 415

Version 2.3
March 7, 2008

2.2.4 Floating-Point Processor

Each 970MP processing unit contains two double-precision floating-point units. Each of these units is opti-
mized for fully pipelined double-precision multiply-add functionality. In addition, each unit is capable of 
performing floating-point divide and square root instructions. For more information about the performance of 
floating-point operations.

The optional floating-point instructions (fsqrt, fsqrts, fres, frsqrte, and fsel) defined in the PowerPC Micro-
processor Family: The Programming Environments manual are implemented. 

Note:  The 970MP microprocessor does not support the non-IEEE mode that was defined in earlier versions 
of the architecture.

2.2.4.1 Floating-Point Arithmetic Instructions

The architecture requires operands for single-precision floating-point arithmetic instructions to be represent-
able in single-precision format. If they are not, then the results of the single-precision arithmetic instructions 
are undefined. For the single-precision divide and square-root instructions, fdivs and fsqrts, single-precision 
algorithms are executed on the double-precision data with the final results rounded to single-precision. 

2.2.4.2 Floating-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a floating-point instruction or an instance of a floating-point instruc-
tion for which the architecture specifies that some results are undefined are described below for the cases in 
which executing an instruction does not cause an exception. Only results that differ from those specified by 
the architecture are described. 

• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved 
bits are ‘1’ is the same as if the bits were ‘0’.

• Floating-Point Convert to Integer Word Instructions: fctiw or fctiwz 
The Instruction target register (frD[0:31]) is set to x‘FFF8 0000’. 

• Floating-Point Convert to Fixed-Point Instructions (fctiw, fctiwz, fctid, and fctidz) 
The contents of FPSCR(FPRF) are set to ‘00000’.

• Move from FPSCR Instruction
frD[0:31] is set to x‘FFF8 0000’.

2.2.5 Vector Processor

Each 970MP processing unit contains two vector units: the vector arithmetic logical unit (VALU) and the 
vector permute unit (VPERM). The vector instructions and their implementation are described in Chapter 13 
Vector Processing Unit. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 73 of 415

2.2.6 Load Store Processor 

2.2.6.1 Floating-Point Load-and-Store Instructions

Most forms of unaligned floating-point storage accesses are executed entirely in hardware (see 
Section 3.3.2.1 Storage Access Alignment Support on page 85).

2.2.6.2 Fixed-Point Load Instructions

Most forms of unaligned load operations are executed entirely in hardware. If a basic load operation crosses 
a page boundary, and either page translation signals an exception condition, then when the interrupt occurs it 
will appear as though none of the load instructions have executed. This is not always the case for load 
multiple or load string instructions. For more information, see Section 2.2.6.4 Fixed-Point Load-and-Store 
Multiple Instructions and Section 2.2.6.5 Fixed-Point Load-and-Store String Instructions on page 74.

The Load Algebraic, Load with Byte Reversal, and Load with Update instructions might have greater latency 
than other load instructions. These instructions are implemented as a sequence of internal operations. Due to 
the dynamic scheduling and out-of-order execution capability of the processor, these effects are somewhat 
minimized. It should also be noted that, although these instructions are broken up in this manner, the effects 
are never visible from a programming model perspective. For more information about the performance of 
these instructions.

Any load from storage marked cache-inhibited that is not aligned will cause an alignment interrupt.

2.2.6.3 Fixed-Point Store Instructions

Most forms of unaligned store operations are executed entirely in hardware. If a store operation crosses a 
page boundary, and the second page translation signals an exception condition, then after the interrupt is 
taken it will appear as though none of the storage updates have occurred to either page. (This is not always 
the case for store multiple or store string instructions. See Section 2.2.6.4 Fixed-Point Load-and-Store 
Multiple Instructions and Section 2.2.6.5 Fixed-Point Load-and-Store String Instructions on page 74 for more 
information.)

Any store to storage marked cache-inhibited that is not aligned will cause an alignment interrupt.

2.2.6.4 Fixed-Point Load-and-Store Multiple Instructions

The Load Multiple Word (lmw) instruction is executed so that up to two registers are loaded each cycle. Simi-
larly, the Store Multiple Word (stmw) instruction is executed so that up to two registers are stored each cycle. 
The 32-entry store queue can accept up to two 8-byte stores per cycle; the cache can accept one 8-byte store 
per cycle. Because these instructions are emulated through the use of microcoded templates, after a small 
start-up penalty, they are processed at a rate of up to two registers per cycle.

Most forms of lmw and stmw instructions, even those that cross page and segment boundaries, are 
executed entirely in hardware. These instructions and the individual storage accesses associated with the 
instructions are not atomic. If an stmw crosses a page boundary, and the second page translation signals an 
exception condition, then after the interrupt is taken it will appear as though none, some, or all of the 
accesses to the first page have occurred. It will also appear as though none of the accesses to the second 
page have occurred. However, for an lmw instruction that crosses a page boundary where the second page 
translation signals an exception condition, all of the target registers will have an undefined value.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 74 of 415

Version 2.3
March 7, 2008

An attempt to execute a non-word aligned lmw or stmw will cause an alignment interrupt. An attempt to 
execute an lmw or stmw to storage marked cache-inhibited will also cause an alignment interrupt.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts 
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). In these 
cases, for the load multiple instructions, all of the registers that were to be updated will have an undefined 
value. The instruction must be completely restarted to achieve the full effect (that is, no partial restart capa-
bility is supported). For the store multiple instructions, some of the storage locations referred to by the instruc-
tion might have been updated. However, to guarantee full completion of the store multiple instructions, they 
must also be completely restarted.

2.2.6.5 Fixed-Point Load-and-Store String Instructions

The Load String Word (lsw) instruction is executed so that up to two registers are loaded each cycle. Simi-
larly, the Store String Word (stsw) instruction is executed so that up to two registers are stored each cycle. 
The 32-entry store queue can accept up to two 8-byte stores per cycle; the cache itself can only accept one 
8-byte store per cycle.

Because the immediate forms of these instructions are implemented using microcoded templates they incur a 
small start-up penalty. The X-form of the instructions contains a dependency on bits in the fixed-point XER 
Register. Therefore, depending on when the last update to these bits occurred, the instruction might be 
subject to a more expensive runtime flush and emulate sequence. For more information about the perfor-
mance of these instructions.

Most Load String and Store String instructions that cross page or segment boundaries are executed entirely 
in hardware. If a Store String crosses a page boundary, and the second page translation signals an exception 
condition, then after the interrupt is taken it will appear as though none, some, or all of the accesses to the 
first page have completed. It will also appear as though none of the accesses to the second page have 
occurred. However, for Load String instructions that cross a page boundary where the second page transla-
tion signals an exception condition, all of the target registers will have an undefined value.

If the storage operand of a Load String Word Immediate (lswi) instruction is word aligned, then the accesses 
are performed in an optimal manner. If the operands are so aligned, the accesses are performed in an 
optimal manner if the operand resides entirely within a 64-byte block that is resident in the L1 D-cache or 
resides entirely within a 32-byte block. Although other unaligned string operations are supported in hardware, 
they might cause machine flushes and require long sequences of microcode. As a result, these types of 
unaligned string instructions can have significantly longer latencies.

An attempt to execute an lswi, Load String Word Indexed (lswx), Store Sting Word Immediate (stswi), or 
Store String Word Indexed (stswx) instruction to storage marked cache-inhibited will cause an alignment 
interrupt.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts 
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). In these 
cases, for the Load String instructions, all of the registers that were to be updated will have an undefined 
value. The instruction must be completely restarted to achieve the full effect (that is, no partial restart capa-
bility is supported). For the store string instructions, some of the storage locations referred to by the instruc-
tion might have been updated.

The architecture describes some preferred forms for the use of load-and-store string instructions. In the 
970MP microprocessor, these preferred forms have no effect on the performance of the instructions.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 75 of 415

2.2.6.6 Load/Store Invalid Forms and Undefined Conditions

The results of executing an invalid form of a load/store instruction for which the architecture specifies that 
some results are undefined are described below for the cases in which executing an instruction does not 
cause an exception. Only results that differ from those specified by the architecture are described. 

• Load with Update Instructions (rA1 is set to ‘0’)
The storage operand addressed by the EA is placed into rD. The sum of that storage operand and rB is 
placed in rA. 

• Load with Update Instructions (rA equals rD)
The EA is placed into the rD. The storage operand addressed by the EA is accessed, but the data 
returned by the load is discarded.

• Load Multiple Instructions (rA is in the range of registers to be loaded)
If an exception (for example, a data storage or external exception) causes the execution of the instruction 
to be interrupted, the instruction is restarted, the rA has been altered by the previous partial execution of 
the instruction, and the rA does not equal ‘0’, the new contents of the rA are used to compute the EA.

• Load Multiple Instructions (causing a misaligned access)
For a Load Multiple Word instruction, if the storage operand specified by the EA is not a multiple of four, 
an alignment exception is taken. For a Load Multiple Double Word instruction, if the storage operand 
specified by the EA is not a multiple of eight, an alignment exception is taken. 

• Load String Instructions (zero length string)
The rD is not altered.

• Load String Instructions (rA, or rB2, or both are in the range of registers to be loaded)
If rA, or rB, or both are in the range of registers to be loaded, the results are as follows: 

Indexed Form: If rA is set to ‘0’, let Rx be rB; otherwise let Rx be the register specified by the smaller of 
the two values in instruction fields rA and rB. If the rD equals Rx, no registers are loaded. Otherwise, reg-
isters rD through RX-1 are loaded as specified in the architecture (that is, only part of the storage oper-
and is loaded). 

Immediate Form: If rA is set to ‘0’, the instruction is executed as if it were a valid form. If rA equals rD, no 
registers are loaded; otherwise, registers rD through rA-1 are loaded as if the instruction was a valid form 
but specifying a shorter operand length.

• Store with Update Instructions (rA is set to ‘0’)
EA is placed into R0.

• Load or Store Floating-Point with Update Instructions (rA is set to ‘0’)
EA is placed into R0.

• Floating-Point Store Single Instructions (exponent less than 874 and FRS[09:31] not equal to ‘0’)
The value placed in storage is a ‘0’ with the same sign as the value in the register.

1. Field used to specify a GPR to be used as a source or as a target.
2. Field used to specify a GPR to be used as a source.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 76 of 415

Version 2.3
March 7, 2008

2.2.7 Branch Processor 

2.2.7.1 Branch Processor Instructions 

Support Processor Attention Instruction

The 970MP microprocessor supports a special, implementation-dependent instruction for signalling an atten-
tion to the support processor.

The immediate field (I) has no effect on the operation of this instruction in the 970MP microprocessor. If the 
support processor attention enable bit is set (HID0[31] = ‘1’), this instruction will cause all preceding instruc-
tions to run to completion, the machine to quiesce, and the assertion of the support processor attention 
signal. If the support processor attention enable is not set (HID0[31] = ‘0’), this instruction will cause an illegal 
instruction type of program interrupt.

2.2.7.2 Branch Processor Instructions with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which 
the architecture specifies that some results are undefined are described below. Only results that differ from 
those specified by the architecture are described.

• Instructions with Reserved Fields
Bits in reserved fields are ignored. The results of executing an instruction in which one or more of these 
bits is ‘1’ is the same as if the bits were ‘0’.

• bcctr and bcctrl Instructions
If branch-options (BO)[2] is set to ‘0’, the contents of the CTR before any update are used as the target 
address and to test the contents of the CTR to resolve the branch. The contents of the CTR are then dec-
remented and written back to the CTR.

• System Call (sc) Instructions (opcode 17)
Bits 30:31 Description
‘00’ sc instruction
‘01’ illegal instruction exception
‘10’ sc instruction
‘11’ sc instruction

Figure 2-2. Processor Attention Instruction 

attn

 00
0

I
6

256
21

/
31



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 77 of 415

2.2.7.3 Move To Condition Register Fields Instruction

The architecture warns that updating a subset of the CR fields on a Move to Condition Register Fields (mtcrf) 
instruction can have worse performance than updating all of the fields. In the 970MP microprocessor, both 
the mtcrf instruction and the Move from Condition Register (mfcr) instruction are emulated through the 
microcode templates. For best performance, software should use the new, single-field variants of these 
instructions as described in the architecture. For more information about the performance of these instruc-
tions.

The 970MP microprocessor supports the optional architecture extension that defines slight variations to the 
mtcrf and mfcr instructions to indicate that the movement of a single field of the Condition Register is 
preferred. Because the performance of these instructions is better than their multiple field counterparts, use 
of these instructions is encouraged.

2.2.8 Storage Control Instructions

2.2.8.1 Key Aspects of Storage Control Instructions

In each 970MP processing unit, all cache control instructions operate on aligned 128-byte sections of 
storage. Table 2-5 summarizes many of the key aspects of the storage control instructions.

Table 2-5. Storage Control Instructions 

Aspect
Cache Instructions

icbi dcbt dcbtst dcbz dcbst dcbf

Granularity 128 bytes 128 bytes 128 bytes 32 or 128 bytes 128 bytes 128 bytes

Semantic 
checking

Load (DSI on 
storage 
exception)

Load (no-op on 
storage 
exception)

Load (no-op on 
storage 
exception)

Store (DSI on 
storage 
exception)

Load (DSI on 
storage 
exception)

Load (DSI on 
storage 
exception)

“r” bit update Yes Yes Yes Yes Yes Yes

“c” bit update No No No Yes No No

L1 I-cache effect L1 I-cache and 
prefetch buffer None None None None None

L1 D-cache effect None See 
Section 2.2.8.4

See 
Section 2.2.8.4 Invalidate No-op Invalidate

L2 Cache effect None See 
Section 2.2.8.4

See 
Section 2.2.8.4

See 
Section 2.2.8.5

See 
Section 2.2.8.6

See 
Section 2.2.8.7

TLB effect Reload as 
required

Reload as 
required

Reload as 
required

Reload as 
required

Reload as 
required

Reload as 
required

SLB effect Reload as 
required

None (no-op if 
miss)

None (no-op is 
miss)

Reload as 
required

Reload as 
required

Reload as 
required



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 78 of 415

Version 2.3
March 7, 2008

2.2.8.2 Instruction Cache Block Invalidate (icbi)

The instruction cache block size for icbi on the 970MP processing unit is 128 bytes.

Execution of this instruction occurs in multiple phases. First, the effective address is computed and translated 
by the load/store execution pipeline. Next, the resulting real address is passed to the 970MP STS logic which 
broadcasts it onto the system bus. When the 970MP STS snoops this type of command on the system bus, it 
presents the command to the upstream instruction caches. As these invalidates are presented to the instruc-
tion cache, the associated real addresses are checked against all 16 possible locations in the effective-
addressed I-cache that could contain the particular real address. Only entries that actually match the real 
address will be invalidated. In addition, all entries in the instruction prefetch queue will be invalidated (inde-
pendent of the address). As an aid for quickly flushing the entire contents of the I-cache, a special mode bit is 
provided (HID1[9]) that forces each of these 16 entries to be invalidated on an icbi (even if their address does 
not match the invalidate address). For more information about this instruction.

The icbi instruction has no effect on the L2 cache.

To ensure that the storage access caused by an icbi instruction has been performed with respect to the 
processor executing the icbi instruction, an isync instruction must be executed on that processor.

2.2.8.3 Instruction Cache Synchronize (isync)

As a performance optimization, the 970MP microprocessor internally tracks and updates a scoreboard bit for 
instructions that change instruction-cache-oriented context that are required to be synchronized by the isync 
instruction. When the isync instruction is executed, this scoreboard bit is checked to see whether the 
machine must flush and refetch the instructions following the isync. In addition, the isync instruction is often 
used as a load barrier to prevent any subsequent load (or store) instructions from executing before previous 
load instructions have been completed. In these cases, the scoreboard bit will typically not be set, and isync 
can complete without causing a flush.

2.2.8.4 Data Cache Block Touch (dcbt and dcbtst)

The data cache block size for dcbt and dcbtst on the 970MP processing unit is 128 bytes.

These instructions act as a touch for the D-cache hierarchy and the TLB. If data translation is enabled 
(MSR[DR] is set to ‘1’), and an SLB miss results, then the instruction will be treated as a no-op. If a TLB miss 
results, then the instruction will reload the TLB (and set the reference bit). Once past translation, if the page 
protection attributes prohibit access, or the page is marked cache-inhibited, or the page is marked guarded, 
or the processors’ D-cache is disabled (using the bits in the HID4 Register), then the instruction will be 
finished as a no-op and will not reload the cache. Otherwise, the instruction will check the state of the L1 
D-cache, and, if the block is not present, it will then initiate a reload. Note that this might also reload the L2 
cache with the addressed block if it is not already present. If the cache block is already present in the L1 
D-cache, the cache content is not altered. Note that if the dcbt or dcbtst instruction does reload cache 
blocks, it will affect the state of the cache replacement algorithm bits.

The 970MP microprocessor does implement the optional extension to the dcbt instruction that allows soft-
ware to directly engage a data stream prefetch from a particular address. For more information about data 
stream prefetch, see Section 3.5.3 Data Prefetch on page 96. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 79 of 415

2.2.8.5 Data Cache Block Zero (dcbz)

The data cache block size for dcbz on the 970MP processing unit is 128 bytes. Support is also provided for a 
dcbz of 32 bytes in order to accommodate coding that assumes a 32-byte block size. The dcbz actions are 
listed in Table 2-6. 

Note:  The entire instruction cache must be flushed whenever HID5[56] or HID5[57] are changed.

The function of dcbz is performed in the L2 cache. As a result, if the block addressed by the dcbz is present 
in the L1 D-cache, then the block will be invalidated before the operation is sent to the L2 cache logic for 
execution. The L2 cache will gain exclusive access to the block (without actually reading the old data), and 
will perform the zeroing function. For the 32-byte dcbz, the L2 cache might be required to read the line and 
then zero the 32 bytes.

If the cache block specified by the dcbz instruction contains an error, even one that is not correctable with 
error checking and correction (ECC), the contents of all locations within the block are set to zeros in the L2 
cache. If the specified block in the L2 cache does not contain a hard fault, a subsequent load from any loca-
tion within the cache block will return zeros and not cause a machine check interrupt. 

If the block addressed by the dcbz instruction is in a memory region marked cache-inhibited, or if the L1 
D-cache or L2 cache is disabled (using the bits in HID registers), then the instruction will cause an alignment 
interrupt to occur.

Implementation Note: In order to emulate the behavior of the obsolete dcba instruction, a mode bit is 
provided that changes the behavior of dcbz as follows. When the mode bit is set to ‘1’, if the block addressed 
by the dcbz instruction is in a memory region marked cache-inhibited, the instruction is treated as a no-op. 
The dcba instruction was defined such that the referenced and changed bits need not be updated in this 
case. However, the 970MP microprocessor will update these bits. 

2.2.8.6 Data Cache Block Store (dcbst)

The data cache block size for dcbst on the 970MP processing unit is 128 bytes.

The dcbst instruction forces all preceding stores to the referenced block to become committed to the cache 
hierarchy, and then forces a clean operation in the L2 cache.

The dcbst instruction has no direct effect on the L1 D-cache (because it is store-through, it never contains 
modified data). The L2 cache updates and processor interconnect bus operations are performed as shown in 
Table 3-5 970MP L2 Cache State Transitions Due to Processor Instructions on page 93 and Table 3-6 
970MP L2 Cache State Transitions Due to Bus Operations on page 94.

Table 2-6. dcbz Actions 

HID5[57] HID5[56] dcbz Instruction Bit 10 Action

1 X 0 Illegal instruction

X X 1 Cache block (128 bytes) zeroed

0 0 0 Cache block (128 bytes) zeroed

0 1 0 32-byte block zeroed



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 80 of 415

Version 2.3
March 7, 2008

2.2.8.7 Data Cache Block Flush (dcbf)

The data cache block size for dcbf on the 970MP processing unit is 128 bytes.

The dcbf instruction forces all preceding stores to the referenced block to become committed to the cache 
hierarchy. It then acts like an invalidate to the L1 D-cache (because it is store-through, it never contains modi-
fied data). The L2 cache updates and processor interconnect bus operations are performed as shown in 
Table 3-5 970MP L2 Cache State Transitions Due to Processor Instructions on page 93 and Table 3-6 
970MP L2 Cache State Transitions Due to Bus Operations on page 94.

2.2.8.8 Load and Reserve and Store Conditional Instructions (lwarx/ldarx, stwcx/stdcx)

The reservation granularity for the 970MP processing unit is 128 bytes. The lwarx and ldarx instructions are 
sometimes executed speculatively. 

An attempt to execute a non-word aligned lwarx or stwcx, or a non-double-word aligned ldarx or stdcx will 
cause an alignment interrupt. An attempt to execute an lwarx, ldarx, stwcx, or stdcx instruction to storage 
marked cache-inhibited will cause a data storage interrupt.

2.2.9 Memory Synchronization Instructions 

The 970MP design achieves high performance by exploiting speculative out-of-order instruction execution. 
The sync instruction, as defined in the architecture, acts as a serious barrier to this type of aggressive execu-
tion and therefore can have a dramatic effect on performance. Although the 970MP microprocessor has opti-
mized the performance of sync to some degree, care should be exercised in the use of this instruction. As a 
performance consideration, software should attempt to use the lightweight version of sync (lwsync) when-
ever possible.

The 970MP microprocessor also supports the architected Page Table Entry Synchronization (ptesync) 
instruction for use in synchronizing page table updates. The 970MP microprocessor implements the Enforce 
In-Order Execution of I/O (eieio) instruction as described in the PowerPC Virtual Environment Architecture 
(Book II).

In the 970MP storage subsystem logic, the store queues above the L2 cache attempt to gather both cache-
able and cache-inhibited store operations sequentially to improve bandwidth. A mode bit exists in the BIU 
Mode Register (at SCOM address x‘043000’) to disable store gathering of cache-inhibited stores.  Alterna-
tively, if store gathering is not wanted, software must insert between successive stores either an eieio (prefer-
able for performance) or a sync to prevent it. The eieio instruction is broadcast onto the system bus to allow 
ordering to be properly enforced throughout the cache hierarchy and memory system (when detected on the 
system bus, these transactions have no direct effect on the processor).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Programming Model
Page 81 of 415

2.2.10 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some frequently used 
operations (such as no-op, load immediate, load address, move register, and complement register). 
Programs written to be portable across the various assemblers for the PowerPC Architecture should not 
assume the existence of mnemonics not described in this document. 

For a complete list of simplified mnemonics, see the PowerPC Architecture books. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Programming Model
Page 82 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 83 of 415

3. Storage Subsystem

The storage subsystem (STS) of the 970MP processing unit encompasses the core interface unit (CIU), the 
non-cacheable unit (NCU), the L2 cache control unit and the L2 cache, and the bus interface unit (BIU).

This section provides an overview and a high-level block diagram of the storage subsystem. It summarizes 
key design fundamentals and the storage hierarchy. The functional units are described in detail.

The following key features are fundamental to the design:

• Store-through L1 data cache (D-cache)
• No castouts or snoop pushes by the core
• Non-blocking snoop invalidates to the core (both instruction and data invalidates)
• Integrated L2 controller
• L2 controller handling of cacheable instruction fetches, loads and stores, and dcbz instructions.
• Non-cacheable unit handling of other storage type instructions.

3.1 Storage Hierarchy

Table 3-1. Storage Hierarchy Characteristics 

Characteristic L1 Instruction Cache L1 Data Cache L2 Cache

Data type Instructions only Data only Instructions and data

Size 64 KB 32 KB 1 MB

Associativity 
(replacement policy) Direct map 2-way (least recently used 

[LRU]) 8-way set associate (LRU)

Line size (sector) 128 bytes (4 × 32 bytes) 128 bytes 128 bytes

Operation granularity 128 bytes 128 bytes 128 bytes

Index Effective address Effective address Physical address

Tags Physical address Physical address Physical address

Number of ports 1 read or 1 write 
(directory has 2 reads or 1 write) 2 reads and 1 write 1 read or 1 write 

Inclusiveness N/A N/A
Inclusive of L1 D-cache;
Not inclusive of L1 instruction 
cache (I-cache).

Hardware coherency No Yes Yes;
separate snoop ports

Store policy N/A Store-through;
no allocate on store miss

Store back;
allocate on store miss

Enable bit Yes Yes No

Reliability, availability, service-
ability (RAS)

Parity with invalidate on error for 
data and tags

Parity with invalidate on error for 
data and tags

Error checking and correction 
(ECC) on data; parity on tags 
(recoverable with redundant 
tags)



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 84 of 415

Version 2.3
March 7, 2008

3.2 Caches

The 970MP processing unit contains two levels of cache hierarchy: L1 and L2. The coherence block size for 
the 970MP processing unit is 128 bytes. For more information about cache characteristics of the 970MP 
processor, see Table 3-1 Storage Hierarchy Characteristics on page 83. 

The 970MP processing unit automatically maintains the coherency of all data cached in these caches. 
Because some levels of the cache hierarchy contain both instructions and data, when the L2 cache services 
an instruction cache reload request, it does this in a coherent manner. This avoids the scenario where a line 
is reloaded into the L2 cache on behalf of a non-coherent instruction fetch, but then accessed by a load or 
store instruction with an aliased address that calls for correct coherency. However, the processor does not 
maintain instruction storage consistent with data storage and, as described in PowerPC Architecture, 
synchronization code is required to make the two consistent.

The L1 I-cache is indexed with an effective address. As a result, multiple copies of a particular physical block 
of memory can reside in multiple positions in the L1 I-cache (up to sixteen because four bits of the effective 
address are used in indexing the cache). The tag comparison associated with lookups in this cache is done 
using real addresses, so there are no ‘synonym’ or ‘alias’ hazards that must be explicitly handled by the 
system software. 

The L1 D-cache is indexed with an effective address. Only one copy of a particular real address block is kept 
in the cache at a time. On each access, a tag comparison is done with the real address. On a cache miss, the 
cache reload mechanism searches the other three related sets to determine if the required real address block 
is located elsewhere in the cache. If so it will appropriately eliminate these copies.

In addition to maintaining caches, each 970MP processing unit also includes several types of queues that act 
as logical predecessors and extensions to the caches. In particular, the machine contains store queues for 
holding store data “above the caches,” cast-out queues for holding modified data that has been pushed out of 
the caches (by the replacement algorithm, cache control instructions, and/or snoop requests), and others. 
Hardware keeps all of these queues coherent, and in general neither software nor system hardware should 
be able to observe their presence.

3.2.1 Store Gathering

The 970MP microprocessor performs gathering of cacheable stores in order to reduce the store traffic into the 
L2 cache. The gathering occurs in L2 store queues that sit above the L2 cache. The store queue consists of 
eight, 64-byte wide, fully-associative entries. Stores can be gathered while architecturally permitted (that is, 
there is no intervening barrier operation) and the matching address is valid in the store queue. The conditions 
for pushing the store queue data into the L2 cache are not visible to the programmer.

Gathering of cache-inhibited stores is also supported and can be disabled with a mode bit in the 
Non-Cacheable Unit (NCU) Configuration Register.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 85 of 415

3.3 Storage Model

3.3.1 Atomicity

The 970MP processing unit is fully compliant with the architectural requirement for single-copy atomicity on 
naturally aligned storage accesses. 

3.3.2 Storage Access Ordering

The architecture defines a weakly ordered storage model for most types of storage access scenarios. For 
these cases, the 970MP microprocessor takes advantage of this relaxed requirement to achieve better 
performance through out-of-order instruction execution and out-of-order bus transactions. As a result, if 
strongly ordered storage accesses are required, software must use the appropriate synchronizing instruction 
(Synchronize [sync], Page Table Entry Synchronize [ptesyn], Enforce In-Order Execution of I/O [eieio], or 
Lightweight Synchronize [lwsync]) to enforce order explicitly, or perform these accesses to regions marked 
with attributes that require the hardware to enforce strong ordering (that is, stores to storage marked cache-
inhibited and guarded must occur in-order).

The 970MP processing unit performs load operations out-of-order internally to the processor; however, it also 
keeps track of these loads in a way that lets it know when an external request for exclusivity might lead to the 
appearance of non-sequential execution. For these cases, the 970MP processing unit can flush potentially 
bad results, and re-execute the code starting from the suspect load instruction.

3.3.2.1 Storage Access Alignment Support 

Most storage accesses are performed without software intervention (that is, without an alignment interrupt). 
The relative performance of these accesses depends to some degree on their alignment. In many cases, 
unaligned storage accesses are handled with a performance equivalent to aligned accesses. However, in 
some cases the 970MP processing unit is forced to break unaligned accesses into multiple internal opera-
tions. Further, because effective-address alignment for storage references cannot be determined until execu-
tion time, and dataflow-oriented execution pipelines of the 970MP microprocessor do not support iteration, 
some unaligned storage accesses actually cause a pipeline flush to allow a microcoded emulation of the 
instruction.

The following list summarizes the cases in which the 970MP processing unit will engage a microcoded 
emulation of unaligned storage references:

• Any fixed-point load operation that crosses a 64-byte boundary (note 1)

• Any fixed-point load operation that misses in the L1 D-cache and crosses a 32-byte boundary (note 1)

• Any fixed-point store operation that crosses a 4 KB boundary (note 2)

• Any floating-point load double operation that is word aligned and crosses a 64-byte boundary (note 1)

• Any floating-point load double operation that is word aligned, misses in the L1 D-cache, and crosses a 
32-byte boundary (note 1)

• Any floating-point store operation that is word aligned and crosses a 4 KB boundary (note 1)

Notes:  

1. If the instruction is not a multiple or string instruction, the access crosses a page boundary, and the 
access to either page causes an exception, appearing as though the load instruction has not been exe-
cuted (that is, neither the frD1 or rD2 is modified).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 86 of 415

Version 2.3
March 7, 2008

2. If the access to the first page causes an exception, storage is not modified. Otherwise, storage in the first 
page is updated even if the access to the second page causes an exception.

As an aid for software identification of these cases, the 970MP microprocessor supports a debug-only mode, 
controlled by bit 24 in Hardware Implementation Dependent Register 4 (HID4[24]), that will force an align-
ment interrupt in these scenarios. See Section 4.5.8 Alignment Exception on page 114 for a summary of 
cases in which the 970MP processing unit will take an alignment interrupt.

3.3.3 Atomic Updates and Reservations

The coherency granule size in the 970MP processing unit is 128 bytes. The following events will affect the 
state of the Reservation Register:

• Execution of a Load Word and Reserve Indexed (lwarx) or Load Doubleword and Reserve Indexed 
(ldarx) instruction (sets new reservation)

• Execution of a Store Word Conditional Indexed (stwcx) or Store Doubleword Conditional Indexed (stdcx) 
instruction (successful or not, address match or not, the reservation is cleared)

• Snooped Read with Intent to Modify (RWITM) bus operation that matches the reservation address (clears 
the reservation)

• Snooped Data Line Claim (DCLAIM) bus operation that matches the reservation address (clears the res-
ervation)

• Snooped Write with FLUSH bus operation that matches the reservation address (clears the reservation)

• Snooped Write with KILL bus operation that matches the reservation address (clears the reservation)

When performing bus snooping, the 970MP processing unit checks the state of the internal caches and the 
state of the Reservation Register to formulate a snoop response. If a particular coherency block is not in any 
of the caches but the address is valid in the Reservation Register, then the processor and STS act as though 
the coherency block is in the shared state for the snoop response (this prevents another processor from 
taking the block as exclusive on a simple READ bus transaction).

1. Field used to specify a Floating-Point Register (FPR) to be used as a target.
2. Field used to specify a General Purpose Register (GPR) to be used as a target.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 87 of 415

3.4 Cache Management

3.4.1 Flushing the L1 I-Cache

To help flush the entire contents of the I-cache efficiently, the 970MP microprocessor implements a special 
mode of operation for the Instruction Cache Block Invalidate (icbi) instruction. This mode can be selected 
using a bit in the HID1 register. In this mode, all directory lookups on behalf of an icbi act as though there was 
a real address match. Therefore, all lines looked at by the icbi will in fact be invalidated. As a result, the entire 
L1 I-cache can be invalidated by issuing a series of icbi instruction that step through each congruence class 
of the I-cache

Note:  Another way to clear the I-cache is to actually fill it with a set of known values by executing a piece of 
code that effectively touches each line of the cache. One way to write this code is to have a series of 512 
branches to branches whose effective addresses are sequentially separated by 128 bytes (the line size of the 
I-cache). Many other possible code sequences can achieve the same effect.

3.4.2 Flushing the L1 D-Cache

The L1 D-cache is a store-through design, so it never holds modified data. As a result, to perform a flush of 
the L1 D-cache, the only instruction required is a sync. The sync instruction forces any pending stores in the 
store queue above the L1 cache to become globally coherent before the sync is allowed to complete.

To completely invalidate the L1 D-cache, use the l1dc_flsh mode bit located in the HID4 to cause a flash 
invalidate of the D-cache. Software needs to set this bit and follow it with a sync instruction.

3.4.3 L2 Cache Disabling and Enabling

The L2 cache cannot be disabled.

3.4.4 L2 Cache Flushing

3.4.4.1 L2 Cache Flush in Direct-Mapped Mode

The BIU Mode Register (at SCOM address x‘043000’) is set to x‘0000 0000 0000 8000’ to enter direct-
mapped mode. In direct-mapped mode, victims are selected based on a simple address decode. Table 3-2 
shows the decode. The three tag address bits used for the mapping are real address bits 42 - 44. 

Table 3-2. Simple Address Decode 

Real Address (Bits 42:44) Selected Victim 

000 A

001 B

010 C

011 D

100 E



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 88 of 415

Version 2.3
March 7, 2008

3.4.5 L2 Cache Flush Algorithm

L2 Address Map

Before the L2 cache of one processing unit is flushed, the other processing unit must be quiesced. For 
example, before flushing the L2 cache of processing unit 1, quiesce processing unit 0. Use an ATTN instruc-
tion or the service processor to quiesce the processing unit that is not being flushed (this step is not required 
if only one of the processing units is functional). Then, load the cache flush routine into the processing unit 
that is being flushed.

The following sequence will flush the entire L2 cache to memory via software:

1. Disable interrupts.

2. Disable data address translation by setting MSR[DR] to ‘0’. 

3. Disable instruction cache (I-cache) prefetch by setting HID1[7:8] to ‘00’.

4. Disable data cache (D-cache) prefetch by setting HID4[25] to ‘1’.

5. Flash invalidate the D-cache by setting HID4[28] to ‘1’.

6. Execute a sync instruction. 

7. Disable the D-cache (set HID4[37:38] to ‘11’). This will guarantee that all loads are visible to the L2.

8. Set the L2 to direct-mapped mode. This can be done by the service processor or through the SCOM con-
trol (SCOMC) and SCOM data (SCOMD) special purpose register (SPR) interface.

9. Execute a sync instruction. 

10. Initialize a register with the starting address of a 4MB cacheable region of memory that is aligned on a 
4-MB boundary (that is, bits 42 - 63 are all zeros).

11. Execute eight load instructions, incrementing the direct map field (bits 42 - 44) of the load address 
between each load (see the L2 Address Map). 

12. Increment the congruence address field (bits 47 - 56) of the load address, and repeat step 11 (see the L2 
Address Map). 

101 F

110 G

111 H

Hold Constant

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Hold Constant
Direct Map 

Bits H
ol

d 
C

on
st

an
t

Congruence Address 128-Byte Cache Line

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Table 3-2. Simple Address Decode 

Real Address (Bits 42:44) Selected Victim 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 89 of 415

13. Repeat step 12 for all 1024 congruence address values.

To power down after performing this sequence, the processor executes an ATTN instruction to enter the 
quiescent state. Once a processing unit has been flushed, it should be fenced if the intent is to power down 
that processing unit. This helps avoid snooping and hang problems. 

To return to normal processing after performing this sequence, set the L2 cache to set-associative mode. 
Enable the D-cache, prefetching, data address translation, and interrupts, as required. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 90 of 415

Version 2.3
March 7, 2008

3.5 Functional Units

Table 3-3 lists the functional units within the storage subsystem, and Figure 3-1 shows how they interact. The 
non-cacheable unit (NCU) handles all communications to and from the core that are not handled by the L2 
cache. The core interface unit (CIU) and L2 cache controller are described in detail in the following sections.

Table 3-3. Storage Subsystem Functional Units 

Unit Mnemonic

Core Interface Unit CIU

L2 Cache Controller L2C

Non-Cacheable Unit NCU

Bus Interface Unit BIU

Figure 3-1. 970MP Storage Subsystem  

Bus Interface Unit (BIU)

Non-Cacheable Unit L2 Cache Controller

Core Interface Unit (CIU)

1MB L2 Cache

970MP Core

(NCU) (L2C)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 91 of 415

3.5.1 Core Interface Unit 

The core interface unit (CIU) is the interface block between the 970MP core and the rest of the storage 
subsystem. It contains the necessary pipeline buffers and queues to maintain the required transfer rates to 
and from the 970MP core. The interface block consists of interfaces to the 970MP core, L2 cache interfaces, 
NCU interfaces, and reload interfaces.

The interfaces to the 970MP core include one instruction fetch unit (IFU) port, two load/store unit (LSU) ports, 
and one data prefetch and translate port. The CIU performs request arbitration, queueing, and flow control. It 
also maintains load/store ordering and provides prefetch support. In addition, the 970MP core interfaces 
include one store interface with the LSU. The CIU performs request queueing and flow control for this inter-
face. It maintains store ordering and supports a 16-byte data path. 

The CIU provides request flow control for the L2 cache interface. It dispatches operations to the L2 cache 
interface based on storage mode and operation type. The CIU also provides request flow control for the NCU 
interface. It dispatches operations to the NCU based on storage mode and operation type. It maintains cache-
inhibited store ordering. 

The reload/invalidate address interfaces include one IFU port, one LSU port, and one translate port. The CIU 
provides support for L1 cache invalidates. It also requests arbitration and flow control. The reload data bus is 
a 32-byte data path running at the CPU speed (1:1).

3.5.2 L2 Cache Controller

As shown in Figure 3-1 on page 90, the L2 cache controller (L2C) resides between the CIU and the BIU and 
also interfaces with the NCU. See Table 3-1 Storage Hierarchy Characteristics on page 83 for additional 
details of the L2 cache features.

L2 Cache Features
• 1MB size, 8-way set associative
• Fully inclusive of the L1 data cache
• Unified L2 cache controller (combines entities such as instructions, data, and PTEs)
• Store-in L2 cache (store-through L1 cache)
• Fully integrated cache, tags, and controller
• Five-state modified/exclusive/recent/shared/invalid (MERSI) coherency protocol

L2 Cache Controller Features
• Runs at core frequency (1:1)
• Handles all cacheable loads/stores (including lwarx/stcwx)
• Critical 32-byte forwarding on data loads
• Critical 32-byte forwarding in instruction fetches
• Six read/claim queues (RCQs)
• Eight 64-byte wide store queues 
• Store gathering supported 
• Non-blocking L1 D-cache invalidates
• Recoverable single-bit directory errors (through redundant directory)

L2 Cache Snooper Features
• Separate directory for all system bus snoops
• Four snoop/intervention/push queues

Figure 3-2 on page 92 shows the data flow of the L2 cache controller, including the data queues. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 92 of 415

Version 2.3
March 7, 2008

Figure 3-2. Data Flow in the 1MB L2 Cache 

Core Interfaces (CIU)

MUX(S)

32 B

DS ID_DATA

4 x 64 B

32 B 32 B

MUX
RC Reload

1 MB

8 x (1 k × 8 × 16 B)

32 B

32 B

MUX(S)

ZEROS

MUX

16 B

16 B

Castout
SNP

32 B

Queues
Queues

32 B

Queues

MUX(S)

Bus Interface (BIU)

INT/CO/PSH_DATA Bus Data

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ABIST

32 B

4 x 64 B

64 B

REG

32 B

(4)
(6)

(6)

16 B



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 93 of 415

3.5.2.1 Cache Coherency 

The cache-coherency protocol used in the L2 cache is standard MERSI as defined in Table 3-4.

3.5.2.2 Cache-Coherency Paradoxes

In the 970MP processing unit, some parts of cache-inhibited operations are handled by a special section of 
logic that does not access the caches as part of its normal operation. As a result, if data associated with 
cache-inhibited operations is present in the caches (causing a cache-coherency paradox), the 970MP 
processing unit will bypass some of the caches. This introduces the possibility of observing stale data (more 
specifically, the 970MP processing unit will read from and write to the L1 D-cache if it hits, but it will bypass 
the L2 cache completely).

3.5.2.3 Cache State Transition Tables

Table 3-5 and Table 3-6 on page 94 show the cache state transitions that occur as a result of processor 
instructions and snooped bus operations. 

Table 3-4. Cache-Coherency Protocol 

Status Bit Name Meaning

M Modified The cache block is modified with respect to the rest of the memory subsystem.

E Exclusive The cache block is not cached in any other cache.

R1 Recent The cache block is shared and this processor is the most recent reader of the cache block.

S Shared The cache block was (and still might be) cached by multiple processors.

I Invalid The cache block is invalid.

1. Implementation Note: The 970MP microprocessor supports a cache-coherency mode in which the R state is not used. R is 
replaced with shared-last (SL). 

Table 3-5. 970MP L2 Cache State Transitions Due to Processor Instructions  (Page 1 of 2)

Number Instruction Storage Mode Coherency State Bus Operation AResp In Comment

1 ld, dcb Ca M, E, S, R

2 larx Ca M, E, S, R

3 ld, dcbt, larx Ca I → S*, E Read Cache Line S, Null Atomic if LARX

4 ld, larx, NonCa Read Noncache Line Atomic if LARX

5 dcbt NonCa No-op

6 st, dcbtst, stcx Ca M → M

7 st, stcx Ca E → M

8 dcbtst Ca E → E

9 st, dcbtst, stcx Ca S, R → M DClaim Atomic if STCX

10 st, dcbtst, stcx Ca I → M RWITM RTY Atomic if STCX

11 st, stcx NonCa Write with Flush Atomic if STCX

12 Deallocate Ca M → I Write with Kill Copyback, W = ‘0’, 
M = ‘0’

Note:  Ca: cacheable; I = ‘0’. NonCa: noncacheable; I = ‘1’. S* means R if enabled. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 94 of 415

Version 2.3
March 7, 2008

13 Deallocate Ca E, S, I → I

14 dcbf Ca M → I Write with Kill W = ‘1’, M = ‘0’

15 dcbf Ca E → I

16 dcbf Ca I, S, R → I Flush Block

17 dcbst Ca M→S, E Write with Clean Cache > E 

18 dcbst Ca E, R, S→ E, R, S → E, R 

19 dcbst Ca I Clean

20 dcbz Ca E, M → M

21 dcbz Ca I, S → M DClaim

22 dcbz-32byte Ca 32 bytes, treated as 
store

23 icbi IKill

Table 3-6. 970MP L2 Cache State Transitions Due to Bus Operations  (Page 1 of 2)

Number Bus Operation Snooper 
State Rsrv State AResp 

Out
AResp 

In Comments

1

Read Burst

N = ‘1’, S = ‘0’ M → S M M Causes C → M → C data-only 
operation (Intervention).2 N = ‘1’, S = ‘1’ M → E M M

3 N = ‘1’. S = ‘0’ E, R → S ShrI ShrI Causes C → C intervention.

4 N = ‘1’, S = ‘1’ E, R → E, R ShrI ShrI Causes C → C intervention.

5

Read Non Burst

N = ‘0’, S = ‘0’ M → S Retry Retry Causes Write with Clean 
(Push).

6 N = ‘0’, S = ‘1’ M → E Retry Retry Causes Write with Clean 
(Push).

7 N = ‘0’, S = ‘0’ E, R → S S S Reader can go to R state.

8 N = ‘0’, S = ‘1’ E, R → E, R S S Reader will go to S state.

9

Any Read

S S S

10 I
R = ‘0’

R = ‘1’ S

11

RWITM

N = ‘1’ M → I M M Causes C → C intervention.

N = ‘1’ E, R → I ShdI ShdI Causes C → C intervention.

12 N = ‘0’ M → I Retry Retry Causes Write with Kill (Push).

13 N = ‘0’ E, R → I Null N says do not intervene.

14 IS → I

15 Write-with-Kill, DKill, DClaim IESM → I

16
Write-with-Flush

M → I Retry Retry Causes Write with Kill (Push).

17 ISE → I

Table 3-5. 970MP L2 Cache State Transitions Due to Processor Instructions  (Page 2 of 2)

Number Instruction Storage Mode Coherency State Bus Operation AResp In Comment

Note:  Ca: cacheable; I = ‘0’. NonCa: noncacheable; I = ‘1’. S* means R if enabled. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 95 of 415

18
Flush

M → I M Causes Write with Kill (Push).

19 ISER → I

20 Clean M → S, E M
Causes Write with Clean. 
M = ‘0’
Cache → E 

21 Clean E, R, S → 
E, R, S S → E, R

22 Clean I → I Null

23 SYNC, TLBSYNC Retry 
Null

Retry until done. Null when 
done.

Table 3-6. 970MP L2 Cache State Transitions Due to Bus Operations  (Page 2 of 2)

Number Bus Operation Snooper 
State Rsrv State AResp 

Out
AResp 

In Comments



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 96 of 415

Version 2.3
March 7, 2008

3.5.3 Data Prefetch

Software can manage the data prefetch hardware by using special forms of the dcbt instruction. Two forms of 
dcbt variants are implemented in each 970MP processing unit. 

3.5.3.1 Optional dcbt Variant

The architecture describes the first dcbt variant as optional. This version of the instruction includes a 2-bit 
Touch Hint (TH) field (instruction bits 9 - 10), which permits a program to provide a hint regarding a sequence 
of data cache blocks. Such a sequence is called a “data stream.” A dcbt instruction in which TH does not 
equal ‘00’ is called a “data stream variant” of dcbt. 

Figure 3-3 shows the instruction format and interpretation of the TH field for this dcbt variant.

Figure 3-3. Data Cache Block Touch X-Form (Optional Variant) 

dcbt      RA,RB,TH

Let the effective address (EA) be the sum (RA | 0) + (RB).

TH Description

00 The program will probably soon load from the block containing the byte addressed by the EA.

01 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by the EA and an unlimited number of sequentially following blocks (that is, con-
sisting of the blocks containing the bytes addressed by EA + n × block_size; where n equals 0, 1, 
2,...).

10 Reserved

11 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by the EA and an unlimited number of sequentially preceding blocks (that is, con-
sisting of the blocks containing the bytes addressed by EA - n × block_size; where n equals 0, 1, 
2,...).

Restrictions

For the data stream variant cases (TH equals ‘01’ or TH equals ‘11’), prefetching the stream starts even if 
the first block of the stream is already in the L1 data cache.

 31
0

///
6

 TH
9

RA
11

RB
16

278
21

/
31



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Storage Subsystem
Page 97 of 415

3.5.3.2 Enhanced dcbt Variant 

An additional variant of the dcbt instruction is implemented in each 970MP processing unit. In this version, 
the TH field is extended to four bits (instruction bits 7 - 10) to provide the additional variant of dcbt. Note that 
the 2-bit optional variant of the software touch is a subset of the 4-bit extended version. 

Figure 3-4 on page 97 provides a brief description of this variant.

Figure 3-4. Data Cache Block Touch X-Form (Enhanced Variant)  (Page 1 of 2)

dcbt      RA,RB,TH

Let the effective address (EA) be the sum (RA | 0) + (RB).

TH Description

0000 The program will probably soon load from the block containing the byte addressed by the EA.

0001 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by the EA and an unlimited number of sequentially following blocks (that is, con-
sisting of the blocks containing the bytes addressed by EA + n × block_size, where n equals 0, 1, 
2,...).

0011 The program will probably soon load from the data stream consisting of the block containing the 
byte addressed by EA and an unlimited number of sequentially preceding blocks (that is, consist-
ing of the blocks containing the bytes addressed by EA - n × block_size, where n equals 0, 1, 2,...).

1000 The dcbt instruction provides a hint that describes certain attributes of a data stream, and option-
ally indicates that the program will probably soon load from the stream. The EA, in this case, is 
interpreted as follows:

 31
0

/
6

TH
7

RA
11

RB
16

278
21

/
31

0 6059 63

EA_TRUNC

585756

D UG ID

Bits Field Name Description

0:56 EA_TRUNC High-order 57 bits of the effective address of the first unit of the data stream. The low-order seven 
bits of that effective address are zero.

57 D
Direction
0 Subsequent units are the sequentially following units.
1 Subsequent units are the sequentially preceding units. 

58 UG

0 No information is provided by the UG field.
1 The number of units in the data stream is unlimited, the program’s need for each block of 

the stream is not likely to be transient, and the program will probably soon load from the 
stream. 

59 — Reserved

60:63 ID Stream ID to use for this data stream.

/



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Storage Subsystem
Page 98 of 415

Version 2.3
March 7, 2008

Figure 3-4. Data Cache Block Touch X-Form (Enhanced Variant)  (Page 2 of 2)

1010 The dcbt instruction provides a hint that describes certain attributes of a data stream, or indi-
cates that the program will probably soon load from data streams that have been described 
using dctb instructions in which TH[0] equals ‘1’, or will probably no longer load from such data 
streams.

The EA is interpreted as follows. If GO equals ‘1’ and S ≠ ‘00’ the hint provided by the instruction 
is undefined; the remainder of this instruction description assumes that this combination is not 
used. A completely described stream is one that has been described with both a ‘1000’ TH val-
ues (specifying starting address and direction of the stream) and a ‘1010’ TH value (specifying 
the length and transience of the stream).

All other TH decodes are reserved. 

Restrictions

The TH equals ‘1000’ version of the dcbt instruction is not recognized when MSR[DR] equals ‘0’. 

 Bits Field Name Description

0:31 — Reserved.

32 GO
0 No information is provided by this field.
1 The program will probably soon load from all completely described streams, and will probably 

no longer load from any partially defined streams. All other fields of the EA are ignored.

33:34 S

00  No information is provided by this field.
01 Reserved
10 The program will probably no longer load from the data stream (if any) associated with the 

specified stream ID. All other fields of the EA except ID are ignored.
11 The program will probably no longer load from the data streams associated with all stream 

IDs. All other fields of the EA are ignored.

35:46 — Reserved.

47:56 Unit_cnt Number of (aligned 128 B) units in the data stream.

57 T
0 No information is provided by this field.
1 The program’s need for each unit of the data stream is likely to be transient.

58 U
0 No information is provided by this field.
1 The number of units in the data stream is unlimited. The unit_cnt field is ignored.

59 — Reserved.

60:63 ID Stream ID.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 99 of 415

4. Exceptions

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism 
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions can be defined at other levels of the architecture. For example, the user instruction 
set architecture (UISA) defines conditions that can cause floating-point exceptions; the OEA defines the 
mechanism by which the exception is taken. 

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of unusual 
conditions arising in the execution of instructions and from external signals, bus errors, or various internal 
conditions. When exceptions occur, information about the state of the processor is saved to certain registers 
and the processor begins execution at an address (exception vector) predetermined for each exception. 
Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific condition 
can be determined by examining a register associated with the exception—for example, the Data Storage 
Interrupt Status Register (DSISR) and the Floating-Point Status and Control Register (FPSCR). The high-
order bits of the Machine State Register (MSR) are also set for some exceptions. Software can explicitly 
enable or disable some exception conditions. 

The PowerPC Architecture requires that exceptions be taken in program order. Therefore, although a partic-
ular implementation can recognize exception conditions out-of-order, they are handled strictly in-order with 
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted 
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute 
state, are required to complete before the exception is taken. For example, if a single instruction encounters 
multiple exception conditions, those exceptions are taken and handled based on the priority of the exception. 
Likewise, exceptions that are asynchronous and precise are recognized when they occur, but are not handled 
until all instructions currently in the execute stage successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the Machine 
Status Save/Restore Registers, SRR0 and SRR1, soon after the exception is taken to prevent this informa-
tion from being lost due to another exception being taken. Because exceptions can occur while an exception 
handler routine is executing, multiple exceptions can become nested. It is up to the exception handler to save 
the necessary state information if control is to return to the excepting program.

In many cases, after the exception handler returns, there is an attempt to execute the instruction that caused 
the exception (such as a page fault). Instruction execution continues until the next exception condition is 
encountered. Recognizing and handling exception conditions sequentially guarantees that the machine state 
is recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing. 

Recognition Exception recognition occurs when the condition that can cause an exception is identified by 
the processor. 

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler. That is, the context is saved and the instruction at the appropriate vector offset 
is fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset. 
Exception handling is begun in supervisor mode (referred to as privileged state in the archi-
tecture specification).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 100 of 415

Version 2.3
March 7, 2008

Note:  The PowerPC Architecture documentation refers to exceptions as interrupts. In this book, the term 
“interrupt” is reserved to refer to asynchronous exceptions and sometimes to the event that causes the 
exception. The PowerPC Architecture also uses the word “exception” to refer to IEEE-defined floating-point 
exception conditions that might cause a program exception to be taken (see the PowerPC Microprocessor 
Family: The Programming Environments manual for more information). The occurrence of these IEEE excep-
tions might not cause an exception to be taken. IEEE-defined exceptions are referred to as IEEE floating-
point exceptions or floating-point exceptions.

Note:  Previous PowerPC microprocessors supported specifying the base real address by using the excep-
tion prefix field, MSR[IP]. The 970MP microprocessor does not support this.

4.1 970MP Microprocessor Exceptions

As specified by the PowerPC Architecture, exceptions can be either precise or imprecise and either synchro-
nous or asynchronous. Asynchronous exceptions are caused by events external to the processor’s execu-
tion; synchronous exceptions are caused by instructions. The types of exceptions are shown in Table 4-1. 

Note:  All exceptions except for the maintenance exception and performance monitor exception are defined, 
at least to some extent, by the PowerPC Architecture. 
 

These classifications are discussed in greater detail in Section 4.2 on page 103. For a better understanding 
of precise exceptions, see Chapter 6, “Exceptions” of the PowerPC Microprocessor Family: The Program-
ming Environments manual. Exceptions implemented in the 970MP microprocessor, and conditions that 
cause them, are listed in Table 4-2 Exceptions and Conditions on page 101.

Table 4-1. 970MP Microprocessor Exception Classifications 

Synchronous/Asynchronous Precise/Imprecise Exception Types

Asynchronous, nonmaskable Imprecise Machine check, system reset

Asynchronous, maskable Precise External interrupt, decrementer, maintenance exception, performance 
monitor exception

Synchronous Precise Instruction-caused exceptions



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 101 of 415

Table 4-2. Exceptions and Conditions  (Page 1 of 2)

Exception Type Vector Offset
(hexadecimal) Causing Conditions

System reset 00100 Either the assertion of the soft reset input pin or an SCOM command sequence for “soft 
reset.” See Section 4.5.1 System Reset Exception on page 110. 

Machine check 00200 There are many causes of a machine check exception. See Section 4.5.2 Machine Check 
Exceptions on page 111.

Data storage 00300 Page fault, as defined in the PowerPC Architecture. See Section 4.5.3 Data Storage 
Exception on page 113. 

Data segment 00380 Data segment fault, as defined in the PowerPC Architecture. See Section 4.5.4 Data Seg-
ment Exception on page 113. 

Instruction storage 00400 Page fault, as defined in the PowerPC Architecture. See Section 4.5.5 Instruction Storage 
Exception on page 113. 

Instruction segment 00480 Instruction segment fault, as defined in the PowerPC Architecture. See Section 4.5.6 
Instruction Segment Exception on page 113. 

External interrupt 00500 Assertion of the external interrupt input signal. See Section 4.5.7 External Interrupt 
Exception on page 114.

Alignment 00600 There are many causes of an alignment exception. See Section 4.5.8 Alignment Excep-
tion on page 114.

Program 00700 As defined by the PowerPC Architecture (for example, an instruction opcode error). See 
Section 4.5.9 Program Exception on page 114.

Floating-point 
unavailable 00800 As defined by the PowerPC Architecture. See Section 4.5.10 Floating-Point Unavailable 

Exception on page 115.

Decrementer 00900

As defined by the PowerPC Architecture. When the most-significant bit of the Decre-
menter Register (DEC) changes to ‘1’ and MSR[EE] equals ‘1’, it is the responsibility of 
the service routine for the decrementer exception to clear DEC[0]. See Section 4.5.11 
Decrementer Exception on page 115.

Hypervisor 
decrementer 00980

The Hypervisor Decrementer is similar to the decrementer and is used to return control to 
the hypervisor. This interrupt is activated when no higher priority interrupt is active and 
MSR[EE]=’1’ or MSR[HV]=’0’ and the Hypervisor Decrementer is negative (HDEC[0]=’1’). 
This is a level sensitive interrupt and as such it is the responsibility of the interrupt service 
routine to clear HDEC[0].

System call 00C00 Execution of the System Call (sc) instruction. See Section 4.5.12 System Call Exception 
on page 115.

Trace 00D00 MSR[SE] equals ‘1’ or MSR[BE] equals ‘1’, and a trace-marked instruction successfully 
completes. See Section 4.5.13 Trace Exception on page 115. 

Performance monitor 00F00

The MSR[EE] bit is set, the MMCR0[PMXE] bit is set, and any of the performance monitor 
counters overflow. The performance monitor exception can also be triggered by the ‘0’ to 
‘1’ transition of a particular time-base bit. See Section 4.5.14 Performance Monitor 
Exception on page 116.

VPU unavailable 00F20 No higher priority exception exists, an attempt is made to execute a vector instruction, 
and MSR[VP] equals ‘0’. See Section 4.5.15 VPU Unavailable Exception on page 117.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 102 of 415

Version 2.3
March 7, 2008

Instruction address 
breakpoint 01300

PowerPC 970MP microprocessor does not support a visible form of the instruction 
address breakpoint facility. The instruction address breakpoint feature is accessible 
through the support processor interface. See Section 4.5.16 Instruction Address Break-
point Exception on page 117.

Maintenance 01600
This exception can be signaled by a number of internal events, as well as by explicit com-
mands from the support processor. See Section 4.5.17 Maintenance Exception on 
page 117.

VPU assist 01700
This exception occurs when operating in Java mode and the input operands or the result 
of an operation are denormalized. See Section 4.5.18 VPU Assist Exception on 
page 118.

Table 4-2. Exceptions and Conditions  (Page 2 of 2)

Exception Type Vector Offset
(hexadecimal) Causing Conditions



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 103 of 415

4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows.

• Nonmaskable, asynchronous exceptions have priority over all other exceptions. These are system reset 
and machine check exceptions. These exceptions cannot be delayed and do not wait for completion of 
any precise exception handling. (However, the machine check exception condition can be disabled so the 
condition causes the processor to go directly into the checkstop1 state). 

• Synchronous, precise exceptions are caused by instructions and are taken in strict program order. 

• Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused by instructions, and 
they are delayed until higher priority exceptions are taken. 

Note:  The 970MP microprocessor does not implement an exception of this type.

• Maskable asynchronous exceptions (external, decrementer, maintenance, performance monitor, and 
exceptions) are delayed if higher priority exceptions are taken. 

Section 4.3 Exception Processing on page 105 describes how the 970MP microprocessor handles excep-
tions up to the point of signalling the appropriate interrupt to occur. Note that a recoverable state is reached if 
the completed store queue is empty (drained, not cancelled) and any instruction that is next in program order 
and has been signaled to complete has completed. If MSR[RI] equals ‘0’, the 970MP processing unit is in a 
nonrecoverable state. Also, instruction completion is defined as updating all architectural registers associated 
with that instruction, and then removing that instruction from the completion buffer.

4.2.1 Exception Priorities

The following list is a summary of the exception priorities for the 970MP microprocessor:

1. System reset exception

2. Machine check exception

3. Instruction dependent (as follows)

• Fixed-point loads and stores
– Mode dependent loads and stores

(1) Illegal instruction type of program exception
(2) Privileged type of program exception (for example, MSR[PR] set to‘1’)

– Data segment exception
– Data storage exception
– Alignment exception
– Trace exception

• Floating-point loads and stores
– Floating-point unavailable exception
– Data segment exception
– Data storage exception (DSI)
– Alignment exception
– Trace exception

• Other floating-point instructions
– Floating-point unavailable exception

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 104 of 415

Version 2.3
March 7, 2008

– Precise-mode, floating-point-enabled, exceptions type of program exception
– Trace exception

• Vector instructions
– VPU unavailable exception
– Trace exception

• Return from Exception Doubleword (rfid) instruction, Move to Machine State Register (mtmsr), Move 
to Machine State Register Doubleword (mtmsrd)

– Precise-mode, floating-point-enabled, exceptions type of program exception 
– Trace exception (for mtmsr or mtmsrd only)

• Other instructions
– Exceptions that are mutually exclusive and the same priority:

(1) Trap type of program exception
(2) System call
(3) Privileged instruction type of program exception
(4) Illegal instruction type of program exception

– Trace exception
– VPU assist exception

• Instruction segment exception

• Instruction storage exception

4. Maintenance exception

5. External interrupt

6. Performance monitor exception

7. Decrementer exception



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 105 of 415

4.3 Exception Processing

When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the MSR for the 
current context, and to identify where instruction execution should resume after the exception is handled.

4.3.1 Machine Status Save/Restore Register 0 (SRR0)

When an exception occurs, the address saved in SRR0 determines where instruction processing should 
resume when the exception handler returns control to the interrupted process. Depending on the exception, 
this might be the address in SRR0 or at the next address in the program flow. All instructions in the program 
flow preceding this one will have completed execution and no subsequent instruction will have begun execu-
tion. This might be the address of the instruction that caused the exception or the next one (as in the case of 
a system call, trace, or trap exception). The SRR0 Register is shown below.

4.3.2 Machine Status Save/Restore Register 1 (SRR1)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on excep-
tions and to restore those values when an rfid instruction is executed. SRR1 is shown below.

Note:  The function of the SRR1 is to save the current state of the machine (that is, the MSR) before a tempo-
rary state is invoked to service exceptions. After the servicing of the exception, the contents of SRR1 are 
returned to the MSR and the code stream can continue.

SRR0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SRR0 R
es

er
ve

d

R
es

er
ve

d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:61 SRR0 Holds the effective address (EA) for the instruction in the interrupted program flow.

62 — Reserved. Returns a zero when read. 

63 — Reserved. Returns a zero when read. 

SRR1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SRR1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 SRR1

Exception-Specific Information and MSR Bit Values
For most exceptions, bits 33 - 36 and 42 - 47 of SRR1 are loaded with exception-specific informa-
tion. Bits 0 - 32, 37 - 41, and 48 - 63 of SRR1 are loaded with a copy of the corresponding bits of the 
MSR (before taking the exception). 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 106 of 415

Version 2.3
March 7, 2008

4.3.3 Machine State Register (MSR)

The format of the 970MP processing unit’s MSR is below. 

SF R
es

er
ve

d

R
es

er
ve

d

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved V
P Reserved P
O

W

R
es

er
ve

d

EE PR FP ME F
E

0

SE BE F
E

1

R
es

er
ve

d

R
es

er
ve

d

IR DR R
es

er
ve

d

P
M

M

RI R
es

er
ve

d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Name Description

0 SF
64-bit mode. 
0 Processor runs in 32-bit mode.
1 Default mode. Processor runs in 64-bit mode.

1:2 — Reserved. Returns zeros when read. 

3 HV
Hypervisor mode. Set when running on a non-partitioned system or when “hypervisor code” is exe-
cuting on a partitioned system. MSR[HV] can be set to ‘1’ only by the system call instruction and 
some interrupts. It can be set to ‘0’ only by the rfid and hrfid instructions. 

4:37 — Reserved. Returns zeros when read.

38 VP

Vector processor available. 
0 The processor prevents execution of all vector instructions, including loads, stores, and 

moves. If such execution is attempted, a VPU unavailable exception is raised. 
1 The processor can execute all vector instructions.
The Vector Save/Restore Register (VRSAVE) is not protected by MSR[VP]. None of the data 
streaming family of instructions (dst, dstt, dstst, dststt, dss, and dssall) are affected by MSR[VP].

39:44 — Reserved. Returns zeros when read.

45 POW
Power-management enable
0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).

46:47 — Reserved. Returns zeros when read.

48 EE

External exception enable.
0 The processor delays recognition of external exceptions and decrementer exception condi-

tions. 
1 The processor is enabled to take an external exception or the decrementer exception.
Note:  Setting MSR[EE] masks not only the architecture-defined external exception and decre-
menter exceptions, but also the 970MP-specific debug and performance monitor exceptions.

49 PR
Problem state (user mode). 
0 The processor is privileged to execute any instruction.
1 The processor can only execute nonprivileged instructions.

50 FP

Floating-point available. 
0 The processor prevents dispatch of floating-point instructions, including floating-point 

loads, stores, and moves.
1 The processor can execute floating-point instructions and can take floating-point enabled 

program exceptions.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 107 of 415

The 970MP microprocessor provides precise floating-point exceptions whenever either of the floating-point 
enabled exception mode bits (MSR[FE0] and MSR[FE1]) are set. Table 4-3 IEEE Floating-Point Exception 
Mode Bits on page 108 explains how the bits are used to set the mode. In all cases, the 970MP processing 
unit aggressively executes the floating-point instructions (even out-of-order as required), and sorts out any 
resulting exceptions at completion time. In some cases, due to the group-oriented instruction tracking scheme 
used by the 970MP microprocessor, when an exception is detected, the hardware will flush the pipeline and 
re-dispatch the instructions individually in order to provide the precise exception. Since this only happens if an 
exception is to be taken, it does not represent a measurable decrease in performance.

51 ME

Machine check enable. 
0 Machine check exceptions are disabled. If one occurs, the system enters checkstop.
1 Machine check exceptions are enabled.
Only rfid instructions can alter MSR[ME]. 

52 FE0 IEEE floating-point exception mode 0.

53 SE

Single-step trace enable.
0 The processor executes instructions normally. 
1 The processor generates a single-step trace exception upon the successful execution of 

every instruction except rfid, Instruction Cache Synchronize (isync), and sc. Successful 
execution means that the instruction caused no other exception.

54 BE

Branch trace enable.
0 The processor executes branch instructions normally. 
1 The processor generates a branch type of trace exception when a branch instruction exe-

cutes successfully. 

55 FE1 IEEE floating-point exception mode 1.

56 — Reserved. Returns a zero when read. 

57 — Reserved. Returns a zero when read. 

58 IR
Instruction address translation. 
0 Instruction address translation is disabled. 
1 Instruction address translation is enabled.

59 DR

Data address translation 
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for 

store (dstst) instructions are executed when DR equals ‘0’, the results are boundedly 
undefined.

1 Data address translation is enabled. Data stream touch (dst) and data stream touch for 
store (dstst) instructions are supported when DR equals ‘1’. 

60 — Reserved. Returns a zero when read. 

61 PMM Performance monitor mode. This register bit is used to enable and disable performance monitor 
activity controlled by the process mark bit.

62 RI 

Indicates whether a system reset or machine check exception is recoverable.
0 Exception is not recoverable. 
1 Exception is recoverable.
The RI bit indicates whether, from the perspective of the processor, it is safe to continue (that is, 
processor state data such as that saved to SRR0 is valid), but it does not guarantee that the inter-
rupted process is recoverable. Exception handlers must look at SRR1[RI] to determine this.

63 — Reserved. Returns a zero when read. 

Bits Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 108 of 415

Version 2.3
March 7, 2008

 

4.3.4 Enabling and Disabling Exceptions

When a condition exists that might cause an exception to be generated, it must be determined whether the 
exception is enabled for that condition. 

• IEEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FE0] 
and MSR[FE1] are cleared. If either bit is set, all IEEE enabled floating-point exceptions are taken and 
cause a program exception. 

• Asynchronous, maskable exceptions (external, decrementer, performance monitor, and maintenance 
exceptions) are enabled by setting MSR[EE]. When MSR[EE] equals ‘0’, recognition of these exception 
conditions is delayed. MSR[EE] is cleared automatically when an exception is taken to delay recognition 
of conditions causing those exceptions.

• A machine check exception can occur only if the machine check enable bit, MSR[ME], is set. If MSR[ME] 
is cleared, the processor goes directly into checkstop state when a machine check exception condition 
occurs.

• System reset exceptions cannot be masked. 

4.3.5 Exception Processing Steps

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions 
occurring earlier in the instruction stream have been handled, and by confirming that the exception is enabled 
for the exception condition), the processor does the following steps: 

1. Loads SRR0 with an instruction address that depends on the type of exception. Normally, this is the 
instruction that would have completed next had the exception not been taken. See the individual excep-
tion description (Section 4.5 beginning on page 110) for details about how this register is used for specific 
exceptions.

2. Loads SRR1[33:36, 42:47] with information specific to the exception type.

3. Loads SRR1[0:32, 37:41, 48:63] with a copy of the corresponding MSR bits (prior to the exception). 

4. Sets the MSR as described in Section 4.5 Exception Definitions on page 110. The new values take effect 
as the first instruction of the exception-handler routine is fetched. 

Note:  MSR[IR] and MSR[DR] are cleared for all exception types. Therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine. 

Table 4-3. IEEE Floating-Point Exception Mode Bits 

FE0 FE1 Mode

0 0 Floating-point exceptions disabled.

0 1 Imprecise nonrecoverable. For this setting, the 970MP microprocessor operates in floating-point precise mode. 

1 0 Imprecise recoverable. For this setting, the 970MP microprocessor operates in floating-point precise mode. 

1 1 Floating-point precise mode.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 109 of 415

Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception 
type. The location is determined by adding the exception’s vector offset (see Table 4-2 on page 101) to the 
value in the Hardware Interrupt Offset Register (HIOR). For a machine check exception that occurs when 
MSR[ME] equals ‘0’ (machine check exceptions are disabled), the checkstop state is entered (the machine 
stops executing instructions). 

4.3.6 Setting the Recoverable Exception in the MSR

The recoverable exception (RI) bit in the MSR was designed to indicate to the exception handler whether the 
exception is recoverable. When an exception occurs, the RI bit is copied from the MSR to SRR1 and cleared 
in the MSR. All exceptions are disabled except machine check. If a machine check exception occurs while 
MSR[RI] is clear, a ‘0’ value is found in SRR1[RI] to indicate that the machine state is definitely not recover-
able. When MSR[RI] equals ‘1’, the exception is recoverable as far as the current state of the machine and all 
programs concerned including noncritical machine checks. Thus, in all exceptions, if SRR1[RI] is cleared, the 
machine state is not recoverable. If it is set, the exception is recoverable with respect to the processor and all 
programs. An operating system can handle MSR[RI] as follows:

• Use the Special Purpose Registers (SPRG0-SPRG3) to aid in saving the machine state. IBM suggests 
pointing SPRG0 to a stack save area in memory and saving three General Purpose Registers (GPRs) in 
SPRG1-3. Move SPRG0 into one of the GPRs that was saved. This GPR now points to the save area in 
memory. Move the GPRs, SRR0, SRR1, SPRG1-3, and other registers to be used by the exception rou-
tine into the stack save area. Update SPGR0 to point to a new save area. Set MSR[RI] to indicate that 
machine state has been saved. Also set MSR[EE] if you want to re-enable external exceptions. 

• When exception processing is complete, clear MSR[EE] and MSR[RI]. Adjust SPRG0 to point to the stack 
saved area, restore the GPRs, SRR0 and SRR1, and any other register that you might have saved, exe-
cute rfid. This returns the processor to the interrupted program.

4.3.7 Returning from an Exception Handler

The rfid instruction performs context synchronization by allowing previously-issued instructions to complete 
before returning to the interrupted process. In general, execution of the rfid instruction ensures the following:

• All previous instructions have completed to a point where they can no longer cause an exception.

• Previous instructions complete execution in the context (privilege, protection, and address translation) 
under which they were issued.

• The rfid instruction copies SRR1 bits back into the MSR, and resets the MSR[POW] bit. 

• Instructions fetched after this instruction execute in the context established by this instruction.

• Program execution resumes at the instruction indicated by SRR0.

For a complete description of context synchronization, see Chapter 6, “Exceptions” of the PowerPC Micropro-
cessor Family: The Programming Environments manual.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 110 of 415

Version 2.3
March 7, 2008

4.4 Process Switching

The following instructions are useful for restoring proper context during process switching: 

• The Synchronize (sync) instruction orders the effects of instruction execution. All instructions previously 
initiated appear to have completed before the sync instruction completes, and no subsequent instruc-
tions appear to be initiated until the sync instruction completes. 

• The Instruction Cache Synchronize (isync) instruction waits for all previous instructions to complete and 
then discards any fetched instructions, causing subsequent instructions to be fetched (or refetched) from 
memory and to execute in the context (privilege, translation, and protection) established by the previous 
instructions. 

• The Store Word Conditional Indexed/Store Doubleword Conditional Indexed (stwcx./stdcx.) instruction 
clears any outstanding reservations, ensuring that a Load Word and Reserve Indexed/Load Double Word 
and Reserve Indexed (lwarx/ldarx) instruction in an old process is not paired with an stwcx./stdcx. 
instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.6 Setting the Recoverable Exception in 
the MSR on page 109.

4.5 Exception Definitions

When an exception/interrupt is taken, all bits in the MSR are set to ‘0’, with the following exceptions:

• Exceptions always set MSR[SF] to ‘1’. 

• Only the machine check exception sets MSR[ME] to ‘0’. All other exceptions leave MSR[ME] unchanged. 

The following sections describe the implementation-dependent aspects of the exceptions.

Note:  If a description is not provided, the 970MP microprocessor behaves as described in the PowerPC 
Architecture books.

4.5.1 System Reset Exception

The system reset exception is a non-maskable, asynchronous exception that is caused by the assertion of 
either the soft reset input pin, or by the SCOM command sequence for soft reset.

The Not Hard Reset bit in HID0[15] can be used to help software distinguish between a hard reset and a soft 
reset. To use this capability, software should initially set this bit to a ‘1’. Later, when a system reset exception 
is taken, software can check the state of this bit to determine which type of reset occurred. If the bit is still set, 
then the reset was a soft reset, and if the bit is a zero, the reset was a hard reset.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 111 of 415

4.5.2 Machine Check Exceptions

The are several possible causes of machine check exceptions in the 970MP microprocessor, some of which 
are generally recoverable, and some of which are non-recoverable. 

The following causes of machine check exceptions are precise and synchronous with the instruction that 
caused the operation that encountered the error (that is, SRR0 contains the address of the instruction that 
caused the operation).

• The detection of a parity error in the L1 data cache (D-cache), the L1 D-cache tag, the data effective-to-
real-address translation (D-ERAT), the translation lookaside buffer (TLB), or the segment lookaside buffer 
(SLB) during the execution of a load or store instruction. If the exception is caused by a soft error, then 
executing the appropriate sequence of instructions in the machine check handler program will clear the 
error condition without causing any loss of state, permitting the interrupted program to resume if MSR[RI] 
was a ‘1’ when the instruction that encountered the error was executed. 

Note:  The L1 D-cache and the L1 D-cache tag parity errors are recovered by hardware in the 970MP 
processing unit (default mode), without a machine check interrupt.

• The detection of an uncorrectable error checking and correction (ECC) error in the L2 cache when a load 
instruction is executed.

• The detection of an uncorrectable ECC error in the L2 cache while the page table is being searched in the 
process of translating an address.

• The detection of erroneous data that is being returned to satisfy a load instruction for which the effective 
address specified a location in caching inhibited memory.

For hard errors, these characteristics cannot be reliably provided on a machine check, because it is likely that 
the failure will prevent reliable execution. Additionally, a machine check exception that occurs when MSR[ME] 
equals ‘0’ results in a checkstop. 

In addition, there are a few possible sources for asynchronous machine check exceptions. A machine check 
exception is taken when the machine check input pin is asserted, if enabled by setting HID0[32] to ‘1’. The 
Fault Isolation Register (FIR), debug logic, and hang recovery logic can also be programmed to induce 
machine check exceptions for various error conditions. Since these signals are asynchronous with respect to 
the executing program, asynchronous machine checks might or might not be recoverable. Software can use 
the MSR[RI] bit to help identify the cases where the machine check exception is recoverable.

Information about the suspected source of the error condition is logged into either the SRR1 Register, the 
DSISR Register, or both as defined in Table 4-4 on page 112 for synchronous machine checks. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 112 of 415

Version 2.3
March 7, 2008

Note:  As mentioned previously, the machine check exception handler is expected to help hardware recover 
from certain types of D-cache, D-cache directory, D-ERAT, and TLB errors detected by the hardware. In gen-
eral terms, the exception handler should:

Table 4-4. Register Settings for Machine Check Exception 

Register Bits Setting

SRR0 0:63

Effective address of the next instruction that would have executed if the machine check exception 
was not taken. When this is a recoverable machine check due to a load that has surfaced an error, 
this will be the address of the load instruction itself (the 970MP microprocessor allows the instruction 
to execute to surface the error, but inhibits the commitment of the results). When this is a recover-
able machine check due to an instruction fetch surfacing an error, this will be the address of an 
instruction that initiated the memory/cache access.

SRR1

0:41 Loaded from MSR.

42 Exception caused by instruction fetch unit (IFU) detection of a hardware uncorrectable error (UE).

43 Exception caused by load or store detection of error (see DSISR below).

44:45

Exception cause indicated by the following encoding:
00 No error encoded.
01 Exception caused by an SLB parity error detected while translating an instruction fetch 

address.
10 Exception caused by a TLB parity error detected while translating an instruction fetch 

address.
11 Exception caused by a hardware uncorrectable error (UE) detected while doing a reload of 

an instruction-fetch TLB tablewalk.

46:61 Loaded from MSR.

62 Loaded from MSR[62] if recoverable. Otherwise, set to zero.

63 Loaded from MSR.

DSISR

0:5 All zeros.

6 Set to ‘1’ for a store or dcbz instruction; otherwise, set to ‘0’.

7:15 All zeros.

16 Exception caused by a UE deferred error (the Data Address Register [DAR] is undefined).

17 Exception caused by a UE deferred error during a tablewalk (D-side).

18 Exception was caused by a software-recoverable parity error in the L1 D-cache.

19 Exception was caused by a software-recoverable parity error in the L1 D-cache tag.

20 Exception was caused by a software-recoverable parity error in the D-ERAT.

21 Exception was caused by a software-recoverable parity error in the TLB.

22 Zero.

23 Exception was caused by an SLB parity error (might not be recoverable). This condition could occur 
if the effective segment ID (ESID) fields of two or more SLB entries contain the same value.

24:31 All zeros.

DAR 0:63

Effective address computed by a load or store instruction that caused the operation that encoun-
tered a parity error in the D-ERAT, TLB, or SLB, or that encountered an uncorrectable error while 
attempting to reload a TLB entry. Effective address computed by the load instruction that caused the 
operation that encountered a parity error in the L1 D-cache or L1 D-cache tag arrays For all other 
types of machine check exceptions, the DAR is undefined (including when the operand of the load 
instruction contains a UE).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 113 of 415

• Check whether the machine check exception is recoverable by looking at the state of the RI bit in SRR1.

• Determine the type of error that caused the machine check by looking at the state of the SRR1 and 
DSISR Registers.

• Flush the contents of the array that reported the detected error (this process is slightly different for each 
of the possible arrays).

• Return to the interrupted process. 

If no error is encoded in SRR1[44:45], then the exception is likely caused by an asynchronous machine 
check, in which case the exception handler should access the Asynchronous Machine Check Register 
through the SCOMC facility. 

4.5.3 Data Storage Exception

The 970MP microprocessor implements the data storage exception as described in the PowerPC Architec-
ture (OEA). A DSI exception occurs when no higher priority exception exists and an error condition related to 
a data memory access occurs. In case of a TLB miss for a load, store, or cache operation, a DSI exception is 
taken if the resulting hardware table search causes a page fault.

When this exception is taken, execution resumes at effective address x‘00300’. 

4.5.4 Data Segment Exception

The 970MP microprocessor implements the data segment exception as described in the PowerPC Architec-
ture (OEA). A data segment exception occurs when no higher priority exception exists and a data access 
cannot be performed because data address translation is enabled (MSR[DR] is ‘1’) and the effective address 
of any byte of the storage location specified by a Load, Store, Instruction Cache Block Invalidate (icbi), Data 
Cache Block Set to Zero (dcbz), Data Cache Block Store (dcbst), Data Cache Block Flush (dcbf), External 
Control In Word Indexed (eciwx), or External Control Out Word Indexed (ecowx) instruction cannot be trans-
lated to a virtual address. 

When this exception is taken, execution resumes at effective address x‘00380’. 

4.5.5 Instruction Storage Exception

The 970MP microprocessor implements the instruction storage exception as described in the PowerPC 
Architecture (OEA). An instruction storage interrupt (ISI) exception occurs when no higher priority exception 
exists and an attempt to fetch the next instruction fails. 

When this exception is taken, execution resumes at effective address x‘00400’. 

4.5.6 Instruction Segment Exception

The 970MP microprocessor implements the instruction segment exception as described in the PowerPC 
Architecture (OEA). An instruction segment exception occurs when no higher priority exception exists and 
next instruction to be executed cannot be fetched because instruction address translation is enabled 
(MSR[IR] is ‘1’) and the effective address cannot be translated to a virtual address. 

When this exception is taken, execution resumes at effective address x‘00480’. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 114 of 415

Version 2.3
March 7, 2008

4.5.7 External Interrupt Exception

In the 970MP microprocessor, an external interrupt is signaled by the assertion of the external interrupt input 
signal. The external interrupt signal is expected to remain asserted until the processor has actually taken the 
interrupt (failure to meet this requirement might lead the processor to not recognize the interrupt request).

4.5.8 Alignment Exception

An alignment exception is taken if any of the following conditions are detected:

• lwarx, stwcx, Load Multiple Word (lmw), Store Multiple Word (stmw) instructions with non-word aligned 
addresses

• ldarx and stdcx instructions with non-double word aligned addresses

• lmw and stmw instructions to storage marked cache-inhibited

• Load String Word Immediate (lswi), Load String Word Indexed (lswx), Store Sting Word Immediate 
(stswi), and Store String Word Indexed (stswx) instructions to storage marked cache-inhibited

• dcbz to storage marked cache-inhibited (a dcbz to cache-inhibited space is treated as a no-op instead of 
causing an alignment interrupt if the dcbz_ieq1_align bit in the mode ring is set to a ‘0’)

• Any load or store to storage marked cache-inhibited that is not naturally aligned

• Floating-point load single instructions that are not word aligned and cross a 32-byte boundary

• Floating-point store instructions that are not word aligned and cross a 4 KB boundary

• When HID4[24] is set, some forms of unaligned storage accesses that are normally handled by the hard-
ware are forced to take an alignment exception (to assist in debugging).

4.5.9 Program Exception

The 970MP microprocessor implements the program exception as it is defined by the PowerPC Architecture 
(OEA). A program exception occurs when no higher priority exception exists and one or more of the excep-
tion conditions defined in the OEA occur. 

The 970MP microprocessor invokes the program exception for a system illegal instruction when it detects any 
instruction from the illegal instruction class. The 970MP processing unit fully decodes the special purpose 
register (SPR) field of the instruction. If an undefined SPR is specified, a program exception is taken. 

When this exception is taken, execution resumes at effective address x‘00700’.

Table 4-5. Register Settings for Alignment Exception 

Register Bits Setting

DSISR

0:5 Unchanged.

6 Set to ‘1’ for a store or dcbz instruction; otherwise, set to ‘0’.

7:31 Unchanged.

DAR 0:63
Set to the effective address computed by the load or store instruction that caused the alignment 
exception.When the exception is caused by an unsupported access to cache-inhibited space, the 
DAR will be set to the effective address of the first access into the cache-inhibited space.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 115 of 415

4.5.10 Floating-Point Unavailable Exception

The floating-point unavailable exception is implemented as defined in the PowerPC Architecture. When a 
floating-point unavailable exception is taken, instruction fetching resumes at the location determined by 
adding the offset x‘00800’ to the HIOR value.

4.5.11 Decrementer Exception

The decrementer exception is implemented as defined in the PowerPC Architecture. A decrementer excep-
tion occurs when no higher priority exception exists, the decrementer is negative (DEC[0] equals ‘1’), and 
MSR[EE] equals ‘1’. The decrementer exception is level sensitive. It is the responsibility of the interrupt 
service routine to clear DEC[0].

When this exception is taken, execution resumes at effective address x‘0000_0000_0000_0900’.

4.5.12 System Call Exception

The 970MP microprocessor implements the system call exception as described in the PowerPC Architecture 
(OEA). A system call exception occurs when a system call (sc) instruction is executed.

When this exception is taken, execution resumes at effective address x‘00C00’. 

4.5.13 Trace Exception

The trace exception is taken when the single-step trace enable bit (MSR[SE]) or the branch trace enable bit 
(MSR[BE]) is set and an instruction successfully completes. After a trace exception is taken, SRR0, SRR1, 
Sampled Instruction Address Register (SIAR), and Sampled Data Address Register (SDAR) are set as shown 
in Table 4-6.

Table 4-6. Register Settings for Trace Exception 

Register Bits Setting

SRR0 0:63 Set as specified in the architecture.

SRR1

0:32 Loaded from the MSR.

33:34 ‘10’

35 Set for a load instruction; otherwise, cleared. Not set for a zero-length lswx instruction.

36 Set for a store instruction; otherwise, cleared. Not set for a zero-length stswx instruction. 

37:41 Loaded from the MSR.

42 Set for a lwarx/ldarx or stwcx/stdcx instruction; otherwise, cleared.

43 Set to ‘1’.

44 Set to ‘0’.

45:47 Set to ‘0’.

48:63 Loaded from the MSR.

SIAR 0:63 Set to the effective address of the traced instruction.

SDAR 0:63
If the instruction that took the trace interrupt was a storage access instruction, the SDAR is set to 
the effective address of the storage access. SDAR is not set if an X-form Load String or Store String 
instruction specifies an operand length of zero.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 116 of 415

Version 2.3
March 7, 2008

If either MSR bits SE or BE is set to ‘1’ by a Return from Interrupt or Move to MSR instruction, the contents of 
SIAR and SDAR are undefined until a trace interrupt occurs.

4.5.14 Performance Monitor Exception

The performance monitor exception is signalled when the MSR[EE] bit is set, and a performance monitor 
exception condition occurs. See Chapter 10 970MP Performance Monitor for a description of performance 
monitor exception conditions.

The following registers are set when a performance monitor exception occurs. 

Table 4-7. Register Settings for the Performance Monitor Exception 

Register Bits Setting

SRR0 0:63 Set to the effective address of the instruction that the processor would have attempted to execute 
next if no exception conditions were present. 

SRR1

0:32 Loaded from the MSR.

33 Set to ‘1’ if the contents of the SDAR and the SIAR are associated with the same instruction.

34:63 Loaded from the MSR.

SIAR 0:63

Set to the effective address of the marked instruction, where the marked instruction is an instruction 
that was executing, possibly out-of-order, at or around the time that the performance monitor excep-
tion occurred. The contents of the SIAR can be altered by the processor if and only if 
MMCR0[PMEE] equals ‘1’. Thus, after a performance monitor exception occurs, the contents of 
SIAR are not altered by the processor until software sets MMCR0[PMEE] to ‘1’. After software sets 
MMCR0[PMEE] to ‘1’, the contents of SIAR are undefined until the next performance monitor 
exception occurs.

SDAR 0:63

Set to the effective address of the storage operand of an instruction that was executing, possibly 
out-of-order, at or around the time that the performance monitor exception occurred. This storage 
operand is called the marked data and might be, but need not be, the storage operand (if any) of the 
marked instruction. If the performance monitor exception causes a performance monitor interrupt, 
SRR1 indicates whether the marked data is in fact the storage operand of the marked instruction. 
The contents of the SDAR can be altered by the processor if and only if MMCR0[PMEE] equals ‘1’. 
Thus, after a performance monitor exception occurs, the contents of SDAR are not altered by the 
processor until software sets MMCR0[PMEE to ‘1’. After software sets MMCR0[PMEE] to ‘1’, the 
contents of SDAR are undefined until the next performance monitor exception occurs.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Exceptions
Page 117 of 415

4.5.15 VPU Unavailable Exception 

This exception occurs if there is an attempt to execute any vector instruction, including a vector load or store, 
with MSR[VP] negated. After this interrupt, execution resumes at offset x‘0000_0000_0000_0F20’. The 
register settings for this interrupt are shown in Table 4-8.

Note:  A mtspr or mfspr instruction that references the VRSAVE Register will not cause this interrupt.

4.5.16 Instruction Address Breakpoint Exception

The 970MP microprocessor does not support a visible form of the instruction address breakpoint facility. The 
instruction address breakpoint feature is accessible through the support processor interface.

When this exception is taken, execution resumes at effective address x‘01300’. 

4.5.17 Maintenance Exception 

The 970MP microprocessor provides support for an implementation-dependent maintenance exception. This 
exception can be signaled by a number of internal events, as well as by explicit commands from the support 
processor. 

When this exception is taken, execution resumes at effective address x‘0000_0000_0000_1600’.

This exception is controlled by the MSR[EE] bit in a manner similar to external interrupts. The register 
settings for this exception are shown in Table 4-9 on page 117.

Table 4-8. Register Settings for VPU Unavailable Interrupt 

Register Bits Setting

SRR0 0:63 Set to the effective address of the instruction that caused the interrupt.

SRR1

0:32 Loaded from the MSR.

33:36 Set to zeros.

37:41 Loaded from the MSR.

42:47 Set to zeros.

48:63 Loaded from the MSR.

Table 4-9. Register Settings for Maintenance Exception  

Register Bits Setting

SRR0 0:63 Set to the effective address of the next instruction that would have executed had the exception not 
been taken.

SRR1

0:32 Loaded from the MSR.

33:36 Set to zeros.

37:41 Loaded from the MSR.

42:47 Set to zeros (can be used later to distinguish various causes of exception).

48:63 Loaded from the MSR.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Exceptions
Page 118 of 415

Version 2.3
March 7, 2008

4.5.18 VPU Assist Exception

This exception occurs when operating in Java mode and the input operands or the result of an operation are 
denormalized. 

When this exception is taken, execution resumes at offset x‘0000_0000_0000_1700’.

The register settings for this exception are shown in Table 4-10.

Table 4-10. Register Settings for VPU Assist Exception 

Register Bits Setting

SRR0 0:63 Set to the effective address of the instruction that caused the exception.

SRR1

0:32 Loaded from the MSR.

33:36 Set to zeros.

37:41 Loaded from the MSR.

42:47 Set to zeros.

48:63 Loaded from the MSR.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Memory Management
Page 119 of 415

5. Memory Management

This chapter describes the 970MP implementation of the memory management unit (MMU) specifications 
provided by the operating environment architecture (OEA) for PowerPC processors. The primary function of 
the MMU in a PowerPC processor is the translation of logical (effective) addresses to physical addresses 
(referred to as real addresses in the architecture specification) for memory accesses and I/O accesses (I/O 
accesses are assumed to be memory-mapped). In addition, the MMU provides access protection on a 
segment or page basis. This chapter describes the specific hardware used to implement the MMU model of 
the OEA in each of the 970MP processing units. See the PowerPC Operating Environment Architecture 
(Book III) for a conceptual overview of the memory management model. 

Two general types of memory accesses generated by PowerPC processors require address translation—
instruction accesses and data accesses that are generated by load-and-store instructions. Generally, the 
address translation mechanism is defined in terms of the segment descriptors and page tables that the 
PowerPC processors use to locate the effective-to-physical address mapping for memory accesses. The 
segment information translates the effective address to an interim virtual address, and the page table infor-
mation translates the interim virtual address to a physical address. 

The segment descriptors, used to generate the interim virtual addresses, reside as segment table entries 
(STEs) in memory. Each 970MP processing unit uses a segment lookaside buffer (SLB) on-chip that caches 
recently used segment table entries. In addition, a translation lookaside buffer (TLB) is implemented on each 
970MP processing unit to keep recently-used page address translations on-chip. 

The MMU, together with the exception processing mechanism, provides the necessary support for the oper-
ating system to implement a paged virtual memory environment and to enforce protection of designated 
memory areas. Exception processing is described in Chapter 4 Exceptions. Specifically, Section 4.3 Excep-
tion Processing on page 105 describes the Machine State Register (MSR), which controls some of the critical 
functions of the MMUs.

5.1 MMU Overview

The 970MP microprocessor implements the memory management specification of the PowerPC operating 
environment architecture for 64-bit implementations. The 970MP microprocessor supports a 65-bit virtual 
address and a 42-bit physical (real) address.

Basic features of the MMU implementation in the 970MP processing unit as defined by the OEA are:

• Support for real addressing mode—Effective-to-physical address translation can be disabled separately 
for data and instruction accesses.

• Segmented address translation—The 64-bit effective address is translated to a 65-bit virtual address. 
This 65-bit virtual address space is divided into 4KB or 16MB pages, each of which can be mapped to a 
physical page. 

The 970MP microprocessor also provides the following features that are not required by the PowerPC Archi-
tecture:

• Unified translation lookaside buffer (TLB)—The 1024-entry, 4-way, set-associative TLB supports:

– A new large page architecture (16MB large pages supported).
– Hardware-based reload (from the L2 cache interface in order to ensure no L1 D-cache impact).
– Hardware-based update of the reference (R) and change (C) bits in a page table entry (PTE).
– Parity protection; precise machine-check interrupt on parity error (software fix-up). 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Memory Management
Page 120 of 415

Version 2.3
March 7, 2008

– Recently-used page address translations cached on-chip.

• Segment lookaside buffer (SLB)—The 64-entry, fully associative SLB supports:
– Software reload of the SLB. An SLB miss results in an interrupt. 
– Loaded by the 32-bit PowerPC Segment Register instructions.

• TLB invalidation—The 970MP microprocessor implements the optional TLB Invalidate Entry (tlbie) and 
TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB entries. For more informa-
tion about the tlbie and tlbsync instructions.

• Little-endian mode is not supported. 

Table 5-1 summarizes the MMU features of the 970MP microprocessor, including those defined by the 
PowerPC Architecture (OEA) for 64-bit processors and those specific to the 970MP microprocessor. 

5.1.1 Speculative Storage Accesses

The 970MP processing unit is capable of speculatively executing load instructions to non-guarded, cacheable 
storage. This can occur when a load instruction is encountered on a predicted branch path, or when a logi-
cally preceding instruction causes an interrupt. As a result, it is possible for a speculative load that misses in 
the on-chip cache hierarchy to initiate an external storage request, even if that load instruction is not actually 
executed as part of the true instruction stream. 

Table 5-1. MMU Feature Summary 

Feature Category Architecturally Defined/
970MP-Specific Feature

Address ranges

Architecturally defined 264 bytes of effective address

970MP-specific
265 bytes of virtual address

242 bytes of physical address

Page size
Architecturally defined 4 KB

970MP-specific 16 MB

Segment size Architecturally defined 256 MB

Memory protection Architecturally defined
Segments selectable as no-execute

Pages selectable as user or supervisor and read-only or guarded 

Page history Architecturally defined Referenced and changed bits defined and maintained

Page address translation Architecturally defined
Translations stored as PTEs in hashed page tables in memory

Page table size determined by a mask in SDR1 

TLB

Architecturally defined Instructions for maintaining TLBs (tlbie and tlbsync instructions in the 
970MP microprocessor)

970MP-specific 1024-entry, 4-way, set-associative TLB (combined for both instruction and 
data).

Page table search support 970MP-specific The 970MP microprocessor performs the table search operation in hard-
ware.

Segment descriptors
Architecturally defined Stored as STEs in hashed segment tables in memory

970MP-specific 64-entry fully associative SLB

Segment table search 
support 970MP-specific The 970MP microprocessor provides support for software reload of the 

SLB. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Memory Management
Page 121 of 415

5.1.2 Storage Protection

When address translation is enabled, the protection mechanism is controlled by the following bits:

• MSR[PR], which distinguishes between supervisor (privileged) state and user (problem) state

• KS and KP, which are the supervisor (privileged) state and user (problem) state storage key bits in the 
SLB entry, used to translate the effective address

• For instruction fetches only:
– the N (no-execute) value used for the access
– the G (guarded) bit in the page table entry used to translate the effective address. 

Thus, for an instruction fetch, access is not permitted if the N value is ‘1’ or if G equals ‘1’.

5.1.3 Storage Access Modes 

Storage access modes are controlled by the write-through/caching-inhibited/memory-coherency 
enforced/guarded bits (WIMG) bits. The 970MP microprocessor does not support the optional W bit or the 
optional M bit. All accesses are treated as though W equals ‘0’ and M equals ‘1’ independent of the value of 
these bits in the page table. Furthermore, when the hardware is performing a change bit update, it will write 
the W bit as ‘0’ and the M bit as ‘1’.

Table 5-2 summarizes the treatment of the WIMG bits in the 970MP processing unit:

5.1.4 Support for 32-Bit Operating Systems

The 970MP microprocessor supports most of the optional bridge facilities and instructions for 64-bit imple-
mentations.

The bridge facility can be used to ease the transition to the PowerPC software-managed segment lookaside 
buffer (SLB) architecture, from either the Segment Register architecture provided by the 32-bit PowerPC 
implementation or the hardware-accessed segment table architecture provided by the 64-bit PowerPC imple-
mentations. The bridge facility permits the operating system to continue to use the 32-bit PowerPC imple-
mentation’s Segment Register manipulation instructions and to continue to use the Address Space Register 
(ASR). 

Associated with this support, the following optional instructions are supported:

• mtsr - Move to Segment Register
• mtsrin - Move to Segment Register Indirect
• mfsr - Move from Segment Register
• mfsrin - Move from Segment Register Indirect
• mtmsr - Move to Machine State Register (32-bit)

Table 5-2. Treatment of WIMG Bits in the 970MP Microprocessor

WIMG Description

x1xx
Treated as WIMG equals ‘0111’, for loads

Treated as WIMG equals ‘011x’, for stores

x0x1 Treated as WIMG equals ‘0011’

x0x0 Treated as WIMG equals ‘0010’



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Memory Management
Page 122 of 415

Version 2.3
March 7, 2008

These instructions allow software to associate effective segments 0 through 15 with any of the virtual 
segments 0 through 237-1. SLB entries 0 - 15 serve as virtual Segment Registers, with SLB entry i used to 
emulate Segment Register i. The mtsr and mtsrin instructions move 32 bits from a selected general purpose 
register (GPR) to a selected SLB entry. The mfsr and mfsrin instructions move 32 bits from a selected SLB 
entry to a selected GPR. 

5.2 Real Addressing Mode 

If address translation is disabled (MSR[IR] equals ‘0’ or MSR[DR] equals ‘0’) for a particular access, the effec-
tive address is treated as the physical address and is passed directly to the memory subsystem. These MSR 
bits are forced to ‘1’ when running in user mode.

The WIMG bits for storage access in real addressing mode are determined as follows. The W and M bits are 
not supported in the 970MP microprocessor, and are considered to always have values of W equals ‘0’ and M 
equals ‘1’. The G bit is always asserted in real addressing mode. For data accesses, bit 23 of Hardware 
Implementation-Dependent Register 4 (HID4[23]) determines the value of the I bit in real addressing mode. 
For instruction accesses, HID1[10] can be used to force the value of the I bit to '1', although this value applies 
to address translation mode as well as to real addressing mode.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Software Optimization Guidelines
Page 123 of 415

6. Software Optimization Guidelines

This section highlights some 970MP microprocessor characteristics and conditions that should be considered 
when developing software. 

6.1 Design Characteristics 

The 970MP microprocessor has long pipelines with the following characteristics:

• There are six cycles from the instruction fetch to dispatch (dispatch is the sixth cycle).

• Complex instructions are broken down into sequences of simple internal operations.

• Some instructions stall in dispatch until certain interlocks are released.

– The primary interlock is called the “non-rename scoreboard” bit.

– Only one scoreboard bit exists for all scoreboarded resources.

– Instructions that write a non-renamed resource set the non-rename scoreboard bit when dispatched 
and reset this bit when complete.

– All SPRs are scoreboarded except: LR, CTR, and the following bits in XER: CA, OV.

– Instructions that use or read from the non-renamed registers stall in the dispatch unit until the flag 
clears. 

• Instructions that set the scoreboard also typically end a dispatch group and are completion serialized 
(wait until next-to-complete before eligible for execution).

• Dispatch receives groups, which are a unit of tracking.

– Up to 20 groups active after dispatch (80 - 100 PowerPC instructions).

– Four to seven cycles from dispatch to finish.

The 970MP microprocessor has multiple execution units:

• Two load/store units (LSU)

• Two floating-point units (FPU)

• Two fixed-point units (FXU) (that are symmetric except that FX1 does divides and FX0 does SPR access)

• One branch unit (BRU)

• One condition register unit (CRU)

The 970MP microprocessor utilizes out-of-order execution:

• Execution is in-order until dispatch has placed instructions into issue queues.

• Instructions issued from queues to execution units are out-of-order.

• Instructions complete in order.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Software Optimization Guidelines
Page 124 of 415

Version 2.3
March 7, 2008

The 970MP microprocessor has the following load/store unit characteristics:

• Complicated loads and stores are broken up by decode unit.

– lmw and stmw are converted to a stream of single-register loads and stores. String instructions gen-
erate a similar stream, except that X-form string instructions cause generation of internal operations 
to read the byte count field from the XER, causing a dispatch stall if the XER setting instruction has 
not executed.

• Problems are handled by flush, refetch group, or dispatch as single-instruction groups.

• Loads that are dependent on a store in the same group cause a flush if forwarding is not possible. This is 
because the load must wait until the store has updated the cache, but the cache update must be non-
speculative and can only be done after the store completes. Completion is done on a group basis, and 
can only be done when all internal operations (IOPs) in the group have finished. Therefore, the entire 
group is flushed. When decoded, the load is forced into a separate group.

• Any load with data that crosses a 64-byte boundary (32-byte boundary if a load misses in the L1 cache) 
causes flush and microcode expansion. If the offending load is an IOP generated by the microcode 
expansion of a string instruction, the entire PowerPC  instruction is flushed and re-expanded such that 
each register’s data is processed by two loads/stores and a merge.

• Loads dependent upon a store, but executed early (load executes before store), cause a flush.

• Flush and refetch costs about 20 cycles. Misaligned loads usually are flushed twice; once to get the load 
isolated in a dispatch group, and the second time to generate the microcoded sequence of IOPs to fetch 
the data and splice it together.

• The data prefetch engine can prefetch eight active streams. 

The 970MP microprocessor uses the following memory hierarchy for data:

• The L1 data cache is a 32 Kb, 128-byte line with a 2-cycle latency.

– The L1 D-cache is store-through.

– A store miss in the L1 data cache does not establish a line in the L1 D-cache.

– Cache reloads are 32 bytes per cycle.

• The L2 cache is a 1 Mb, 128-byte line.

The 970MP microprocessor decode unit has the following features:

• Processes a stream of PowerPC instructions and forms dispatch groups.

– Branches always force an end of current group. 

– Some instructions are forced to be first in a group. For example: divw, CR logical.

• Cracking generates two IOPs from one PowerPC instruction. For example:

– All update forms (load/store + add(i) to update register)

– X-form fixed-point stores (add + store)

– Load algebraic (load + extend sign)

– Many record forms (basic arithmetic + compare immediate)

– Fixed-point divides

– All CR-logicals except destructive forms (rD = rB)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Software Optimization Guidelines
Page 125 of 415

– Both IOPs of the cracked instruction must be in the same group. This forces the cracked pair to start 
a new group if the original instruction was last in the previous group (and there was no room for the 
second IOP).

• Microcode: generate three or more IOPs from a single PowerPC instruction.

– Microcoded instructions generate one or more groups, thus forcing an end of the previous group. 
For example:

• lmw and lswi (all multiples and string instructions)

• mtcrf (more than one target field)

• mtxer and mfxer

• Some instructions are forced to be first in a group. For example:

– Fixed-point divide (also cracked)

– addc/subfc (also cracked)

– mtspr/mfspr (to satisfy FX0/LSU0/CRU execution requirement)

– CR-logicals (can also be cracked)

The instruction fetch unit (IFU) has the following characteristics:

• Fetches are aligned on 8-word blocks

• It takes three cycles to redirect a fetch from Next-Sequential. For example, there are two dead cycles 
between the last fetch of a block containing a branch and fetching the branch target.

• The fetcher cannot handle a new fetch block until all branches in the current block have been recorded in 
the branch instruction queue (BIQ) for future resolution. Only branches between the branch target 
address and the end of the block are significant. These branches are recorded two per cycle, so the max-
imum time required is four cycles.

Branch prediction has the following characteristics:

• Predicts both direction (conditional) and address (to Link or Count).

• Highly accurate (95%) for most codes.

• Accuracy can be improved with hint bits.

• About 11 cycles are needed to correct a wrong guess.

• Replacing conditional branches with alternative code is likely to be a win (some fixed-point maximum, 
minimum, select).

Dispatch, issue, and issue queues have the following characteristics:

• Dispatch performs register renaming (mapping), scoreboard dependency checking, and distribution to 
correct the issue queue.

• Six instruction queues

– FPQ0 (10 IOPs) feeding FPU0
– FPQ1 (10 IOPs) feeding FPU1
– FXQ0 (18 IOPs) feeding FXU0 and LSU0
– FXQ1 (18 IOPs) feeding FXU1 and LSU1
– BRQ (12 IOPs)
– CRQ (10 IOPs)



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Software Optimization Guidelines
Page 126 of 415

Version 2.3
March 7, 2008

• There is a fixed relationship between the dispatch group slot and the target instruction queue.

– Slot 0: FPQ0, FXQ0, CRQ
– Slot 1: FPQ1, FXQ1, CRQ
– Slot 2: FPQ1, FXQ1
– Slot 3: FPQ0, FXQ0
– Slot 4: BRQ

• In addition, the FX, FP, and CR queues are subdivided into even and odd subqueues. The attached exe-
cution units can obtain IOPs from either subqueue, but IOPs always stay in the subqueue to which they 
were initially dispatched. Each subqueue has half the total capacity of the queue. Thus:

– Slot 0: FXQ0-O or FPQ0-O or CRQ-O 
– Slot 1: FXQ1-O or FPQ1-O or CRQ-E
– Slot 2: FXQ1-E or FPQ1-E
– Slot 3: FXQ0-E or FPQ0-E

• IOPs are issued from the queues when all operands are ready, and there is an execution unit available; 
IOPs can be issued the next cycle after dispatch.

• Dependent IOPs cannot be issued back-to-back. That is, dependent instructions can be issued only 
every other cycle (assuming that they execute in one cycle)

• IOPs can be artificially serialized by being dispatched to the same FX queue. Thus, suboptimal schedul-
ing might cause underutilization of one of two symmetric execution units.

6.2 Software Considerations for the 970MP Microprocessor

Software for the 970MP microprocessor needs to consider the following conditions:

• XER has non-renamed fields.

• X-form string instructions are slowed down; therefore, it is best to avoid these instructions.

• mtxer drains the functional units. 

• SPRs are not renamed except for CTR, LR, and some XER fields. Referencing non-renamed SPRs 
causes pipeline drain.

• There is a scoreboard interlock between an mtspr and the next subsequent mfspr such that the mfspr is 
held in the dispatch until the scoreboard goes off (when the last mtspr completes).

• The mtsr instruction is not recommended, because it is scoreboarded and forces execution serialization.

• The L1 data cache is write-through, and stores the miss in the L1 cache that does not establish the line in 
the L1 cache, but establishes only the line in the L2 cache.

• Loads dependent upon previous stores can be slow, and can trigger a flush and refetch. They should be 
scheduled, so that they are dispatched in separate groups.

• Store forwarding: If the store data is in the store-reorder queue (SRQ), then the data can be forwarded to 
the load (as if the load hit the L1 cache).

This is possible only when the data loaded is completely contained in the data from the store. 
For example: 

– lw following an stw to the same address

– lh following an stw to the same address



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Software Optimization Guidelines
Page 127 of 415

– lbz from any byte in the word stored by an stw

– lw from one of the words stored by an stfd

If the bytes loaded overlap the bytes stored, then no forwarding can be done, and the load appears to 
stall until the store data has been written to the cache. For example: 

– lfd following an stw

– lw following an sth to the same address

If the store and load are in the same dispatch group, then a flush and refetch is done so that they will be 
in different groups to permit completion of the store.

If the load executes before the store address is computed, a flush and refetch occurs. The first 
re-executed instruction is the “load/next” after the store. To prevent this, schedule the dependent load 
four instructions (or more) after the store.

• Because instructions are tracked internally in groups, dependent instructions must be arranged so that 
they are in separate groups. This minimizes the length of time the individual instructions are in the execu-
tion section of the machine.

• Use instructions that minimize cracking or microcode expansion. This maximizes utilization of the dis-
patch buffer. For example:

– Use update forms, which are always cracked, if the cracked pair does not cause early group termina-
tion. Using update forms helps to reduce the code footprint in the instruction cache.

– Do not use X-form fixed-point stores (always cracked and sometimes microcoded)

• The granularity of reservations (lwarx/stwcx.) is the data cache line, which is 128 bytes.

– Any store by another processor to the same cache line causes the reservation to be lost.

– Atomically updated variables should be carefully placed, because the atomic-update sequences treat 
the variable as a reservation cell.

– Lock cells and atomically updated variables must be the sole occupant of a cache line. Read-only 
data in same line is refetched from other L2 if any datum has been modified.

• Instructions are fetched from the I-cache in aligned 8-word blocks.

– Branch targets must be aligned on 8-word (32-byte) boundaries, where feasible. At a minimum, they 
must be aligned on a 4-word (16-byte) boundary, to maximize fetch and decode efficiency.

• Use mfspr(sprg0) as a high performance method to validate privileged mode. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Software Optimization Guidelines
Page 128 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Signal Description
Page 129 of 415

7. Signal Description

This chapter describes the external signals of the 970MP microprocessor. It contains a concise description of 
individual signals, showing behavior when the signal is asserted and negated and when the signal is an input 
and an output. 

Note:  A bar over a signal name indicates that the signal is active low. For example, CHKSTOP (checkstop 
in/out) and BYPASS (PLL bypass). Active-low signals are referred to as asserted (active) when they are low 
and negated when they are high. Signals that are not active low, such as ADIN[0:43] (address bus signals) 
are referred to as asserted when they are high and negated when they are low.

The 970MP microprocessor signals are grouped as follows:

• Processor interface—These signals are used to transfer address, data, and control information between 
the 970MP microprocessor and a companion chip to provide coherent access to memory and access to 
memory-mapped I/O.

• Processor status and control—These signals are used to monitor and provide external control of various 
processor facilities, including the external bus and power management.

• Clock control—These signals determine the system clock frequency. They can also be used to synchro-
nize multiprocessor systems.

• Interrupts/resets—These signals include the external interrupt signal, checkstop1 signals, and both soft 
reset and hard reset signals. They are used to interrupt and to reset the processor under various condi-
tions. 

• Debug/test interface—The debug/test interface provides a serial interface to the system for performing 
debug, bring-up, and manufacturing tests. The JTAG (IEEE 1149.1a-1993) interface and the inter-inte-
grated circuit (I2C) interface provide a serial interface to the system for performing board-level boundary-
scan interconnect tests.

1. Hardware has detected a condition that it cannot resolve and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Signal Description
Page 130 of 415

Version 2.3
March 7, 2008

7.1 Signal Configuration

Figure 7-1 illustrates the configuration of the 970MP microprocessor signals, showing how the signals are 
grouped. A pinout showing pin numbers is included in the IBM PowerPC 970MP RISC Microprocessor 
Datasheet. 

Figure 7-1. 970MP Microprocessor Signal Groups 

ADOUT[0:43]

SYSCLK/SYSCLK

CP0_INT

2

44

CLKIN/CLKIN
2

TBEN

2CLKOUT/CLKOUT

CP1_INT

CP1_HRESET

CP0_HRESET

1

1

1

1

1

1
Interrupts/

Clock

Debug/Test
Interface

ADIN[0:43]
44

1

PLL_RANGE[0:1]

970MP
Processor

PLL_LOCK

1

PLL_MULT

1

ATTENTION1

AVDDOVDD

1

BYPASS

CHKSTOP

EI_DISABLE
1

3

PROCID[0:1]

2

PSYNC

2

2
SROUT[0:1]

SRIN[0:1]

2
SRIN[0:1]

2SROUT[0:1]

BUSCFG[0:2]

3

1

CKTERM_DIS

CP1_QREQ

1

DEBUG/TEST
28

CP1_QACK

1
TRIGGEROUT

Status/

Reset

1

V0

I2C4

JTAG5

Control

Control

Processor
Interface

MCP

CP1_SRESET

CP0_SRESET

1

1

1

CP0_QREQ

CP0_QACK

1

1

V1



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Signal Description
Page 131 of 415

7.2 Signal Descriptions

This section describes individual signals on the 970MP microprocessor, which are grouped as shown in 
Figure 7-1 970MP Microprocessor Signal Groups on page 130. In the following section, “cycle” or “clock” 
refers to a single bus clock period, which can correspond to one or more internal processor clocks depending 
on the clock mode programmed for the 970MP microprocessor.

Note:  In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is dis-
abled, and the bus mode is set to whatever bus mode is selected. This mode is intended for factory use only. 

7.2.1 Processor Interface

The processor interface provides a high-speed, source-synchronous, point-to-point connection between the 
970MP microprocessor and a companion chip. It consists of two unidirectional sets of signals, one to carry 
outgoing information from the 970MP microprocessor, the other to carry incoming information to the 970MP 
microprocessor. Each of these two sets of signals consists of a 44-bit bus to transfer logical data with redun-
dancy, a differential clock (two signals), and a 2-bit differential snoop response (four signals). 

Chapter 8 provides detailed information about the format and timing of these signals as they are used in the 
processor interconnect protocol implemented in the 970MP microprocessor.

7.2.1.1 Address/Data In (ADIN[0:43])–Input

The address/data input signals carry address, data, and control information from the companion chip to the 
970MP microprocessor. The 44 bits of ADIN carry 36 bits of address/data (AD) and transfer-handshake (TH) 
information plus 8 bits of redundancy. 

There are two defined formats for encoding the 36 AD and TH signal lines onto the 44 source-synchronous 
bus (SSB) signal lines (see Figure 7-2 Encoding and Selection Logic for the Drive Side of a 970MP Intercon-
nect SSB on page 132). The first format exploits a balanced coding method (BCM) to maintain an equal 
number of zeros and ones on the signal lines. During any valid state of the bus, exactly 22 of the signals lines 
are high and 22 are low. The BCM advantage is that it dramatically improves the signal-to-noise robustness 
of the bus for high-speed operation at the cost of a few extra signal lines. The BCM can inherently detect a 
single bit error from any of the 44 signal lines. 

The second mode uses 36 of the 44 SSB signal lines for the data transfer. The remaining eight SSB signal 
lines are used to encode an 8-bit parity value that has sufficient redundancy to detect up to two bit errors 
across any of the 44 SSB signal lines and correctly identify the bit position of any single bit error. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Signal Description
Page 132 of 415

Version 2.3
March 7, 2008

Timing: The processor interface is source synchronous, meaning that the same clock that launches data on 
the sending end is transferred with the data and used at the receiving end to capture the data. The interface 
is run in double data rate (DDR) fashion, with a data transfer on every rising and falling edge of the clock. 
Because there is no arbitration on this interface, valid data can be transferred on any clock edge. ADIN uses 
CLKIN as its reference.

7.2.1.2 Snoop Response In (SRIN[0:1], SRIN[0:1])–Input

The snoop-response input signals carry a 2-bit code from the companion chip to the 970MP microprocessor, 
indicating the coherency response of the system to an earlier command sent on the ADOUT bus. SRIN and 
SRIN represent a differential pair, such that SRIN carries the snoop response in an asserted high signal level 
at the same time that SRIN carries the same snoop response in an asserted low signal level.

Timing: Same as ADIN.

7.2.1.3 Clock In (CLKIN/CLKIN)–Input 

The CLKIN signal originates in the companion chip and is sent synchronously with the data (ADIN and SRIN) 
for use in data capture at the receivers in the 970MP microprocessor. This clock is transmitted as a differen-
tial pair.

Timing: The clock in signal is derived from the on-chip PLL on the companion chip and synchronized to the 
psync signal, which provides a periodic global reference event. During the initial alignment procedure (IAP) 
for the processor interface, a rising edge of the clock in signal is identified as corresponding to time zero. 
Every other rising edge thereafter is a time zero, delimiting the basic unit of time on the bus, in which four 
beats of data can be transferred.

Figure 7-2. Encoding and Selection Logic for the Drive Side of a 970MP Interconnect SSB 

In BCM mode, the 36 inputs are partitioned between two 18-bit balanced code (BC) encoders. In the alternate mode, the 36 
bits pass straight through and 8 parity bits are added to the output. A select signal line, called APsel, is programmed through 
the I2C interface to select which mode is used.

AD

THS

35

1

18
18:22

BC

18:22
BC

CHK

18

36

22

22

36

8

44

44

44

APsel



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Signal Description
Page 133 of 415

7.2.1.4 Address Data Out (ADOUT[0:43])–Output

The address/data output signals carry address, data, and control information from the 970MP microprocessor 
to the companion chip. The 44 bits of ADOUT carry 36 bits of address/data (AD) and transfer-handshake 
(TH) information plus 8 bits of redundancy, similarly to ADIN.

Timing: Same as ADIN, except that ADOUT uses CLKOUT as its reference.

7.2.1.5 Snoop Response Out (SROUT[0:1], SROUT[0:1])–Output

The snoop-response output signals carry a 2-bit code from the 970MP microprocessor to the companion 
chip, indicating the coherency response of the processor to an earlier reflected command sent on the ADIN 
bus. SROUT and SROUT represent a differential pair, such that SROUT carries the snoop response in an 
asserted high signal level at the same time that SROUT carries the same snoop response in an asserted low 
signal level.

Timing: Same as ADOUT.

7.2.1.6 Clock Out (CLKOUT/CLKOUT)–Output

The clock out signal originates in the 970MP microprocessor and is sent synchronously with the data 
(ADOUT and SROUT) for use in data capture at the receivers in the companion chip. This clock is transmitted 
as a differential pair.

Timing: The clock out signal is derived from the on-chip PLL on the 970MP microprocessor and synchronized 
to the psync signal, which provides a periodic global reference event. During the IAP for the processor inter-
face, a rising edge of the clock out signal is identified as corresponding to time zero. Every other rising edge 
thereafter is a time zero, delimiting the basic unit of time on the bus, in which four beats of data can be trans-
ferred. 

7.2.2 Processor Status and Control

7.2.2.1 Quiescent Request (CP0_QREQ and CP1_QREQ)–Output

The CP0_QREQ and CP1_QREQ signals, along with CP0_QACK and CP1_QACK, are used for power 
management on the 970MP microprocessor. The QREQ signals have two distinct uses. When a frequency 
shift procedure in the power tuning facility is not in progress, assertion of CP0_QREQ for PU0 (CP1_QREQ 
for PU1) indicates that the 970MP processing unit has entered Doze mode, and is prepared to go into Nap (or 
Deep Nap) mode. This signal remains asserted until the 970MP processing unit returns to Run mode.

When a frequency shift procedure in the power tuning facility is in progress, assertion of CP0_QREQ for PU0 
(CP1_QREQ for PU1) indicates that the 970MP processing unit is prepared to perform the frequency shift 
itself. This signal remains asserted until the 970MP processing unit has completed the frequency shift proce-
dure. See Chapter 9 for more information about frequency shifting in the power tuning facility.

Timing: The CP0_QREQ and CP1_QREQ signals can be asserted or negated by the processor at any time.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Signal Description
Page 134 of 415

Version 2.3
March 7, 2008

7.2.2.2 Quiescent Acknowledgment (CP0_QACK and CP1_QACK)–Input 

The CP0_QACK and CP1_QACK signals, along with CP0_QREQ and CP1_QREQ, are used for power 
management on the 970MP microprocessor. The QACK signals have two distinct uses. When a frequency 
shift procedure in the power tuning facility is not in progress, assertion of CP0_QACK for PU0 (CP1_QACK 
for PU1) indicates that all bus activity that requires snooping has stopped, and that the 970MP processing 
unit can enter Nap (or Deep Nap) mode. This signal must be negated whenever bus activity requiring 
snooping is resumed, or the 970MP processing unit negates QREQ.

When a frequency shift procedure in the power tuning facility is in progress, assertion of CP0_QACK and 
CP1_QACK indicates that the rest of the system is prepared to perform the frequency shift itself. This signal 
remains asserted until the companion chip has completed the frequency shift procedure. See Chapter 9 for 
more information about frequency shifting in the power tuning facility.

Timing: The CP0_QACK signal for PU0 (CP1_QACK signal for PU1) is asserted in response to assertion of 
the CP0_QREQ signal by PU0 (CP1_QREQ signal by PU1). It can be asserted any time QREQ is asserted, 
and can be negated at any time.

7.2.2.3 Time-Base Enable (TBEN)–Input 

The TBEN input signal can be used in one of two ways, as determined by the value of HID0[19]. When 
HID0[19] equals ‘0’, the Time-Base Register is incremented and the Decrementer Register is decremented at 
1/16th of the full processor frequency whenever TBEN is asserted. These two timer registers maintain their 
value when TBEN is negated in this mode.

When HID0[19] equals ‘1’, the Time-Base Register is incremented and the Decrementer Register decre-
mented on every rising edge of the TBEN input signal. In this externally clocked mode, the TBEN frequency 
must not exceed 1/16th the full processor frequency in order to guarantee sufficient sampling of this external 
signal.

Timing: The TBEN input is asynchronous to the SYSCLK and processor clocks, and can change at any time, 
subject to the previously stated frequency restriction.

7.2.2.4 Processor ID (PROCID[0:1])–Input

The 2-bit processor ID is used to assign unique IDs to the two 970MP processing units in a system that can 
have up to eight processors. The PROCID signals are sampled during power-on reset, and the 2-bit value is 
placed in the second and third lowest-order bits of the Processor ID Register (PIR) of each processing unit. 
The lowest-order PIR bit is hardwired to a '0' for PU0 and to '1' for PU1.

Timing: These signals should be permanently tied to VDD or GND, as appropriate for the required ID value.

7.2.2.5 Bus Configuration Select (BUSCFG[0:2])–Input

The 3-bit BUSCFG input encodes the processor clock to bus clock ratio. It is used to select the appropriate 
clock dividers in the 970MP microprocessor in order to generate the required bus clock frequency. Note that 
not all encodes work with the power tuning facility (see Chapter 9 for more information). The interpretation of 
the BUSCFG values can be found in the IBM PowerPC 970MP RISC Microprocessor Datasheet.

Timing: These signals should be permanently tied to VDD or GND, as appropriate for the required bus config-
uration value. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Signal Description
Page 135 of 415

7.2.2.6 PLL Locked (PLL_LOCK)–Output

The PLL_LOCK signal is asserted when the PLL has achieved lock, or when running in bypass mode. The 
signal is negated otherwise. 

Timing: The PLL_LOCK signal can change at any time. The initial maximum latency for the PLL to achieve 
lock is specified in the IBM PowerPC 970MP RISC Microprocessor Datasheet. 

7.2.2.7 Clock Receiver Termination (CKTERM_DIS)–Input 

The CKTERM_DIS signal allows the internal termination on the SYSCLK and SYSCLK signals to be 
disabled. When CKTERM_DIS is negated, the clock in signals are terminated. When the CKTERM_DIS 
signal is asserted, the termination of the clock in signals is removed from the receiver circuit.

Timing: This signal should be permanently tied to VDD or GND, as appropriate for the required clock configu-
ration.

7.2.3 Clock Control

7.2.3.1 System Clock (SYSCLK/SYSCLK)–Input

The SYSCLK inputs provide the reference clock from which the on-chip PLL develops the processor mesh 
clock, as well as the bus clock. The system clock is provided to the processor as a differential pair. The mesh 
clock frequency is determined by this reference clock and the value of the PLL_MULT input. The bus clock 
frequency is determined by the mesh clock frequency and the value of the BUSCFG input. See the IBM 
PowerPC 970MP RISC Microprocessor Datasheet for the correspondence between these inputs and the 
clock frequency ratios.

Timing: See the IBM PowerPC 970MP RISC Microprocessor Datasheet for clock specifications.

7.2.3.2 Phase Synchronization (psync)–Input

The psync signal provides a synchronization pulse to all processors and companion chips in the system, 
providing the basis for identifying a periodic time zero event in each chip. 

Timing: See the IBM PowerPC 970MP RISC Microprocessor Datasheet for clock specifications.

7.2.3.3 PLL Bypass (BYPASS)–Input

The BYPASS signal indicates to the processor that the system clock input should be fed directly to the PLL 
output, bypassing the PLL. This mode of clocking the processor can be used for debugging.

Timing: To bypass during debug, this signal should be tied to GND.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Signal Description
Page 136 of 415

Version 2.3
March 7, 2008

7.2.3.4 PLL Multiplier (PLL_MULT)–Input

The PLL_MULT signal is used to specify the ratio of the full processor mesh frequency to the system clock 
frequency. See the IBM PowerPC 970MP RISC Microprocessor Datasheet for the correspondence between 
the value of this signal and the clock ratio.

Timing: This signal should be permanently tied to VDD or GND, as appropriate to the required clock configura-
tion. 

7.2.3.5 PLL Range Select (PLL_RANGE[0:1])–Input

The PLL_RANGE signal is used to identify the required frequency range of the processor mesh clock. See 
the IBM PowerPC 970MP RISC Microprocessor Datasheet for the correspondence between the value of this 
signal and the required frequency range.

Timing: This signal should be permanently tied to VDD or GND, as appropriate to the required clock configura-
tion. 

7.2.4 Interrupts and Resets

Most system status signals are input signals that indicate when exceptions are received, when checkstop 
conditions have occurred, and when the 970MP microprocessor must be reset. 

7.2.4.1 Interrupt (CP0_INT and CP1_INT)–Input 

The CP0_INT and CP1_INT signals provide a means for raising an external interrupt. This exception can be 
masked by the MSR[EE] bit. When MSR[EE] equals ‘0’, the processing unit will not respond to the assertion 
of INT.

7.2.4.2 Machine Check Interrupt (MCP)–Input 

The MCP signal provides a means for raising a machine check exception. This exception can be masked by 
two control bits. If HID0[32] equals ‘0’, the assertion of MCP is ignored. If HID0[32] equals ‘1’, and MSR[ME] 
equals ‘1’, machine checks are enabled, and the assertion of MCP will result in a machine check exception 
being taken. If HID0[32] equals ‘1’, and MSR[ME] equals ‘0’, machine checks are disabled, and the assertion 
of MCP will cause the processor to enter the checkstop state.

Timing: This signal can be asserted at any time, asynchronously to the system clock. Once asserted, the 
MCP signal must remain asserted for at least two bus clock cycles to ensure that it is recognized.

7.2.4.3 Checkstop (CHKSTOP) –Bidirectional

The checkstop signal is both an input and an output signal on the 970MP microprocessor.

Checkstop (CHKSTOP) –Input

The checkstop input signal provides a means for external initiation of a checkstop. 

Timing: This signal can be asserted at any time, asynchronously to the system clock. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Signal Description
Page 137 of 415

Checkstop (CHKSTOP) –Output

The checkstop output signal indicates that the processor has entered the checkstop state.

Timing: This signal can be asserted at any time.

7.2.4.4 Hard Reset (CP0_HRESET and CP1_HRESET)–Input 

The CP0_HRESET signal provides a means for resetting PU0 and initiating the power-on-reset sequence for 
PU0. The CP1_HRESET signal provides a means for resetting PU1 and initiating the power-on-reset 
sequence for PU1.

Timing: This signal can be asserted at any time, asynchronously to the system clock. 

7.2.4.5 Soft Reset (CP0_SRESET and CP1_SRESET)–Input 

The CP0_SRESET and CP1_SRESET signals provide a means for external initiation of the soft (or warm) 
reset. When CP0_SRESET is asserted, the PU0 responds by taking a system reset exception. When 
CP1_SRESET is asserted, the PU1 responds by taking a system reset exception.

Timing: This signal can be asserted at any time, asynchronously to the system clock. 

7.2.5 Debug/Test Interface

7.2.5.1 Attention (ATTENTION)–Output

ATTENTION is an output signal from the 970MP microprocessor to the JTAG debugger, used in debug 
mode. I2C SCOM commands are sent directly to PSCOM and do not go through the JTAG TAP engine. 
Therefore, when Attention is active, a SCOM read/write command will not be acknowledged with the standard 
I2C acknowledgment (ACK) pulse because it is not a primitive test access port (TAP) command.1

7.2.5.2 Processor Interface Disable (EI_DISABLE)–Input

Turns off elasticity in the processor interface bus. 

7.2.5.3 Trigger Out (TRIGGEROUT)–Output

TRIGGEROUT is an output signal used to indicate that internal trace collection has begun. 

7.2.5.4 JTAG Signals

The IEEE 1149.1 defines a five-wire interface called a test access port (TAP) for communicating with the 
boundary scan architecture. The five JTAG signals are: TDI, TDO, TMS, TCK, and TRST. 

1. Primitive TAP commands are those that scan the IR or DR in the JTAG engine. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Signal Description
Page 138 of 415

Version 2.3
March 7, 2008

Test Clock (TCK)–Input

TCK is a JTAG test clock, which is separate from the system mesh clock. The TCK only controls the test 
access port functions (20 or 30 latches). SYSCLK must always be active to control the interfaces. The rising 
edge causes TMS and TDI to be sampled by the Access macro. 

Test Data In (TDI)–Input

TDI is a JTAG serial input used to feed test data and test access port instructions. 

Test Data Out (TDO)–Output

TDO is a JTAG serial output used to extract data from the chip under test control. 

Test Mode Select (TMS)–Input

TMS is a JTAG select signal used to control the operation of the JTAG state machine. The value of TMS 
during a rising edge of TCK causes a state transition in the TAP controller. 

Test Logic Reset (TRST)–Input

TRST is an asynchronous JTAG signal used to reset the JTAG state machine. The TRST signal ensures that 
the JTAG logic does not interfere with the normal operation of the chip. The HRESET signal performs the 
function of TRST internally. 

7.2.5.5 I2C Signals

The 970MP I2C bus conforms to the standard-mode timing specification and does not support high-speed or 
fast-mode timing. The 970MP microprocessor has the following I2C signals:

• I2C Signal Clock (I2CCK)–I2C signal clock is both an input and output signal pin.

• I2C Interface Data (I2CDT)–I2C interface data is both an input and output signal pin.

• I2C Interface Go (I2CGO)–I2CGO is an asynchronous, open-drain output signal used to prevent access 
collisions between JTAG and I2C. If the level of the interface is low, only JTAG should access the 970MP. 
I2C can use the interface if the level is high. 

• I2C Select (I2CSEL)–I2CSEL controls the use of the mutually exclusive I2C or JTAG bus. When asserted, 
the I2C bus can be used. Otherwise, the JTAG bus can be used.

7.2.6 Voltage and Ground

The 970MP microprocessor provides the following connections for power and ground:

• OVDD—The OVDD signal provides the supply voltage connection for the drivers and receivers.

• AVDD—AVDD is a power signal that drives the analog sections of the PLL. See the IBM PowerPC 970MP 
RISC Microprocessor Datasheet for information about how to use this signal.

• V0—The V0 (VDD) signal provides the supply voltage connection for processor core 0 and the common 
logic. 

• V1—The V1 (VDD) signal provides the supply voltage connection for processor core 1. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 139 of 415

8. Processor Interconnect Bus

The IBM PowerPC 970MP RISC Microprocessor Processor Interconnect is a bus architecture providing high-
speed, high-performance interconnections for processors, I/O devices, memory subsystems, and bridge 
chips. This bus architecture provides a forward-looking, general use, yet cost-effective solution for designing 
high-performance IBM PowerPC systems.

At the heart of the processor interconnect bus is a set of unidirectional, point-to-point bus segments, a new 
design selected to achieve maximum data transfer rates. The bus segments include two 35-bit address/data 
segments (one in each direction), two 1-bit transfer-handshake segments, and two 2-bit snoop-response 
segments. New features include: 

• Pipelined transactions for reading and writing data and maintaining cache coherency

• Packet protocols for data sharing, data synchronization, and cache snooping

• True split transactions, enabling the master and slave to simultaneously conduct different transactions 
with each other

• Wave pipelining to exploit maximum data bandwidth at the electrical interface 

The unidirectional segments are the basis for supporting the features previously listed. These buses are 
point-to-point connections, carry their own local clock signal (source synchronous), and require no arbitration. 
Error detection mechanisms exist for all bus segments. 

There are many possible configurations that incorporate different numbers of processors, I/O interfaces, and 
memory bandwidth, and meet different speed, cost, and power requirements. Figure 8-1 shows an example 
of a configuration with two 970MP microprocessors. 

The remainder of this section specifies the processor interconnect architecture targeting a dual processor, 
dual-ported North Bridge configuration, as shown in Figure 8-1. Using two processor interconnect ports on 
the North Bridge enables direct connection of two 970MP microprocessors. 

Figure 8-1. Processor Interconnect Bus Configuration with Two 970MP Microprocessors 

970MP 970MP

North Bridge

PI 1 PI 2

1 2



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 140 of 415

Version 2.3
March 7, 2008

8.1 Overview

The processor interconnect bus consists of a set of unidirectional, point-to-point bus segments for maximum 
data transfer rates. No bus-level arbitration is required. An address/data (AD) bus segment, a transfer-hand-
shake (TH) bus segment, and a snoop-response (SR) bus segment exist in each direction, outbound and 
inbound. Figure 8-2 shows two 970MP microprocessors connected to a North Bridge using two processor 
interconnect buses.

This section frequently uses the terms “packet,” “beat,” “master,” and “slave.” The usage conventions of these 
terms are as follows:

• Data is transferred across a bus in beats from master to slave. A beat is a timing event relative to the ris-
ing or falling edge of the clock signal. Nominally there are two beats per clock cycle (one for the rising 
edge and one for the falling edge). 

• A packet is the fundamental protocol data unit for the processor interconnect bus. A non-null packet con-
sists of an even number of data elements that are sequentially transferred across a source-synchronous 
bus at the rate of one element per bus beat. The number of bits in each data element equals the width of 
the bus. Packets are used for sending commands, reading and writing data, maintaining distributed cache 
coherency, and transfer-protocol handshaking.

• A sender or source of packets for a bus segment is called a master and a receiver or recipient is called a 
slave. For example, on an outbound processor bus segment, the North Bridge is the slave and the pro-
cessor is the master. On an inbound processor bus segment, the North Bridge is the master and the pro-
cessor is the slave.

Figure 8-2. Two Microprocessors Connected to a North Bridge 
 

North Bridge (includes Memory Controller and I/O Interfaces)

970MP 970MP

35 1 35 1 2 2 35 1 35 1 2 2

ADO THI ADI THO SRO SRI ADO THI ADI THO SRO SRI

1 2



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 141 of 415

8.1.1 Packets

Four basic packet types are defined: null packets, command packets, data packets, and transfer-handshake 
packets. Non-null packet lengths are always an even number of beats.

Null packets are sent across the address/data bus. For the null packet, all bits are zero. Null packets are 
ignored by slave devices. 

Command packets are sent across the address/data bus. There are three types of command packets: read-
command packets, write-command packets, and coherency-control packets. 

Data packets are also sent across the address/data bus. There are two types of data packets: read-data 
packets and write-data packets. A write-data packet immediately follows a write-command packet. A read-
data packet is sent in response to a read-command packet or a cache-coherency snoop operation. A data 
read header contains the address of the command, the command type, and transfer details. 

Transfer-handshake packets are sent across the transfer-handshake bus. This packet is issued to confirm 
receipt and indicate the condition of the received command packet or data packet. Condition encoding 
includes Acknowledgment, Retry, Parity Error, or Null/Idle. A transfer-handshake packet is two beats in 
length. 

See Section 8.2 Packet Transfer Protocol on page 147 for a detailed description of these four packet types. 

8.1.2 Bus Segments

An AD bus segment, a TH bus segment, and an SR bus segment exist in each direction, outbound and 
inbound. Table 8-1 and the following subsections further describe these signals. 

8.1.2.1 Address/Data Bus Segment

The address/data bus is used to transfer both command packets (containing control information) and data 
packets (containing the data to be transferred). The address/data bus consists of one 35-bit outbound 
address/data (ADO) bus segment and one 35-bit inbound address/data (ADI) bus segment. 

Commands are issued to the bus as 2-beat packets. A read-data packet consists of a 2-beat header followed 
by the data payload. The number of beats issued with a data transfer depends on the size of the total 
transfer. Data payload is issued to the bus in even multiples of 4-byte wide data beats. Included in the packet 
is a bit for special system support and a data error bit.   

Table 8-1. Processor Interconnect Signal Description  

Signal Names Signal Lines Mnemonic Description

Address/Data Out 35 ADO Address or data and control information

Transfer Handshake Out 1 THO Acknowledgment packet for command and data packets received on the 
address/data in bus

Snoop Response Out 2 SRO Snoop coherency response from the processor

Address/Data In 35 ADI Address or data, and control information

Transfer Handshake In 1 THI Acknowledgment packet for command and data packets received on the 
address/data out bus

Snoop Response In 2 SRI Accumulated snoop coherency response from the North Bridge



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 142 of 415

Version 2.3
March 7, 2008

8.1.2.2 Transfer-Handshake Bus Segment

The transfer-handshake bus sends transfer-handshake packets, which confirm that command or data 
packets were received on the address/data bus. The transfer-handshake bus consists of one 1-bit outbound 
transfer-handshake (THO) bus segment and one 1-bit inbound transfer-handshake (THI) bus segment. Every 
device issuing a command packet, data packet, or reflected command packet to the address/data bus 
receives a transfer-handshake packet through the transfer-handshake bus some fixed number of beats after 
issuing the command or data packet. 

Each transfer-handshake bus segment sends transfer packets for command and data packets transferred in 
the opposite direction. That is, the outbound transfer-handshake bus sends acknowledgment packets for the 
command and data packets received on the inbound AD bus. There is no dependency or relationship 
between packets on the outbound address/data bus and the outbound transfer-handshake bus. 

A transfer-handshake packet might result in a command packet being reissued to the bus because a data 
buffer in the command queue is full. IBM suggests that the North Bridge implement queues that are deep 
enough to minimize the impact of command packet retries on system performance.

A transaction remains active until it has passed all response windows. For write transactions, this includes the 
last beat of the data payload. Since commands might be retried for queue or buffer full conditions, transac-
tions that must be ordered cannot be simultaneously in the active state. 

A write transaction issued by the processor can be retried. The slave issues two transfer-handshake packets 
for a write transaction. The first packet is for the write-command packet and the second for the write-data 
packet.

For read transactions, the processor will not retry inbound (memory to processor) transfers. Reflected 
commands (that is, snoop requests inbound from the North Bridge to the processor) cannot be retried. This is 
necessary to ensure a fixed snoop window is maintained.

8.1.2.3 Snoop-Response Bus Segment

The snoop-response bus supports global snooping activities to maintain cache coherency. A processor uses 
this bus to respond to a reflected command packet received on the ADI bus. The snoop-response bus 
consists of one 2-bit, outbound snoop-response (SRO) bus segment and one 2-bit, inbound snoop-response 
(SRI) bus segment. The bus segments can detect single bit errors. 

A snoop response begins when a processor receives a reflected command packet on the ADI bus. The 
processor provides a snoop response reporting the coherency status of the request received on the ADI bus 
segment. The North Bridge gathers snoop responses from all processors and sends the accumulated snoop 
response on the SRI bus segments concurrently to all processors.

8.1.3 Transactions

Three transaction types are defined: read, write, and command-only. Section 8.4 Bus Transactions on 
page 163 describes the transactions in detail. The following subsections show the sequence of operations for 
these transaction types. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 143 of 415

8.1.3.1 Read Transaction 

Figure 8-3 shows the sequence of operations for a read transaction. 

1. The master (requesting processor) issues a read-command packet on the ADO bus segment to request a 
full or partial cache line of data from the slave (North Bridge).

2. The slave sends a transfer-handshake packet to the master on the THI bus segment.

3. For cache-coherency purposes, the slave reflects the read-command packet on the ADI bus segment to 
all processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment to the slave in response to 
the reflected read-command packet.

5. The slave sends the read-data packet on the ADI bus segment to the master.

6. The master sends a transfer-handshake packet on the THO bus segment to the North Bridge in response 
to the read-data packet.

The read-data packet transfer ranges from 4 to 34 beats. The first two beats transferred are a header 
containing the master’s tag and data packet size. The data payload portion must be transmitted in sequence 
with the critical word first. A command packet might then be interjected into the data payload portion on an 
even-beat boundary. 

Figure 8-3. Read Transaction Timing Diagram 

Addr/Data Bus Out

Transfer Handshake Bus Out

Addr/Data Bus In

Transfer Handshake Bus In

Reflected Read Packet

Cmd ACK

32 data beats plus two header beatsUp to128-byte data packet

Note 3 Data ACK

Note 1

Note 1: Time from the read-command packet to the transfer-handshake packet response is system-dependent and might be different than shown.
Note 2: Time from the read-command to the reflected read request or to read-data packet response is not a fixed value.
Note 3: Time from inbound data packet to outbound transfer-handshake packet response is system-dependent and might be different than shown.

A A H H D D D D D DD
Read Response 

Cmd Read Packet

A A

Reflected ReadCmd ACK

Note 2

Note 1

1

2

3 5

4 6

Beat 1 2 3 4 5 60 8 9 10 11 12 137 14 15 16 17 18 19 20 21 22 23 24 25 26



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 144 of 415

Version 2.3
March 7, 2008

8.1.3.2 Write Transaction 

A processor initiates a write transaction to store either a full or partial cache line of data to memory or to an 
I/O device. A write transaction consists of a command packet immediately followed by a data packet on the 
master’s ADO bus segment. The data must be issued to the address/data bus segment in consecutive beats, 
but can be paused on an even beat to issue a command packet for a read operation. A write-command 
packet cannot be interjected into a write-data packet transfer. Figure 8-4 shows the sequence of operations 
for a write transaction. 

1. The master (requesting processor) issues a write-command packet on the ADO bus segment to write a 
full or partial cache line of data. The write-command packet is immediately followed by a write-data 
packet. 

2. The slave (North Bridge) sends a transfer-handshake packet on the THI bus segment in response to the 
write-command packet.

3. For cache-coherency purposes, the slave reflects the write-command packet on the ADI bus segment to 
all processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment to the slave in response to 
the reflected write-command packet.

5. The slave sends an acknowledgment packet on the THI bus segment to the master in response to the 
write-data packet.

Figure 8-4. Write Transaction Timing Diagram 

Addr/Data Bus Out

Transfer Handshake Bus Out

Addr/Data Bus In

Transfer Handshake Bus In

Write Command Packet

Cmd ACK

Up to128-Byte Write Data Packet

Note 1: Time from the outbound write-command packet to the inbound transfer-handshake packet response is system-dependent and 

Note 1

Data ACK

A A D D D D D D D D D D D D D D D D D

Reflected Write Command Packet

A A

Cmd ACK

1

2

3

4

5

Beat 1 2 3 4 5 60 8 9 10 11 12 137 14 15 16 17 18 19 20 21 22 23 24 25 26

might be different than shown.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 145 of 415

8.1.3.3 Command-Only Transaction

Figure 8-5 shows the sequence of operations for a command-only transaction. 

1. The master (requesting processor) issues a command packet to the slave (North Bridge) on the ADO bus 
segment. 

2. The slave sends a transfer-handshake packet to the master on the THI bus segment in response to the 
command packet.

3. For cache-coherency purposes, the slave reflects the command packet on the THI bus segment to all 
processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment in response to the reflected 
command packet.

Figure 8-5. Command-Only Transaction Timing Diagram 

Addr/Data Bus Out

Transfer Handshake Bus Out

Addr/Data Bus In

Transfer Handshake Bus In

Coherency Cmd Packet

Cmd ACK

Note: Time from the coherency-command packet to inbound transfer-handshake packet is system-dependent and 

Note 1

Reflected Cmd Packet

A A

Cmd ACK

1

2

3

4

Beat 1 2 3 4 5 60 8 9 10 11 12 137 14 15 16 17 18 19 20 21 22 23 24 25 26

Note 1

might be different than shown.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 146 of 415

Version 2.3
March 7, 2008

8.1.4 Memory and Cache Coherency

8.1.4.1 Physical Memory Size

The PowerPC Architecture supports a maximum physical address bus of 64 bits. The processor interconnect 
specification limits the memory addressing to 42 bits. This allows for a maximum address space of 
4 terabytes (TBytes). 

8.1.4.2 Coherency Protocol

Coherency is maintained using global snoops of all command packets by reflecting command packets from 
the North Bridge to the processor. The snoop-response bus is used exclusively for this purpose. This bus 
consists of two unidirectional 2-bit bus segments per processor port, and is used to source response out and 
receive response in. Responses are sourced at a configurable time after the global snoop. The response in is 
sampled at a later time, also configurable. The snooping protocol is detailed in Section 8.3 Snoop Responses 
on page 158.

8.1.4.3 Coherency Block Size 

The cache line is the smallest increment of memory over which coherency information is maintained. This bus 
can support 32-byte, 64-byte, and 128-byte coherency block sizes. The coherency block size is determined 
by the target processor. All bus attachments must support this coherency block size for uniform operation. 
The I/O must be capable of transferring less than or equal to, but not greater than, the coherency block size 
during direct memory access (DMA) transfers to and from coherent memory.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 147 of 415

8.2 Packet Transfer Protocol

This section defines packet protocols for data sharing, data synchronization, and cache snooping. The 
processor interconnect defines four basic packet types: null packets, command packets, data packets, and 
transfer-handshake packets.

8.2.1 Command Packet Definition

The command packet transfer protocol specifies how addresses are passed between bus devices. Due to the 
narrow width of the bus, this transfer takes two bus beats to complete, thereby allowing one command packet 
every two beats.

The command packet consists of a memory address, command type, command size, and command tag. The 
command packet is identified on the address/data bus by the detection of the packet start signal and a 
packet-type encoding for a command packet. Table 8-2 shows the bit definitions for the address/data bus 
during a command-packet transfer.

8.2.1.1 Address Modifiers

Bits 16:17 of beat one, and bit 2 and bits 27:29 of beat two of a command packet contain the address modifier 
bits. These bits further describe the type of command packet. In some cases, they must be decoded along 
with the Transfer Type bits to determine the operation.

Table 8-3 Transfer Type Encoding on page 149 shows when these bits are used to modify transactions, what 
the modification is, and what the values are when they are hard coded. Under certain conditions, some bits 
might be sourced from the page table WIM bits (“W” stands for write through, “I” for cache inhibit, “M” for 
memory coherence).

Table 8-2. Command Packet Description  

Beat Bits Description

1 0:1 ‘10’ (Address valid decode).

1 2:6 Transfer Type (0:4).

1 7:15 Transfer Tag (0:8).

1 16:17 Address Modifiers I/S, M (1:2).

1 18:34 Address (42:58). 17 bits of the 42-bit address.

2 0:1 ‘10’ (Address valid decode).

2 2 Address Modifier W/N (0).

2 3:6 Transfer Size (0:3).

2 7:26 Address (22:41). Most-significant 20 bits of the 42 address bits.

2 27:29 Address Modifiers G, R, P (3:5).

2 30:34 Address (59:63). Least-significant 5 bits of the 42 address bits.

Note:  

W: write through, M: memory coherent, N: intervention, A: atomic, R: rerunning, I: cache inhibited, S: noncacheing coherent read, 
P: pipelined snoops, G: guarded read.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 148 of 415

Version 2.3
March 7, 2008

Address Modifier[0]

The AM[0] bit, when indicated as a W, means that write through is wanted. When the bit is ‘1’, it means that 
the data for a write transaction is to be forwarded all the way to system memory or a memory-mapped device. 
When the bit is ‘0’, the data must be forwarded at least one cache level toward memory. This bit is normally, 
but not always, sourced from the page table. 

On a read operation, when indicated as an N, this bit defines whether the master can support intervention on 
this request. If intervention is enabled (N equals ‘1’), then the transfer size must be the coherency block size. 
(A snooper might not intervene if this bit is reset, and might intervene if it is asserted.) 

Address Modifier[1]

The AM[1] bit, when indicated as an I, indicates Cache-Inhibit status. If the bit is ‘1’ in a write-command 
packet, it means that the data should not be cached downstream from this processor. When indicated as an 
S and the bit is a ‘1’ in a read-command packet, it means that the requesting processor will not cache the data 
when received, and memory (or an intervening cache) might still retain the current coherency status. 

Address Modifier[2]

The AM[2] bit, when indicated as an M, is always used as the memory coherent indicator or snoop request 
signal. If this bit is ‘0’, the horizontal coherency snoopers ignore this transaction, meaning memory is not 
coherent or this is a transaction that snoopers do not need to look at (vertical caches need to snoop all snoop-
response [SResp] enabled transactions regardless of the M bit). 

Note:  This bit should be defined consistently for future transactions that might be architected, as snoopers 
will not see any transaction where M equals ‘0’. This bit is frequently sourced from the page table WIM bits 
when indicated as an M, but at other times it is hard coded so snoopers see the transaction. For example, it 
might be set by an I/O adapter for coherent I/O.

Address Modifier[3]

The AM[3] bit is used to further define operations. For example, it is used to indicate a write-with-kill versus a 
write-with-clean. When indicated as a G, it is used to indicate a guarded read.

Address Modifier[4] 

The AM[4] bit, when indicated as an R, means that this transaction has already been issued to the bus once, 
and is now being reissued. 

Implementation Note: The bit should be set to zero in current implementations of the architecture, to remain 
compatible with potential architecture extensions.

Address Modifier[5] 

The AM[5] bit, when indicated as a P, means that this transaction can be pipelined for snoop requests and 
responses. If P is ‘0’, then command packets are reflected one at a time after the snoop response for 
previous command packets are seen by all processors.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 149 of 415

8.2.1.2 Transfer Type Field

The transfer type (TType) field indicates the type of command packet that was issued to the bus. The valid 
transfer types defined by the processor interconnect bus are shown in Table 8-3. Both the processor and the 
North Bridge must support all commands listed in Table 8-3. I/O devices support only a limited subset of the 
commands.

Address Field

The address field contains the address associated with the command packet. This field is defined to be 42 
bits wide. 

Table 8-3. Transfer Type Encoding 

Address 
Modifiers

(WIMGRP)

TType
Binary      Hex Bus Operation Code Address

Format
Data 

Payload Comments

XXMXRP 00000 00 Clean CL Mem N M = ‘1’ normally

WIMXRP 00010 02 Write with Flush WNB Mem Y M = ‘1’ normally

XXMXRP 00100 04 Flush FL Mem N M = ‘1’ normally

WXM0RP 00110 06 Write with Kill WBK Mem Y W = ‘X’ if from a I/O bridge

WXM1RP 00110 06 Write with Clean WBC Mem Y W = ‘1’, I = ‘X’, M = ‘0’

XXMXRP 01000 08 SYNC SY Tag N

NSMGRP A1010 0A,1A Read RD Mem N S = ‘1’ means RWNITC

XXMXRP 01100 0C DKill DK Mem N M = ‘1’

NXMXRP A1110 0E,1E RWITM RWITM Mem N I = ‘X’, normally M = ‘1’

XXMX0P 10000 10 EIEIO EI Tag N M = ‘0’

XXMXXX 10100 14 Reserved M = ‘0’

XXMX0P 11000 18 TLBIE TI Tag N M = ‘0’, P = ‘0’

XXMXXX 11100 1C Reserved M = ‘0’

XXMXRP 00001 01 LARX-Reserve LR Mem N M = ‘0’

XXMXRP A0011 03,13 DClaim DC Mem N M = ‘1’

XXMXXX 001X1 05,07 Reserved M = ‘0’

XXMXRP 01001 09 TLBSYNC TS Tag N M = ‘0’

XXMXXX 01X11 0B,0F Reserved M = ‘0’

XXMX0P 01101 0D IKill IK Mem N M = ‘1’ normally, P = ‘0’

XXMXXX 10001 11 Reserved A M = ‘0’

XXMXXX 10010 12 Reserved N M = ‘0’

XXMXRP 10101 15 Deallocate Dir Tag DDT Mem A M = ‘0’ 

XXMXXX 1011X 16,17 Reserved for customers M = ‘0’

XXMXXX 110X1 19,1B Reserved M = ‘0’

XXMX0P 11111 1F Null NUL None N M = ‘0’

Note:  

W: write through, M: memory coherent, N: intervention, A: atomic, R: rerunning, I: cache inhibited, S: noncacheing coherent read, 
P: pipelined snoops, G: guarded read, X: drive ‘0’ when driving signal and don’t care when receiving the signal.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 150 of 415

Version 2.3
March 7, 2008

Transfer Size Field

The transfer size field indicates the size of the data packet associated with the command packet. For 
command packets that do not have a data packet associated with them, this field is undefined. Table 8-4 
defines the encoding for the transfer size field for the commands that require a data packet. 

Transfer Tag

Command packets contain a 9-bit transfer tag used to link a command with data. This field is valid for all 
transactions to the bus and contains a number (generated by the processor) to identify the read-data packet 
on a read transaction and the write-data packet for a write transaction. Explicit tagging of command and data 
packets allows a bus device to have multiple concurrent outstanding transactions that require a data packet. 
This means that read-data packets can appear out-of-order on the bus so that transactions can complete 
when data is available as opposed to returning all data packets in the order the commands were issued. In 
addition, the tag can be used to reference the response back to a command in an internal queue of a bus 
device. There must only be one outstanding transaction referred to by a tag at any time.

Tag Deallocation For Read Operations 

Read transactions use the tag field to identify incoming read-data packets that are associated with the trans-
action. Once a tag is assigned to a read transaction, it cannot be reissued until all the read data has been 
received.

Tag Deallocation For Store, Castout, and Push Operations 

Address/data command tags remain active until a clean global snoop response is received.

Table 8-4. Transfer Size Encoding  

Transfer Size Description Number of Data Beats

0000 8 Bytes 2

0001 1 Byte 2

0010 2 Bytes 2

0011 3 Bytes 2

0100 4 Bytes 2

0101 5 Bytes 2

0110 6 Bytes 2

0111 7 Bytes 2

1000 128 Bytes 32

1001 16 Bytes 4

1010 32 Bytes 8

1011 Reserved  

1100 64 Bytes 16

1101 Reserved

1110 Reserved

1111 Reserved



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 151 of 415

8.2.1.3 Tag Definition

Table 8-5 defines the 9-bit tag that is sent with a command or read-data packet.

Interjecting Command Packets

Data transfers on the bus are either write-data packets issued with a write-command packet, or read-data 
packets. These transfers consist of multiple data beats. When a transfer contains multiple beats of data 
payload transfer, a command packet might be interjected on an even-beat boundary. This feature allows new 
transactions to be started without having to wait for a long multi-beat data transfer to complete. This protocol 
allows read-command packets and coherency-control packets to be interjected. Write, castout, push, partial 
write operations, or other data packets cannot be interjected into a multiple-beat data transfer.

8.2.1.4 Command Pacing

It is possible for the processor to issue command packets at a rate faster than the slave can accept. The 
slave must then retry the packets so the commands are not lost. This is undesirable because of the additional 
bus bandwidth consumed for the retried commands. The North Bridge should implement queues that are 
sufficiently deep to minimize the impact of command packet retries on system performance. This scenario 
assumes the slaves can handle consecutive data packets, which requires the data buffering to be run at least 
at the bus clock speed. To avoid this situation, a command pipeline delay parameter, COMPACE, is defined 
for the bus.

The command pipeline delay parameter is a 4-bit field that is programmed into each bus master to indicate 
the number of bus beats of delay that must be placed between each command packet on the bus. The delay 
is in bus beats (assumed to be even). The allowable range of values for COMPACE and related processor 
delay parameters can be found in Table 11-1 Programmable Delay Parameters on page 281. Table 11-1 also 
lists North Bridge delay parameters and typical values that these parameters might take on. See 
Section 11.2.2 Configurable Parameters on page 279 for additional information about these configurable 
delay parameters. 

Note:  This does not restrict the use of intervening bus beats for data packets. 

Table 8-5. Tag Definition 

Bits Field Name Description

0:3 Master number Master number (one must be reserved for the North Bridge)

4:8 Master tag Tag (one of 32) assigned to the master’s requesting resource



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 152 of 415

Version 2.3
March 7, 2008

8.2.2 Data Packet Definition

The data packet transfer protocol specifies how data is passed between bus devices. A data packet is 
defined as an even-numbered beat transfer on the address/data bus. A write-data packet immediately follows 
a write-command packet. It is identified on the bus by the data valid decode. A read-data packet has a 2-beat 
header that includes the tag and the data size. Typically, read-data packets are sent from the North Bridge to 
a processor. However, during intervention, a processor can send a read-data packet to the North Bridge. 

A data packet of the minimum size consists of 8 bytes of data and the data error signal (DERR) to validate the 
data. Up to 16 pairs of data beats are used to transfer a cache line. Table 8-6 shows the bit definitions for the 
read-data packet header on the address/data bus. Table 8-7 shows the bit definitions for the address/data 
bus during a data transfer. 

Table 8-6. Read-Data Packet Header Description  

Beat Bits Description

1 0:1 ‘11’ (Data and Address valid decode).

1 2:6 Reserved.

1 7:15 Transfer Tag (0:8).

1 16:18 Reserved.

1 19:22 Responder or Intervener ID.

1 23:34 Reserved.

2 0:1 ‘11’ (Data and Address valid decode).

2 2 Reserved.

2 3:6 Transfer Size (0:3).

2 7:34 Reserved.

Table 8-7. Data Beat Description  

Beat Bits Description

1 0:1 ‘01’ (Data valid decode).

1 2:33 Next consecutive four bytes of the data packet.

1 34 Data error signal (DERR) indicates an off-bus data error; full data transfer is invalid.

2 0:1 ‘01’ (Data valid decode).

2 2:33 Next consecutive four bytes of the data packet.

2 34 Reserved.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 153 of 415

8.2.2.1 Two-Beat Transfers

The processor interconnect supports data transfers of varying lengths. Since the payload portion of all data 
packets must be at least two beats, a transfer of less than 8 bytes must be padded with additional data to fill 
the 8-byte minimum transfer size. The data on the bus must be address aligned so a request must be sepa-
rated into two requests if an 8-byte address boundary is crossed. A master can transfer from 1 to 8 bytes of 
data during this operation. Data is returned in the original memory order. Table 8-8 shows the address restric-
tions for transfers of 1 to 8 bytes. 

8.2.2.2 Multi-Beat Transfers

The processor interconnect supports multiple-beat data transfers that are 16, 32, 64, and 128 bytes in length. 
All such requests for writes and reads that are less than a full coherency block (128 bytes) must be aligned to 
an address boundary equal to the size of the transfer. For read-data transfers that are a full coherency block, 
data is returned with the critical 16 bytes first, followed by the remaining data in an interleaved burst order. 
The resulting data transfer is a block of data that is aligned to the size of the request.

Data Transfer Format

On read data packet transfers that are a full coherency block, the order of the returned data words depends 
on the address that was specified inside the command packet. Each block of the read data packet is trans-
ferred in a sequence of 32-byte data beats. Data ordering is based on the block size. Within a word, data is 
always transferred in-order starting with the most-significant byte and ending with the least-significant byte. 

Partial write commands with transfer sizes less than 8 bytes cannot cross an 8-byte boundary. All write 
commands (including write, castout, push, and partial write) with transfer sizes of 8 bytes or more must be 
aligned on an address boundary equal to the size of the transfer.

Table 8-8. Two-Beat Data Transfers 

Starting 
Address[61:63]

Byte Lanes
Data Size

00 01 02 03 04 05 06 07

000 – 111 x x x x x x x x 1 Byte

000, 010, 100, 110 x x x x 2 Byte

000 x 3 Byte

000, 100 x x 4 Byte

000 x 8 Byte

Note:  

1. ‘x’ is a valid starting position.
2. The operand may not cross a double word boundary. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 154 of 415

Version 2.3
March 7, 2008

Interjecting Command Packets

Data transfers on the bus are either write-data packets issued with a write-command packet, or read-data 
packets. These transfers consist of multiple data beats. When a transfer contains multiple beats of data 
payload, a command packet can be interjected on an even-beat boundary. This feature allows new transac-
tions to be started without having to wait for a long multi-beat data transfer to complete. This specification 
allows read-command packets and coherency-control packets to be interjected. Write, castout, push, and 
partial write operations, or other data packets cannot be interjected into a multiple-beat data transfer.

Table 8-9. Packet Ordering for 128-Byte Interleaved Packets on 32-Byte Boundaries 

Address (57:59) 128-Byte Packet Order Viewed at 
16-byte Read Data Transfer

Packet Order Viewed at 
32-byte Read Data Transfer

000 0 1 2 3 4 5 6 7 0 1 2 3 

001 (Not Valid) 1 0 3 2 5 4 7 6

010 2 3 0 1 6 7 4 5 1 0 32

011 (Not Valid) 3 2 1 0 7 6 5 4

100 4 5 6 7 0 1 2 3 2 3 0 1

101 (Not Valid)  5 4 7 6 1 0 3 2

110 6 7 4 5 2 3 0 1 3 2 1 0

111 (Not Valid) 7 6 5 4 3 2 1 0

Table 8-10. Packet Ordering for 32-Byte Interleaved Packets 

Address (59:60) Packet Order for 4-Word Read-Data Transfer

00 0 1 2 3 

01 1 0 2 3

10 2 3 0 1

11 3 2 1 0



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 155 of 415

8.2.3 Transfer-Handshake Packets

The transfer-handshake bus is used to acknowledge command or data packets that were received on the 
inbound bus. Every command and data packet that is received on the inbound bus is acknowledged by a 
transfer-handshake packet on the associated outbound transfer-handshake bus. The transfer-handshake 
packet occurs a fixed number of beats later. Each transfer-handshake packet is two beats in length. 
Table 8-11 shows the handshake encoding for the bus. 

The slave sends this acknowledgment packet to the bus n beats after receipt of the last beat of the command 
or data packet (n is the minimum number of beats necessary for the slave to receive the data from the bus, 
check the command and address, and generate the response). This time is implementation-dependent and 
can vary from one device to the next. The master samples the response STATLAT beats after the last beat of 
the command or data packet. STATLAT is the number of bus beats between the last beat of the command or 
data packet and the first beat of the acknowledgment packet. For example, if the last beat of a command 
packet was on beat j and the first beat of the acknowledgment packet occurred on beat k, then the value for 
STATLAT would be k-j-1 (see Figure 11-1 on page 280). The STATLAT beat count includes the time required 
by the slave to generate the response plus the time that it takes for the packet to be sent and the acknowledg-
ment to be returned. For consistency in design of the processors that attach to this bus, an upper limit is 
defined for the time between the master issuing the last beat of the command or data packet to the bus to 
when it receives the first beat of the acknowledgment packet (see Table 11-1 on page 281 and the IBM 
PowerPC 970MP RISC Microprocessor Datasheet). This time should be minimized to eliminate unnecessary 
delays on commands in the pipeline that have ordering requirements with the current command. The 
STATLAT parameter is configured by the inter-integrated circuit (I2C) interface during the bus initialization 
phase. 

Table 8-11. Transfer-Handshake Definition  

Response 
Beat 0, Beat 1 Description

0      0 Null/Idle

1      0 Acknowledge (command/data accepted)

0      1 Retry (command/data rejected, reissue command)

1      1 Parity error (parity error detected on bus)



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 156 of 415

Version 2.3
March 7, 2008

8.2.3.1 Null Transfer Handshake

The null transfer handshake is the default response from a slave device. If the slave does not drive the 
transfer handshake with either an acknowledgment, retry, or parity error, then the response is, by default, 
null. The null response can occur due to a slave device timeout or a terminated transaction under certain, 
special conditions defined below.

Master:
For the master, this transfer-handshake response from the slave indicates that the command or data packet 
that the master sent was not accepted by the slave. Based on the address/data packet type, the master 
actions are as follows:

Command packet: The processor responds by going into checkstop.1 If the command was a write 
command and the master detects this response before it has completed the full data transfer of the 
write-data packet, it can either complete the full data transfer or discard the remaining even-num-
bered data beats for the transfer.

Read-data packet: The processor responds by going into checkstop. A master always transmits full 
packets on the bus. The handshake is received after the end of the read-data packet (see Figure 8-3 
on page 143). 

Note:  The error might also result from a timeout while waiting for data or from an incorrect transfer 
size by the slave.

Write-data packet: The processor responds by going into checkstop, if the write-command packet 
associated with this packet received an acknowledgment transfer handshake from the slave. Other-
wise, the null response is ignored. If the write command is retried by the slave, then the null response 
is the correct response for the data packet associated with that write command.

Slave:
The slave issues the null transfer handshake response for the following non-error conditional data packet for 
a write command that was retried. The command or data packet is discarded, and status is logged in the 
slave for the error case.

8.2.3.2 Transfer-Handshake Acknowledgment

The acknowledgment response indicates that the addressed slave accepted this command or data packet. If 
a bus agent2 accepts (acknowledges) a command packet to send to a remote bus, it is responsible for 
completing the transaction back to the bus master if the remote bus does not accept the command packet. 
For a read transaction, this implies returning data to the master with the data error signal activated. The data 
error is signalled by asserting the 35th bit (DERR signal) of the even data beats. For writes, the command 
and data packets are discarded. The device must also have a mechanism to signal a machine check indi-
cating that the error occurred.

Master:
For the master, the acknowledgment response indicates that the command or data packet was accepted and 
that it might complete execution of the packet transfer. Based on the packet type, the master acts as follows:

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.

2. Bus agents are devices such as the North Bridge, but not switches that might be used to relay command and data packets.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 157 of 415

Command packet: For a command packet that results in data being returned by the slave, the 
acknowledgment response indicates that the command has been accepted and need not be reissued 
to the bus. Inbound data packets to complete the transaction can be received starting in the beat fol-
lowing the response. For a write-data packet, the acknowledgment response indicates that the com-
mand has been accepted. The slave cannot retry the data packet after it accepts the command. That 
is, an acknowledgment response for the command packet indicates that the slave has set aside 
buffer space for the write-data packet. For command packets, this response indicates that the com-
mand is complete.

Data packets: This response indicates to the master that the data being sent was accepted by the 
slave without errors. 

Slave:
The slave issues this acknowledgment response when:

• The slave received the command packet with a valid transfer type, transfer size, and address.

• For write transactions, there is queue space for the command and data.

The slave stores command packets in a command queue and stores data packets in data buffers.

8.2.3.3 Transfer-Handshake Retry

A handshake retry can be issued to flow control the command packets when the slave does not have space 
for the command packet or the data packet associated with the command. Any command packet can be 
retried by the slave, except for reflected command packets. Data packets may not be retried.

Master:
For the master, the retry response indicates that the command was rejected by the slave for lack of space in 
the command queue or the data buffers. Based on the packet type, the master acts as follows:

Command packet: When the master receives a retry response for a command packet, it reissues 
the packet to the AD bus. If the command was a write command and the master detects this 
response before it has completed the full data transfer, then it can either complete the full data trans-
fer, or discard the remaining even-numbered data beats for the transfer before reissuing the com-
mand packet.

Data packet: Retry responses are not valid for write-data packets and read-data packets. 

Slave:
The slave issues this response when:

• The slave received the command packet but the command queue was full.

• If the packet was a write-command packet, there is no space for the command or the data. 

To properly detect termination of a partial write-data packet, the slave must examine the Address Valid 
decode bits (see Table 8-2 Command Packet Description on page 147) on a per even-beat basis. 

Note:  The retry transfer handshake cannot be issued for write-data packets.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 158 of 415

Version 2.3
March 7, 2008

8.2.3.4 Transfer-Handshake Parity Error

This response is optionally issued whenever a single bit error is detected during any bus beat. It is an unre-
coverable error that results in a machine check to the processor with all command and data packets in the 
pipeline being discarded.

Master:
For the master, the response is a hard error indicating that the bus is no longer functional. The processor 
responds by going into checkstop.

Command packet: When the master receives a parity error response for a command packet, it 
reports the failure back to the system. The bus must be reinitialized before it can be used again.

Data packet: Same as command packet errors.

Slave:
If the slave issues this response (optional), it should be within the normal packet response timings. (This 
packet error might make this timing determination imprecise.) For the slave, this condition is a hard error and 
the bus is no longer functional. The slave logs the error and reports it to the system. The error reporting 
mechanism is system-dependent.

8.3 Snoop Responses 

Cache coherency is maintained using a global snoop method, where a memory controller device (the North 
Bridge) reflects command packets to all processors at the same time. Snooping is supported by dedicated 
snoop-response bus segments, consisting of one 2-bit SRO and one 2-bit SRI.

A snoop response begins when a processor receives a reflected command packet on the ADI bus. The 
processor starts a programmable timing chain that determines when the processor’s SRO is driven and when 
the processor’s SRI will be sampled. 

The snoop response from each processor is transmitted on the SRO response bus in two beats (see 
Table 8-12). The North Bridge gathers the snoop responses from all processors and performs a logical OR 
operation on the accumulated responses. The North Bridge sends the logical OR of the snoop responses 
back to all processors on the SRI bus. 

Table 8-12. Snoop-Response Bit Definition 

Beat Bits Description

1 SR[0] Intervention

1 SR[1] Modified

2 SR[0] Retry

2 SR[1] Shared



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 159 of 415

8.3.1 Snoop-Response Bus Implementation

Each snoop-response bus is controlled by two configurable parameters: SNOOPLAT and SNOOPACC. For 
all parameters, time is measured in bus beats from the final locally clocked flip-flop or latch output to the first 
locally clocked input.

The processor SNOOPLAT parameter defines the number of bus beats between receiving the last beat of the 
reflected command packet and driving the first beat of the snoop response. SNOOPLAT does not need to be 
programmed for the processors, since the processors are assumed to be identical. The North Bridge 
SNOOPLAT value is the sum of the transfer time of the reflected command packet from the North Bridge to 
the processor, the processor SNOOPLAT value, and the transfer time of the snoop-response bus from the 
processor to the North Bridge (see Figure 11-2 North Bridge Configurable Timing Parameters on page 280). 

On the North Bridge, the SNOOPACC parameter defines the delay between the time a processor sends the 
last beat of an individual snoop response to the time it receives the first beat of the accumulated snoop 
response from the North Bridge (see Figure 11-3 Processor Configurable Timing Parameters on page 281). 
SNOOPACC includes the time required by the North Bridge to gather the responses from all of the proces-
sors. The North Bridge reflects all incoming command packets at a pace determined by the SNOOPWIN 
parameter. SNOOPWIN sets the snoop window, which is the minimum distance between two consecutive 
snoop requests (see Figure 11-3 Processor Configurable Timing Parameters on page 281). 

An address collision occurs if the current address is the same as a requested address for a previously 
received snoop. If this occurs, the current snoop request is delayed until the conflicting previous request is 
concluded. This condition is called previous adjacent address match (PAAM). The PAAMWIN parameter indi-
cates the number of bus beats a request is active during which a conflicting snoop request cannot be issued. 
An unrelated snoop request can be sent during the PAAM window. Figure 11-2 North Bridge Configurable 
Timing Parameters on page 280 shows the timing of the PAAMWIN parameter.

For a snoop request to be issued, the following conditions must be satisfied: 

1. At least SNOOPWIN beats have transpired since the previous snoop request was issued.
2. There is at least one non-active PAAM address slot available. 
3. No active PAAM address conflicts with the request.

The number of PAAM address slots on the North Bridge is implementation-dependent, but ranges from two to 
four. A snoop request activates a PAAM address slot when it is issued. After PAAMWIN beats, the slot is 
deactivated and can be reassigned to another request. The number of address bits used to detect conflict is 
also implementation-dependent.

Table 8-13. Allowed Snoop Responses  

Retry Intervention Modified Shared Description

0 0 0 0 Null (exclusive for reads)

0 0 0 1 Shared 

0 0 1 x Modified

0 1 0 0 Invalid 

0 1 0 1 Shared intervention 

0 1 1 x Modified intervention 

1 x x x Retry 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 160 of 415

Version 2.3
March 7, 2008

There is no requirement that all snoop requests fall in exact modulo SNOOPWIN beats. Even-numbered idle 
bus beats can be used beyond SNOOPWIN between two subsequent snoop requests. The PAAMWIN value 
is not required to be a multiple of the SNOOPWIN value. 

The I2C interface is used to program all programmable delay parameters (see Section 11.1 I2C Interface on 
page 279). 

8.3.2 Snoop-Response Descriptions

8.3.2.1 SResp Retry Response Code (Priority 1 - highest)

SResp Retry is issued for the following reasons:

• Lost reservation: A master that has a reservation will retry an atomic write/flush itself if the reservation 
has been lost since the write was issued. 

• Push condition: A snooper will retry a transaction if a push is needed for a read or write-with-flush.

• Resource conflict: A snooper will retry a transaction due to collision with a resource that has ownership of 
the line.

• Memory and intervention buffer full: A North Bridge can retry a read transaction that might cause inter-
vention, if it determines it temporarily cannot receive the intervention data. It is typically more efficient to 
use the transfer-handshake retry on the intervening data packet for this case. 

SResp Retry ramifications:

• Master: Can reissue this operation and use a different tag, or can reissue a different operation instead of 
or before this operation is reissued. Any data transfer aborted by this retry can be terminated prior to the 
data packet completion. 

• Target: Any operation that has completed an SResp Retry can take a variable amount of time to clean up 
resources and, therefore, can cause future retries due to resources being tied up by this operation. 
Guarded cache-inhibited write operations need to be ordered with respect to each other. The processor 
cannot proceed and cannot issue the next operation until the SResp window with the null response has 
passed.

• Snooper: Any operation that has completed an SResp Retry is aborted by the snooper and leaves the 
cache state unmodified, except when Intervention is disabled on a read request and the snooper has 
modified data. The snooper will then push the data back to memory and clean or invalidate the line.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 161 of 415

8.3.2.2 SResp Modified-Intervention Response Code (Priority 2)

The Modified coding is activated when a snooper detects the address of a cache line on a read operation that 
is contained in its own cache and is modified (dirty). The snooper then provides the data by using interven-
tion.

SResp Modified-Intervention is asserted if a snooper asserts SResp Modified-Intervention on a Read or Read 
with Intent to Modify (RWITM) when bus intervention is enabled (N equals ‘1’), snooping is enabled 
(M equals ‘1’) and a cache line is snooped modified. If SResp Retry is sampled instead of SResp Modified-
Intervention, then the snooper can either push the block to memory or leave the cache state unmodified.

The ramifications of an SResp Modified - Intervention for bus devices are:

• Master and Read or RWITM: 
This tells the master that its request is satisfied by the cache holding the modified data.

• Memory and Read or RWITM: 
This tells the North Bridge to cancel its read request. If the command was read, the North Bridge looks for 
the tagged data and copies the block to memory. 

8.3.2.3 SResp Shared-Intervention Response Code (Priority 3)

The Shared-Intervention coding is activated when a snooper detects the address of a cache line on a 
reflected read-command packet that is contained in the snooper’s own cache and is the owner (most recent 
recipient) of the data. This signal can only be asserted by one bus device, since there is only one owner of 
data. Since SResp Retry is higher priority than SResp Shared, the snooper must wait until the snoop 
response is received before beginning the intervention push. 

A snooper using this code must accommodate the option on burst reads whereby the requester indicates 
intervention is not wanted. In these cases, the response must be SResp Shared.

The ramifications of an SResp Shared-Intervention are:

• A master receiving this SResp code looks for intervention data.

• The North Bridge treats SResp Shared - Intervention as SRespRetry.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 162 of 415

Version 2.3
March 7, 2008

8.3.2.4 SResp Modified Response Code (Priority 4) 

The Shared-Intervention coding is activated when a snooper detects the address of a cache line on a 
reflected read-command packet that is contained in the snooper’s own cache and is the owner (most recent 
recipient) of the data. This signal can only be asserted by one bus device, since there is only one owner of 
data. Since SResp Retry is higher priority than SResp Shared, the snooper must wait until the snoop 
response is received before beginning the intervention push. 

A snooper using this code must accommodate the option on burst reads whereby the requester indicates 
intervention is not wanted. In these cases, the response must be SResp Shared.

SResp Modified is asserted for the following reasons:

• A snooper asserts SResp Modified on a Read or RWITM when bus intervention is not enabled 
(N equals ‘0’), snooping is enabled (M equals ‘1’), and a cache line is snooped modified. If SResp Retry 
is sampled instead of SResp Modified, then the snooper can either push the block to memory or leave the 
cache state unmodified.

• A snooper asserts SResp Modified for flush or clean bus operations if the addressed block is modified. If 
SResp Modified is sampled in this case, the snooper pushes the block to memory and marks the cache 
Invalid (flush), or Shared/Exclusive (clean). If SResp Retry is sampled instead of SResp Modified, the 
snooper can either push the block to memory or leave the cache state unchanged.

8.3.2.5 SResp Shared Response Code (Priority 5) 

Snooper: 
The Shared response is encoded when a snooper inspects the address of a cache line on a read transaction 
that is contained in its own cache and has not been modified, marking the block shared if the block was 
marked exclusive. This signal can be asserted by more than one snooper, and the snooper will retain a copy 
of the block.

I/O Snooper: 
I/O devices that do not cache data Exclusive or Modified (shared only) are allowed to assert without having 
the block cached (for example, they might snoop at a larger granularity than the block address).

Master: 
This tells the bus master that the data on a read, when returned, must be marked shared and not exclusive.

8.3.2.6 SResp Null or Clean Response Code (Priority 6 - lowest)

The null or clean response is encoded to indicate one of the following:

• There is no local (or remote) device presently caching this line.

• A synchronize type of transaction (for example, sync or translation lookaside buffer sync [tlbsync]) has 
been completed by all snoopers.

• The line is cached, but the null response is allowed (for example, the null for a clean transaction that hits 
on an exclusive line).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 163 of 415

8.4 Bus Transactions 

This section provides details of the following processor interconnect bus transactions:

• Memory read transactions (general)
• Memory write transactions (general)
• Command only transactions

8.4.1 Terms

Each of the transactions in this section uses the following terms to define the parameters of the transaction:

Reservation A reservation is an address location held by the processor. It is used to emulate 
atomic operations using the PowerPC load reserve indexed (larx) and store condi-
tional (stcx) types of instructions. A processor has at most one reservation at any 
time. A reservation is established by executing a Load Word and Reserve Indexed 
(lwarx) or Load Double Word and Reserve Indexed (ldarx) instruction. It is 
normally lost when the corresponding Store Word Conditional Indexed (stwcx.) or 
Store Double Word Conditional Indexed (stdcx.) instruction is performed. A reser-
vation might also be lost if the data at the address is modified by another processor 
or bus device.

Snooper A bus device that inspects inbound reflected command packets and uses the 
snoop-response bus to keep cached data coherent with other system caches. A 
bus adapter or I/O bridge might contain a cache and, if so, will act like a snooper.

Memory The bus device that responds to a memory read or write and handles positive 
acknowledgment for coherent operations. If some portion of memory is attached to 
a remote bus, the bus adapter also acts like memory for memory accesses to that 
remote memory space. 

I/O Bridge An I/O bridge device is a gateway to an I/O bus that cannot cache data in the 
Exclusive or Modified state. The bridge does not forward snoops to the I/O bus. If 
an I/O device has shared cache data, it is necessary to implement a directory for 
the cached data in the shared state. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 164 of 415

Version 2.3
March 7, 2008

8.4.2 Memory Read Transactions (General)

A master (processor) reads I/O or memory data by sending a read command to the memory controller of the 
North Bridge. The processor drives the ADO bus, provided it was not in the midst of sending another 
command packet, and there was no higher priority transaction ready to be sent. After a programmable 
number of beats (STATLAT), the master reads the transfer handshake from the THI bus to ascertain the 
status of the transfer. The slave (North Bridge) sends a positive acknowledgment on the THI bus if no parity 
error was detected and there was a slot to queue the read request. If no queuing space is available, a retry 
status is returned. 

The North Bridge dequeues the request after internal arbitration and decodes the command packet. It issues 
a read request to the North Bridge for the indicated block size and reflects the command packet to all proces-
sors for snooping purposes. The North Bridge paces new snoop requests based on the programmable 
parameter, SNOOPWIN. The North Bridge will detect address collisions (transactions to the same cache line) 
and will delay the second conflicting transaction until PAAMWIN bus beats have transpired since the original 
conflicting transaction was issued for snooping. In addition, processors can request that transactions be 
handled one at a time, by setting the pipelined snoop (P) address modifier bit low. 

Each processor drives their SRO bus during the snoop window that is seen by all processors and by the 
North Bridge at the same time. The processor can request that the transaction be retried with a retry snoop 
response. Otherwise, if a processor has a clean copy in its cache, the shared response code is returned. If 
the requested cache line is modified inside a processor cache, that processor signals the intervention snoop 
response, which is a promise to send to the North Bridge the modified copy in the form of a processor-to-
memory read-data packet. The North Bridge accumulates the combined (logical-OR) snoop responses from 
all of the attached processors. Depending upon the combined response, the North Bridge might abort, delay, 
or send the memory data or the intervened data to the original requester. The intervened data is also written 
to memory for regular read transactions (no intention to modify).

When the North Bridge responds with the read data, it sends a read-data packet, which consists of a 2-beat 
header and 2 to 32 beats of payload data. The header contains the original tag and the data size. The 
payload data is sent immediately after the header. The DERR bit is asserted if the data contains an error.

8.4.2.1 Read Transaction

A read command is issued to get data that is not immediately going to be modified. The modifier bits that are 
valid are N (intervention) and S (non-caching). The M and I modifiers are sourced from the page table entry, 
hardwired, or set by the I/O.

Master:
A read burst is issued by the processor to satisfy a load, tablewalk access, Data Cache Block Touch (dcbt) or 
other data prefetch, or instruction fetch (I-fetch) to a cacheable page that misses the cache. A read non-burst 
is caused by a non-cacheable load or I-fetch.

Atomic: 
The Atomic modifier (TType [0]) is set along with the M bit when the read is to satisfy a lwarx or ldarx.

S Bit: 
The S bit is set along with the M bit when the master will not cache the data but wants the latest copy. If S is 
set, a snooper is allowed to clean up dirty data in its cache by pushing it to memory, but keeping it marked 
exclusive afterwards. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 165 of 415

N Bit:
The N bit is set when the master and memory are capable of intervention, intervention is wanted, and the 
read-data size is the coherency block size for the system. All non-block size reads must have the N bit set to 
zero. In addition, the processor is capable of setting N to ‘0’ for all reads in case it is attached to memory that 
does not support intervention. 

G Bit: 
The G bit is set when the read is the result of a load to cache-inhibited guarded storage. When set, the 
system implementation knows this read might only complete once. 

P Bit: 
The P bit is set when snoop pipelining is allowed (default for reads). This bit can be cleared for reads if the 
processor requires the transaction snoop response to be resolved before another independent transaction is 
issued. When an address collision is detected, the North Bridge automatically delays the colliding transaction 
until the previous transaction is resolved.

Snooper:
If the address contained in the reflected command packet is in the cache and marked Modified, the snooper 
performs a push or intervention.

Memory:
Memory can provide the addressed data no earlier than the end of the snoop window for that transaction. The 
North Bridge examines the snoop-response bus, and, if it was SResp Retry or SResp Intervention, the North 
Bridge will terminate the operation and deallocate the tag. If the SResp response is Modified, because the 
North Bridge supports intervention, the North Bridge captures the line as it is transferred to the requester and 
stores the line to memory.

I/O Bridge:
If the G bit is set, an I/O bridge can not issue the read to any memory-mapped I/O devices more than once. 
This means waiting until the previous guarded read is committed (no retry from the transfer handshake) 
before sending the next request.

8.4.2.2 Read with No Intent to Cache Transaction

Read with no Intent to Cache (RWNITC) is another name for a read transaction with the S bit and M bit set 
(see above). It is a coherent read; that is, the master wants the latest data, but does not cache it. Therefore, 
the snooper can keep caching the data as Exclusive after it provides the data by a push or an intervention.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 166 of 415

Version 2.3
March 7, 2008

8.4.2.3 Read with Intent to Modify Burst Transaction

Master:
The RWITM transaction is issued by a master to bring an entire block into a cache for the purpose of writing 
to it. It is always a block-sized read. It is triggered by a store, stwcx., stdcx., or Data Cache Block Touch for 
Store (dcbtst) to a cacheable page that misses in the cache. The master should mark its cache Exclusive if 
the SResp is not Retry.

Snooper:
The snooper invalidates any line cached at the same physical block address and asserts SResp Null if 
marked Invalid, Shared, or Exclusive. If the request hits its cache, and it is marked Modified, the snooper per-
forms either a push or an intervention. If the system supports Shared-Intervention and the request was 
marked with N set to ‘1’, then the snooper can respond Shared-Intervention and push the data.

Memory:
The memory can provide the addressed data no earlier than after SNOOPACC. The North Bridge must 
examine the snoop-response code, and if it was Retry or Intervention, the North Bridge should terminate the 
operation and deallocate the tag.

Atomic: 
The Atomic modifier (TType [0]) is set along with the M bit when the read is to satisfy a cacheable copy-back 
stwcx. or stdcx. The master SResp retries its own RWITM-A if the reservation is subsequently cleared after 
issuing the RWITM but before SResp and does not reissue the RWITM-A. If a processor does not support 
any cache levels below it (that is, it sees all the system coherency traffic), then the A bit need not be set on 
RWITM. 

N Bit: 
The N bit is set when the master and memory are capable of intervention, intervention is wanted, and the 
read-data size is the coherency block size for the system. All non-block size reads must have the N bit set to 
zero. In addition, the processor is capable of setting N to ‘0’ for all reads, in case the memory does not sup-
port intervention. 

G and S Bits: 
These bits are not defined for RWITM.

8.4.2.4 LARX-Reserve Transaction

Master:
The LARX-Reserve transaction is an address-only transaction that sets the reservation for every cache level 
below the level serviced by a read atomic operation. If the reservation at one level is already set to the same 
address as the LARX or the LARX-Reserve being propagated, then it should not be propagated further 
because this causes a bus operation each time the LARX is executed and might be part of a program loop.

Snooper:
Does not see the LARX-Reserve for M equals ‘0’.

Memory:
Ignores this operation.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 167 of 415

8.4.3 Memory Write Transactions (General)

A master sends a write command to write data to memory or to an I/O device. The write-command packet is 
immediately followed by a write-data packet. The slave (North Bridge) checks the command to see if there is 
buffer space to store the write-data packet. The slave responds with a retry transfer-handshake packet if 
there is insufficient buffer space. The master can then terminate sending the write-data packet on an even 
beat. It can then try again to send the write-command packet and write-data packet at a later time. 

The North Bridge reflects every command packet to all processors. The snoopers ignore the reflected 
command packet if M equals ‘0’. Only the original processor needs to see the address inside the command 
packet to deallocate the tag after the transaction is completed. At that time, the North Bridge takes responsi-
bility for snooping for the pushed (castout) data. The transaction must be propagated all the way to memory if 
the W bit is asserted. 

8.4.3.1 Write-With-Kill Transaction

Master:
The write-with-kill transaction is a burst operation used to tell all snoopers to invalidate any copies of this line 
in their caches, while also storing the line to memory.

Snooper:
If M equals ‘0’, the snooper ignores this operation. If M equals ‘1’, the snooper treats this operation as a Data 
Line Kill (DKILL) to the same address block, marking it Invalid (this includes any store buffers) and the opera-
tion is passed to any higher level cache.

Memory:
Memory must not update storage if the transfer-handshake packet indicates Retry or the SResp value (if 
applicable) is Retry. 

Table 8-14. Write-With-Kill Types Supported 

WIM Bits for Write-With-Kill W Bit M Bit

Copy back due to load, store, or Data Cache Block Set to Zero (dcbz) 0 0

I/O Write1 0 or 1 1

Flush due to Data Cache Block Flush (dcbf) 1 0

Push due to snoop 1 0

1.  An I/O write is a full cache line write from a memory address.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 168 of 415

Version 2.3
March 7, 2008

8.4.3.2 Write-With-Clean Transaction

Master:
A write-with-clean transaction is a burst operation caused by a processor executing a Data Cache Block 
Store (dcbst) instruction or a bus snoop read or clean to a modified block. It is used to tell all lower level 
caches that a copy still remains in this level, while updating memory (or I/O). Since no snooper has the line, it 
sets M to ‘0’ so horizontal snooping is avoided. The block is written all the way to memory.

Snooper:
Snoopers should not see this operation since M equals ‘0’.

Memory:
Memory must not update storage if the SResp is Retry.

8.4.3.3 Write-With-Flush Transaction

Master:
A write-with-flush transaction is a partial-block write to memory and might be a sub-block burst operation from 
the I/O. It is used for cache-inhibited or write-through writes from a processor (sub-block writes). The proces-
sor sources the M bit from the page table entry. I/O masters can also use this for DMA writes to a cache block 
without getting ownership first. The processor will set M to ‘1’ for this transaction.

Snooper:
If M equals ‘1’ and the line is cached Modified, this operation is SResp Retried. The line is pushed back to 
memory with a write-with-kill, then invalidated (this includes any store back buffers [SBBs]). The only appro-
priate SResp response is Retry by a snooper (other than SResp Null, which is the default response).

Memory:
Memory must not update storage if the transfer handshake indicates retry or the SResp value (if applicable) is 
Retry. A bus agent cannot pass a write-with-flush to an I/O bus that might contain memory-mapped devices 
or memory that can be reserved without first successfully passing the response window on the processor 
interconnect bus.

8.4.4 Command-Only Transactions

8.4.4.1 DCLAIM Transaction (Invalidate Others)

Master:
A master issues a data line claim (DCLAIM) transaction to service a dcbtst, dcbz, or store instruction. The 
DCLAIM is used to attempt to take a coherent block from the shared (or, with dcbz, invalid) state to the mod-
ified state and all other horizontal caches to the invalid state. It differs from DKILL in that the DClaim does not 
invalidate the master’s copy in a lower level (higher number) cache.

Snooper:
Snoopers must invalidate their data cache blocks if there is a hit on this address.

Memory:
Ignores this operation. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 169 of 415

8.4.4.2 Flush Transaction

Master:
A flush transaction is caused by a dcbf that hits on a memory coherent cache block and is marked shared or 
invalid. It is sent to other snoopers that might have a copy of the line.

Snooper:
If M equals ‘1’, snoopers snoop their caches, and, if the line is cached, it is marked invalid. If the line was 
marked as modified, it is pushed back to memory. A snooper might respond modified, or might respond Null. 
An SResp Retry response should only be used if the command cannot be accepted or a pipeline address col-
lision occurs.

Memory:
Memory might ignore this operation, even if a snooper responds SResp Modified, since intervention is not 
supported on the flush operation itself. The flushed data is sent to memory on a separate write-with-kill oper-
ation.

8.4.4.3 Clean Transaction

Master:
A clean transaction is caused by a dcbst that hits on a memory coherent cache block and is marked shared 
or invalid. It is sent to other snoopers that might have a modified copy of the line.

Snooper:
If the line is cached, then it is marked shared (or exclusive if it is the lowest cache in the hierarchy). If it was 
marked modified, the line is pushed back to memory. A snooper might respond modified, or might respond 
Null. An SResp Retry response should only be used if the command cannot be accepted or a pipeline 
address collision occurs.

Memory:
Memory might ignore this operation, even if a snooper responds SResp Modified, since intervention is not 
supported on the clean operation itself. The cleaned data is sent to memory on a separate write-with-clean 
operation.

8.4.4.4 IKill Transaction

Master:
The intent of the Instruction Line Kill (IKILL) transaction is to invalidate entries in any instruction-only caches 
in the system. Data only or combined caches are invalidated with other coherency operations. An IKILL block 
is caused by an ICBI instruction that hits on an instruction cache block that is marked as memory coherent. In 
order to prevent bus livelocks, this command should be issued with the P bit set to ‘0’.

Snooper:
Snoopers must invalidate their instruction cache blocks if there is a hit on this address. Any unified data or 
data only cache does not need to be snooped. A snooper might respond Retry, or might respond Null. An 
SResp Retry response should only be used if the command cannot be accepted due to resource conflicts.

Memory:
Memory can ignore this operation.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 170 of 415

Version 2.3
March 7, 2008

8.4.4.5 TLBIE Transaction

Master:
TLBIE is caused by a processor executing a TLB Invalidate Entry (tlbie) instruction. 

Snooper:
Snoopers accept this transaction regardless of the M bit and invalidate any TLBs in the congruence class. 

Memory:
Memory can ignore this operation.

8.4.4.6 TLBSYNC Transaction

The intent of the TLBSYNC transaction is to act as a barrier that forces all previous operations using invali-
dated TLBs to complete before the TLBSYNC completes.

Master:
The master issues the TLBSYNC transaction in response to a processor tlbsync instruction. 

Snooper:
Snoopers must SResp Retry the TLBSYNC until all previous loads or stores and I-fetches that used any TLBs 
have been flushed or performed and any snooped TLBIEs are completed. A snooped TLBSYNC has the 
same effect on a processor that a sync would have if it were executed on that processor.

Memory:
Memory can ignore this operation.

8.4.4.7 SYNC Transaction

Master
A master issues a SYNC when a processor executes a sync instruction. The master stops processing all 
future instructions until all previous instructions have been completed. Then the SYNC transaction is issued 
to the bus, and the sync instruction is not completed until the SYNC transaction completes on the bus. 
SResp Retry will cause the operation to be repeated; SResp Null signals completion. To prevent bus live-
locks, this command should be issued with the P bit set to ‘0’, if the snooper implementation would cause 
resource conflict retries. 

Snooper:
A snooper drives SResp Retry if there are any snoop operations pending, or cache pushes or snoop opera-
tions pending from previously snooped bus operations. Otherwise, it responds SResp Null. 

Memory:
Memory signals SResp Retry until stores are performed if they can be reordered within the memory unit. Oth-
erwise, it responds SResp Null. Memory can also respond SResp Null. The SYNC is used as a store barrier. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Processor Interconnect Bus
Page 171 of 415

8.4.4.8 EIEIO Transaction

Master:
The intent of the Enforce In-Order Execution of I/O (EIEIO) transaction is to act as a barrier for all non-cache-
able loads or stores that follow it. It forces all previous non-cacheable operations to complete before any non-
cacheable operation issued after the EIEIO. EIEIO is caused by a processor executing an eieio instruction.

Snooper or Memory:
Ignore this operation.

I/O Bridge or Bus Adapter:
Accept and propagate toward memory-mapped I/O storage and do not allow any cache-inhibited storage 
access to bypass (if they can be reordered).

8.4.4.9 Null Transaction

Master:
A Null transaction is used by the processor to break cyclic deadlocks or prescheduled transactions that are 
no longer needed. 

Snooper, Bus Adapter, or Memory:
Ignore.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Processor Interconnect Bus
Page 172 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 173 of 415

9. Power and Thermal Management

The power-management design of the 970MP microprocessor has two primary objectives: to achieve high 
performance whenever it is needed and to minimize the operating power during both active and idle periods. 
Power-management support includes frequency and voltage scaling, dynamic power management, and 
power down of one core while the second core continues to operate.

9.1 Definitions

9.1.1 Full Power Mode

Full Power (Full Run mode) is the default power mode of the processor. After initialization or reset, the 
processor will always be in this mode. All internal units are clocked at full clock speed and are fully opera-
tional.

9.1.2 Doze Mode 

This mode is entered from Full Power mode after the processing core has been quiesced, and instruction 
fetch and data prefetch have ceased. This mode is a power saving mode, because only the circuitry needed 
to provide bus snooping capability and maintain memory coherency is active. 

To enter Doze mode, set HID0[DOZE] to ‘1’, and then set MSR[POW] to ‘1’. When Doze mode is entered this 
way, it will stay in this mode until interrupted out, rather than try to transition further into Nap mode. An inter-
rupt condition such as an external interrupt, decrementer, hard reset (hreset), soft reset (sreset), or machine 
check is required to return to full power.

9.1.3 Nap Mode

Nap mode provides additional power savings beyond Doze mode. In general, clocks to all internal units are 
switched off. Only the timer/decrementer facility, the I/O circuitry, and part of the pervasive unit are clocked 
and operating. The phase-locked loop (PLL) is running and stays locked to the global system clock 
(SYSCLK). The clock mesh is operating, as is the bus clock.

To enter Nap mode, first the Nap bit in Hardware Implementation Dependent Register 0 (HID0[9]) must be 
set. Then the power-management bit in the Machine State Register (MSR[45]) must be set. The processor 
will then gate its core clocks and enter Doze mode. In Doze mode, the processor will continue to snoop. 
However, it asserts its quiescent request (QREQ) signal to indicate to the chip set that it is prepared to go into 
Nap mode if snooping is not required. If the chip set determines that no memory activity requires the 
processor to snoop, it asserts a quiescent acknowledgment (QACK). Once the processor detects the asser-
tion of QACK, it transitions to Nap mode. While in Nap mode, QACK is monitored constantly. If it is dropped, 
the processor transitions back to Doze mode. 

If the processor has to act upon an incoming snoop, the bus interface unit (BIU) becomes active, and QREQ 
is deasserted. However, the processor stays in Doze mode and waits for the BIU to become idle again. As 
soon as the BIU is idle, QREQ is issued again. QACK can be reactivated when the snoop is completed (after 
the snoop-response time). The processor switches back to Nap mode after QACK is received. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 174 of 415

Version 2.3
March 7, 2008

If QACK is received without QREQ being sent (for example, the BIU is not idle), the processor will enter an 
error state. If QACK is deactivated while the processor is switching to Nap mode, the transfer to Nap mode 
completes before the processor is brought back to Doze mode. Any external interrupt, reset, or check condi-
tion transfers from Nap mode back to Full Power mode.

9.1.4 Deep Nap Mode

In Deep Nap mode, the chip is in the same state as Nap, except that the clock frequency in the chip is 
reduced to 1/64th of the nominal frequency. If this state is enabled, it is entered immediately after entering 
Nap mode and exited immediately before exiting Nap mode.

9.1.5 Dynamic Power Management

Dynamic power management (DPM) refers to the cycle-by-cycle control of clocks, as hardware facilities are 
used for computation and then go idle for some cycles. This gating of clocks while circuits are idle saves 
power with no reduction in performance. On a cycle-by-cycle basis, DPM enables stopping a logical function 
based on the need for the function. DPM also enables stopping a pipeline stage in a unit based on a change 
in the content of the pipeline stage.

9.2 Power-Management Support

System software manages power dissipation in a number of ways, using a number of hardware facilities. 

9.2.1 Power-Management Control Bits

Dynamic power management (DPM) refers to the cycle-by-cycle control of clocks as hardware facilities are 
used for computation, and then go idle for some cycles. This gating of clocks while circuits are idle saves 
power with no reduction in performance. In normal operation, DPM should be enabled. It can be disabled, 
however, by negating HID0[11]. To enter an idle state, software must first set a bit in HID0 to identify which 
idle mode is wanted, and then set MSR[45] to trigger the transition to that mode. Setting HID0[9] selects Nap 
mode; setting HID0[8] selects Doze mode; setting HID0[7] selects Deep Nap mode. Table 9-1 summarizes 
these power-management control bits. 

Table 9-1. Power-Management Control Bits 

Bit Bit Name Power Saving Mode

HID0[7] deep nap Deep nap

HID0[8] doze Doze

HID0[9] nap Nap

HID0[11] dpm Dynamic power management enable

MSR[45] POW Power management enable 

MSR[48] EE Enable exception (interrupt)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 175 of 415

9.2.2 Interrupts

The only way to get from a power saving mode back into the Full Power mode is by asserting one of the 
following interrupts: 

• External interrupt
• Decrementer interrupt

Before entering a power saving mode, the MSR[EE] bit must be set to enable these interrupts. After an inter-
rupt is taken, the return from interrupt (rfid) or the hypervisor return from interrupt (hrfid) automatically resets 
the MSR[POW] bit, therefore, software must set it once again to reenter a power-saving mode. 

9.2.3 Bus Snooping

The processor interconnect participates in the system power management through two asynchronous control 
signals called QREQ and QACK. QREQ is a processor output signal that is asynchronously sampled by the 
local clock of the North Bridge. QACK is a North Bridge output signal that is asynchronously sampled by the 
local clock of the processor and other bus masters.

Figure 9-1 on page 176 is a flowchart of the sequence of steps for the processor to enter Doze or Nap mode. 
Figure 9-2 on page 177 is a flowchart of the sequence of complementary steps taken by the North Bridge in 
response to the assertion or negation of QREQ by a processor. In Doze mode, the processor must be 
capable of snooping all reflected command packets from the North Bridge. In Nap mode, the processor is not 
required to snoop transactions, although it must be capable of returning to Doze mode for the purpose of 
snooping if QACK is negated.

In the normal (or preferred) sequence of events, the processor and North Bridge observe a 4-phase hand-
shake for QREQ and QACK. The processor first asserts QREQ after the processor has quiesced, the 
snoopers are idle, and all outstanding processor interconnect bus transactions have completed. The 
processor then waits for the North Bridge to assert QACK. While the processor is waiting for the assertion of 
QACK, it is in an intermediate mode called Doze. Once the North Bridge asserts QACK, the processor enters 
Nap mode. To exit Nap mode, the processor negates QREQ and then waits for the North Bridge to negate 
QACK before returning to the Run state.

There are a few scenarios in which the 4-phase handshake is preempted.

1. While in Doze mode, the North Bridge reflects command packet snooping. The action taken by the pro-
cessor is to negate QREQ while snooping the reflected command packet and while staying in Doze 
mode.

2. While in Doze mode, the processor receives an interrupt. The action taken by the processor is to negate 
QREQ and return to the Run state.

3. While in Nap mode, the North Bridge negates QACK while the processor has QREQ asserted. The pro-
cessor must then return to Doze mode within 64 bus clocks so that it can return to snooping reflected 
command packets from the North Bridge.

As shown in Figure 9-1 on page 176, the North Bridge normally negates QACK when QREQ is negated by 
any of the attached processors. However, it might also negate QACK if there is bus activity from any of the 
other attached bus devices that can be a bus master.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 176 of 415

Version 2.3
March 7, 2008

Figure 9-1.  Processor QREQ/QACK Signalling 

Note:  Processor ignores QACK 
during this period and whenever 
QREQ is negated.

HID0(nap) = 1.

Snoop Idle and bus interface 
drained of all transactions:

• RWITM
• DClaim
• Speculative loads

Processor asserts QREQ.

Processor Wake Up
(50 - 100 processor clocks)

Processor sees
QACK negated.

Processor
Run

Software readies
system/processor 

for Nap.

Move To MSR(POW).

Processor
Doze

Processor sees
QACK asserted.

Processor Shut Down
(50 - 100 processor clocks)

Processor
Nap

Processor waits for QACK 
negated.

Processor negates QREQ.

Interrupt awakens processor 
core.

North Bridge issues snoop 
processor, not Snoop Idle.

Processor negates QREQ.

Processor negates QREQ.

Processor Wake Up
(50 - 100 Processor Clocks)

Interrupt awakens processor core.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 177 of 415

After the HID0[nap] bit is set and then the MSR[POW] bit is set, the processor enters Doze mode and asserts 
its QREQ signal. In this mode, core clocks are gated to reduce power, but clocks in the storage subsystem 
(STS) are still active to support bus snooping. The PLL, timers, and interrupt logic are also active in all the idle 
modes. The processor must remain in this Doze mode for as long as the system determines that snooping is 
required. The assertion of QREQ indicates to the system the processor's readiness to go into Nap mode. 
Once the system determines that snooping is not currently required, it can assert QACK. When the processor 
receives this signal, it completes the transition to Nap mode.

If snooping is required again, the system can negate QACK, signalling to the processor that it must transition 
back to Doze mode and begin snooping the bus. The general requirement is that the system must deassert 
QACK at least 64 bus cycles before it initiates bus activity to allow the processor to complete the transition 
back to Doze mode. However, the calculations below can be used to fine tune this delay. If this bus activity 
once again ceases, the system can assert QACK and the processor will go back into Nap mode. 

Figure 9-2. North Bridge QREQ/QACK Signalling 

Bus
Active

Bus
Idle

North Bridge issues snoop.

Bus activity from any master.
North Bridge sees QREQ 

from all ports.

North Bridge drains all trans-
actions:

• I/O cycles
• Snoop cycles (both 

address and data)

North Bridge waits for program delay.
(16 - 256 bus clocks)

North Bridge asserts QACK

North Bridge waits for program delay.
(8 - 64 bus clocks)

Note:  North Bridge will TH RETRY to any bus cycle 
received during this period. 

North Bridge waits for 
program delay.

(8 - 64 bus clocks)

North Bridge negates 
QACK.

QREQ negated from 
any master. 

North Bridge TH 
RETRY to master. 

Bus activity from any 
master. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 178 of 415

Version 2.3
March 7, 2008

The two pairs of QREQ/QACK signals in the 970MP design allow the two processors to independently Nap. It 
is possible to use the 970MP microprocessor with a North Bridge chip that supplies only a single 
QREQ/QACK pair. In this case, the two processors will be forced to go into and come out of Nap mode 
together. Figure 9-3 shows the external logic and connectivity required to support the 970MP microprocessor 
with such a North Bridge.

Because the QREQ signal is active low, an external OR gate is used to combine the two QREQ signals from 
the two processing units. Thus, QREQ is asserted to the North Bridge only if both processing units are 
asserting their QREQ signals. Once the North Bridge receives the asserted QREQ signal, its QACK signal is 
broadcast to both processing units by driving both QACK inputs from the single QACK on the North Bridge.

9.2.3.1 Delay Calculation

The requirement for the worst case QAckMinLowTime does not account for the case where the processor 
has not yet reached Nap or Deep Nap before QACK is negated. This additional delay can be accounted for 
by either increasing the required QAckIdleDelay or by imposing a requirement on QAckMinLowTime. 
Through Table 9-2 and Table 9-3, below, we present the requirement as a minimum QAckIdleDelay, and a 
minimum combined QAckIdleDelay and QAckMinLowTime.

Table 9-2 provides the minimum QAckIdleDelay required for three different bus ratios and three different 
mesh clock frequencies. The required delay is 24 full frequency (f) processor clocks plus 195 mesh frequency 
(f, f/2 or f/4) processor clocks. Since the bus clock frequency scales with the mesh clock, the relation between 
these is a function of the bus ratio, but independent of frequency scaling. At 2:1, there are 4 bus clocks per 
mesh clock, at 3:1 there are 6 bus clocks per mesh clock, and at 4:1 there are 8 bus clocks per mesh clock. 
Since the 24 full frequency clocks do not scale with the mesh and bus clocks, the relation between these full 
frequency clocks and the bus clocks depends on both the bus ratio and the scaled frequency. At 2:1, there 
are 4 bus clocks per full frequency clock at f, 8 at f/2, and 16 at f/4. At 3:1, these values are 6 bus clocks per 
full frequency clock at f, 12 at f/2, and 24 at f/4. At 4:1, these values are 8 at f, 16 at f/2, and 32 at f/4.

Figure 9-3. Using a 970MP Microprocessor with a Single QREQ/QACK Pair 

CP0_QREQ

CP1_QREQ

CP0_QACK

CP1_QACK

QREQ

QACK

970MP North Bridge



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 179 of 415

Table 9-3 provides the minimum (QAckIdleDelay + QAckMinLowTime) required for three different bus ratios 
and three different mesh clock frequencies. The required delay is 48 full frequency (f) processor clocks plus 
309 mesh frequency (f, f/2, or f/4) processor clocks.

Note:  The default values for these two parameters are QAckIdleDelay = 50, and QAckMinLowTime = 6. This 
combination satisfies both of the requirements in the two tables shown for 3:1 mode at f/2, and therefore this 
combination is appropriate for use at this bus ratio and frequency configuration.

9.2.4 Thermal Diodes

Thermal diodes are placed near the hot spot on each core and brought off chip separately. External logic can 
be used to monitor the diode temperature of the two cores independently for managing power based on 
thermal limits.

9.2.5 Bus States while in Power Saving Modes 

When serving snoops, the BIU is active and drives the outputs as required. When in Nap mode, there is no 
snooping. 

• Data Out Bus, Transfer Handshake Out, and Coherence Response are driven to an idle mode.
• Clock Out is always driven with the proper clock signal.
• Clock In expects to receive a clock signal.

Table 9-2. Minimum QAckIdleDelay requirement in bus clocks for 970MP 

2:1 3:1 4:1

f 55 37 28

f/2 52 35 26

f/4 51 34 26

Table 9-3. Minimum (QAckIdleDelay + QAckMinLowTime) requirement in bus clocks for 970MP 

2:1 3:1 4:1

f 90 60 45

f/2 84 56 42

f/4 81 42 41



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 180 of 415

Version 2.3
March 7, 2008

9.3 Software Considerations for Power Management

9.3.1 Entering Power Saving Mode

The following code sequence should be used to enter a power save mode 

.......

.......
mthid0 (NAP)
.......
.......
.......
.......
loop: dssall (VPU prefetching stop)
sync 
mtmsr (POW)
isync
br   loop
.......
.......

The Data Stream Stop All (dssall) instruction is needed to stop those prefetch engines started in behalf of the 
vector processing unit (VPU) prefetches. Only the previous sequence will bring the processor into the power 
save mode. Switching the Move To HID0 (mthid0) instruction and the Move To Machine Status Register 
(mtmsr) instruction in the previous sequence does not result in a switch to a power saving mode. When an 
interrupt is taken, it resets the MSR[POW] bit. 

9.3.2 External Interrupt Enable

Only an external interrupt or timer interrupt will bring the processor back from the power save mode. There-
fore, note that MSR[EE] must be set before entering the above loop. Failing to set MSR[EE] and applying an 
external interrupt or a timer interrupt will result in unpredictable behavior by the processor. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 181 of 415

9.4 Power Tuning Facility Overview

The power tuning facility is the heart of the power management for the 970MP microprocessor. It controls the 
power-management modes, on-chip and off-chip clock frequency, and supports voltage scaling for the 
970MP microprocessor. Table 9-4 lists the Power tuning modes supported by the 970MP microprocessor. 

In the system, all processing units and the processing unit interfaces in the North Bridge change the power 
tuning mode (except for Deep Nap mode) concurrently. Any processing unit can request the mode change. 
This information is then transmitted to the North Bridge through the processor interface bus as a special 
request. The North Bridge grants the requests and mirrors this special request to all processing units. The 
North Bridge then waits for all processing units to signal that they have quiesced the bus and are ready to 
switch modes. The North Bridge then triggers the mode switch. It completes within 200 ns for bus ratios of 
2:1, 3:1, 4:1, 6:1; and within 300 ns for a bus ratio of 12:1.

Frequency scaling on the processor interface bus requires changing the RoundTripDelay and TargetTime 
parameters in all the processing units and in the North Bridge. Because the I/O voltage is not changed, an 
initial alignment pattern (IAP) procedure is not required. The new parameters are sent along with the power 
tuning command; they overwrite the old parameters when the frequency switch occurs. No parameter change 
is required for the deep nap frequency, because there is no bus activity in this mode. 

When switching power tuning modes, consideration must be given to the following items:

• Switching from high to low frequency will result in loss of accuracy and resolution in the decrementer 
counter and will slow reaction on interrupts. The operating system has to set the decrementer counter in 
order to prevent event and interrupt misses or queue overflow on external devices. 

• Some interfaces must be running at a constant speed and voltage independent of the internal frequency 
and voltage (for example, the inter-integrated circuit [I2C] interface, SDRAM interface, and PCI interface). 

9.4.1 Power Tuning Facility Definitions

Table 9-4. Power-Management Modes  

Static Power-Management Modes Frequency Scaling

Full, Doze, Nap f

Full, Doze, Nap f/2

Full, Doze, Nap f/4

Deep Nap f/64

Note:  

1. See the IBM PowerPC 970MP RISC Microprocessor Datasheet for actual power dissipation specifications. 

Bus clock (Bclk) The external bus clock has half the frequency of the data clock because of the 
double data rate transmission mode on the processor interconnect.

Data clock (Dclk) The bus data clock has a frequency of 1/nth of the mesh clock, where n is the 
bus ratio. Valid values for the bus ratio are 2, 3, 4, 6, and 12; with 8 and 16 
supported only for test purposes.

Local clock (lclk) The full frequency clock as delivered by the PLL, but with the same analog delay 
as the mesh. Every rising edge on the mesh clock has a concurrent rising edge 
on lclk with a small skew.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 182 of 415

Version 2.3
March 7, 2008

Mesh clock (mclk) The logic behind the PLL generates full, half, or quarter frequency of the PLL 
clock and sends it on the mesh. The PLL also guarantees that some rising edge 
of the mesh clock at a latch is aligned to some rising edge of the SYSCLK when 
using full frequency.

PI Processor interconnect bus (processor interface). 

PLL/full frequency clock Frequency is either 8 or 12 times the SYSCLK.

psync A signal provided by the North Bridge that is active for one rising edge of 
SYSCLK every 24 SYSCLK cycles. 

psync edge A special mesh clock rising edge, aligned with a rising edge of the SYSCLK 
while the external psync is active.

SYSCLK This is the system clock as provided on the board.

Time0 Time0 mark. A special rising edge on the bus clock, which is either concurrent to 
the psync edge or removed by two external bus clock phases (4 * x bus clocks 
edges).

Note:  Not all bus ratios are valid for all frequency modes (full, half, and quarter), 
considering that the external psync is a 24:1 SYSCLK signal, and taking the PLL 
multiplication factors and the Time0 definition into account.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 183 of 415

9.4.2 Power Modes 

Figure 9-4 is a state diagram showing the various power modes supported in the 970MP microprocessor and 
the transitions between them. Table 9-5 on page 184 identifies the power states in that diagram, and 
Table 9-6 on page 185 identifies the transitions labeled in the diagram.

Note:  While the frequency associated with Deep Nap is 1/64 of full frequency in all cases, the three Deep 
Nap states are distinguished by the frequency of the processor that they transition from and to. When the pro-
cessor goes into Deep Nap from full frequency, it will return to full frequency when it leaves Deep Nap. Simi-
larly, it returns to half frequency if it came from half frequency or returns to quarter frequency if it came from 
quarter frequency. In order for these transitions between Run and Deep Nap to be fast, the voltage applied to 
the processor in Deep Nap will be the frequency required by the state it will return to. The power dissipation 
associated with the three different Deep Nap states will therefore not be the same, in general.

There are 12 transitions that lower power dissipation, indicated as Lx, corresponding to left-to-right or top-to-
bottom transitions in the diagram. Corresponding to nine of these is a reciprocal transition that raises power 
dissipation, indicated as Rx, and corresponding to the right-to-left or bottom-to-top direction in the diagram. In 
addition, there are three lower (L4, L11, and L18) and nine raise transitions (R3, R5, R6, R10, R12, R13, R17, 
R19 and R20) that do not have corresponding reciprocal transitions. 

Figure 9-4. 970MP Power Mode States  

Run Doze Nap
Deep
Nap

L1/R1

L2/R2

L4

R3 R5

R6

High
Speed

L7/R7

L21/R21

L9/R9

L11

R10 R12
Medium
Speed

L14/R14

R13

L16/R16

L15/R15 L18

Low
Speed

R17 R19

R20

S2 S3

S1 S4

S6 S7

S5 S8

S10 S11

S9 S12

L8/R8



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 184 of 415

Version 2.3
March 7, 2008

Table 9-5 describes the 12 power mode states.

The three Full Run modes (S1, S5, S9), one each for high, medium, and low speed, correspond to all oper-
ating processor functions. The three Doze modes (S2, S6, S10) involve limited functionality, which include 
bus snooping, but not instruction execution. The timers, both decrementer and time base, continue to run 
during Doze modes, as does the logic for responding to interrupts. The three Nap modes (S3, S7, S11) corre-
spond to a level of functionality below Doze, in which snooping is not supported. However, timer and interrupt 
logic are still active. The Deep Nap modes (S4, S8, S12) corresponds to the same functionality as Nap mode, 
but with the clocks running at 1/64 of full speed. 

The state transitions between Run, Doze, and Nap at a given frequency are triggered as in the PowerPC 
970MP microprocessor. Transitions associated with scaling the power tuning frequency are L7, R7, L14, R14, 
L21, and R21. These are triggered by the execution of a power tuning command, which is initiated by a write 
to the Power Control Register. These transitions are all summarized in Table 9-6 on page 185 and briefly 
described below.

Table 9-5. Power Mode States 

State Description

S1 Full Run, high speed

S2 Doze, high speed

S3 Nap, high speed

S4 Deep Nap, high speed

S5 Full Run, medium speed

S6 Doze, medium speed

S7 Nap, medium speed

S8 Deep Nap, medium speed

S9 Full Run, low speed

S10 Doze, low speed

S11 Nap, low speed

S12 Deep Nap, low speed



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 185 of 415

Software initiates the transition from a Full Run mode to a corresponding Doze mode by setting the 
MSR[POW] bit to a ‘1’, when the HID0[nap] bit is a ‘1’. This triggers the normal idle mode sequence: 

• Instruction fetch quiesces.
• The BIU quiesces.
• The clocks to the core are gated.
• QREQ is asserted.

At this point, the processor is in Doze mode. If or when QACK is asserted, the clocks driving the snoop logic 
are gated, and the processor enters Nap mode. Once in Nap mode, if QACK is negated, the snoop logic is 
reactivated and the processor returns to Doze mode. From either Doze mode or Nap mode, an interrupt 

Table 9-6. Transitions between Power Modes 

Transition From To Trigger

L1 Run, High Doze, High MSR[POW] with HID0[nap] = ‘1’

R1 Doze, High Run, High Interrupt

L2 Doze, High Nap, High QACK asserted

R2 Nap, High Doze, High QACK negated

R3 Nap, High Run, High Interrupt

L4 Nap, High Deep Nap, High HID0[deep nap] = ‘1’

R5 Deep Nap, High Doze, High QACK negated

R6 Deep Nap, High Run, High Interrupt

L7 Run, High Run, Medium Power tuning command

R7 Run, Medium Run, High Power tuning command

L8 Run, Medium Doze, Medium MSR[POW] with HID0[nap] equal to ‘1’

R8 Doze, Medium Run, Medium Interrupt

L9 Doze, Medium Nap, Medium QACK asserted

R9 Nap, Medium Doze, Medium QACK negated

R10 Nap, Medium Run, Medium Interrupt

L11 Nap, Medium Deep Nap, Medium HID0[deep nap] equal to ‘1’

R12 Deep Nap, Medium Doze, Medium QACK negated

R13 Deep Nap, Medium Run, Medium Interrupt

L14 Run, Medium Run, Low Power tuning command

R14 Run, Low Run, Medium Power tuning command

L15 Run, Low Doze, Low MSR[POW] with HID0[nap] equal to ‘1’

R15 Doze, Low Run, Low Interrupt

L16 Doze, Low Nap, Low QACK asserted

R16 Nap, Low Doze, Low QACK negated

R17 Nap, Low Run, Low Interrupt

L18 Nap, Low Deep Nap HID0[deep nap] equal to ‘1’

R19 Deep Nap Doze, Low QACK negated

R20 Deep Nap Run, Low Interrupt

L21 Run, High Run, Low Power tuning command

R21 Run, Low Run, High Power tuning command



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 186 of 415

Version 2.3
March 7, 2008

(External, Decrementer, System Management, Performance Monitor, or Reset) will reactivate all the clocks. 
This returns the processor to Full Run mode, where it will execute instructions starting at the corresponding 
interrupt vector. This brief description of the transitions among corresponding Full Run, Doze, and Nap 
modes applies to all three processing speeds (high, medium, and low). 

The transition to Deep Nap (L4, L11, and L18) occurs immediately after the transition to Nap, if the Deep Nap 
enable bit (HID0[deep nap]) is set. In this state, the processor frequency is lowered to 1/64 of its full-speed 
frequency. Otherwise, the processor behavior is the same as in Nap state. In particular, if QACK is negated 
during Deep Nap, the processor transitions into Doze mode. If an interrupt occurs while in Deep Nap mode, 
the processor transitions to Run mode at the previous frequency. 

Under normal operation, in which both cores are powered and participating (or prepared to participate) in 
program execution, system software controls the power mode of each processing unit. Table 9-7 lists valid 
combinations of power modes for the two processors.

In all these cases, both processors are clocked at the same frequency (there is a single PLL on chip) and are 
powered at the same voltage. Table 9-7 shows that both processing units can be in the same power mode, or 
one can be dozing while the other is running. Because the two processing units have separate QREQ and 
QACK signals, it is also possible for one processor to nap while the other is running (or dozing). However, this 
would require the napping processor to first flush its L2 cache so that it would no longer have to snoop the 
bus.

9.4.3 Power Transition Latencies

Each of the transitions in Table 9-6 on page 185 has a change in power dissipation associated with it, as well 
as a latency for the state change. The 970MP design incorporates several mechanisms to control these tran-
sition latencies in order to reduce the induced voltage spike that would otherwise occur.

There are three situations in which the power requirements of the processor can change drastically. One 
occurs during Run mode, when the instruction stream being executed changes from a low activity application 
to a high activity application. Because the hardware cannot detect this case, the system must be designed 
with sufficient decoupling capacitance to control the rate of current change (di/dt) associated with this type of 
power transition.

The second situation is that in which the processor transitions between Run and idle (Doze, Nap, Deep Nap) 
modes, at a given voltage and at constant (or Deep Nap) frequency. For this case, the 970MP micropro-
cessor implements a programmable delay, which is inserted at several points in the transition sequence when 
coming out of idle modes back to the Run mode. This facility is described in detail in Section 9.4.3.1.

Table 9-7. Valid Combinations of Power Modes 

Processor 0 Processor 1

Run Run

Run Doze

Doze Run

Doze Doze

Nap Nap

Deep Nap Deep Nap



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 187 of 415

The third type of power transition is that associated with frequency changes in the power tuning facility. In this 
case, the dithering mechanism introduced in the 970FX microprocessor is expanded to handle the higher 
frequency design points of the 970MP microprocessor, as well as the quarter to full frequency transition in the 
power tuning facility. Clock dithering in the 970MP microprocessor is described in Section 9.8.3 Clock Dith-
ering on page 200.

9.4.3.1 Idle to Run Transitions

In order to reduce di/dt, the transition from Deep Nap to Run mode is partitioned into several phases, with a 
programmable delay incorporated within phases. In the Clock Ramping Configuration Register, a 6-bit value 
(ranging from 0 to 63) specifies the programmable delay. It specifies the number of cycles the processor will 
spend at six different stages in the transition from Deep Nap to Run mode. To make these delays nearly 
equal for full, half, and quarter frequency transitions, the following approach is used:

• The full six bits are used to specify the number of full frequency delay cycles.
• The high-order five bits are used to specify the number of half-frequency delay cycles.
• The high-order four bits are used to specify the number of quarter-frequency delay cycles.

For example, a value of 12 placed in the register would result in 12 full frequency, 6 half frequency or 3 
quarter frequency cycles of delay. All three correspond to the same 4 ns delay on a 3.0 GHz processor. A 
value of 27 placed in the register would result in 27 full frequency, 13 half frequency, or 6 quarter frequency 
cycles of delay. These correspond to 9 ns (full frequency), 8.7 ns (half frequency), and 8 ns (quarter 
frequency) delays on a 3.0 GHz processor.

Note:  The delay is specified in core clocks, so the absolute delay stays constant when scaling the frequency.

Table 9-8 on page 188 provides the number of full frequency clock cycles of latency in the four phases in the 
Deep-Nap-to-Run mode transition for each of the three mesh frequency settings.

Note that the transition from Deep-Nap-to-Run passes through the Nap and Doze states as power is gradu-
ally increased to support Run mode. The four phases are: 

• Phase 1: Interrupt during Deep Nap to Nap
• Phase 2: Nap to Doze
• Phase 3: Doze to Run
• Phase 4: Interrupt presented to running processor 

The parameters Cf, Ch, and Cq represent the number of full frequency cycles in the programmable delay 
when in full, half, and quarter frequency, respectively. These delays occur in both the Nap-to-Doze and the 
Doze-to-Run phases of the transition, just after (i) C21 clocks are issued every other cycle, (ii) C2 clocks are 
fully enabled, and (iii) C12 clocks are (fully) enabled.

1. C2 is the clock for the slave latch.
2. C1 is the clock for the master latch.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 188 of 415

Version 2.3
March 7, 2008

For example, if the 6-bit programmable delay value is set to 12, then Cf = Ch = Cq = 12. The latency for the 
Deep-Nap-to-Run transition for full, half, or quarter frequency would be 195, 300, or 510 full frequency cycles, 
corresponding to 65, 100, or 170 ns at 3.0 GHz, respectively. For a programmable delay value of 27, Cf = 27, 
Ch = 26, and Cq = 24. This yields latencies for full, half, or quarter frequency of 285, 384 or 582 full frequency 
cycles, corresponding to 95, 128 or 194 ns at 3.0 GHz, respectively.

9.4.3.2 Exiting Deep Nap Using a Decrementer Interrupt

The timer registers (Time Base and Decrementer) are updated at a rate that depends on the mesh frequency. 
When the mesh frequency is sufficiently low, the timers are adjusted by more than one tick on each update in 
order to maintain accuracy. At such a frequency, the precision of the timers is reduced. In particular, during 
Deep Nap the mesh frequency will fall below that required to maintain the precision of the timers set by the 
time-base enable (tben) frequency (or the PLL frequency, in the case of internally clocked timers). The 
resulting loss of precision has no effect on the accuracy of the timers. It also has no visible effect on the time-
base precision, because the Time-Base Register is not accessed during Deep Nap. This loss of precision can 
affect the latency of the processor in detecting the interrupt signal when the decrementer value goes nega-
tive. 

However, the incremental latency resulting from this loss of precision in the decrementer is quite low in the 
970MP microprocessor. To reduce the latency associated with exiting Deep Nap because of a decrementer 
interrupt, the timers are updated once every mesh cycle on the 970MP microprocessor. The additional 
latency for exiting Deep Nap because of the lower precision of the decrementer is the mesh clock period 
minus the target timer period. For example, if the tben input is driven at 66 MHz to clock the timers, and the 
full frequency processor clock is running at 1.5 GHz, the added latency is computed as follows. The mesh 
clock frequency in Deep Nap is 1.5 GHz / 64 or 23.4 MHz, so the mesh clock period is 43 ns. The period of 
the tben input is 15 ns. So, the added latency to exit Deep Nap because of a decrementer interrupt is 
43 - 15 = 28 ns. For higher frequency processors, this latency is less.

9.4.3.3 Frequency Transitions in the Power Tuning Facility 

Transitions in the power tuning facility involve changing the mesh frequency while in Run mode. The 
frequency is changed from frequency one (F1), either full, half or quarter mode, to frequency two (F2), either 
full, half or quarter mode (but not the same as frequency one). These transitions are initiated by software 
changing the Power Control Register (PCR) in one of the processors, which causes a special bus transaction 
to the North Bridge. This transaction is reflected by the North Bridge to all processors in the system, which 
causes those processors to begin the transition process. Processors indicate their readiness to make the 
frequency switch itself by asserting QREQ to the North Bridge, and the North Bridge responds when it is 
ready and after it has received all the QREQs from the processors by asserting QACK to all processors. The 

Table 9-8. Latency of Deep-Nap-to-Run Transitions in Full Frequency Cycles 

Full Frequency Half Frequency Quarter Frequency

Phase 1 44 70 122

Phase 2 40 + 3Cf 80 + 3Ch 160 + 3Cq

Phase 3 24 + 3Cf 48 + 3Ch 96 + 3Cq

Phase 4 15 30 60

Total 123 + 6Cf 228 + 6Ch 438 + 6Cq



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 189 of 415

time it takes to get to this point in the procedure varies. It depends on activity levels in the processors and 
North Bridge. A typical implementation might achieve a 200 ns to 300 ns latency for this sequence when 
transitioning from full to half frequency on a 2.0 GHz processor.

From the time the processor receives QACK, it takes 20 additional F1 mesh clocks, plus eight full frequency 
clocks, to prepare for the frequency change. The frequency change itself occurs over the course of 24 or 48 
cycles (selectable by a mode bit—the previous design supported only a 24-cycle dither). The frequency is 
dithered between F1 and F2, so that the frequency changes gradually from one to the other. These 24 or 48 
cycles are always at the lower of F1 and F2. Once the frequency switch is finished, it takes 49 additional F2 
mesh clocks (assuming a 3:1 bus) before the processor negates QREQ, signaling the end of the transition.

In the case of the full-to-quarter or quarter-to-full transition, the dithering described previously is between F1 
and half frequency. After the 32-cycle pause at half frequency, a second dithering sequence between half 
frequency and F2 takes place. The rest of these transitions are the same as described previously.

The latency of the transition of the power tuning facility from QACK assertion to QREQ negation in cycles is:

• 8 full + 20 F1 + 24 minimum (F1, F2) + 49 F2 
• Plus an additional 24 minimum (F1, F2) when using a 48-cycle dither
• Plus an additional (32 + 24) Fhalf when executing full-to-quarter or quarter-to-full

9.5 PLL Design

The PLL is designed to support the frequency scaling capability of the 970MP microprocessor. A single PLL 
drives the clock mesh, with the circuitry of the power tuning facility from PU0 controlling the mesh frequency. 
Both the processor clock and the bus clock are derived from the reference clock input to the chip in the 
970MP design. For frequency scaling, it is assumed that the reference clock, SYSCLK, and the related 
synchronizing clock, psync, run at a constant frequency.

The PLL uses a fixed divider in the feedback path, but a variable, seamlessly switched divider in the forward 
path. The fixed feedback path allows the PLL to constantly run at a fixed frequency, avoiding the need to 
relock when switching frequencies. The processor clock (mclk) and bus clock (Bclk) frequencies can be 
changed seamlessly, while maintaining the ratio between these two clocks at a fixed value. Figure 9-5 on 
page 190 shows this design. Note that the processor interface supports a double data rate bus. Therefore, 
the data rate clock (Dclk) is twice the Bclk frequency, and is constrained by the processor design to be no 
more than half the mclk frequency.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 190 of 415

Version 2.3
March 7, 2008

The PLL is designed to allow a feedback divider value ranging from 1 to 32, in series with an additional divide 
by 2 to 8 in the feedback path. The forward divider is also in series with the divide by 2 to 8. To generate mclk 
from the PLL output frequency, it has selectable values of 1, 2, and 4, plus a divide by 64 for use during Nap 
and Deep Nap modes. The forward divider can then generate the data rate clock from mclk with selectable 
values of 2, 3, 4, 6, and 12 (values of 8 and 24 are also available for debug, but are not supported on the 
processor interface bus, nor by the frequency scaling facility). Despite these many possible configurations, 
one constraint that limits the combinations of frequencies that can be used in the 970MP microprocessor is 
imposed by the psync counter.

The psync counter in the 970MP microprocessor continuously counts 24 mclks and then resets to zero, 
except when Dclk values of 4 and 12 are used. In these cases, the counter counts to 48. This psync counter 
is used to generate processor interconnect control signals that are synchronized with the North Bridge drivers 
and receivers, as mediated by the psync signal. Whenever a psync pulse is detected, the psync counter 
value is checked to be sure that synchronization is maintained. Because the psync pulse occurs once every 
24 SYSCLK cycles, the mclk frequency is constrained to be a multiple of the SYSCLK frequency (an even 
multiple in the case of a Dclk divider of 4 or 12). The frequency scaling capability on the 970MP micropro-
cessor further constrains the clock configuration values, because this psync counter constraint applies to the 
reduced-frequency, as well as the high-frequency, clock rates. 

To meet the psync counter constraint at high, medium, and low frequencies, the only allowable divider values 
in the feedback path are multiples of four. With a feedback value of eight, for example, using a forward divider 
value of one yields the high-frequency mclk that is eight times the SYSCLK. Using a divider value of two then 
yields the medium-frequency mclk that is four times the SYSCLK. Using a divider value of four yields the low-
frequency mclk that is two times the SYSCLK. 

There are several constraints on frequency configurations for the 970MP microprocessor besides that 
imposed by the psync counter (see the Power Management for the PowerPC 970FX RISC Microprocessor 
Application Note for details). 

Figure 9-5. PLL Design 

1 of n

1-32

1 of n

2, 3, 4, 6, 12

Divider

4, 6, 8, 12, 24

24/48 counter

Seamless Divider

1, 2, 4, 64

/ n
2-8PLL

compare

SYSCLK

psync

lost synchronization

mclk

Bclk

Dclk

mesh
delay

Lclk



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 191 of 415

9.6 Time-Base and Decrementer Registers

The Time-Base and Decrementer Registers run at a constant frequency, independent of changes to the 
processor and bus frequencies. The default operation of these timers is to run at 1/16 of the full processor 
frequency, even when the processor itself is running at a lower frequency. When tben is configured to clock 
these timers (HID0[19] equals ‘1’), the timers will run at the tben frequency. When the external clock input 
mode is used, the tben input frequency must not exceed the value specified in the IBM PowerPC 970MP 
RISC Microprocessor Datasheet. 

Because the mesh clock frequency can be lowered to 1/64 of the full-speed, the time base and decrementer 
can be increased or decreased by more than one at a time. Therefore, testing that the decrementer has 
reached the value of zero in order to generate an internal interrupt is not sufficient. The logic detects that the 
counter has wrapped around. Additionally, the time resolution of the counters cannot exceed the mesh clock 
frequency.

9.7 I2C Bus Interface

The I2C bus interface operates at a constant speed independent of the current processor frequency. 

Note:  No I2C operations are supported during Deep Nap.

9.8 Frequency and Voltage Scaling

9.8.1 Frequency Scaling

Whenever an application requires less than the maximum performance available from the processor, 
reducing the processor clock frequency can reduce active power linearly. Furthermore, a reduction in 
frequency allows a reduction in voltage, resulting in an additional quadratic reduction in active power, plus a 
reduction in leakage.

Frequency scaling on the 970MP microprocessor involves changing the bus frequency along with the 
processor frequency, because of the high speed of the processor interconnect bus, and the constraint that 
the processor frequency be at least twice the bit rate of the bus. In order to support frequency scaling in a 
multiprocessor system, the North Bridge must be involved in initiating the sequence (see the Power Manage-
ment for the PowerPC 970FX RISC Microprocessor Application Note for details). 

9.8.1.1 Initiating a Frequency Change

Software initiates a frequency change by writing to the PCR. The value written to the PCR frequency field 
determines the target frequency being switched to. The values in the parameter fields must correspond to this 
new frequency. Similarly, if the voltage field is used, the voltage requested must correspond to the frequency 
requested. The North Bridge is responsible for changing the voltage before the frequency change when 
raising voltage. It is also responsible for changing the voltage after the frequency change when lowering the 
voltage.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 192 of 415

Version 2.3
March 7, 2008

The QREQ and QACK signals have been overloaded to provide handshaking during the frequency change 
procedure. Therefore, these signals are not available for their normal use (handshaking for Nap mode) during 
the procedure. System hardware or software must enforce the negation of these signals at the beginning of 
the procedure. If a processor puts itself into Nap mode during the frequency change procedure, the processor 
blocks assertion of the QREQ signal for Nap signalling until after the frequency change is complete.

The waveforms in Figure 9-6 on page 193 show the ordering of events on the CPU-to-North Bridge interface 
during a frequency change in which the clocks are slowed to half speed. The time shown at the bottom of the 
figure is in CPU processor clocks at the original frequency. However, this figure is intended to show the 
ordering of events, and not actual latencies between events. Latencies are discussed in Section 9.8.5 
Frequency and Voltage Scaling Latencies on page 202. 

The sequence in Figure 9-6 on page 193 starts at the point after a CPU has sent the change request to the 
North Bridge, and the North Bridge has reflected that request to all the processors. Each CPU then completes 
any bus transactions in progress, and reach a quiescent state. The CPU quiesce signal shown in Figure 9-6 
indicates that the quiescent state is reached at cycle 6. Two cycles later, the CPU asserts its internal sts_stop 
signal. At this point, the core no longer has access to the L2 cache or bus. Two cycles later, the CPU asserts 
QREQ. During this time, the North Bridge has also been progressing toward a quiescent state. The North 
Bridge quiesce signal indicates that this state is reached at cycle 12, though it might occur before QREQ is 
asserted. 

The combination of QREQ asserted and North Bridge quiescent causes the North Bridge to stop its bus 
clocks on a Time0 boundary, which occurs at cycle 16. Next, the North Bridge asserts QACK, shown at cycle 
18. Once QACK is asserted, the CPU stops its bus clocks on the next internal psync boundary (psyncnt), 
shown at cycle 24. With its bus clocks stopped, the CPU changes the frequency of its processor (and there-
fore bus) clock, shown at cycle 38. Once the frequency change occurs, the CPU will start its bus clocks on the 
next psync boundary, shown at cycle 48. After starting its bus clocks, the CPU will negate QREQ, shown at 
cycle 56. The North Bridge then starts its bus clocks on a Time0 boundary (cycle 64), after which it negates 
QACK (cycle 68). Internal to the CPU, the negation of QACK leads to the negation of sts_stop (cycle 76). This 
enables allowing core access to the L2 cache and activity to proceed on the bus.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 193 of 415

Figure 9-6. Frequency Scaling Event Ordering 

 

 

 

 

 

 

 

 

 

     0 10 20 30 40 50 60 70 80

psync

SYSCLK

CPU quiesce

sts_stop

QREQ

North Bridge

North Bridge

Time0

QACK

EPsyncnt

psyncnt

CPU Dclk

mclk

Time is in CPU processor clocks at original frequency

quiesce

Dclk



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 194 of 415

Version 2.3
March 7, 2008

9.8.1.2 Power Control Register

Software writes the PCR bits to indicate that a frequency change is wanted, and to pass the information 
corresponding to that frequency change to all the processors in the system. Writing to the PCR initiates the 
frequency change process, by generating a special bus transaction that is sent to the North Bridge and even-
tually reflected to all the processors. The address bits of this special transaction are copied from 
PCRH[22:31] and PCR[0:31] (see Section 9.8.1.3 Power Control Register High (PCRH) on page 196). 

Note:  The special bus transaction is generated when the PCR Register is written, so the Power Control Reg-
ister High (PCRH) must be updated as needed before writing the PCR.

The PCR is implemented as a scan communications (SCOM) register; the odd-parity address for JTAG 
access is x‘0AA0 0100’. The PCRH is also implemented as an SCOM register, at the same address as the 
PCR. The high-order bit in the register indicates which register is being written. The PCR high-order bit 
equals ‘1’; the PCRH high-order bit equals ‘0’. The 32-bit PCR and PCRH are written using Move To Special 
Purpose Register (mtspr) instructions that target the SCOM data (SCOMD) and SCOM control (SCOMC) 
special purpose registers (SPRs). Thus, the low-order 32 bits (bits 32:63) of the source register are moved to 
the target PCR or PCRH. 

For example, before initiating a frequency change, set the following registers:

• Appropriate values in the low-order bits of gpr3 to indicate the required settings for the PCR (including 
bit 32 equals ‘1’)

• Appropriate values for PCRH in gpr4 (including bit 32 equals ‘0’)

• The SCOM address of these registers in gpr5 (to x‘0000 0000 0AA0 0100’)

The following sequence, where “gpr” stands for General Purpose Register, initiates a frequency change:

.set SCOMD 277    # SPRN for SCOMD

.set SCOMC 276   # SPRN for SCOMC
mtspr SCOMD, gpr4
isync
mtspr SCOMC, gpr5
isync
mtspr SCOMD, gpr3
isync
mtspr SCOMC, gpr5

Note:  For the 970MP microprocessor, each frequency change should be preceded by a write to the PCR in 
which Gd contains all zeros. Not clearing the PCR will prevent further frequency scale commands from being 
issued by the bus even though the instruction sequence will complete within the processor.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 195 of 415

Address x‘0AA001’ 

C
on

st
an

t

Voltage Reserved F
re

qu
en

cy

F
re

qR
eq

V
ol

tR
eq

Target STATLAT SNOOPLAT SNOOPACC

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

GPR
Bits

PCR
Bits Field Name Description

0 32 Constant Must be ‘1’.

1:7 33:39 Voltage Voltage field.

8:12 40:44 Reserved Spare field.

13:14 45:46 Frequency

Frequency field.
00 Full frequency
01 Half frequency
10 Quarter frequency
11 Illegal

15 47 FreqReq Frequency request valid.

16 48 VoltReq Voltage request valid.

17:18 49:50 Target Target time.

19:23 51:55 STATLAT1 STATLAT is the number of bus beats between the last beat of the address/data (AD) 
packet and the first beat of the transfer-handshake (TH) packet.

24:27 56:59 SNOOPLAT1
SNOOPLAT is the number of bus beats between the last beat of a reflected command 
packet to the first beat of the individual snoop responses from each of the processors 
received at the North Bridge.

28:31 60:63 SNOOPACC1

SNOOPACC is the number of bus beats between the last beat of the individual snoop 
response sent from a processor to the first beat of the accumulated snoop response 
received from the North Bridge.
Note:  SNOOPACC is a 4-bit field. When coded with a value of 1 - 15, the actual value is 
x + 8. For example, a one in the SNOOPACC field is actually a nine. When a zero is 
coded in this field, the actual value is 24. 

1. See Table 11-1 on page 281 for information about programmable delay parameters. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 196 of 415

Version 2.3
March 7, 2008

9.8.1.3 Power Control Register High (PCRH)

The Power Control Register High (PCRH) contains the high-order address field. 

Address x‘0AA001’

C
on

st
an

t

Reserved High-Order Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 Constant Must be ‘0’.

1:21 Reserved Reserved.

22:31 High-Order Address High-order address field.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 197 of 415

9.8.1.4 Power Status Register

The status of the power tuning facility is available in the Power Status Register (PSR). This register consists 
of read-only bits, indicating the current voltage (if supported by software) and the current frequency. This 
frequency value is valid when there is no frequency change in progress, as indicated when PSR[2] equals ‘0’. 

When the processor receives the power adjustment special transaction reflected from the North Bridge, it 
sets PSR[2] to indicate that a frequency change is in progress. Shortly after the North Bridge has asserted 
QACK to start the frequency scale, the new frequency field is reflected in PSR[6:7]. Once the frequency 
scaling has completed PSR[3] is also set to ‘1’.

An SCOM read of the PSR once bit 2 and 3 are set will automatically clear both bits.

Address x‘408001’

R
es

er
ve

d

R
cv

P
T

E

C
m

pl
P

T
E

R
es

er
ve

d

C
ur

rF
re

q

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bit Field Name Description

0:1 Reserved Reserved.

2 RcvPTE Power tuning command has been received.

3 CmplPTE Power tuning command has completed.

4:5 Reserved Reserved.

6:7 CurrFreq Current frequency.

8:63 Reserved Reserved.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 198 of 415

Version 2.3
March 7, 2008

9.8.2 Power Adjustment Bus Transaction

The processor sends a power adjustment transaction to the North Bridge to initiate the frequency and voltage 
scaling sequence in the system. This is a command-only transaction. It contains information that is encoded 
in a subset of the address bits to indicate the required target frequency, and the corresponding parameter 
information. Table 9-9 shows the transaction type and related bus signals for this transaction.

The encoding of the address bits for this transaction is as follows: 

Table 9-9. Power Adjustment Transaction 

Bus Operation Power Adjustment

Transaction type 0 0101 (x‘05’)

Address modifiers (WIMGRP)1 00 1000

Tag field 1 1011

1. W = write through, I = cache inhibited, M = memory coherent, G = guarded read, R = rerunning, P = pipelined snoop

Reserved High-Order Address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Voltage Reserved F
re

qu
en

cy

F
re

qR
eq

V
ol

tR
eq

Target STATLAT SNOOPLAT SNOOPACC

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:21 Reserved Not implemented.

22:31 High-Order Address High-order address bits.

32:39 Voltage Voltage field. The 970MP microprocessor does not use this field. 

40:44 Reserved Spare field.

45:46 Frequency

Frequency field.
00 Full frequency
01 Half frequency
10 Quarter frequency
11 Illegal

47 FreqReq Frequency request valid.

48 VoltReq Voltage request valid.

49:50 Target Target time.

1. See Table 11-1 on page 281 for information about programmable delay parameters. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 199 of 415

These 42 low-order address bits are copied from the corresponding fields in the Power Control Register. Soft-
ware can set bits 22 to 31 to any desired value to make the address fall within some desired range. Further-
more, if the voltage field is unused (voltage request valid is negated), bits 32 to 39 and the spare bits (40 to 
44) can also be set to any desired value by software. 

The North Bridge uses the frequency field to determine what new frequency is being requested. The 
frequency-request valid bit must be asserted if a frequency change is being requested. The presence of this 
bit allows the option of a voltage-change-only request. If the frequency request valid bit is negated, the North 
Bridge will not reflect this transaction to the processors. It is illegal to issue a frequency scale request to ‘11’ 
or to the same frequency scale factor (that is, to issue a frequency scale command to full when it is already 
full). The North Bridge will not reflect these transactions to the processors. 

Once the transaction is reflected to the processors, each processor responds as follows: 

• If the frequency field indicates no change, the processor does nothing. 

• If the frequency field indicates a change to the current frequency, or a change to a new frequency, then 
the processor must execute the frequency change procedure.

In addition to the four parameters passed in the power adjustment transaction, the processor interconnect 
also depends on the values of the programmable bit line and clock delays that are determined during the IAP 
at power-on. To support frequency scaling, this IAP must be run at the high-frequency, high-voltage setting 
for the processor. Then, the effect of running at lower frequencies is to widen the signal eye. However, the 
effect of lowering the core voltage while the I/O voltage remains constant is to increase all the bit and clock 
delays. Thus, once the IAP establishes the minimal bit skew and clock centering required for the interface to 
run at high frequency and high voltage, these same settings should also support the lower frequencies and 
voltage. Therefore, there is no facility for changing these delay values during a frequency or voltage change.

51:55 STATLAT1 STATLAT is the number of bus beats between the last beat of the AD packet and the first beat of 
the TH packet.

56:59 SNOOPLAT1
SNOOPLAT is the number of bus beats between the last beat of a reflected command packet to the 
first beat of the individual snoop responses from each of the processors received at the North 
Bridge.

60:63 SNOOPACC1

SNOOPACC is the number of bus beats between the last beat of the individual snoop response 
sent from a processor to the first beat of the accumulated snoop response received from the North 
Bridge.
Note:  SNOOPACC is a 4-bit field. When coded with a value of 1 - 15, the actual value is x + 8. For 
example, a one in the SNOOPACC field is actually a nine. When a zero is coded in this field, the 
actual value is 24. 

Bits Field Name Description

1. See Table 11-1 on page 281 for information about programmable delay parameters. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 200 of 415

Version 2.3
March 7, 2008

9.8.3 Clock Dithering

Input current to the processor can change significantly during transitions of the power tuning frequency. 
These current changes must be controlled to avoid over and under voltages that a high di/dt might cause 
because of the inductance in the power distribution network. A clock-dithering mechanism included in the 
power tuning facility enables gradually transitioning between frequencies.

The power tuning facility supports frequency scaling with a constant-frequency PLL that feeds multiple 
frequency dividers. The outputs of these dividers are fed to a frequency multiplexer, from which one divider 
output is selected as the processor mesh clock at any given time. Toggling this multiplexer-selection signal 
during a transition from frequency A to frequency B accomplishes clock dithering. Thus, most clocks are at 
frequency A at the beginning of the transition. Gradually, more and more frequency-B clocks are introduced in 
the dithering pattern.

Figure 9-7 shows the components controlling the dithering of the clock. Two dithering patterns, selectable as 
either 24 or 48 bits in length, are provided in the mode ring. They support distinct dithering patterns for transi-
tions between the high and medium frequencies and the transitions between the medium and low frequen-
cies. When a frequency shift is initiated, the appropriate mode ring pattern is selected using a multiplexer for 
transfer to a 24-bit shift register. At the same time, the multiplexer select pattern for the previous frequency is 
saved in the muxsel_prev latch, while the new frequency is loaded into the muxsel latch.

Clock dithering involves a 2-level multiplexer selection process. The Shift Register is clocked at the lower of 
the previous and new frequencies. Starting on the rising edge of the mclk/4, it shifts the pattern one bit to the 
right every cycle. Then it applies the right-most bit to the dithering multiplexer to select a multiplexer-selection 

Figure 9-7. Clock Dithering Block Diagram 

48-bit Pattern Register on the Mode Chain

disable_dither

Shift Register

muxsel_prev

Dithering Multiplexer

muxsel

Frequency Multiplexer

mclk

OR

Latch

Latch



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 201 of 415

pattern. That pattern is then applied to the frequency multiplexer to select the mesh clock frequency. A '1' bit 
in the shift pattern selects the new frequency; a '0' bit selects the old frequency. At the end of the shift pattern, 
a '1' bit is forced to continuously select the new frequency. A separate mode-ring bit can be used to disable 
clock dithering by forcing this control bit to always be a '1' through the OR circuit shown in Figure 9-7.

As an example of a shift pattern for achieving a gradual transition from high to medium frequency might be 
'1110 1011 0110 1010 0100 1000' (see Figure 9-8 on page 201). These bits are shifted at the medium 
frequency. Each '1' corresponds to one cycle of medium frequency. Each '0' corresponds to two cycles of 
high frequency (because the Shift Register is clocked at medium frequency). Thus, reading the pattern from 
right to left, the pattern specifies six fast clocks, followed by one medium clock, followed by four fast clocks, 
followed by one medium clock, and so on, as indicated in the Figure 9-8. 

9.8.4 Voltage Scaling

To take the greatest advantage of frequency scaling, it is desirable to vary the voltage to match processing 
requirements. In operational modes, when the frequency is reduced, the voltage can also be reduced to 
realize a quadratic reduction in active power. When the voltage is changed with frequency, the voltage 
change must precede frequency increases, and must follow frequency decreases.

The processor supports the integration of voltage and frequency scaling as currently described. However, the 
software and system designers might choose to control the processor voltage independently of the power 
tuning facility. In that case, the software and system will be responsible for the sequencing and timing of 
voltage changes with respect to frequency changes (see the Power Management for the PowerPC 970FX 
RISC Microprocessor Application Note for details). 

Figure 9-8. Sample Shift Pattern 

f

f/2

dither pattern

mclk



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 202 of 415

Version 2.3
March 7, 2008

9.8.5 Frequency and Voltage Scaling Latencies

The sequence for raising the voltage and frequency has a latency from the time the operating system writes 
the configuration value in the PCR to the time when the status bit in the PSR indicates that the change is 
complete. That latency has the following components:

• Time to signal North Bridge
• Time to raise voltage
• Time to signal processors
• Time for North Bridge and processors to quiesce
• Time for North Bridge and processors to handshake
• Time for one psync (1:24) cycle
• Time to handshake and reset the status bit

The latency for lowering the frequency and voltage is similar. However, the voltage is lowered after the 
frequency, and processing does not need to wait for that to occur.

While the processor signals the frequency change to the North Bridge, and until the North Bridge reflects the 
power adjustment command to the processor, it proceeds normally. Once the processor begins to quiesce 
the bus, the processor core will no longer be able to access data and instructions from the L2 or bus interface. 
As long as the processor is able to execute with data and instructions in the L1 caches, it can continue to run. 
In the best case, the processor will only stall for about a cycle when the mesh clock frequency itself is 
switched. More specifically, the processor will be unable to respond to interrupts while the bus interface is in 
a quiescent state, unless the instructions and data needed to handle the interrupt are in the L1 caches before 
the frequency change. This means the interrupt response might be delayed because of a frequency switch 
(see the IBM PowerPC 970MP RISC Microprocessor Datasheet for latency values). 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Power and Thermal Management
Page 203 of 415

9.9 Reducing Clock Mesh Power

There are two power saving modes defined for the 970MP microprocessor, Nap and Doze. In Nap mode, the 
clocks to the core are turned off, while the timers, PLL, and part of the pervasive unit continue to operate. 
Doze mode is similar, except that snoop logic is also active. Doze mode is entered from Full Power (Full Run) 
mode by setting HID0[nap], and then the MSR[POW] bit. This also causes the QREQ signal to be asserted, 
requesting that the North Bridge put the bus in a quiescent state. When the North Bridge complies, it asserts 
QACK, causing the processor to transition into Nap mode. Whenever QACK is negated, the processor must 
return to Doze mode to process snoop transactions.

9.9.1 Power Saving in Deep Nap 

When the processor is in Nap mode, the core is inactive, and clocks are gated at local clock buffers (LCBs). 
However, the clock distribution mesh itself continues to be clocked, dissipating significant power. To reduce 
the active power during Deep Nap mode, the processor clock is divided down to a very low frequency. The 
frequency is then be brought back up to its functional level as the processor transitions out of Deep Nap 
mode. 

The frequency switching for Nap mode is completely under hardware control. When enabled, the frequency 
switch takes place after the clocks have been gated and subsequent to detecting that QACK has been 
asserted. Entering low-frequency, Deep Nap mode takes only one cycle longer than entering Nap mode 
without changing frequency. During low-frequency Nap mode, the bus clocks are disabled, and the bus 
signals are driven with the null transaction pattern.

As with normal Nap mode, negation of QACK or detection of an external (or decrementer, hreset, sreset, or 
machine check) interrupt causes the processor to leave low-frequency Nap mode. The time required to exit 
low-frequency Nap mode is longer than the time to exit normal Nap mode, because of the frequency change 
and corresponding synchronization required. Latencies for the transitions from Deep Nap to Doze and Full 
Run modes can be found in the IBM PowerPC 970MP RISC Microprocessor Datasheet. 

HID0[deep nap] controls whether the clock frequency is reduced during Nap mode. When the bit is asserted, 
the processor will transition to Deep Nap mode immediately after entering Nap mode. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Power and Thermal Management
Page 204 of 415

Version 2.3
March 7, 2008

9.10 Additional Dynamic Power Management 

The 970MP microprocessor implements dynamic power management—the gating of clocks to idle circuits 
while in an operational mode—in a number of functional units. For example, there are two levels of clock 
control for the VPU, a coarse level and a fine level. The coarse control is essentially a static form of clock 
gating control, making use of the vector processor available bit (MSR[VP]). When this bit is a zero, the latches 
in all VPU stages from issue to writeback are gated off. The fine level control is much more dynamic. It occurs 
on a stage-by-stage basis within each execution pipeline, starting with the latches following stage 2 of the 
Vector Register File (RF2). When this fine level of control is enabled, all clocks in all of the VPU stages from 
the register access to the write back are gated off at all times. The only exceptions are cycles during a stage 
that has active instructions.

Clock gating has been implemented in the VPU, IDU, STS, ISU, FXU, FPU and pervasive units. Because 
DPM has no negative impact on performance, it should always be enabled. For test purposes, DPM can be 
disabled as follows:

• For the VPU, IDU, and STS units, DPM is disabled by negating HID0[DPM]. 

• For the ISU, FXU, FPU, and pervasive units, setting bit 0 in the Dynamic Power-Management Options 
Register (x‘000800’) to a '1' disables DPM.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 205 of 415

10. 970MP Performance Monitor

The 970MP microprocessor has a complex, speculative, out-of-order execution core coupled with an equally 
complex multilevel storage hierarchy. Users concerned with performance analysis and system optimization 
have access to performance monitoring features, which support a wide range of tasks which include:

• Profiling memory hierarchy behavior and tuning system algorithms to optimize scheduling, partitioning, 
and structuring for tasks and data

• Tuning applications for the target system

• Debugging, analyzing, and optimizing processor architecture features

The performance monitor facility provides information for a wide variety of activities and is part of the facilities 
that are collectively referred to as instrumentation facilities. Instrumentation facilities include 
matching/sampling, tracing, and thresholding.

Note:  The 970MP performance monitor should only be used as a debug facility until characterization of its 
features and functions is complete. 

10.1 Instrumentation Facilities Overview

The 970MP performance monitoring facility is an extension to that of earlier PowerPC processors. There are 
eight Performance Monitor Counter Registers (PMC1-8). They can count a variety of events, many of which 
are relevant to performance analysis. As before, the counters support user or supervisor and marked or 
unmarked filtering of events. A marked instruction is one that is eligible for sampling as determined by the 
instruction fetch unit (IFU) and instruction dispatch unit (IDU) instruction matching facilities. 

The most-significant change introduced by the 970MP performance monitor is the concept of indirect events. 
A subset of the normally selected direct Performance Monitor Counter (PMC) events are multiplexed so that 
there is a larger number of total available events. Unlike event selection on previous PowerPC processors 
(which had only direct events), indirect events cannot be configured entirely independently (setting a multi-
plexer affects the indirect events on more than one PMC). Some indirect events can also be summed 
together by the hardware. This feature is most often used to sum the performance event counts of a func-
tional unit pair (for example, floating-point unit 0 [FPU0] and floating-point unit 1 [FPU1]).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 206 of 415

Version 2.3
March 7, 2008

10.1.1 Performance Monitor Facilities 

The instrumentation performance monitor (perfmon) on the 970MP microprocessor includes the following 
functions:

• Counts up to eight concurrent software selected events in individual 32-bit counters. The counting of 
events can be enabled by software under several conditions such as user (problem) or supervisor 
(privileged) state, and Run or Wait state.

• Generates a maskable exception when an event counter overflows (triggering).

• Freezes the contents of the event counters until a selected trigger occurs and then begin counting 
(triggering).

• Increments the event counters until a selected trigger occurs and then freezes counting (triggering).

• Monitors classes of instructions selected by the instruction matching facility.

• Randomly chooses an instruction for detailed monitoring (sampling).

• Counts start/stop event pairs that exceed a selected timeout value (thresholding). 

10.1.2 Performance Monitor Event Selection

One event per counter can be selected for monitoring at a given time. The event to be monitored is selected 
by setting the appropriate value in the Monitor Mode Control Register (MMCR) bit field for that counter. The 
events counted might be the number of cycles that the event occurs or the number of occurrences of the 
event depending on the particular event selected. 

10.1.3 Machine States and Enabling the Performance Monitor Counters 

Performance monitor counting can be enabled or disabled under several machine states, which are selected 
using the counting control bit fields in the MMCRs and the state bits in other Special Purpose Registers 
(SPRs).

10.1.4 Trigger Events and Enabling the Performance Monitor Counters

Certain kinds of conditions and events, called trigger events, can be used to control performance monitor 
activities such as starting or stopping the counters and causing performance monitor exceptions. These 
scenarios are selected using the condition/event enable bits fields and the exception enable bits of the 
MMCRs in conjunction with control bits in other SPRs. 

10.1.5 Performance Monitor Exceptions

Trigger events can cause performance monitor exceptions to occur based on the values of the exception 
enable bits in the MMCRs. An enabled exception might cause a performance monitor exception to occur if the 
exception is enabled in other SPRs.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 207 of 415

10.1.6 Sampling

The 970MP microprocessor can be configured to sample instructions for detailed monitoring. The 970MP 
microprocessor instrumentation facilities support setting mask values for matching particular instructions or 
kinds of instructions that are then eligible to be sampled (that is, they are marked for sampling). The perfor-
mance monitor includes events for counting marked instructions at each stage of the pipeline and in certain 
other situations. Instruction sampling is a useful facility for gathering both detailed and statistical information 
for particular instructions.

Note:  Instruction marking is entirely separate from thread marking with the performance monitor mode bit in 
the Machine State Register (MSR[PMM]).The state of the MSR[PMM] bit is only relevant for event counting in 
order to determine when counters should be frozen (MMCR0[FCM1, FCM0] fields).

10.1.7 Thresholding

Unlike previous PowerPC processors, which implemented thresholding only on load instructions, the 970MP 
processing unit monitors the pipeline stage progression of sampled instructions and can detect when the 
stage-to-stage cycle count for a selected start/stop pair of pipeline stages exceeds a specified threshold 
value. 

10.1.8 Trace Support Facilities 

The 970MP microprocessor supports both the single step and the branch trace modes as defined by the 
PowerPC Architecture.

10.2 Instruction Sampling Facilities 

10.2.1 Special Purpose Registers and Fields Associated with Instrumentation

The 970MP microprocessor instrumentation facilities and associated 970MP microprocessor components 
include several SPRs used for or associated with performance monitoring, matching, sampling, and tracing. 
Unless otherwise noted, the Special Purpose Registers described below and listed in Table 10-1 on page 209 
can be read in user (problem) and supervisor (privileged) state by using the Move From Special Purpose 
Register (mfspr) and written in supervisor state by using the Move To Special Purpose Register (mtspr) 
instructions. The MSR Register is read and written by the Move From Machine State Register (mfmsr) and 
Move To Machine State Register (mtmsr) instructions.

The 970MP microprocessor instrumentation facilities include the following Special Purpose Registers and 
register bit fields (also listed in Table 10-1 on page 209):

• Performance Monitor Mode Control Registers (MMCRx)
These registers include both counting control and event select bit fields.

• Performance Monitor Counter Registers (PMCx)
These registers increment each time (or cycle, depending on the selected event) that an event occurs 
while the counter is enabled. These registers also have the control function for the counter overflow con-
dition. 

• Machine State Register [EE] (MSR[EE])
This register bit is used to enable or disable external interrupts. The performance monitor exception is 
considered an external interrupt. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 208 of 415

Version 2.3
March 7, 2008

• Machine State Register [PMM] (MSR[PMM])
This register bit is used to enable or disable performance monitor activity controlled by the process 
mark bit.

• Machine State Register [PR] (MSR[PR])
This register bit is used to establish user (problem) or privileged (supervisor) mode and the performance 
monitor counting activity controlled by this bit.

• Machine State Register [SE] (MSR[SE])
This register bit is used to enable or disable the trace exception after each instruction is completed. 

• Machine State Register [BE] (MSR[BE])
This register bit is used to enable or disable the branch trace exception and after a branch instruction is 
completed.

• Hardware Implementation-Dependent Register0[13] (HID0[TG])
This register bit is used to determine the granularity the thresholder uses for counting cycles. 

• Control Register[31] (CNTL[31])
This register bit is used to determine the Wait or Run state and the performance monitor activity con-
trolled by this bit. 

• Scan Communication Register x‘240’ [0:15] (SCOM x‘240’ [0:15])
These register bits are used to establish the timeout and resume delays used by the performance monitor 
to coordinate the matching and sampling facility. 

• Scan Communication Register x‘340’ [11:12] (SCOM x‘340’ [11:12])
These register bits are used to establish the matching and sampling filter mode used by the matching and 
sampling facility to produce marked instructions that can be counted by the performance monitor. 

• Instruction Match Content-Addressable Memory (CAM) Registers (IMC)
The IMC SPRs are used to access the IMC array that contains the mask values used for instruction 
matching. The Move To IMC (mtimc) and Move From IMC (mfimc) instructions can be executed only in 
supervisor mode. 

• Time-Base Register [47, 51, 55, 63] (TB[47, 51, 55, 63])
These register bits are used to enable or disable the time-base events that can be used to enable or dis-
able performance monitor counting. 

• Sample Address Registers (SxAR)
The Sampled Instruction Address Register (SIAR) contains the address and the Sampled Data Address 
Register (SDAR) contains the data relating to a marked instruction. The registers can be read in supervi-
sor (privileged) or user (problem) state, but are modified only by the hardware. The values written to 
these registers by the hardware depend on the processing state and on the kind of instruction that is 
being marked for sampling. 

• Machine Status Save/Restore Register (SRR0, SRR1)
These registers are used to save machine status during exception handling. In addition, SRR1[33] is 
used to determine when the contents of the SIAR and SDAR Registers are synchronized, so that they 
refer to the same marked instruction.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 209 of 415

Table 10-1. 970MP Performance Monitor and Trace-Related Special Purpose Registers 

Register Name
SPR Address Bits1

Function
5:9 0:42

MMCR0 ‘11000’ ‘n1011’ Performance Monitor Mode Control Register 0

MMCR1 ‘11000’ ‘n1110’ Performance Monitor Mode Control Register 1

MMCRA ‘11000’ ‘n0010’ Performance Monitor Mode Control Register A

PMC1 ‘11000’ ‘n0011’ Performance Monitor Counter Register 1

PMC2 ‘11000’ ‘n0100’ Performance Monitor Counter Register 2

PMC3 ‘11000’ ‘n0101’ Performance Monitor Counter Register 3

PMC4 ‘11000’ ‘n0110’ Performance Monitor Counter Register 4

PMC5 ‘11000’ ‘n0111’ Performance Monitor Counter Register 5

PMC6 ‘11000’ ‘n1000’ Performance Monitor Counter Register 6

PMC7 ‘11000’ ‘n1001’ Performance Monitor Counter Register 7

PMC8 ‘11000’ ‘n1010’ Performance Monitor Counter Register 8

MSR[61]

Use mtmsr, mfmsr 
instructions 

(supervisor [privileged] mode 
only)

Machine State Register [Performance Monitor Mark]

MSR[48] Machine State Register [External Interrupt]

MSR[49] Machine State Register [User (Problem)/Supervisor (Privileged) State]

MSR[53] Machine State Register [Single-Step Trace Enable]

MSR[54] Machine State Register [Branch Trace Enable]

HID0[13] ‘11111’ ‘10000’ Hardware Implementation-Dependent Register 0 [Threshold Granularity]

CTRL[31] ‘00100’ ‘n1000’ Control Register [Run Bit]

SCOMC Use mtscomc/d and 
mfscomc/d instructions 

Scan Communication Control 

SCOMD Scan Communication Data 

IMC

Use mtimc, mfimc 
instructions (supervisor mode 

write, user and supervisor 
mode read)

Instruction Match CAM Register

TBL [47,51,55,63] ‘01000’ ‘n1100’ Time-base bits used for performance monitor time-base events

SIAR ‘11000’ ‘n1100’ Sampled Instruction Address Register

SDAR ‘11000’ ‘n1101’ Sampled Data Address Register

SRR1 ‘00000’ ‘n1011’ Machine Status Save/Restore Register 1

Note:  

1. In a mtspr/mfspr instruction, the instruction SPR field of bits 11:15 hold SPR address bits 0:4 and bits 16:20 hold SPR field 
bits 5:9.

2. When n is set to ‘1’, it indicates an SPR address value for a supervisor mode mtspr or mfspr instruction.
When n is set to ‘0’, it indicates an SPR address value for a user mode mfspr instructions. 
For mfspr, the instruction is supervisor mode if and only if SPR[0] is set to ‘1’.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 210 of 415

Version 2.3
March 7, 2008

10.3 Performance Monitor Components

A schematic overview of the components that make up the 970MP performance monitor is shown in 
Figure 10-1. These components and their use are described in the following sections.

Figure 10-1. Performance Monitor Architecture 

Control Registers

Counters

SPR Interface

Threshold
Logic

Time Base
Select

Event
Logic

PMC1

PMC2

PMC3

PMC4

PMC5

PMC6

PMC7

PMC8

PMU
Exception

Control
Logic

Event Selection Muxes

Part of Trace Logic

Instruction 

Logic
IDU

Counter
Defaults

Exception
Generation

Logic

Marking

(MMCRx)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 211 of 415

10.4 Performance Monitor Control Registers

The Performance Monitor Control Registers, MMCR0, MMCR1, and MMCRA, are used in conjunction with 
the MSR and other SPRs to set up the performance monitor enable states, exception conditions, threshold 
values, match criteria, and selection of the events counted in each of the Counter Registers, PMC1 - PMC8. 

The MMCRx Register bit assignments are shown in Section 10.4.1 Performance Monitor Control Register 
MMCR0 on page 211, Section 10.4.2 Performance Monitor Control Register MMCR1 on page 214, and 
Section 10.4.3 Performance Monitor Control Register MMCRA on page 217. The MSR bits that relate to 
performance monitor functions are shown in Table 10.4.5 Performance Monitor and Trace Related Bits in the 
Machine State Register (MSR) on page 220. 

For all of the Performance Monitor Control Register fields, it is always understood that the counter is incre-
mented if that action is not prohibited by some other control condition. All of the MMCRx and PMCx Registers 
flush to zero unless otherwise noted in the following MMCRx and PMCx tables.

10.4.1 Performance Monitor Control Register MMCR0

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F
C

F
C

S

F
C

P

F
C

M
1

F
C

M
0

P
M

X
E

F
C

E
C

E

TBSEL T
B

E
E

THRESHOLD P
M

C
1C

E

P
M

C
jC

E

T
R

IG
G

E
R

PMC1SEL R
es

er
ve

d

R
es

er
ve

d

PMC2SEL F
C

H

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 — Reserved.

32 FC

Freeze counters.
0 The PMCs are incremented.
1 The PMCs are not incremented.
The processor sets this bit to ‘1’ when an enabled condition or event occurs and the “freeze counters on 
enabled condition or event” bit is ‘1’ (MMCR0[FCECE] = ‘1’).

33 FCS
Freeze counters when in supervisor state.
0 The PMCs are incremented.
1 The PMCs are not incremented in supervisor state (MSR[PR] = ‘0’).

34 FCP
Freeze counters when in user (problem) state.
0 The PMCs are incremented.
1 The PMCs are not incremented in user (problem) state (MSR[PR] =‘1’).

35 FCM1
Freeze counters when performance monitor mark bit (MSR[PMM]) is set to ‘1’.
0 The PMCs are incremented.
1 The PMCs are not incremented when the MSR mark bit is ‘1’ (MSR[PMM] = ‘1’).

36 FCM0
Freeze counters when performance monitor mark bit (MSR[PMM]) is set to ‘0’.
0 The PMCs are incremented.
1 The PMCs are not incremented when the MSR mark bit is ‘0’ (MSR[PMM] = ‘0’).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 212 of 415

Version 2.3
March 7, 2008

37 PMXE

Performance monitor exception enable.
0 Performance monitor exceptions are disabled.
1 Performance monitor exceptions are enabled until a performance monitor exception occurs, at 

which time the hardware disables the performance monitor exception (MMRC0[PXME] is set to 
‘0’). 

For implementations that do not provide a performance monitor exception, software can set PXME to ‘1’ 
and then poll the bit to determine whether an enabled condition or event has occurred. 

38 FCECE

Freeze counters on enabled condition or event.
0 The PMCs are incremented.
1 The PMCs are incremented until detection of an enabled counter negative condition or detection 

of an enabled time-base transition event occurs and the trigger bit enables the detected event 
(MMCR0[TRIGGER] equals ‘0’). At that time the counters are frozen (MMCR0[FC] is set to ‘1’) 
until the condition is reset by software. 

If the enabled condition or event occurs when MMCR0[TRIGGER] equals ‘1’, then the FCECE bit is 
treated as if it were ‘0’.

39:40 TBSEL

Time-base selector.
00 Time-base bit 63 is selected.
01 Time-base bit 55 is selected.
10 Time-base bit 51 is selected.
11 Time-base bit 47 is selected.
When the selected time base transitions from ‘0’ to ‘1’ and the time-base event is enabled 
(MMCR0[TBEE] equals ‘1’) and the performance monitor exception is enabled, a performance monitor 
exception occurs and the performance monitor exception is disabled (MMRC0[PXME] is set to ‘0’).
In multiprocessor systems with the Time-Base Registers synchronized among the processors, time-base 
transition events can be used to correlate the performance monitor data obtained by the several proces-
sors provided that software has specified the same TBSEL value for all of the processors in the system. 
The frequency of the time base is implementation dependent, and a system service routine should be 
invoked to obtain the frequency before a value for TBSEL is chosen.

41 TBEE
Time-base exception enable.
0 Disable time-base transition events.
1 Enable time-base transition events.

42:47 THRESHOLD
Threshold value. 
When a threshold event is selected, counting occurs only for those of the selected event occurrences 
whose duration in number of cycles exceeds the value in the THRESHOLD field. 

48 PMC1CE

PMC1 count enable.
This bit determines whether the counter negative condition because of a negative value in PMC1 is 
enabled.
0 Disable PMC1 counter negative condition.
1 Enable PMC1 counter negative condition. 

49 PMCjCE

PMCj count enable (where j represents any counter from 2 to 8).
This bit determines whether the counter negative condition because of a negative value in PMCj 
(2 ≤ j ≤ 8) is enabled.
0 Disable PMCj (2 ≤ j ≤ 8) counter negative condition.
1 Enable PMCj (2 ≤ j ≤ 8) counter negative condition.

50 TRIGGER

Trigger enable.
0 The PMCs are incremented. 
1 PMC1 is incremented. The PMCjs (2 ≤ j ≤ 8) are not incremented until PMC1 is negative or an 

enabled condition or event occurs. At that time, the PMCj counters (2 ≤ j ≤ 8) resume counting 
and the trigger is disabled (MMCR0[TRIGGER] set equal to ‘0’).

51:55 PMC1SEL
PMC1 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC1.

56 — Reserved.

57 — Reserved.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 213 of 415

58:62 PMC2SEL
PMC2 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC2. 

63 FCH Freeze counters in hypervisor mode. 

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 214 of 415

Version 2.3
March 7, 2008

10.4.2 Performance Monitor Control Register MMCR1

T
T

M
0S

E
L

T
T

C
0S

E
L

T
T

M
1S

E
L

T
T

C
1S

E
L

T
T

M
2S

E
L

T
T

C
2S

E
L

T
T

M
3S

E
L

T
T

C
3S

E
L

T
D

_C
P

_D
B

G
0S

E
L

T
D

_C
P

_D
B

G
1S

E
L

T
D

_C
P

_D
B

G
2S

E
L

T
D

_C
P

_D
B

G
3S

E
L

Reserved P
M

C
1_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
2_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
6_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
5_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
8_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
7_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
3_

A
D

D
E

R
_S

E
LE

C
T

P
M

C
4_

A
D

D
E

R
_S

E
LE

C
T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

PMC3SEL PMC4SEL PMC5SEL PMC6SEL PMC7SEL PMC8SEL S
P

C
S

E
L

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 TTM0SEL

FPU/ISU/IFU/VPU unit select.
00 FPU
01 Instruction sequencer unit (ISU)
10 IFU
11 Vector processing unit (VPU) 

2 TTC0SEL Reserved.

3:4 TTM1SEL

IDU/ISU/STS unit select.
00 IDU
01 Undefined
10 ISU
11 Storage subsystem (STS)

5 TTC1SEL Reserved.

6:7 TTM2SEL Reserved.

8 TTC2SEL Reserved.

9:10 TTM3SEL

Load/store unit 1 (LSU1) select.
0x Lane 2 is LSU1 upper
1x Lane 2 is LSU1 lower
x0 Lane 3 is LSU1 upper
x1 Lane 3 is LSU1 lower

11 TTC3SEL Reserved.

12:13 TD_CP_DBG0SEL

Byte lane 0 unit select.
00 Unit from TTM0
01 Unit from TTM1
10 LSU0, byte 0
11 LSU1, byte 0

14:15 TD_CP_DBG1SEL

Byte lane 1 unit select.
00 Unit from TTM0
01 Unit from TTM1
10 LSU0, byte 1
11 LSU1, byte 1



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 215 of 415

16:17 TD_CP_DBG2SEL

Byte lane 2 unit select.
00 Unit from TTM0
01 Unit from TTM1
10 LSU0, byte 2
11 LSU1, byte 2 or byte 6 (controlled by TTM3SEL[0])

18:19 TD_CP_DBG3SEL

Byte lane 3 unit select.
00 Unit from TTM0
01 Unit from TTM1
10 LSU0, byte 3
11 LSU1, byte 3 or byte 7 (controlled by TTM3SEL[1])

20:23 — Reserved.

24 PMC1_ADDER 
_SELECT

PMC1 event adder lane select.
0 Byte lane 0: Add 0 + 4
1 Byte lane 2: Add 0 + 4

25 PMC2_ADDER 
_SELECT

PMC2 event adder lane select.
0 Byte lane 0: Add 1 + 5
1 Byte lane 2: Add 1 + 5

26 PMC6_ADDER 
_SELECT

PMC6 event adder lane select.
0 Byte lane 0: Add 2 + 6
1 Byte lane 2: Add 2 + 6

27 PMC5_ADDER 
_SELECT

PMC5 event adder lane select.
0 Byte lane 0: Add 3 + 7
1 Byte lane 2: Add 3 + 7

28 PMC8_ADDER 
_SELECT

PMC8 event adder lane select.
0 Byte lane 1: Add 0 + 4
1 Byte lane 3: Add 0 + 4

29 PMC7_ADDER 
_SELECT

PMC7 event adder lane select.
0 Byte lane 1: Add 1 + 5
1 Byte lane 3: Add 1 + 5

30 PMC3_ADDER 
_SELECT

PMC3 event adder lane select.
0 Byte lane 1: Add 2 + 6
1 Byte lane 3: Add 2 + 6

31 PMC4_ADDER 
_SELECT

PMC4 event adder lane select.
0 Byte lane 1: Add 3 + 7
1 Byte lane 3: Add 3 + 7

32:36 PMC3SEL
PMC3 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC3.

37:41 PMC4SEL
PMC4 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC4.

42:46 PMC5SEL
PMC5 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC5.

47:51 PMC6SEL
PMC6 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC6.

52:56 PMC7SEL
PMC7 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC7.

57:61 PMC8SEL
PMC8 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC8.

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 216 of 415

Version 2.3
March 7, 2008

62:63 SPCSEL

Speculative count event selector.
00 Reserved
01 Event A1x
10 Event A2x
11 Event A3x
See Table 10-6 on page 233 for definitions of the events. 

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 217 of 415

10.4.3 Performance Monitor Control Register MMCRA

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
es

er
ve

d

F
C

1-
4

F
C

5-
8

R
es

er
ve

d

R
es

er
ve

d

Reserved THRSTRT THREND Reserved IM
R

S
E

L

IM
R

M
A

R
K

IMRMASK IMRMATCH F
C

T
I

R
es

er
ve

d

F
C

W
A

IT

S
A

M
P

LE
_ 

E
N

A
B

LE

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 — Reserved.

32 — Reserved.

33 FC1-4
Freeze counters 1 - 4.
0 PMC1 - 4 are incremented.
1 PMC1 - 4 are not incremented.

34 FC5-8
Freeze counters 5 - 8.
0 PMC5 - 8 are incremented.
1 PMC5 - 8 are not incremented.

35 — Reserved.

36 — Reserved.

37:39 — Reserved.

40:42 THRSTRT Threshold start event.

43:45 THREND Threshold end event.

46:48 — Reserved.

49 IMRSEL

Instruction mark (IMR) select.
IMR select interacts with IMR mark to determine stage 1 eligibility as described in Section 10.11 IDU 
Instruction Sampling Facility on page 254. 
0 Stage 1 eligible instructions are determined through predecode bits from the IFU combined with 

the IMRMATCH and IMRMASK fields as described in Section 10.11 on page 254. This is useful 
if the IMR mark equals ‘00’.

1 The instruction mark bit (IMR bit) from the IFU IMC match array is used to determine Stage 1 eli-
gibility.

50:51 IMRMARK

IMR Mark.
Chooses the mark mode for which instructions are Stage 2 eligible.
00 All Stage 1 eligible internal operations (IOPs).
01 Only Stage 1 eligible IOPs that resulted from microcode expansion.
10 Only one IOP per eligible PowerPC instruction.
11 First IOP that goes to the LSU for every eligible PowerPC load/store (ld/st) instruction.

52:55 IMRMASK
IMR Mask.
A mask ANDed with the predecode bits before using the IMRMATCH field.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 218 of 415

Version 2.3
March 7, 2008

56:59 IMRMATCH

IMR Match.
The value that the result of the IMRMASK ANDed with the predecode bits must match to be Stage 2 eligi-
ble. All 4 bits of the result must match the IMRMATCH exactly. 
To match ALL IOPs (that is, the match will always succeed) set IMRSEL equals ‘0’, IMRMASK equals 
‘0000’, and IMRMATCH equals ‘0000’. 

60 FCTI
Freeze Counters.
0 The PMCs are incremented.
1 The PMCs are not incremented.

61 — Reserved

62 FCWAIT
Freeze Counters in Wait State (implies that CNTL[31] equals ‘0’). 
0 The PMCs are incremented.
1 The PMCs (except those counting cycles) are not incremented when CNTL[31] equals ‘0’.

63 SAMPLE_ 
ENABLE

0 Sampling is disabled.
1 Sampling is enabled.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 219 of 415

10.4.4 Performance Monitor Count Registers PMC1 - 8 

C
T

R
_N

E
G

CTRDATA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 CTR_NEG Counter negative bit.

1:31 CTRDATA Count data.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 220 of 415

Version 2.3
March 7, 2008

10.4.5 Performance Monitor and Trace Related Bits in the Machine State Register (MSR) 

N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A EE PR N/A SE BE N/A P
M

M

N/A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:47 N/A Not applicable.

48 EE
External interrupt enable.
0 The processor is disabled for external, decrementer, and performance monitor exceptions.
1 The processor is enabled for external, decrementer, and performance monitor exceptions.

49 PR
Problem (user) state.
0 The processor is privileged to execute any instruction. 
1 The processor can execute only non-privileged instructions. 

50:52 N/A Not applicable.

53 SE

Single step trace enable.
0 The processor does not generate a trace exception after instruction completion. 
1 The processor generates a trace exception after successfully completing the execution of the 

next instruction unless that instruction is an Return from Exception Doubleword (rfid), which is 
never traced. 

54 BE

Branch trace enable.
0 The processor does not generate a trace exception after branch instruction completion. 
1 The processor generates a trace exception after successfully completing the execution of a 

branch instruction whether the branch is taken.

55:60 N/A Not applicable.

61 PMM

Performance monitor mode enable.
0 The currently executing process is not marked. 
1 The currently executing process is marked.
This bit is used to mark a process for the performance monitor. Several performance monitor MMCR0 
control bits can then be set to enable counting based on the value of the PMM bit.
When an exception occurs, this bit is saved, set to ‘0’ for the duration of the exception processing, and 
then restored when the rfid instruction is executed. 
If this bit is changed with an mtmsr or Move to Machine State Register Doubleword (mtmsrd) instruction, 
the change is not guaranteed to have taken effect until after a subsequent context-synchronizing instruc-
tion has completed execution. 

62:63 N/A Not applicable.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 221 of 415

10.4.6 Performance Monitor Related Bits in Hardware Implementation-Dependent Register 0 (HID0) 

10.4.7 Performance Monitor Related Bits in the Control Register (CTRL) 

N/A TG N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:12 N/A Not applicable.

13 TG
Performance monitor threshold granularity.
0 The thresholder counts every processor cycle. 
1 The thresholder counts every 32 processor cycles. 

14:63 N/A Not applicable.

N/A R
U

N

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:30 N/A Not applicable.

31 RUN Wait state bit.

32:63 N/A Not applicable.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 222 of 415

Version 2.3
March 7, 2008

10.4.8 Performance Monitor Related Bits in the SCOM0240, 1240 Register (SCOM x‘240’) 

IDLE COMPLN N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:7 IDLE Sampling logic idle delay.

8:15 COMPLN Sampling logic completion delay.

16:63 N/A Not applicable.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 223 of 415

10.4.9 Performance Monitor Related Bits in the SCOM0360,1360 Register (SCOM x‘360’) 

im
r_

se
le

ct

im
r_

m
ar

k

imr_mask imr_match FILTER sc
om

_i
m

r_
en

ab
le

sa
m

pl
e_

ov
er

rid
e

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 imr_select Same as MMCRA[imr_sel].

1:2 imr_mark Same as MMCRA[imr_mark] and overrides MMCRA if bit 13 equals ‘1’.

3:6 imr_mask Same as MMCRA[imr_mask] and overrides MMCRA if bit 13 equals ‘1’.

7:10 imr_match Same as MMCRA[imr_match] and overrides MMCRA if bit 13 equals ‘1’.

11:12 FILTER

IMR filter random/all and first/all.
These two bits form a 2-step filtering operation on the eligible bits associated with the instructions in the 
group. 
Bit 11 first determines whether instruction eligibility bits pass the first filter step based on either a random 
pass/nopass (bit 11 equals ‘1’) choice or an all pass (bit 11 equals ‘0’) choice for each instruction. 
Bit 12 determines how microcoded instructions are sampled (and has no effect on non-microcoded 
instructions):
00 No filtering (OR).
01 No filtering (AND).
10 Use Good_Address mode of sampling microcode expansions.
11 Use More_Hits mode of sampling microcode expansions.
In Good_Address mode, there is at most one IOP in any microcode expansion that is eligible for sam-
pling. This is (a) the first load/store IOP if there are any load/store IOPs in the expansion, or (b) the first 
IOP in the final group of the expansion. If the random filter suppresses marking this IOP, then no IOP will 
be marked for the microcode expansion.
In More_Hits mode, multiple IOPs in a microcode expansion are eligible for sampling. These are (a) the 
first load/store IOP in any group, or (b) the first IOP of the final group. If the random filter suppresses 
marking the first of these IOPs, a subsequent one might still be sampled. (However, at most one will be 
marked in a single microcode expansion.)

13 scom_imr_enable
0 Performance monitor fields are used for mark, mask, match.
1 SCOM fields are used for mark, mask, match.

14 sample_override
0 Performance monitor “ok_to_sample” indication is used.
1 Overrides performance monitor “ok_to_sample” indication.

15:63 — Reserved.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 224 of 415

Version 2.3
March 7, 2008

10.4.10 Performance Monitor Related Bits in the IMC Array (IMC) 

10.4.11 Performance Monitor Related Bits in the Sampled Instruction Address Register (SIAR) 

10.4.12 Performance Monitor Related Bits in the Sampled Data Address Register (SDAR) 

Match Row 0:5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Match Row 0:5 Match Row 76

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Bit Description

0:39 Match Row 0 Opcode/extended opcode match.

0:39 Match Row 1 Opcode/extended opcode match.

0:39 Match Row 2 Opcode/extended opcode match.

0:39 Match Row 3 Opcode/extended opcode match.

0:39 Match Row 4 Opcode/extended opcode match.

0:39 Match Row 5 Opcode/extended opcode match.

0:63 Match Row 76 Full instruction match. 

SampIA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SampIA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 SampIA Sampled instruction address.

SampDA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SampDA

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 SampDA Sampled data address.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 225 of 415

10.4.13 Performance Monitor Related Bits in the SRR1 (SRR1) 

N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N
/A

S
IA

R
/S

D
A

R
_S

yn
c

N/A

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:32 N/A Not applicable.

33 SIAR/SDAR_Sync SIAR and SDAR contents synchronized.

34:63 N/A Not applicable.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 226 of 415

Version 2.3
March 7, 2008

10.4.14 Performance Monitor Related Bits in the Time-Base Register (TB) 

N/A

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/A T
B

_4
7

N/A T
B

_5
1

N/A T
B

_5
5

N/A T
B

_6
3

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:46 N/A Not applicable.

47 TB_47 Time-Base Register bit 47.

48:50 N/A Not applicable.

51 TB_51 Time-Base Register bit 51.

52:54 N/A Not applicable.

55 TB_55 Time-Base Register bit 55.

56:62 N/A Not applicable.

63 TB_63 Time-Base Register bit 63.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 227 of 415

10.5 Performance Monitor Event Selection

Event signals are routed from the functional units through the processor performance monitor buses. These 
signals are multiplexed and divided into byte lanes 0 - 3. A smaller number of events are routed directly to the 
performance monitor unit (PMU); these events are referred to as direct events. Each PMC can be configured 
to count a subset of the direct events or one of two possible byte lanes. Counters 1, 2, 5, and 6 can be config-
ured to count events on byte lane 0 or 2, counters 3, 4, 7, and 8 can be configured to count events on byte 
lane 1 or 3. The selection of event source (direct, byte lane) is controlled by the PMCxSEL field in MMCR1 
(where x is the PMC number). Figure 10-2 shows this selection. Table 10-2 shows how the PMCxSEL field is 
used to select which events are monitored.

Performance monitor events fall into three categories:

• Direct: All the information is hardwired to the PMU.
• Bus: All the information is routed over the hierarchical event bus.
• Combined: Some information comes from the event bus; the PMU does additional processing on it.

Figure 10-2. Event Selection 

Table 10-2. Performance Monitor Internal Multiplexer PMCxSEL[0:4] Bit Values  

PMCSEL[0:1] PMCSEL[2:4] Counted Event

00 000-111 Direct Events.

10 000 None. When count_en is ‘0’, turn off 
counter.

10 111 Cycles.

01 000-111 Direct Events.

10 000-111 Select smaller byte lane.

11 000-111 Select larger byte lane.

01

10

11

Upper Lane (0 or 1)

Lower Lane (2 or 3)

Direct
Events

PMCx

3:1 static

8:1 pass 

PMCSEL(0:1) PMCSEL(2:4)

8
8

8

8

gate mux

logic mux

8
00



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 228 of 415

Version 2.3
March 7, 2008

10.5.1 Direct Events

As shown in Table 10-2 on page 227, direct events are selected with PMCxSEL[0:1] set to ‘0x’. When 
PMCxSEL[0:1] equals ‘10’ and PMCxSEL[2:4] equals ‘111’, the counter is configured to count cycles. When 
PMCxSEL[0:1] equals ‘10’ and PMCxSEL[2:4] is ‘000’, the counter is off (counts nothing). The direct events 
that can be counted are shown in Table 10-5 on page 230.

Some direct events, such as events that add two other events or interpret the memory source encodes for 
data or instruction fetches, also require data from the performance monitor events. Although they are listed in 
Table 10-5 Direct Events, they rely on a meaningful configuration of the performance monitor event selec-
tions to produce meaningful results. 

10.5.1.1 Combined Events

Each PMC can add similar events to produce a single, combined count. For example, each load store unit 
provides a data cache miss event, which can be added to produce the total data cache miss count. The 
added events are considered direct events, but they rely on the performance monitor bus being configured 
properly to produce meaningful results. Because each PMC can receive event signals from two byte lanes on 
the performance monitor bus, the added events can be configured to add events on one of the two byte 
lanes. Events cannot be added from different byte lanes. The PMCx_ADDER_SELECT fields in MMCR1 
control which byte lanes are used.

10.5.1.2 Source-Encoded Events

Source-encoded events (direct event 7 [PMCxSEL equals ‘00111’] for data and event 6 [SEL equals ‘00110’] 
for instructions) are combined events that count events from a specific source as shown in Table 10-3 and 
Table 10-4 on page 229.

Note:  Intervention event sources are only meaningful on multiprocessor systems.

To count data source-encoded events, the performance monitor event bus must be configured as follows:

1. Route LSU1 byte 3 data to the PMU (the “L1 reload data source” LSU1 indirect event) by setting the 
TD_CP_DBG3SEL field in MMCR1 to ‘11’.

2. Select the direct event that decodes the required data source. To count L1 data reloads from the L2, for 
example, PMC1, direct event 7 (the PMC1SEL field in MMCR0 set to ‘00111’) should be used.

Table 10-3. Event Data Source Encodings 

Encoding (0:3) Event Source

0000 L2 cache

0001 Memory

0100 Shared Intervention (another L2 cache)

0101 Modified Intervention (another L2 cache)

All Others Reserved



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 229 of 415

To count instruction source-encoded events, the performance monitor event bus should be similarly config-
ured:

1. Route IFU byte 2 data to the PMU (the “iL1 cache data source” IFU indirect event) by setting the 
TD_CP_DBG2SEL field in MMCR1 to ‘00’ and TTM0SEL to ‘10’.

2. Select the direct event that decodes the required data source. To count L1 instruction reloads from mem-
ory, for example, PMC3, direct event 6 (the PMC3SEL field in MMCR0 set to ‘00110’) should be used.

10.5.1.3 Instruction Counts

Two types of instruction and IOP counting are available with the 970MP performance monitor:

• Direct event 1 (SEL equals ‘00001’) on PMC1, PMC4, PMC6, PMC7, and PMC8 counts instructions 
according to the IMRMARK field of the MMCRA Register:

– 00 All stage 1 eligible IOPs
– 01 Stage 1 eligible IOPs from microcode expansion
– 10 One IOP per eligible PowerPC instruction
– 11 First IOP to LSU per eligible PowerPC load/store instruction 

• Direct event 9 (SEL equals ‘01001’) on PMC1 - PMC8 always counts PowerPC instructions independent 
of the IMRMARK field of the MMCRA Register (see Table 10-5 on page 230).

Table 10-4. Event Instruction Source Encodings 

Encoding (0:3) Event Source

1001 I-cache

1010 Prefetch buffer

0000 L2 cache

0001 Memory

1111 or 1011 No instructions on bus



U
ser’s M

anual
 IB

M
 P

o
w

erP
C

 970M
P

 R
IS

C
 M

icro
p

ro
cesso

r
 

970M
P

 P
erform

ance M
onitor

P
age 230 of 415

10_970M
P

.fm
V

ersion 2.3
M

arch 7, 2008

Table 10-5. Direct Events   (Page 1 of 2)

SEL(0:4) PMC1 PMC2 PMC3 PMC4 PMC5 PMC6 PMC7 PMC8

00 000 plus Add 0 + 4 Add 1 + 5 Add 2 + 6 Add 3 + 7 Add 3 + 7 Add 2 + 6 Add 1 + 5 Add 0 + 4

 MMCR1(24:31) 
= ‘0’, ‘1’

MMCR1[24] = ‘0’
byte lane 0 

MMCR1[25] = ‘0’
byte lane 0 

 MMCR1[30] = ‘0’
byte lane 1 

 MMCR1[31] = ‘0’
byte lane 1 

MMCR1[27] = ‘0’
byte lane 0 

MMCR1[26] = ‘0’
byte lane 0 

MMCR1[29] = ‘0’
byte lane 1 

MMCR1[28] = ‘0’
byte lane 1 

 MMCR1[24] = ‘1’
byte lane 2 

MMCR1[25] = ‘1’
byte lane 2 

 MMCR1[30] = ‘1’
byte lane 3 

 MMCR1[31] = ‘1’
byte lane 3 

MMCR1[27] = ‘1’
byte lane 2 

MMCR1[26] = ‘1’
byte lane 2 

MMCR1[29] = ‘1’
byte lane 3 

MMCR1[28] = ‘1’
byte lane 3 

00 001 number of instruc-
tions complete work held stop completion number of instruc-

tions complete dispatch_success number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

00 010 marked group 
dispatch

LSU empty (load 
miss queue [LMQ] 
and store reorder 

queue [SRQ] 
empty)

LSU empty (LMQ 
and SRQ empty)

Fixed-point unit 0 
(FXU0) idle and 

FXU1 busy

FXU0 idle and 
FXU1 idle

FXU0 busy and 
FXU1 busy

FXU0 busy and 
FXU1 idle external interrupt

00 011  marked store 
complete

threshold timeout 
event

marked store with 
interrupt complete SRQ empty

one or more 
PowerPC instruc-
tions completed

marked store sent 
to STS group completed group

dispatch reject

00 100 global completion 
table (GCT) empty group dispatch cycles in 

supervisor mode
marked group 

complete
group marked in 

IDU
FXU marked 

instruction finish
FPU marked 

instruction finish
LSU marked 

instruction finish

00 101
run_cycles; that is, 

# cycles when 
CNTL[31] = ‘1’

branch unit (BRU) 
marked instruc-

tion finish

VPU marked 
instruction finish

condition register 
unit (CRU) marked 
instruction finish

marked group 
complete time out

marked group 
issued

marked instruc-
tion finish any unit time base event

00 110 Instruction source 
encode 0000

Instruction source 
encode
0001

Instruction source 
encode
0010

Instruction source 
encode
0011

Instruction source 
encode
0100

Instruction source 
encode
0101

Instruction source 
encode
0110

Instruction source 
encode
0111

00 111 Data source 
encode
0000

Data source 
encode
0001

Data source 
encode
0010

Data source 
encode
0011

Data source 
encode
0100

Data source 
encode
0101

Data source 
encode
0110

Data source 
encode
0111

01 000 Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF Counter OFF

01 001 number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete

number of instruc-
tions complete)

number of instruc-
tions complete

number of instruc-
tions complete

01 010 Overflow from 
counter 8

Overflow from 
counter 1

Overflow from 
counter 2

Overflow from 
counter 3

Overflow from 
counter 4

Overflow from 
counter 5

Overflow from 
counter 6

Overflow from 
counter 7

01 011 Reserved GCT empty by 
SRQ full Reserved Reserved

—/A1a/A2a/A3a 
(*1) (See 

Table 10-6 on 
page 233)

Reserved

—/A1b/A2b/A3b 
(*1) (See 

Table 10-6 on 
page 233)

Reserved



U
ser’s M

anual

 
IB

M
 P

o
w

erP
C

 970M
P

 R
IS

C
 M

icro
p

ro
cesso

r

V
ersion 2.3

M
arch 7, 2008 

 

970M
P

 P
erform

ance M
onitor

P
age 231 of 415

01 100 Reserved Reserved Reserved Reserved
—/A1c/A2c/— (*1) 
(See Table 10-6 

on page 233)
Reserved

—/A1d/A2d/—(*1) 
(See Table 10-6 

on page 233)
Reserved

01 101 Instruction source 
decode 1000

Instruction source 
encode 1001

Instruction source 
encode 1010

Instruction source 
encode 1011

Instruction source 
encode 1100

Instruction source 
encode 1101

Instruction source 
encode 1110

Instruction source 
encode 1111

01 110 Byte 3 decode 
1000

Data source 
encode 1001

Data source 
encode 1010

Data source 
encode 1011

Data source 
encode 1100

Data source 
encode 1101

Data source 
encode 1110

Data source 
encode 1111

01 111 Cycles Cycles Cycles Cycles Cycles Cycles Cycles Cycles

Table 10-5. Direct Events   (Page 2 of 2)

SEL(0:4) PMC1 PMC2 PMC3 PMC4 PMC5 PMC6 PMC7 PMC8

00 000 plus Add 0 + 4 Add 1 + 5 Add 2 + 6 Add 3 + 7 Add 3 + 7 Add 2 + 6 Add 1 + 5 Add 0 + 4



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 232 of 415

Version 2.3
March 7, 2008

10.5.2 Over 32-Bit Count 

The 970MP PMU can chain together multiple 32-bit PMCs to create up to a 256-bit wide PMC Register when 
used in conjunction with overflow counting. This is useful for performance measurement on high clock-rate 
machines. The maximum count value depends on the following settings: 

• PMCn can count over 32-bits when PMCn+1SEL(0:4)(where n is 1 - 7) is set to ‘01010’. 

• PMC8 can count over 32-bits when PMC1SEL(0:4) is set to ‘01010’. 

• When PMCn+1 uses this overflow counting function, PMCn is prohibited from asserting an exception sig-
nal when a negative condition occurs (PMC1CE(PMCjCE) equals ‘1’ and PMCn[0] is ‘1’). 

10.5.2.1 Examples of Over Bit Count

Example 1

When PMC1 is set to ‘00100’ (GCT empty) and PMC2 is set to ‘01010’ (overflow function), then PMC2 works 
as the upper 32 bits of PMC1. In this case, the overflow exception is only asserted by PMC2 (never by PMC1) 
when PMCjCE equals ‘1’ (don't care PMC1CE) and PMC2[0] is '1'.

Example 2

When PMC8 is set to ‘00001’ (number of instructions complete) and PMC1 are set to ‘01010’ (overflow func-
tion), then PMC1 functions as the upper 32 bits of PMC8. In this case, the overflow exception is only asserted 
by PMC1 (never by PMC8) when PMC1CE equals ‘1’ (don't care PMCjCE) and PMC1[0] is '1'.

Example 3

When PMC1 is set to ‘00100’ (GCT empty) and PMC2, PMC3, and PMC4 is set to ‘01010’ (overflow function), 
then PMC4, PMC3, and PMC2 function as the upper 96 bits of PMC1. In this case, the overflow exception is 
only asserted by PMC4 (never by PMC1, PMC2, or PMC3) when PMCjCE equals ‘1’ (don't care PMC1CE) 
and PMC4[0] is '1'.

10.5.3 Speculative Count 

PMC5 and PMC7 support the speculative count function with a backup register. This is enabled when 
MMCR1[62:63] is set to ‘01’, ‘10’, or ‘11’ and a speculative event is selected (PMC[5,7]SEL equals ‘01011’ or 
‘01100’). The PMC starts counting speculatively whenever a next-to-complete (NTC) group completion stops 
(or GCT empty happens). The PMC then stores the counts to itself and its backup register if the last finished 
event matches what the PMC initially set up. If there is no match, the PMC restores the old count value from 
the backup register. This allows the PMU to establish a cycles per instruction (CPI) breakdown for various 
categories (CPI contribution because of an instruction-cache [I-cache] miss, data cache [D-cache] miss, LSU, 
FXU, FPU, and so on).

A negative condition exception only occurs when the count value is not speculative and a negative condition 
occurs. (When PMC1CE[PMCjCE] is set to ‘1’ and the backup register’s negative bit is ‘1’.)

Table 10-6 on page 233 lists the speculative count events.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 233 of 415

Speculative events are also able to count in the over 32-bit count mode. In this case, the overflow value is 
carried to the upper PMC only when the counting value is not speculative. For this reason, the upper PMC 
does not require a backup register to copy and restore the count value.

10.6 Configuring the Performance Monitor Bus

The 970MP performance monitor bus is configured through a series of hierarchal multiplexers, as shown in 
Figure 10-3 on page 234. This diagram also shows that all unit event buses are 32 bits, except for the LSU1 
that sources an extra 16 bits, denoted as LSU1[48:63]. The LSU0 and LSU1 event buses are multiplexed into 
a single 32-bit LSU event bus, using the multiplexers shown at the left of Figure 10-3. Basically, the multi-
plexers, on a byte basis, select either the LSU0 or the LSU1 events. The extra LSU1 events are selected 
using MMCR1[9:10], the TTM3SEL select signals. 

Table 10-6. Speculative Count Events 

PMC Number SEL(0:4)
MMCR1 Condition

Count Events See 
NoteBit 62 Bit 63

5, 7 01011 0 0 Reserved

A1a 5 01011 0 1 Completion stall by LSU instruction

A2a 5 01011 1 0 Completion stall by FXU instruction

A3a 5 01011 1 1 Completion stall by D-cache miss

A1b 7 01011 0 1 Completion stall by FPU instruction

A2b 7 01011 1 0 Completion stall by FXU long instruction

A3b 7 01011 1 1 Completion stall by reject

5, 7 01100 0 0 Reserved

A1c 5 01100 0 1 Completion stall by FPU long instruction

A2c 5 01100 1 0 GCT empty by I-cache miss 1

A1d 7 01100 0 1 Completion stall by reject (ERAT miss)

A2d 7 01100 1 0 GCT empty by branch miss predict 1

5, 7 01100 1 1 Reserved

1. This count event also requires MMCR1 bits. They should be set as follows:

Bit 1 = ‘1’ and bits 0, 16, and 17 = ‘0’ or
Bits 3 and 17 = ‘1’ and bits 4 and 16 = ‘0’



U
ser’s M

anual
 IB

M
 P

o
w

erP
C

 970M
P

 R
IS

C
 M

icro
p

ro
cesso

r
 

970M
P

 P
erform

ance M
onitor

P
age 234 of 415

10_970M
P

.fm
V

ersion 2.3
M

arch 7, 2008

Figure 10-3. 970MP Performance Monitor Bus Configuration 

D
PMC5

0
2

D
PMC6

0
2

D
PMC4

1
3

D
PMC2

0
2

D

0

1

0

1

LSU0(0:31)
TD_CP_DBG0SEL(13)

FPU

TD_CP_DBG1SEL(15)

TTM3SEL(9)
TD_CP_DBG2SEL(17)

TTM3SEL(10)
TD_CP_DBG3SEL(19)

(0:7) (0:7)

(0:7)

(8:15)

(8:15)

(8:15)

(16:23)

(16:23)
(16:23)

(24:31)

(24:31)

(24:31)
(56:63)

(48:55)

LSU1(0:31)

00
01
10
11

00

10
11

0-
10
11

0-
10
11

8

8

32

32

32
TD_CP_DBG0SEL(12:13)

00
01
1-

8

TD_CP_DBG2SEL(16:17)

00
01
1-

8

TD_CP_DBG1SEL(14:15)

TTM0SEL(0:1)

TTM1SEL(3:4)

00
01
1-

8

TD_CP_DBG3SEL(18:19)

00
01
1-

8

8

8

ISU
IFU
VMX

IDU

ISU
GPS

ISU
LSU PMU

LSU1(4 :63)8

PMC1

Direct Events

0
2

D
PMC3

1
3

D
PMC7

1
3

D
PMC8

1
3



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 235 of 415

The rest of the first level of selection is controlled by the TTM0 and TTM1 multiplexers. These control from 
which unit the non-LSU event signals are selected. The ISU can be selected by more than one multiplexer 
(TTM0 and TTM1). The TTM multiplexers are controlled by the TTMxSEL fields in MMCR1. MMCR1[0:1] 
control TTM0 and MMCR1[3:4] control TTM1. 

The three 32-bit outputs of the LSU, TTM0, and TTM1 multiplexers are sent to the TM_DEBUG multiplexers, 
which are controlled by the 2-bit TD_CP_DBGxSEL fields in the MMCR1; bits 12:13 control TM_DEBUG0, 
bits 14:15 control TM_DEBUG1, bits 16:17 control TM_DEBUG2, and bits 18:19 control TM_DEBUG3.

After the performance monitor bus is configured, individual events can be selected, as described at the begin-
ning of this section. Table 10-7 shows the events available through the performance monitor bus and the 
TTM and TM_DEBUG multiplexer used to select them. 

Table 10-7. Performance Monitor Bus Assignments   (Page 1 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description

FPU: TTM0 = ‘00’, TD_CP_DBGxSEL = ‘00’

0 0 0 FPU0 divide

1 0 1 FPU0 mult-add

2 0 2 FPU0 square root

3 0 3 FPU0 add, mult, sub, compare, fsel

4 0 4 FPU1 divide

5 0 5 FPU1 mult-add

6 0 6 FPU1 square root

7 0 7 FPU1 add, mult, sub, compare, fsel

8 1 0 FPU0 move, estimate

9 1 1 FPU0 round, convert

10 1 2 FPU0 estimate

11 1 3 FPU0 finished and produced a result

12 1 4 FPU1 move, estimate

13 1 5 FPU1 round, convert

14 1 6 FPU1 estimate

15 1 7 FPU1 finished and produced a result



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 236 of 415

Version 2.3
March 7, 2008

16 2 0 FPU0 denormalized operand

17 2 1 FPU0 stall 3

18 2 2 FPU0 store 

19 2 3 FPU0 single precision

20 2 4 FPU1 denormalized operand

21 2 5 FPU1 stall 3

22 2 6 FPU1 store 

23 2 7 FPU1 single precision

24 3 0 Floating-Point Status and Control Register (FPSCR)

25 3 1 FPU0 multiply

26 3 2 FPU0 compare

27 3 3 FPU0 select

28 3 4 FPU1 multiply

29 3 5 FPU1 compare

30 3 6 FPU1 select 

31 3 7 Floating-point stall store

IFU: TTM0 = ‘10’, TD_CP_DBGxSEL = ‘00’

0:15 0:1 0:7 Nothing

16:19 2 0:3 L1 I-cache data source

20 2 4 Valid instruction available

21 2 5 Cycles IFU is held by pipeline hold

22 2 6 Instruction prefetch installed in prefetch buffer

23 2 7 L2 prefetch request

24 3 0 I-ERAT write

25 3 1 Branch execution issue valid

26 3 2 Branch miss predict because of Condition Register (CR) value

27 3 3 Branch miss predict because ofbecause of a target address predict

28 3 4 Cycles L1 I-cache write active

29:31 3 5:7 Nothing

Table 10-7. Performance Monitor Bus Assignments   (Page 2 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 237 of 415

IDU: TTM1 = ‘00’, TD_CP_DBGxSEL = ‘01’

0 0 0 Instruction queue has three slots full

1 0 1 Instruction queue has one slot full

2 0 2 Instruction queue has six slots full

3 0 3 Instruction queue has zero slots full

4 0 4 Instruction queue has four slots full

5 0 5 Instruction queue has two slots full

6 0 6 Instruction queue has seven slots full

7 0 7 Instruction queue has eight slots full

8 1 0 Instruction queue has five slots full

9:15 1 1:7 Instruction queue full

16:31 2:3 0:7 Nothing

LSU0: (See Figure 10-3 970MP Performance Monitor Bus Configuration on page 234) TD_CP_DBGxSEL = ‘1x’

0 0 0 Instruction translation lookaside buffer (TLB) miss

1 0 1 Instruction segment lookaside buffer (SLB) miss

2 0 2 Data ERAT (D-ERAT) miss side 0

3 0 3 Snoop TLB Invalidate Entry (tlbie)

4 0 4 Data TLB miss

5 0 5 Data SLB miss

6 0 6 D-ERAT miss side 1

7 0 7 Tablewalk duration

8 1 0 Marked flush unaligned load side 0

9 1 1 Marked flush unaligned store side 0

10 1 2 Marked flush from load reorder queue (LRQ) store-hit-load (SHL), load-hit-load (LHL) side 0

11 1 3 Marked flush SRQ load-hit-store (LHS) side 0

12 1 4 Marked flush unaligned load side 1

13 1 5 Marked flush unaligned store side 1

14 1 6 Marked flush from LRQ store-hit-load (shl), load-hit-load (lhl) side 1

15 1 7 Marked flush SRQ LHS side 1

Table 10-7. Performance Monitor Bus Assignments   (Page 3 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 238 of 415

Version 2.3
March 7, 2008

16 2 0 Marked L1 D-cache load miss side 0

17 2 1 Store conditional (stcx) failed

18 2 2 Marked IMR reload

19 2 3 Marked L1 D-cache store miss

20 2 4 Marked L1 D-cache load miss side 1

21 2 5 stcx passed

22 2 6 Marked stcx fail

23 2 7 Load and reserve indexed (larx) executed 0

24 3 0 Floating-point load side 0

25 3 1 L1 cache prefetch request

26 3 2 Out of streams

27 3 3 L2 cache prefetch

28 3 4 Floating-point load side 1

29 3 5 VPU type L2 prefetch

30 3 6 Data stream touch (dst) stream start

31 3 7 New stream allocated

LSU1: (See Figure 10-3 970MP Performance Monitor Bus Configuration on page 234) TD_CP_DBGxSEL = ‘1x’

0 0 0 Flush unaligned load side 0

1 0 1 Flush unaligned store side 0

2 0 2 Flush from LRQ SHL, LHL side 0

3 0 3 Flush SRQ LHS side 0

4 0 4 Flush unaligned load side 1

5 0 5 Flush unaligned store side 1

6 0 6 Flush from LRQ SHL, LHL side 1

7 0 7 Flush SRQ LHS side 1

8 1 0 L1 D-cache load side 0

9 1 1 L1 D-cache store side 0

10 1 2 L1 D-cache load miss side 0

11 1 3 L1 D-cache store miss

12 1 4 L1 D-cache load side 1

13 1 5 L1 D-cache store side 1

14 1 6 L1 D-cache load miss side 1

15 1 7 L1 D-cache entries invalidated from L2

Table 10-7. Performance Monitor Bus Assignments   (Page 4 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 239 of 415

16 2 0 SRQ store forwarding side 0

17 2 1 SRQ slot 0 valid

18 2 2 LRQ slot 0 valid

19 2 3 LSU0 reject

20 2 4 SRQ store forwarding side 1

21 2 5 SRQ slot 0 allocated

22 2 6 LRQ slot 0 allocated

23 2 7 LSU1 reject

24:27 3 0:3 L1 cache reload data source

28 3 4 L1 cache reload data valid

29 3 5 LMQ slot 0 valid

30 3 6 LMQ slot 0 allocated

31 3 7 LMQ full

32:47 0:1 0:7 Nothing

48 2 0 SRQ reject 0 - load hit store

49 2 1 LMQ reject 0 - LMQ full or missed data coming

50 2 2 LSU0 reject - reload critical data forward (CDF) or tag update collision

51 2 3 LSU0 reject - ERAT miss

52 2 4 SRQ reject 1- load hit store

53 2 5 LMQ reject 1- LMQ full or missed data coming

54 2 6 LSU1 reject - reload CDF or tag update collision

55 2 7 LSU1 reject - ERAT miss

56:58 3 0:3 L1 cache reload data source

60 3 4 Marked L1 cache reload data source valid

61 3 5 LMQ load-hit-reload merge

62 3 6 Marked SRQ valid

63 3 7 Nothing

Table 10-7. Performance Monitor Bus Assignments   (Page 5 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 240 of 415

Version 2.3
March 7, 2008

ISU: TTM0 = ‘01’, TD_CP_DBGxSEL = ‘00’
TTM1 = ‘10’, TD_CP_DBGxSEL = ‘01’

0 0 0 Completion table full

1 0 1 Floating-Point Register (FPR) mapper full

2 0 2 Integer Exception Register (XER) mapper full

3 0 3 FPU0 issue queue full

4 0 4 CR mapper full

5 0 5 Branch (BR) issue queue full 

6 0 6 Link Register/ Counter Register (LR/CTR) mapper full

7 0 7 FPU1 issue queue full

8 1 0 FXU0/LSU0 issue queue full

9 1 1 CR issue queue full

10 1 2 LRQ full

11 1 3 SRQ full

12 1 4 FXU1/LSU1 issue queue full

13 1 5 Flush originated by LSU

14 1 6 Flush originated by branch miss predict

15 1 7 Flush (includes LSU, branch miss predict)

16:18 2 0:2 Instructions dispatched count

19 2 3 Dispatch valid

20 2 4 Dispatch reject

21 2 5 Nothing

22 2 6 Group experienced a branch redirect

23 2 7 Group experienced a branch miss predict

24 3 0 Nothing

25 3 1 Dispatch blocked by scoreboard

26 3 2 FXU0 produced a result

27 3 3 Duration of the external interrupt enable in the Machine State Register (MSR[EE] = ‘0’)

28 3 4 Nothing

29 3 5 General Purpose Register (GPR) mapper full

30 3 6 FXU1 produced a result

31 3 7 MSR(EE) equals ‘0’ and interrupt pending

Table 10-7. Performance Monitor Bus Assignments   (Page 6 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 241 of 415

Vector: TTM0 = ‘11’, TD_CP_DBGxSEL = ‘01’

0 0 0 Arithmetic logic unit (ALU) issue queue full

1 0 1 Vector permute (VPERM) issue queue full 

2 0 2 ALU issue marked instruction

3 0 3 VPERM issue marked instruction

4 0 4 Saturation zero to one

5 0 5 VPU mapper full

6 0 6 Store issue marked instruction

7 0 7 Nothing

8:15 below selected by OVMA.USADEC2.CHICKEN1.IO.L2(7) = ‘0’ (default)

8 1 0 Finish with IMR

9 1 1 Generic forward

10 1 2 Vector ALU issue count

11 1 3 Denormalized traps

12 1 4 Saturation bit set

13 1 5 Finish contention cycle

14 1 6 Nothing

15 1 7 Nothing 

16:19 below selected by OVMP.RPRPM.MODE_PMON_MISC.IO.L2 = ‘0’ (default)

16 2 0 Instruction finish with IMR

17 2 1 Forwarding occurred from VPERM or ALU or load

17 2 2 Issue valid

19 2 3 Saturation count for valid instruction

STS: TTM1 = ‘11’, TD_CP_DBGxSEL = ‘01’

0 0 0 L2 cache access collision with L2 prefetch (Data Stream Touch [DST])

1 0 1 L2 cache access collision with L2 prefetch (non-DST)

2 0 2 L2 cache access for store

3 0 3 L2 cache miss on store access (recent [R], shared [S], or invalid [I])

4 0 4 L2 cache miss; bus response is modified intervention

5 0 5 L2 cache miss; bus response is shared intervention

6 0 6 I = ‘1’ store operation (before gathering)

7 0 7 I = ‘1’ store operation completed on bus

Table 10-7. Performance Monitor Bus Assignments   (Page 7 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 242 of 415

Version 2.3
March 7, 2008

8 1 0 I = ‘1’ load operation completed on bus

9 1 1 Cacheable store operation (before gathering)

10 1 2 Master bus transactions completed

11 1 3 Master bus transactions retried

12 1 4 Master L2 cache store transaction on bus was retried

13 1 5 Master L2 cache read transaction on bus was retried

14 1 6 Master SYNC operation competed

15 1 7 Master SYNC operation retried

16 2 0 Load or store dispatch retries because of castout (CO) conflicts

17 2 1 Load or store dispatch retries because of snoop conflicts

17 2 2 Load or store dispatch retries 

19 2 3 All read/claim state machines busy

20 2 4 All CO state machines busy

21 2 5 All snoop state machines busy

22 2 6 Cacheable store queue full

23 2 7 I = ‘1’ store queue full

24 3 0 Snoop (external)

25 3 1 Snoop state machine dispatched

26 3 2 Snoop retried due to any conflict

27 3 3 Snoop retried because all snoop state machines busy

28 3 4 Snoop caused cache transition from modified (M) to exclusive (E) or shared (S)

29 3 5 Snoop caused cache transition from E to S

30 3 6 Snoop caused cache transition from E or S to recent (R) or invalid (I)

31 3 7 Snoop caused cache transition from M to I

Table 10-7. Performance Monitor Bus Assignments   (Page 8 of 8)

Bits 
[0:31]

Byte 
Lane Bits [0:7] Event Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 243 of 415

10.7 Enabling the Performance Monitor Counters

10.7.1 Machine States 

The eight counters in the 970MP performance monitor can be enabled to count events as a result of a 
number of machine state conditions and triggering events. The machine state conditions and triggering 
events are enabled by the settings of the MMCR0, MMCR1, and MMCRA Register control fields, combined 
with the values of the performance monitor-related bits in the MSR and other SPRs. While machine states 
and triggering events are closely related in their effect on performance monitor behavior, it is easier to under-
stand them if the two are first considered separately, as described in this section for the machine states and 
in Section 10.7.2 on page 244 for the triggering events. 

The term machine state condition as it is used here includes: 

• Supervisor versus user (problem) state (MSR[PR], MMCR0[FCS, FCP])

• Marked versus unmarked process state (MSR[PMM], MMCR0[FCM1, FCM0])

• Conditional versus unconditional counting state (MMCR0[FC], MMCRA[FC1:4], FC[5:8], CTRL[31], 
MMCRA[FCWAIT])

• Wait state versus non-wait state (CTRL[31], MMCRA[FCWAIT])

By combining the state of the machine with the events selected for counting, many different aspects of perfor-
mance can be obtained for a given program. 

For example, a programmer might want to gather statistics on only a particular process. This can be done by 
doing the following steps:

1. Set the appropriate bits in MMCR0 that enable counting only for a marked process.

2. Before each run of the selected process begins, set the performance monitor mode bit in the Machine 
State Register (MSR[PMM]) to the value that marks that process. 

3. After each run of the selected process ends, set the performance monitor mode bit to the value that 
unmarks that process. 

Another example follows: 

The performance monitor can be set up to count only when the machine is in the supervisor state by ensuring 
that the MMCR0 bits that specify counting are enabled only when the machine is in the supervisor (privileged) 
state and are disabled when the machine is in the user (problem) state. 

Table 10-8 on page 244 illustrates several different counting scenarios.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 244 of 415

Version 2.3
March 7, 2008

 

10.7.2 Trigger Events 

Machine states that determine counter activity have been presented in Section 10.7.1 on page 243. Several 
examples of states and their corresponding counter behaviors were shown in order to illustrate some of the 
more common uses. In addition to counting enable/disable for various machine states, there are certain kinds 
of performance monitor conditions and events that can affect performance monitor counting activity. The 
occurrence of these conditions and events, which together are called trigger events, combined with the 
controls that enable the trigger events, can be used together with machine states to further control perfor-
mance monitor activity. 

The term trigger event as it is used for the 970MP performance monitor includes the following conditions: 

• The time-base transition event can occur when a selected time-base bit changes from ‘0’ to ‘1’. The time-
base event setup uses the following fields: TB_REG[47, 51, 55, 63], HID0[13], MMCR0[TBSEL]. The 
time-base event enable uses the following field: MMCR0[TBEE]. The possibility of side effects when an 
enabled time-base event occurs uses the following fields: MMCR0[FCECE, TRIGGER].

• The counter negative condition for PMC1 can occur when the value in PMC1 is negative. The PMC1 
counter negative condition setup uses the following field: PMC1[0]. The PMC1 counter negative condition 
enable uses the following field: MMCR0[PMC1CE]. The possibility of side effects when the PMC1 counter 
negative condition occurs uses the following fields: MMCR0[FCECE,TRIGGER].

• The counter negative condition for PMCj (2 ≤ j ≤ 8) occurs when the value in any PMCj is negative. The 
PMCj counter negative condition setup uses the following field: PMCj[0]. The PMCj counter negative con-

Table 10-8. Examples of Event Counter Enabling States 

Counting State MMCR0[Bit] = Value MSR[Bit] = Value 

Disable all counting FC = ‘1’ Does not count for all values of PR, 
PMM

Enable all counting FC = ‘0’ Counts1 for all values of PR, PMM

Enable counting in supervisor state only FCP = ‘1’, FCS = ‘0’ Counts when PR = ‘0’

Disable counting in supervisor state only FCS = ‘1’, FCP = ‘0’ Counts when PR = ‘1’

Enable counting in user (problem) state only FCS = ‘1’, FCP = ‘0’ Counts when PR = ‘1’

Disable counting in user (problem) state only FCS = ‘0’, FCP = ‘1’ Counts when PR = ‘0’

Enable counting for marked processes only FCM0 = ‘1’, FCM1 = ‘0’ Counts when PMM = ‘1’

Disable counting for marked processes only FCM0 = ‘0’, FCM1 = ‘1’ Does not count when PMM = ‘1’

Enable counting for unmarked processes only FCM0 = ‘0’, FCM1 = ‘1’ Counts when PMM = ‘0’

Disable counting for unmarked processes only FCM0 = ‘1’, FCM1 = ‘0’ Does not count when PMM = ‘0’

Enable counting for marked processes in supervi-
sor state only 

FCP = ‘1’, FCS = ‘0’, FCM0 = ‘1’, 
FCM1 = ‘0’ Counts when PR = ‘0’ and PMM = ‘1’

Enable counting for unmarked processes in super-
visor state only 

FCP = ‘1’, FCS = ‘0’, FCM0 = ‘0’, 
FCM1 = ‘1’ Counts when PR = ‘0’ and PMM = ‘0’

Enable counting for marked processes in user 
(problem) state only 

FCP =‘0’, FCS = ‘1’, FCM0 = ‘1’, 
FCM1 = ‘0’ Counts when PR = ‘1’ and PMM = ‘1’

Enable counting for unmarked processes in user 
(problem) state only 

FCP = ‘0’, FCS = ‘1’, FCM0 = ‘0’, 
FCM1 = ‘1’ Counts when PR = ‘1’ and PMM = ‘0’

Note:  

1. All enables are based on whether the other MMCRx and/or MSR bits permit this action.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 245 of 415

dition enable uses the following field: MMCR0[PMCjCE]. The possibility of side effects when the PMCj 
counter negative condition occurs uses the following fields: MMCR0[FCECE, TRIGGER]. 

Note:  The three kinds of trigger events can occur independently of each other and independently of whether 
the condition or event is enabled. For example, a counter can go negative regardless of whether the counter 
negative condition for that counter is enabled. However, the side effects of that counter going negative will be 
seen only if the counter goes negative, the counter negative condition for that counter is enabled, and the 
side effects are also enabled.

By combining the trigger events and their respective enables with the time-related values obtained in the 
counters, performance profiles of different kinds of events can be obtained for a given program.

10.7.2.1 Time-Base Transition Events

Time-base events occur when the selected time-base bit (TB_REG[47, 51, 55, 63], HID0[13], 
MMCR0[TBSEL]) changes value from ‘0’ to ‘1’. If the time-base transition event is enabled (MMCR0[TBEE]), 
then any performance monitor action that is started by the occurrence of a trigger event (MMCR0[TRIGGER]) 
will be initiated. Any performance monitor action that is stopped by the occurrence of a trigger event 
(MMCR0[FCECE]) will be terminated. In multiprocessor systems with the Time-Base Registers synchronized 
among the processors, time-base transition events can be used to correlate the performance monitor data 
obtained by the several processors provided that software has specified the same TBSEL value for all of the 
processors in the system. 

The frequency of the time base is implementation dependent, and a system service routine should be invoked 
to obtain the frequency before a value for TBSEL is chosen.

10.7.2.2 PMC1 Counter Negative Condition Events

The PMC1 counter negative condition occurs when PMC1[0] equals ‘1’, which can occur either through 
counting from ‘0’, counting from a positive value greater than ‘0’, or through setting the PMC1[0] bit to ‘1’ in an 
interrupt or service routine. If the PMC1 negative count condition is enabled (MMCR0[PMC1CE]), any perfor-
mance monitor action that is started by the occurrence of a trigger event (MMCR0[TRIGGER]) will be initi-
ated, and any performance monitor action that is stopped by the occurrence of a trigger event 
(MMCR0[FCECE]) will be terminated when PMC1[0] becomes negative.

For example, if the PMC1 negative count condition is to be used to start the other PMCj counters after a 
designated number of cycles has elapsed, the set up would be as follows: 

1. PMC1 is set to the value (x‘8000 0000’ - <number of cycles>).

2. PMC1SEL is set up to count cycles.

3. MMCR0[PMC1CE] is set to enable the PMC1 negative counter condition.

4. TRIGGER is enabled. 

In this case, it is not necessary to enable the PMC1 counter negative condition because the TRIGGER uses 
either PMC1 negative or an enabled trigger event to start the enabled PMCjs counting.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 246 of 415

Version 2.3
March 7, 2008

10.7.2.3 PMCj (2 ≤ j ≤ 8) Counter Negative Condition Events

The PMCj (2 ≤ j ≤ 8) counter negative condition event occurs when PMCj[0] equals ‘1’ (2 ≤ j ≤ 8), which can 
occur through counting from ‘0’, counting from a positive value greater than ‘0’, or through setting the PMCj[0] 
(2 ≤ j ≤ 8) bit to ‘1’ in an interrupt or service routine. If the PMCj (2 ≤ j ≤ 8) counter negative condition event is 
enabled (MMCR0[PMCjCE]), any performance monitor action that is started by the occurrence of a trigger 
event (MMCR0[TRIGGER]) will be initiated, and any performance monitor action that is stopped by the occur-
rence of a trigger event (MMCR0[FCECE]) will be terminated, when any of the PMCj (2 ≤ j ≤ 8) counters 
become negative.

10.7.3 Method for Enabling or Disabling Performance Monitor Counting

This section describes the fundamental mechanism that should be used to place the selected values into the 
Performance Monitor Registers and other SPRs to initiate and terminate counting.

Once all of the control and event selection choices have been made, there are 32-bit and 64-bit values that 
must be placed into each of the registers associated with performance monitor counting. These values are 
placed in the registers with the mtspr instruction, which can be executed only in supervisor mode.

Note:  If the Performance Monitor Counter Register values are changed while the performance monitor is 
enabled for counting, then the resulting performance monitor state is undefined.

The basic steps for enabling the performance monitor counting activity are as follows:

1. Enter supervisor mode.

2. Execute a synchronizing instruction.

3. Execute all mtspr instructions that place values to enable counting into the performance monitor and 
other Special Purpose Registers except for MMCR0.

4. Execute all mtspr instructions to initialize the performance monitor counters to the appropriate values.

5. Execute the mtspr instructions that place the value to enable counting into MMCR0.

6. Execute a synchronizing instruction.

7. Exit supervisor mode. 

8. Start the program for which counting is to be done.

When the program being counted completes, the following steps are used to disable performance 
monitor counting:

1. Enter supervisor mode.

2. Execute a synchronizing instruction.

3. Execute the mtspr instructions that places the value to disable counting into MMCR0.

4. Execute all mfspr instructions to read the values from the performance monitor counters.

5. Execute a synchronizing instruction.

6. Exit supervisor mode.

The performance monitor counters contain either the number of times the selected event has occurred or the 
number of cycles during which the monitored event occurred after the performance monitor was enabled for 
counting. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 247 of 415

Note:  In either case, any counted events that occur after the performance monitor counting is enabled in 
supervisor mode, but before the program under study is entered, will be included in the overall count value. In 
the same way, any counter events that occur after the program under study is exited, but before the perfor-
mance monitor counting is disabled, will also be included in the overall count value.

10.8 Performance Monitor Exceptions

The three trigger events described in Section 10.7.2 beginning on page 244 can cause a performance 
monitor exception to occur and the subsequent performance monitor exception to be generated if the 
following sequence of actions occurs:

1. The trigger event occurs.

2. The trigger event is enabled.

3. The performance monitor exception is enabled.

4. External interrupts are enabled.

Note:  This is the highest priority interrupt. 

A performance monitor exception can be disabled for a given trigger event by disabling that trigger event 
(MMCR0[TBEE, PMC1CE, PMCjCE]). Performance monitor exceptions can be disabled for all of the trigger 
events collectively by disabling the performance monitor exception (MMCR0[PMXE]). The performance 
monitor exception, which is classified as an external interrupt, can be disabled either by disabling the perfor-
mance monitor exception (MMCR0[PMXE]) or by disabling the external interrupts (MSR[EE]). 

When an enabled condition or event occurs and a performance monitor exception is taken, the performance 
monitor exception is disabled by the hardware so that the SIAR and SDAR will contain the address and data 
information for an instruction that was executing at or around the time of the exception. Because the contents 
of the SIAR and SDAR can be altered if and only if MMCR0[PMXE] equals ‘1’, the contents of those registers 
can change only if software re-enables the performance monitor exception. If such a re-enable is done and 
multiple performance monitor exceptions occur before the performance monitor exception is taken, then the 
exception reflects the most recently occurring such exception. Data from the previous exceptions are lost.

If a performance monitor exception is pending and the value of MSR[EE] is changed from ‘0’ to ‘1’, then the 
performance monitor exception will occur before the next instruction is executed provided no higher priority 
exception exists. The occurrence of the performance monitor exception cancels the performance monitor 
exception.

In summary, the following registers are set when a performance monitor exception occurs:

• SRR0[0:63] is set to the effective address of the instruction that the processor would have attempted to 
execute next if no interrupt conditions were present.

• SRR1[33] is set to ‘1’ if the contents of the SDAR and the SIAR are associated with the same instruction.

• Other SRR0 and SRR1 bits are set as described in Chapter 4 Exceptions.

• SIAR is set to the effective address of the marked instruction, where the marked instruction is an instruc-
tion that was executing, possibly out-of-order, at or around the time that the performance monitor excep-
tion occurred. The contents of the SIAR can be altered by the processor if and only if MMCR0[PMEE] is 
set to ‘1’. Thus, after a performance monitor exception occurs, the contents of the SIAR is not altered by 
the processor until software sets MMCR0[PMEE] to ‘1’. After software sets MMCR0[PMEE] to ‘1’, the 
contents of SIAR is undefined until the next performance monitor exception occurs.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 248 of 415

Version 2.3
March 7, 2008

• SDAR is set to the effective address of the storage operand of an instruction that was executing, possibly 
out-of-order, at or around the time that the performance monitor exception occurred. This storage oper-
and is called the marked data and can be, but need not be, the storage operand (if any) of the marked 
instruction. If the performance monitor causes a performance monitor exception, the SRR1 indicates 
whether the marked data is in fact the storage operand of the marked instruction. The contents of the 
SDAR can be altered by the processor if and only if MMCR0[PMEE] is set to ‘1’. Thus, after a perfor-
mance monitor exception occurs, the contents of the SDAR is not altered by the processor until software 
sets MMCR0[PMEE] to ‘1’. After software sets MMCR0[PMEE] to ‘1’, the contents of SDAR are undefined 
until the next performance monitor exception occurs.

• MSR is set the same as for other external interrupts.

10.9 Instruction Matching and Sampling

The 970MP performance monitor provides a facility for the detailed analysis of instruction flow by sampling 
particular instructions or classes of instructions. Instructions must pass through three stages of eligibility to be 
marked for sampling. The contents of the SIAR/SDAR reflect the marked instruction that is currently 
executing.

10.9.1 Stage 1 Eligibility

There are two instruction marking facilities for stage 1:

• IFU - Uses the IMC array to either set or clear the mark (imr) bit associated with any matching instruction. 
This imr bit, along with the branch (B), first (F), split (S), and last (L) predecode bits, are retained in the L1 
instruction cache along with each instruction. All instructions with the imr bit set are eligible for stage 2 of 
marking. 

• IDU - Uses the BFSL predecode bits (set independent of any instruction matching in the IMC array) along 
with the imr_match and imr_mask fields in the MMCRA. All instructions with predecode bits (BFSL) 
matching imr_match when ANDed with imr_mask are eligible for stage 2 of marking.

Which facility is used depends on the MMCRA imr_select field. If imr_select equals ‘0’, the IDU facility will be 
used. Otherwise, if imr_select equals ‘1’, the IFU facility will be used.

10.9.2 Stage 2 Eligibility

Any eligible instructions from stage 1 are further filtered by the imr_mark field in the MMCRA:

‘00’: All IOPs
‘01’: Only IOPs resulting from microcode expansion
‘10’: Only one IOP per PowerPC instruction
‘11’: First IOP to go to the LSU for every PowerPC load/store instruction

10.9.3 Stage 3 Eligibility

Any eligible instructions from stage 2 are marked if the internal ok_to_sample performance monitor signal is 
asserted. This results in at most one marked instruction in the pipeline at a time. Another eligible instruction 
will be marked after a marked instruction completes or the previous marking cycle has timed out (set by the 
SCOM x‘240’ IDLE field). 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 249 of 415

10.10 IFU Instruction Matching Facility

The PowerPC instruction matching by opcode or extended opcode is performed by the IFU Instruction 
Matching facility implemented in hardware through the use of an instruction match CAM (IMC) array. When a 
PowerPC instruction is fetched from memory, the IFU instruction matching facility compares the instruction 
with the opcode/extended opcode mask values in each of the IMC array rows. If a PowerPC instruction 
matches one or more IMC array row masks, the IFU predecode bits associated with the marked instruction 
are set based on the value of the IMC function bit in each of the matched IMC array rows. The IMC function 
bits and descriptions of the subsequent processing for the PowerPC instruction matched for each function bit 
are as follows:

• Force only (fo) forces the IDU to place the PowerPC instruction in a group by itself by setting the prede-
code bits for the instruction as ‘first’ and ‘last’ in the group. The IMC fo function bit is used for hardware 
debug and workaround. It is only accessible by using scan.

• Instruction marking (imr), which is used for performance monitor instruction marking, causes the IDU to 
recognize that the instruction is IFU-eligible for marking. The IMC imr function bit is used by the perfor-
mance monitor for marked instruction events and threshold event counts. It is accessible to the user by 
using the supervisor mode mtimc/mfimc instruction.

In addition to the IFU predecode bits associated with the IMC function bits, other IFU predecode bits—based 
on the instruction type—are bundled with each instruction in the IFU instruction cache.

Note:  As long as an instruction resides in the level 1 instruction cache, its match bit will remain unchanged. If 
the match condition for an instruction changes, then the Level 1 instruction cache should be flushed to ensure 
proper setting of the match bits for all instructions. 

10.10.1 Overview of the IFU Instruction Matching Facility

Each processor core includes an IFU instruction matching facility, implemented as the IMC array, which is 
used to maintain the kinds of IFU instruction matching requests and the mask values used for each IFU 
matching request. The method of reserving an IMC array row differs depending on whether the row is being 
requested for use by the hardware patch/debug facility (using scan only) or for the performance monitor 
marked instruction or threshold event facility (using the supervisor mtimc and supervisor or user mfimc 
instructions). All IMC array rows required for hardware patch/debug operations (fo reservations) are reserved 
during the 970MP power-on reset (POR) scan sequence. Any IMC array rows that have not been fo-reserved 
during system initial program load (IPL) can be requested by an executing program for use by the perfor-
mance monitor. 

Before an executing program requests an IMC array row, the program must determine which IMC array rows 
are available to software; that is, which rows are not fo-reserved. This information is available by reading the 
IMC Special Purpose Register (SPR) with the mfimc instruction, which can be executed only in supervisor 
mode. An executing program can request any IMC array rows that are not fo-reserved by writing the IMC 
SPR with the mtimc instruction, which can be executed only in supervisor mode. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 250 of 415

Version 2.3
March 7, 2008

10.10.2 IMC Array

The IMC array, which is contained in the IFU, consists of eight row entries as follows:

• Six rows (0 through 5) support a 17-bit partial instruction match of the opcode field in instruction bits (0:5) 
and extended opcode fields in instruction bits (21:31). 

• Two rows (6 and 7) combined support a full 32-bit instruction match of all the instruction fields in instruc-
tion bits (0:31).

Each IMC array row includes fields for:

• The imr function bit (bit 60, called the Mark bit) that determines the predecode tag value sent to the IDU. 
The imr bit is programmable through the Instruction Match facility. 

• The two mask values that together encode the instruction match criteria (called v0 and v1).

• The machine configuration this match applies to (PR, FP Available, VPU Available). Note that the PR bit 
in the MSR determines the Privileged state if a ‘0’ and the Problem state if a ‘1’.

• Optional replacement field for the BFSL (predecode) bits to replace for a matched instruction (SPR can-
not access theses fields).

The programmer’s model view of the IMC array is shown in Table 10-9 and Table 10-10.
 

Table 10-9. Partial Match Rows in the IMC Array  

0:16 17 18 19 20 21:37 38 39 40 41 42:52 53:58 59 60 61:63

v0(17) N/A MSR
[PR]

MSR
[FP]

MSR
[VPU] v1(17) N/A MSR

[PR]
MSR
[FP]

MSR
[VPU] N/A

B
F

S
L 

R
ep

la
ce

m
en

t

Replace Mark Index

0

1

2

3

4

5

Table 10-10. Complete Match Rows in the IMC Array 

0:31 32 33 34 35 36:52 53:58 59 60 61:63

v0 (Row 6) / v1 (Row 7) N/A MSR
[PR]

MSR
[FP]

MSR
[VPU] N/A

B
F

S
L 

R
ep

la
ce

m
en

t

Replace Mark Index

6

7



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 251 of 415

The following are some rules and general facts about the IMC array features and use:

• The IMC array row with full 32-bit v0 and v1 masks can be used to match the opcode, the extended 
opcode, and all other fields for any PowerPC instruction. 

• The IMC array rows with 17-bit mask values cannot be used to match branch instructions. 

• The 17-bit v0 and v1 mask values can be used to match only those bits of a PowerPC instruction (but not 
branch instructions) that represent the opcode and extended opcode bit fields of that instruction and can-
not be used to match any other instruction bit fields such as the register fields, shift fields, mask fields, 
reserved fields, immediate fields, or the rc bit. 

• The bits of v0 and v1 that correspond to any fields other than the opcode and extended opcode bit fields 
of instruction bits (21:31) should be set to the ‘don’t care’ v0 and v1 value as is explained in 
Section 10.10.5 The v0 and v1 Mask Criteria on page 253. 

• The 17-bit v0 and v1 bits (0:5) and v0 and v1 bits (6:16) correspond to instruction bits (0:5) and instruc-
tion bits (21:31).

• The 3 mode bits (PR, FP, VP) correspond to MSR[PR], MSR[FP], and MSR[VP].

10.10.3 Reading the IMC SPR with the mfimc Instruction

The IMC SPR is read in order to determine which IMC array rows are fo-reserved. The image of the IMC SPR 
that is obtained by executing the mfimc instruction (which can be executed in supervisor and user mode) is 
referred to as the patch map. The programmer’s model view of the patch map is shown in Figure 10-4. 

A patch map status bit value of ‘1’ indicates that the associated IMC array row is fo-reserved and cannot be 
altered by the executing program. If the status bit value is ‘1’, an mtimc to the associated IMC array row is 
treated as a no-op.

The facts summarized below emphasize what information is and is not available from the patch map:

• The only information that the patch map provides about the IMC array rows is whether a row is 
fo-reserved. 

• The patch map provides no information about reservations made by the performance monitor IMR facility. 

• An IMC array row that is reserved by the performance monitor IMR facility will not show a patch map sta-
tus bit of ‘1’ if the patch map is read with the mfimc instruction. 

• There is no mfimc-like instruction that will help an executing program determine what v0 and v1 values 
were used when a performance monitor IMR facility request was made.

• All information about IMC array use must be maintained by the executing program. 

• If an IMR reservation is made for an available IMC array row and the v0, v1 mask used for the IMR reser-
vation is the same as a v0,v1 mask that is already being used for an fo reservation, the instruction 
selected by the v0, v1 mask will be correctly processed for both the imr request and the fo request.

Figure 10-4. Patch Map  

Patch Map Bit Number (IMC Array Row Address)

0:55 56 (0) 57 (1) 58 (2) 59 (3) 60 (4) 61 (5) 62 (6) 63 (N/A)

Reserved1 Reserved

1. The designation ‘reserved’ is used both to indicate bits in the patch map that are not used for this implementation, as well as to 
identify the fields that are not accessible when using the mfimc instruction.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 252 of 415

Version 2.3
March 7, 2008

As an example of the value returned by the mfimc instruction under a particular IMC array use scenario, 
assume that the following IMC array row is reserved:

• The IMC array row at address 5 is fo-reserved,

A mfimc instruction executed for that IMC array would return the patch map shown in Table 10-11. 

Note:  The bits for IMC array rows 1 and 4 are not set in the patch map.

10.10.4 Writing the IMC SPR With the mtimc Instruction

After an executing program determines which IMC array rows are fo-reserved (by doing a mfimc and seeing 
which patch map bits are set to ‘1’), the program should initialize an IMC_reservation data structure, which it 
should then use to track all fo/imr-reservations.

The program can make an IMR reservation of any available IMC array row through use of the mtimc instruc-
tion (which can be executed only in supervisor mode). The mtimc instruction is used to select the IMC array 
row, provide the v0 and v1 mask values, and set the imr bit. After a performance monitor IMR request is 
successfully completed, the requesting program should update its IMC_reservation data structure to record 
the reservation and the v0, v1 mask values. 

A performance monitor IMR request remains in effect on a processor until it is:

• Canceled by an mtimc instruction that sets the imr bit to ‘0’, 

• Changed by an mtimc instruction that changes the IMC array row fields v0, v1 and writes the imr bit to ‘1’,

• Cleared or replaced by a system reboot, or

• Overwritten by the service processor using scan or SCOM.

When an existing performance monitor IMR request is changed or canceled by a subsequent mtimc instruc-
tion, the executing program must update its IMC reservation data structure and invalidate the I-cache in order 
to reset the match bits set by a previous IMR reservation. Otherwise, stale instruction marks from the 
previous IMC setup might make the performance measurements unreliable, meaning old marks might still be 
encountered and new marks might not always occur depending on the state of the I-cache.

The programmer’s model of the IMC SPR for the mtimc instruction differs slightly for requests of the 32-bit 
and the 17-bit instruction match IMC array rows. The IMC array rows for 17-bit matches, which are at IMC 
array row addresses 0 - 5, are written with a single mtimc instruction. It specifies the IMC array row address, 
the 17-bit opcode and extended opcode instruction mask values for v0 and v1, the machine mode mask 
values for v0 and v1, and it sets the imr bit to ‘1’. The image of the IMC SPR that is used when executing the 
mtimc instruction for IMC array row addresses 0 - 5 is shown in Table 10-12 on page 253. 

Table 10-11. IMC SPR Patch Map Sample Results  

Patch Map Bit Number (IMC Array Row Address) 

0 55 56 (0) 57 (1) 58 (2) 59 (3) 60 (4) 61 (5) 62 (6) 63(N/A)

Reserved 1 0 0 0 0 1 1 Reserved



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 253 of 415

The IMC array row for 32-bit matches, which is at IMC array row address 6 and 7, is written with two mtimc 
instructions. Each specifies an IMC array row address, a 32-bit instruction mask value, and an imr bit value as 
follows:

• The first mtimc instruction sets the IMC SPR bits (61:63) = 610 = 1102, the IMC SPR bits (0:31) = 
v0instruction[0-31], the IMC SPR bits (33:35) = v0PR,FP,VP, and the IMC SPR bit (60) = ‘0’.

• The second mtimc instruction sets the IMC SPR bits (61:63) = 710 = 1112, the IMC SPR bits (0:31) = 
v1instruction[0-31], the IMC SPR bits (33:35) = v1PR,FP,VP, and the IMC SPR bit (58) = ‘1’. 

The image of the IMC SPR that is used when executing the first mtimc instruction (for IMC array row 
address 6) is shown in Table 10-11 on page 252 and the image of the IMC SPR that is used when executing 
the second mtimc instruction (for IMC array row address 7) is shown in Table 10-13.

10.10.5 The v0 and v1 Mask Criteria

The mask criteria used for matching the values in the instruction bit fields and the machine state are based on 
the values in the v0 and v1 fields. Each pair of bits, v0(n) and v1(n); where n is 0−16, or n is 0−31, or n equals 
PR, FP; is interpreted as an encoded 4-value criterion. It determines how the corresponding instruction bit (m) 
is to be matched, where either m is 0–31 for a full instruction match or m is 0–5, 21–31 for an 
opcode/extended opcode match. Bit correspondences between v0, v1 bit numbers and instruction numbers 
depend on whether v0, v1 is a 17-bit or a 32-bit mask and are as follows: 

• 17-bit mask opcode bits: 
v0, v1(0:5) corresponds to instruction bits[0:5]

• 17-bit mask extended opcode bits: 
v0, v1(6:16) corresponds to instruction bits[21:31]

• 32-bit mask full instruction bits: 
v0, v1(0:31) corresponds to instruction bits[0:31]

The bit match criteria established by the four values of v0(n), v1(n) are shown in Table 10-14 on page 254. 

Table 10-12. IMC SPR for a 17-Bit Match 

IMC Row Bit Numbers (IMC Array Row Fields)

0:16 17 18:20 21:37 38 39:41 42:59 60 61:63

v0[0-5,21-31] Reserved V0PR,FP,VP v1[0-5,21-31] Reserved v1PR,FP,VP Reserved1 IMR1 IMC Row 
Address

1. The designation ‘reserved’ is used both to indicate bits in the IMC SPR that are not used for this implementation as well as to identify the 
fields that are not accessible when using the mtimc instruction.

Table 10-13. IMC SPR Used when Writing the Second mtimc Instruction for a 32-Bit Match 

IMC Row Bit Numbers (IMC Array Row Fields)

0:31 32 33:35 36:59 60
imr

61:63
IMC Row Address

v1[0-31] Reserved v1PR,FP,VP Reserved 1 1 1 1



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 254 of 415

Version 2.3
March 7, 2008

 

10.10.6 Instruction Matching Examples

17-bit match using only instruction opcode (bits 0:5)
Load Doubleword: opcode = 58, extended opcode = N/A (don’t care); PR=0; FP=1, VP=0/1
v0 = 0b00010111111111111 1101
v1 = 0b11101011111111111 1011

17 bit match using instruction opcode and extended opcode
Load Word and Zero Indexed: opcode = 31, extended opcode = 23; PR=1; FP=0/1, VP=0/1
v0 = 0b10000011111010001 1011
v1 = 0b01111100000101110 1111

10.11 IDU Instruction Sampling Facility

Another level of sampling activity—performed in the IDU—includes further processing for the imr and fo reser-
vations made using the IFU Instruction Matching facility. Because of the way an instruction is processed 
through the two IDU selection stages, it is possible that the IDU instruction sampling processing can override 
previous IFU IMR marking. 

The IDU instruction sampling facility that produces marked instructions for the instruction pipeline consists of 
two independent selection stages. In each of the two selection stages, the selection criteria for that stage 
determines which instructions pass out of that IDU selection stage as eligible to be marked. Because an 
instruction passes through each of the two IDU selection stages after it is processed for IFU IMR marking, it is 
possible that the IDU instruction sampling eligibility criteria can override previous IFU IMR marking. It is also 
possible that the IDU stage 2 processing can override IDU stage 1 processing if the criteria for each of the 
two selection stages are not set up correctly.

An eligible instruction that is marked by the IDU is referred to as a marked (sampled) instruction. 

10.11.1 Overview of the IDU Instruction Sampling Facility

The IDU instruction sampling facility uses the IFU imr and predecode bits from the instruction cache, together 
with PMU/SCOM data and control fields, to determine which instructions are eligible to be marked (sampled) 
and when an instruction can actually be marked (sampled). 

Operation of the IDU instruction sampling facility to determine which instructions are eligible for marking 
occurs continuously when performance monitor mode sampling is enabled (MMCRA[63] equals ‘1’). The 
choice of which instructions are eligible to be marked is based on the values of the IFU imr and predecode 
bits combined with the values of the select, mask, match, mark, and filter fields. The IDU continuously desig-

Table 10-14. Encoding Bits v0 and v1 of the IMC Array Mask 

v0 Value v1 Value Meaning

0 0 Never match (disable all)

0 1 Match a one (1)

1 0 Match a zero (0)

1 1 Always match (don’t care)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 255 of 415

nates instructions as eligible to be marked based on the above fields, but the IDU only marks instructions 
when sampling is enabled and the performance monitor signals the IDU that it is ok_to_sample. Only one 
marked group flows through the instruction pipeline at a time.

IDU processing of an instruction based on fo IMC function bit is independent of IDU processing based on the 
IFU imr function bit, so a given instruction might be processed by the IDU for any or all of the fo and imr func-
tions.

The IDU eligibility stages continuously produce eligible instructions. The sample_enable field combined with 
the performance monitor signal ok_to_sample control final marking as outlined below. The information in 
parenthesis corresponds to the annotations on the left in Figure 10-5 on page 259.

• The imr_select field (MMCRA[49]) determines the method used for stage 1 instruction eligibility (eligibility 
stage 1 - method).

• Depending on the imr_select field value, the imr_mask field (MMCRA[52:55]) and the imr_match field 
(MMCRA[56:59]) can be used to determine the type of the stage 1 eligible instructions that pass through 
to stage 2 (eligibility stage 1 - type).

• The imr_mark field (MMCRA[50:51]) determines what type of stage 1 eligible instructions are to be con-
sidered for stage 2 eligibility (eligibility stage 2 - type).

• The imr_filter field (SCOM x‘34’ [11:12]) determines which and how many of the stage 2 eligible instruc-
tions actually become marked instructions in the pipeline (eligibility stage 2 - method).

• The performance monitor signal ok_to_sample determines whether marking is blocked or might resume 
(mark/no mark stage). 

The IFU matching and the IDU instruction sampling activities occur continuously regardless of whether 
instructions are being marked by the IDU. The IDU can mark an instruction only when the performance 
monitor signals that marking is enabled. After an instruction is marked by the IDU, the performance monitor 
disables marking until either a marked instruction completes, the instruction is a store that is sent to the STS, 
or the performance monitor completion delay timer indicates that the marked instruction has been flushed. 

Note:  As long as an instruction resides in the Level 1 instruction cache, its match bit will remain unchanged. 
If the match condition for an instruction changes, the Level 1 instruction cache should be flushed to ensure 
proper setting of the match bits for all instructions. 

10.11.2 Stage 1 Eligibility 

The IDU uses the IFU predecode bits for branch, first, split, and last (shown in Table 10-15 on page 256) and 
the imr bit stored with an instruction in the instruction cache to establish eligibility for marking. 

Note:  As long as an instruction resides in the Level 1 instruction cache, its imr match bit will remain 
unchanged. If the match condition for an instruction changes, the Level 1 instruction cache should be flushed 
to ensure proper setting of the imr match bits for all instructions. 

The method used to choose IDU stage 1 eligible instructions is based on the value of the imr_select field 
(MMCRA[49]). Depending on the value of the imr_select field, a second decision point might be required to 
choose the type of stage 1 eligible instructions using the imr_mask field (MMCRA[52:55]) and the imr_match 
field (MMCRA[56:59]). These two scenarios, based on the value of the imr_select field value, are as follows: 

• imr_select equals ‘1’: 
The IFU imr bit is used to determine stage 1 eligibility. All instructions with the IFU imr bit set are passed 
through to stage 2 as eligible for marking. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 256 of 415

Version 2.3
March 7, 2008

• imr_select equals ‘0’: 
The IFU BFSL predecode bits are used to determine stage 1 eligibility. 

If imr_select equals ‘1’, so that the IFU imr bit determines stage 1 eligibility, it is possible to choose values for 
imr_mark (IDU eligibility stage 2 - type) that will cancel the IMR eligibility created in stage 1. 

If imr_select equals ‘0’ and the IFU BFSL predecode bits are used to determine stage 1 eligibility, there are 
two further stages of processing to establish the type of instructions that are eligible: 

1. The BFSL predecode bits for the instruction are ANDed with the imr_mask field to produce a 4-bit inter-
mediate result, and 

2. The 4-bit intermediate result is compared with the imr_match field. All instructions with an exact 4-bit 
match between the intermediate result and the imr_match field are passed through to stage 2 as eligible 
for marking. 

To match all instructions, and thus pass all instructions through to stage 2 as eligible for marking, set the 
following values for the stage 1 method/type decision variables:

• imr_select: ‘0’
• imr_mask: ‘0000’
• imr_match: ‘0000’

The IFU BFSL predecode will be used, the mask will result in all zeros for the intermediate result, and the 
match will always succeed. The eligibility method chosen at stage 1 can determine what kind of instruction is 
counted for the performance monitor count event called “number of instructions completed,” depending on 
how the eligibility criteria is set up in stage 2.
:

Table 10-15. IFU BSFL Predecode Bit Definitions  (Page 1 of 2)

B(ranch) S(plit) F(irst) L(ast) Classification Description

0 0 0 0 Simple One IOP formed from one instruction with restrictions.

0 0 0 1 Simple-Last IOP formed will be the last in the resultant dispatch group.

0 0 1 0 Simple-First IOP formed will be the first in the resultant dispatch group.

0 0 1 1 Simple-Only IOP formed will be the only in the resultant dispatch group.

0 1 0 0 Split Two IOPs formed from one instruction; both must be in the same 
dispatch group.

0 1 0 1 Split-Last Two IOPs formed from one instruction; the second IOP must be the 
last IOP in the resultant group.

0 1 1 0 Split-First Two IOPs formed from one instruction; the first IOP must be the first 
IOP in the resultant dispatch group.

0 1 1 1 Split-Only Two IOPs formed from one instruction; no other IOPs are present in 
the resultant dispatch group.

1 0 0 0 Branch - Conditional IOP formed from a conditional branch instruction.

1 0 0 1 Branch - Unconditional IOP formed from an unconditional branch instruction.

1 0 1 0 Illegal Opcode Not a valid instruction.

1 0 1 1 Reserved

1 1 0 0 Microcode - Hard A nonprogrammable microcode sequence must be generated.

1. Field mask used to identify the Condition Register (CR) fields to be updated by the mtcrf instructions.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 257 of 415

10.11.3 Stage 2 Eligibility 

The imr_mark field (MMCRA[50:51]) value and then the imr_filter field (SCOM x‘340’[11:12]) are used by the 
IDU to establish stage 2 eligibility for marking. The first decision point for IDU stage 2 eligibility is the type of 
stage 1 eligible instructions that can be stage 2 eligible; this determines final stage 2 eligibility. The second 
decision point for IDU stage 2 eligibility is the method of passing the eligible information to the mark/no mark 
stage; this determines what eligible instructions actually get marked.

The type of stage 1 eligible instructions that will be stage 2 eligible is based on the value of the imr_mark field 
(MMCRA[50:51]). The imr_mark field value determines stage 2 eligibility of instructions as follows: 

The stage 1 eligibility method combined with the stage 2 eligibility type determines what kind of instruction is 
counted for the performance monitor count event called “number of instructions completed” as shown in 
Section 10.11.6 Examples of Instruction Sampling Scenarios on page 261.

After the type of stage 2 eligible instructions is established, the method of passing the stage 2 eligibility infor-
mation to the mark/no mark stage is determined in two steps using the imf_filter[11] bit value and then using 
the imr_filter[12] bit value, which have the following functions:

imr_filter[11:12]

1 1 0 1 Microcode - Soft A system software programmable microcode sequence must be 
generated.

1 1 1 0 Microcode - Conditional 
(otherwise: Split-Last)

A nonprogrammable microcode sequence must be generated if 
certain conditions are not met.

1 1 1 1 Microcode - Conditional 
(otherwise: Split-Only)

A non-programmable microcode sequence must be generated if 
certain conditions are not met (for example, the FXM1 field is not 
singular). 

00 All stage 1 eligible IOPs are stage 2 eligible for marking.

01 Only stage 1 eligible IOPs that resulted from microcode expansion are stage 2 eligible for 
marking.

10 Only one IOP per stage 1 eligible PowerPC instruction is stage 2 eligible for marking (use 
this mode to make all PowerPC instructions eligible).

11 For every stage 1 eligible PowerPC instruction, the first IOP that goes to the LSU is stage 2 
eligible for marking (use this mode to make all load/store instructions eligible).

0x No filtering

1x Randomly sample eligible IOPs

Table 10-15. IFU BSFL Predecode Bit Definitions  (Page 2 of 2)

B(ranch) S(plit) F(irst) L(ast) Classification Description

1. Field mask used to identify the Condition Register (CR) fields to be updated by the mtcrf instructions.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 258 of 415

Version 2.3
March 7, 2008

Bit 12 selects one of two behaviors in sampling from microcode expansions (and has no effect on sampling 
from non-microcode groups):

In Good_Address mode, there is at most one IOP in any microcode expansion that is eligible for sampling. 
This is either the first load/store IOP if there are any load/store IOPs in the expansion, or the first IOP in the 
final group of the expansion. If the random filter suppresses marking this IOP, then no IOP will be marked for 
the microcode expansion. 

In More_Hits mode, multiple IOPs in a microcode expansion are eligible for sampling: the first load/store IOP 
in any group, or the first IOP of the final group. If the random filter suppresses marking the first of these IOPs, 
a subsequent one might still be sampled. (However, at most one will be marked in a single microcode expan-
sion.)

The suggested mode for imr_filter[11:12] is ‘10’.

10.11.4 Stage 3 Mark/No Mark 

The sample_enable field (MMCRA[63]) value and the ok_to_sample signal state are used by the IDU to 
complete the mark/no mark stage for instruction sampling. If marking is disabled with the sample_enable bit 
(MMCRA[63] equals ‘0’), then no group is marked by the IDU regardless of stage 2 eligibility. If marking is 
enabled with the sample_enable bit (MMCRA[63] equals ‘1’), then marking depends on the state of the hand-
shake protocol between the IDU and the performance monitor signal ok_to_sample. The ok_to_sample 
signal is sent by the performance monitor to the IDU when the performance monitor determines that the 
previous marking cycle has completed successfully or has timed out. The handshake and synchronization 
mechanism are explained in Section 10.11.5 Complete Masking, Matching, and Marking Cycle on page 260.

10 Use the Good_Address mode of sampling microcode expansions

11 Use the More_Hits mode of sampling microcode expansions



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 259 of 415

Figure 10-5. IFU and IDU Instruction Sampling Flow 

 IDU 

IFU IMC ARRAY 
SETUP

 IFU 

IFU I-Cache SETUP

IFU Instruction Match Facility 
IMC Array Bits

Instruction plus IFU Predecode 
and imr Bits

IDU ELIGIBILITY 

STAGE 1- METHOD 
Instruction Match Select BFSL 
and imr_select MMCRA[49] 

Instruction Mask result and 
imr_mask (MMCRA[52:55]) 

Instruction Match imr_match 
(MMCRA[56:59]) 

IDU ELIGIBILITY 
STAGE 1- TYPE

Instruction Mark imr_mark 
(MMCRA[50:51]) 

IDU ELIGIBILITY 
STAGE 2- TYPE 

Instruction Filter imr_filter 
(SCOM x‘340’ [11:12]) 

IDU ELIGIBILITY 
STAGE 2- METHOD 

 Mark a Group 

imr_select = ‘1’imr_select = ‘0’

The UnitsThe Activity Resources Used For The Activity

ok_to_sample
AND sample_enable*

 Do Not Mark a Group

START 
INSTRUCTION
Instruction Sampling 

Instruction and Predecode Bits

~ok_to_sample 
OR ~ sample_enable

Perfmon Count Event ‘# instrs’ is 
sent from the IDU to the ISU. 

IDU MARK/ NO 
MARK STAGE 3

IFU imr bit 

S
ta

ge
 1

S
ta

ge
 3

S
ta

ge
 2



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 260 of 415

Version 2.3
March 7, 2008

10.11.5 Complete Masking, Matching, and Marking Cycle

Instruction marking is set up by initializing the MMCRx[imr_xxx] fields, the SCOMyy[imr_filter] fields, and 
possibly the SCOMxx[xx_delay] for the kind of marking to be done. Section 10.11.7 Enabling and Disabling 
Marking on page 264 describes the procedure for initializing these registers plus any other registers to 
support performance monitor counted events. There are several examples at the end of this section that 
show the values of the imr_xxx fields for common marking and counting scenarios.

Once the instruction marking cycle is set up and enabled, instructions are continuously processed for eligi-
bility as is described in Section 10.11.2 Stage 1 Eligibility on page 255, and in Section 10.11.3 Stage 2 Eligi-
bility on page 257. The actual marking of a group described in Section 10.11.4 Stage 3 Mark/No Mark on 
page 258. The steps that occur from when the performance monitor ok_to_sample signal initiates marking 
until the next ok_to_sample signal initiates the next marking cycle are described in this section.

The overall timing of the marking cycle is driven by two performance monitor timers called the 
completion_delay counter and the idle_delay counter. The completion_delay counter is first initialized at the 
start of a marking cycle from the value in the sampling logic completion delay field (SCOM x‘240’ [COMPLN]). 
The idle_delay counter is initialized at the end of a marking cycle from the value in DELAY field (SCOM 
x‘240’[DELAY]). 

The purpose of the completion_delay counter is to predict the situation that the marked instruction has been 
flushed from the instruction pipeline before it can complete. The purpose of the idle_delay counter is to intro-
duce a period of time between the end of a marking cycle (through either instruction completion or flush) and 
the start of the next marking cycle. The completion_delay and the idle_delay values must be greater than 
zero whenever matching or marking is enabled. Otherwise, the processor activity will be undefined.

A marking cycle begins when the performance monitor asserts the ok_to_sample signal for one cycle. The 
assertion of this signal (assuming that sample_enable equals ‘1’) causes the IDU to mark the next group that 
enters stage 3 if it has passed all the stage 2 eligibility tests. After a group is marked in the IDU (this is a 
performance monitor count event), the IDU continues to process instructions for eligibility but does not mark 
another group until the next ok_to_sample signal is received from the PMU. 

When the signal indicating that the group is marked in the IDU is sent from the IDU to the performance 
monitor (this is also a performance monitor count event), the performance monitor begins decrementing the 
completion_delay counter by one each cycle that the signal group_completed is asserted. If 
group_completed is not asserted, the completion_delay counter is not decremented. 

This use of the completion_delay counter is intended to model a marked_group_flushed situation. The under-
lying assumption of this model and the default value of COMPLN equals 20 is as follows: if no marked group 
event occurs in any functional unit during a full wrap of the 20-entry completion buffer, then the marked group 
has been flushed. The completion_delay value must be greater than zero whenever instruction sampling is 
enabled or processor activity will be undefined. 

If the completion_delay counter does not time out between when the signal indicating that the group is 
marked in the IDU is received by the performance monitor and when the next marked event signal is received 
by the performance monitor, the completion_delay timer is reset to the value in COMPLN. It resumes decre-
menting for each cycle that group_completed is asserted. At each stage of the marking cycle, the 
completion_delay counter is initialized, counts down whenever the signal group_completed is asserted, and 
either times out or is re-initialized when the next marked event occurs. Thus, at each stage of the marking 
cycle, the marked group is allowed the COMPLN number of cycles while groups are completing from the 
completion buffer before the marked group is considered flushed.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 261 of 415

The sequence of events for a complete marking cycle, where a marked group moves through all of the 
instruction pipeline stages without being flushed, is as follows:

1. The performance monitor signal ok_to_sample is asserted for one cycle.

2. A group is marked when the IDU transfers the group to the ISU (performance monitor count event 
direct5[4]). The completion_delay counter is initialized to the value COMPLN and begins to decrement on 
each cycle that group_completed is asserted.

3.  A marked group is dispatched (performance monitor count event direct1[2]). The completion_delay 
counter is reinitialized to the value COMPLN and begins to decrement on each cycle that 
group_completed is asserted. 

4. A marked group is issued (performance monitor count event direct6[5]). The completion_delay counter is 
reinitialized to the value COMPLN and begins to decrement on each cycle that group_completed is 
asserted. 

5. A marked group finishes (FPU: performance monitor count event direct7[4], FXU: performance monitor 
count event direct6[4], CRU: performance monitor count event direct4[5], BRU: performance monitor 
count event direct2[5], LSU: performance monitor count event direct8[4], any unit: performance monitor 
count event direct7[5]). The completion_delay counter is reinitialized to the value COMPLN and begins to 
decrement on each cycle that group_completed is asserted.

6. A marked group completes (performance monitor count event direct4[4]).

7. The idle_delay counter is initialized to the value DELAY and is then decremented to ‘0’.

8. The ok_to_sample signal is asserted for one cycle and the marking cycle begins again at step 2.

When the completion_delay counter times out (performance monitor count event direct5[5]), the performance 
monitor enters the marking cycle state where the idle_delay counter is set to the value DELAY and is then 
decremented to ‘0’ (step 7 above). When the idle_delay counter times out, the performance monitor asserts 
the ok_to_sample signal for one cycle, and the marking cycle begins again.

The default idle_delay value is set to four. The idle_delay value must be greater than zero whenever 
matching/marking is enabled or processor activity will be undefined. 

If a marked store is sent to the STS (performance monitor count event direct6[3]), the event called “marked 
store sent to STS” stops the marking cycle described previously and causes the performance monitor to enter 
the idle state. The performance monitor stays in the idle state until one of the signals “sampled store 
complete” (performance monitor count event direct1[3]) or “sampled store complete with intervention” (perfor-
mance monitor count event direct3[3]) is received. At that time, the performance monitor resumes the 
marking cycle at marking cycle step 7 above.

When sampling_enable is set to zero, the performance monitor enters the idle state of the marking cycle until 
sampling is enabled again.

10.11.6 Examples of Instruction Sampling Scenarios

Follow the procedure in Section 10.11.7 Enabling and Disabling Marking on page 264 to place the values for 
instruction sampling into the appropriate Special Purpose Register fields. Section 10.4 Performance Monitor 
Control Registers on page 211 describes the performance monitor related registers and fields. To count 
marked events, the appropriate PMCxSEL fields should also be set up and the enable counting bit must be 
set to the enabled value. In each of the examples below, only the values of the Instruction Sampling Register 
fields are shown.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 262 of 415

Version 2.3
March 7, 2008

Example 1: Set up the instruction sampling facility to count PowerPC instructions as the performance 
monitor count event called “number instructions completed.”

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for PowerPC instructions completed. If 
sampling is enabled, instructions will be randomly sampled. This is the recommended setting. The required 
field values are as follows: 

Example 2: Set up the instruction sampling facility to count IOP instructions as the performance monitor 
count event called “number instructions completed.”

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for IOP instructions completed. The 
required field values are as follows: 

Example 3: Set up the instruction sampling facility to count load/store instructions as the performance 
monitor count event called “number instructions completed.”

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for load/store instructions completed. 
The required field values are as follows: 

imr_mark ‘10’ Only one IOP per PowerPC instruction is stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0000’

imr_match ‘0000’

imr_filter[11:12] ‘10’ If sampling is enabled, randomly sample.

imr_mark ‘00’ All stage 1 eligible IOPs are stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0000’

imr_match ’0000’

imr_mark ‘11’ For every PowerPC load/store instruction, the first IOP that goes to the 
LSU is stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0000’

imr_match ‘0000’



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 263 of 415

Example 4: Set up the instruction sampling facility to match or mask all PowerPC instructions that are BFSL-
Split, and then sample eligible instructions that get through the random filter.

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for PowerPC BFSL-Split instructions 
completed. The required field values are as follows: 

Example 5: Set up the instruction sampling facility to match or mask all PowerPC instructions that are BFSL-
Hard microcoded, and then sample all eligible instructions.

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for PowerPC BSFL-Hard microcoded 
instructions completed. The required field values are as follows: 

Example 6: Set up the instruction sampling facility to IFU IMR match or mask all PowerPC add instructions, 
and then sample all eligible instructions.

The values given here are those that set up the instruction sampling stages so that the performance monitor 
count event called “number instructions completed” will be the count for IMC-marked PowerPC instructions 
completed. The required field values are as follows: 

imr_mark ‘00’ All stage 1 eligible IOPs are stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘0100’

imr_match ‘0100’

imr_filter[11:12] ‘10’ If sampling is enabled, randomly sample.

imr_mark ‘00’ All stage 1 eligible IOPs are stage 2 eligible for marking.

imr_select ‘0’

imr_mask ‘1100’

imr_match ‘1100’

imr_filter[11:12] ‘00’ Pass all stage 1 eligible bits in the group.

imr_mark  ‘10’

imr_select  ‘1’

imr_mask  ‘0000’

imr_match  ‘0000’

imr_filter[11:12]  ‘00’ If sampling is enabled, randomly sample.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 264 of 415

Version 2.3
March 7, 2008

10.11.7 Enabling and Disabling Marking

The processor comes out of reset with instruction marking disabled (MMCRA[63] equals ‘0’) and with all of 
the MMCRA and SCOM[imr_xxx] fields set to zero. To set up the performance monitor for marking, follow 
these steps: 

1. Enter supervisor mode.

2. Execute a synchronizing instruction or wait for any previous activity to complete.

3. Execute all mtspr instructions that place values to set up for marking (and counting if that is to be done) 
into the Performance Monitor Registers except for the counting enable in MMCR0 and the sample_enable 
in MMCRA.

4. Wait for all previous mtspr instructions to complete, and then execute the mtspr instruction to enable 
counting in MMCR0.

5. Wait for the previous mtspr instruction to complete, and then execute the mtspr instruction that enables 
marking in MMCRA.

6. Execute a synchronizing instruction or wait for the last mtspr instruction to complete.

7. Exit supervisor mode. 

8. Start the program for which marking (and counting) is to be done.

Note:  Any marked or counted events that occur after the performance monitor counting is enabled in super-
visor mode, but before the program under study is entered, will be included in the overall mark or count activ-
ity. In the same way, any counter events that occur after the program under study is exited, but before the 
performance monitor marking or counting is disabled, will also be included in the overall mark/count activity.

When the program being marked or counted completes, the following steps disable performance monitor 
marking or counting:

1. Enter supervisor mode.

2. Wait for the previous mtspr instructions to complete, and then execute the mtspr instruction that disables 
marking in MMCRA.

3. Wait for the previous mtspr instruction to complete, and then execute the mtspr instruction to disable 
counting in MMCR0.

4. Execute a synchronizing instruction or wait for the last mtspr instruction to complete.

5. Wait for the counting operations that are in flight to complete and then execute the mfspr instructions to 
read the values from the performance monitor counters.

6. Execute a synchronizing instruction or wait for the last mfspr instruction to complete.

7. Exit supervisor mode.

Notes:  

If marking is disabled while a marked instruction is still active, the performance monitor will finish that 
marking operation in the typical way. The marking state machine for the performance monitor will then go 
to idle until marking is again enabled.

Instruction marking is disabled while in Single Step or Branch trace mode.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 265 of 415

10.12 SIAR and SDAR Registers

The Sampled Instruction Address Register (SIAR) and the Sampled Data Address Register (SDAR) are used, 
respectively, to save the effective address of a sampled instruction and the effective address of a storage 
operand for a sampled instruction when the processor is in either trace-marking mode or instruction-sampling 
mode. The terms “sampled” and “marked” are use interchangeably. 

The processor is in instruction-sampling mode whenever MMCRA[63] equals ‘1’ and MSR[SE] and MSR[BE] 
equal ‘0’. The processor is in a well-defined trace-marking mode whenever MMCRA[63] equals ‘0’ and either 
MSR[SE] equals ‘1’ or MSR[BE] equals ‘1’, or MSR[SE] and MSR[BE] equal ‘1’. 

Note:  If instruction sampling is not disabled during trace-marking by setting MMCRA[63] to ‘0’, results are 
undefined. 

The contents of the SIAR and SDAR depend on the marking modes that the processor is in, as explained in 
the following sections.

10.12.1 Instruction Sampling 

When the processor is not in trace-marking mode and instruction-sampling mode is enabled, instruction-
sampling mode is active regardless of whether the performance monitor is enabled for any counting activity. 
In instruction-sampling mode, the performance monitor interacts with the IDU to initiate the instruction-
sampling cycle. It then monitors the progress of the sampled instruction as it moves through the instruction 
pipeline. Each instruction-sampling cycle ends either when the marked instruction completes or when the 
performance monitor determines that the marked instruction has been flushed from the pipeline. 

10.12.1.1 Performance Monitor Exceptions

Performance monitor exceptions occur when a performance monitor counter becomes negative and the 
counter negative exception is enabled, or when a time-base event occurs and the time-base exception is 
enabled. When a performance monitor exception occurs, SIAR and SDAR have the following values:

• The SIAR contains the effective address of the last sampled instruction.

• The SDAR is set to the effective address of the storage operand of the last sampled instruction issued to 
the LSU. 

• The effective address of the storage operand contained in the SDAR might be, but need not be, associ-
ated with the SIAR instruction as explained previously.

• If single step or branch trace (SE/BE) tracing is inactive, the contents of the SIAR and the SDAR are fro-
zen when a performance monitor exception is raised, at which time the hardware sets MMCR0[PMXE] to 
‘0’ (locking the SIAR and SDAR). 

• If SE/BE tracing is active, the contents of the SIAR, the SDAR, and SRR1[33] as used by the perfor-
mance monitor exception facility are undefined and can change even when performance monitor excep-
tions are disabled (MMCR0[PMXE] equals ‘0’).

• If SE/BE tracing is inactive, the contents of SIAR and SDAR remain frozen until software sets 
MMCR0[PMXE] to ‘1’. The contents of SIAR and SDAR can be altered by the processor if and only if 
MMCR0[PMXE] equals ‘1’ provided SE/BE tracing is inactive.

• If the performance monitor exception is enabled and MSR[EE] equals ‘1’, the performance monitor excep-
tion condition causes a performance monitor exception to be taken and the value of SRR1[33] indicates 
whether the contents of the SIAR and SDAR refer to the same instruction. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 266 of 415

Version 2.3
March 7, 2008

• If SRR1[33] equals ‘1’, and SE/BE tracing is inactive, and there was only one sampled instruction in the 
machine, the SDAR and SIAR contents are associated with the same instruction. 

• If SE/BE tracing is inactive, when SRR1[33] equals ‘0’ it indicates either that the SIAR and SDAR con-
tents are not associated with the same instruction or that the SIAR instruction had no storage operand.

• After software sets MMCR0[PMXE] to ‘1’ and if SE/BE tracing is inactive, the contents of SIAR and SDAR 
are undefined with respect to performance monitor exception processing until the next performance mon-
itor exception occurs.

• After software sets MMCR0[PMXE] to ‘1’ and if SE/BE tracing is inactive, the contents of SIAR and SDAR 
are again available for use by the performance monitor instruction-sampling facility as described previ-
ously. 

10.12.2  Single Step and Branch Trace Marking Mode

When the processor is in SE or BE trace mode, instruction-sampling activity on the performance monitor is 
disabled, but all other performance monitor activities (except sampling) can be active. In particular, perfor-
mance monitor count events for marked instructions will still be processed if counting is enabled. The marked 
events counted when trace mode is active will be for trace-marked events, not for sampled events. 

In BE mode, the performance monitor count event called “number of instructions completed” is not accurate. 
It is possible for software to calculate the number of instructions in a basic block by capturing the starting 
address of the basic block from the SRR0 value of the previous branch and using it together with the ending 
address of the basic block from the SIAR value.

10.12.2.1 Single Step Trace Mode

If MSR[SE] equals ‘1’, the processor is in single step trace mode. Every instruction is trace-marked. The 
processor is forced into single instruction mode regardless of the value of the IFU predecode bits. An instruc-
tion is trace-marked when it is transferred from the IDU to the ISU and SRR1[33] is reset to zero. If the 
PowerPC instruction spans multiple groups, the first load/store IOP or the first IOP in the last group is the one 
marked. 

The SIAR is updated at dispatch to contain the address for the trace-marked instruction. The SDAR is 
updated by the LSU if the PowerPC instruction includes one or more load/store operation. If the SDAR is 
updated by the LSU, it contains the address of the storage operand for the first load/store IOP. If the SDAR is 
updated by the LSU, the LSU also causes SRR1[33] to be set to ‘1’ to indicate that the contents of the SIAR 
and the SDAR are associated with the same trace-marked instruction. 

When the trace-marked instruction completes, the processor generates a trace exception. During trace 
exception processing, the SIAR value is that for the trace-marked instruction that has just successfully 
completed. During trace exception processing, the SDAR value—if it was updated for this instruction—is that 
of the first load/store operation of the trace-marked instruction that has just successfully completed. A global 
flush is performed after the return from trace exception processing.

In the interval between the rfid for the trace exception processing for the last completed instruction and the 
dispatch of the next instruction, the SIAR and SDAR contents represent the last instruction completed and not 
the instruction that is moving through the IFU to the IDU for dispatch. The next instruction that will be 
dispatched after the global flush is trace-marked when it is transferred from the IDU to the ISU, SRR1[33] is 
reset to zero (‘0’), and the SIAR value is set for that next marked instruction. The single instruction trace-
marking cycle continues as described previously. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 267 of 415

10.12.2.2 Branch Trace Mode

If MSR[BE] equals ‘1’, the processor is in branch trace mode. Every branch instruction is trace-marked. A 
branch instruction is trace-marked when it is transferred from the IDU to the ISU.

The SIAR is updated at dispatch to contain the address for the trace-marked branch instruction. The SDAR 
contents are undefined. When the trace-marked branch instruction completes, the processor generates a 
trace exception. During trace exception processing, the SIAR value represents the trace-marked branch 
instruction that has just completed successfully. A global flush is performed after the return from trace excep-
tion processing.

In the interval between the rfid for the trace exception processing for the last completed branch instruction 
and the dispatch of the next branch instruction, the SIAR contents represent the last branch instruction 
completed. The next branch instruction decoded by the IDU after the global flush is trace-marked when it is 
transferred from the IDU to the ISU and the SIAR value is set for that next marked branch instruction. The 
branch trace-marking cycle continues as described previously. 

10.12.3 Comparison to Previous PowerPC Processors

According to the PowerPC Architecture, the SIAR contains the effective address of an instruction that was 
executing around the time of a performance monitor exception. The PowerPC 604 and POWER3 processors 
only updated the Sampled Instruction Registers for sampled instructions (although their sampling method is 
different). The RS64 processors accomplished this by updating the SIAR and SDAR with the address of the 
last instruction to complete when a performance monitor exception occurs. 

On previous processors that had relatively short pipelines and few instructions in flight, the sampled instruc-
tion was at most 20 or so instructions away from the instruction that caused the exception. On the 970MP 
microprocessor, with the potential for over a hundred instructions in flight, that distance grows. The theoret-
ical maximum is once every 200 - 250 instructions, while the likely distance is 50 - 75 instructions.

Performance profiling tools that use performance monitor events to determine when the SIAR and SDAR are 
read (for example, read SIAR every 100 L1 D-cache misses) can profile based on any performance monitor 
event. To assure accuracy, however, only sampled events should be profiled. These are a subset of all 
events that are caused by sampled instructions. The SIAR is set by a sampled instruction, so you can be 
fairly sure that when an exception caused by a sampled event (a counter overflowing for example), the SIAR 
is pointing to the exact instruction that caused it. In this case, the 970MP microprocessor is more accurate 
than previous processors. If you profile on non-sampled events, you cannot be sure that the exception was 
caused by the instruction (group actually) pointed to by the SIAR. The offending instruction was executing 
around the sampled instruction, depending on the event, probably within 50 - 100 instructions.

10.13 Thresholding

Thresholding can be used to obtain counts of the number of marked instructions for which the execution time 
between a designated start/end pipeline event pair exceeds a specified threshold value. Only one marked 
instruction is active in the 970MP processing unit pipeline at a time, and only one threshold value can be used 
for comparison with the selected start/end event pair. The start and end events that can be used for thresh-
olding are shown in Figure 10-6 Performance Monitor Threshold Logic on page 268. The values of the 
respective threshold start/end bit fields in MMCRA[THRSTRT,THREND] are shown in Table 10-16 Start and 
End Event Select Bits and the Performance Monitor Threshold Logic on page 269. The threshold value is 
specified in the MMCR1[THRSHOLD] field. The threshold value can be further scaled by HID0[13]. If 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 268 of 415

Version 2.3
March 7, 2008

HID0[13] equals ‘0’, it causes the thresholder to count every processor cycle. If HID0[13] equals ‘1’, it causes 
the thresholder to count every 32 processor cycles. For a marked instruction moving through the 970MP 
processing unit pipeline, the events that can be used for threshold start/end measurement occur in the 
following order: marked in IDU, dispatch, issue, finish, complete. 

Once a pair of start/end threshold events is selected and the start event occurs, the threshold facility begins 
decrementing from the threshold value and continues to decrement until either the decrementer times out or 
the end event occurs. If the decrementer times out and if the threshold logic event is selected for counting, 
the threshold logic event counter is incremented. Both the thresholder time out and the occurrence of the end 
event cause the threshold decrementer to be reset to the threshold value. The thresholder begins decre-
menting when the next start event occurs.

Threshold start/end pairs must be selected in a manner that represents a reasonable scenario. For example, 
a start event that is the same as the end event will not provide useful threshold event count information 
regardless of the threshold value selected. A start event that occurs later in the pipeline than the end event 
will not give a useful measure of the transit time of a marked instruction through the pipeline. The results of 
unreasonable threshold start/end event selections might produce undefined results. 

Figure 10-6. Performance Monitor Threshold Logic 

THRESHOLD(0:5)
Count < 0

Load Count
Enable

PMC Count

Start End

Control

State Machine

Threshold
Counter

Mark
Dispatch

Issue
Finish

Complete

Select muxes are part of trace logic

Configuration

GRANULARITY

Registers



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 269 of 415

 

Table 10-16. Start and End Event Select Bits and the Performance Monitor Threshold Logic 

MMCR1
[THRSTRT] Value Threshold Start Event Selected MMCR1 [THREND]

Value Threshold End Event Selected 

000 No start event 000 No end event

001 Group marked in IDU 001 No end event

010 Marked group dispatched 010 Marked group dispatched

011 Marked group issued 011 Marked group issued 

100 Marked group finish1 100 Marked group finish 

101 Marked group complete1 101 Marked group complete 

110 No start event 110 No end event

111 No start event 111 No end event

1. An instruction that has finished but not completed has gone all the way through the pipeline, and the renamed registers have been 
updated with new values. However, it is still sitting in the completion queue. When an instruction completes, the architected regis-
ters are updated with the values from the renamed registers. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 270 of 415

Version 2.3
March 7, 2008

10.14 Detailed Event Information

Table 10-17. Detailed Event Descriptions   (Page 1 of 8)

Event Description  Detailed Description

CLB has x where x is 0 to 8
The cache line buffer (CLB) is a 4-instruction wide by 8-instruction deep buffer between the 
fetch unit and the dispatch unit. This signal indicates how many entries, each of which is 4-
instructions wide, are occupied at any given time. 

Valid instructions available, but IFU 
held by BIQ or IDU

This signal is asserted each time either the IDU is full or the branch instruction queue (BIQ) is 
full.

Branch execution issue valid This signal is asserted each time the ISU issues a branch instruction. 

Branch miss predict because of CR 
value

This signal is asserted when the branch execution unit detects a branch mispredict because the 
CR value is the opposite of the predicted value. This signal is asserted after a branch issue 
event and results in a branch redirect flush if not overridden by a flush of an older instruction.

Branch miss predict because of target 
address prediction

This signal is asserted each time the branch execution unit detects an incorrect target address 
prediction. This signal is asserted after a valid branch execution unit issue and causes a branch 
mispredict flush unless a flush is detected from an older instruction.

CR mapper full

The ISU sends a signal indicating that the CR mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of the mapper is full but the entire mapper might not 
be.

Tablewalk duration This signal is asserted every cycle when a tablewalk is active. While a tablewalk is active, any 
request attempting to access the TLB is rejected and retried.

L1 D-cache entries invalidated from L2 A D-cache invalidated was received from the L2 because a line in L2 was castout.

Out of streams A new prefetch stream was detected, but no more stream entries were available.

D-SLB miss

An SLB miss for a data request occurred. When there is a miss in the SLB, the operating sys-
tem must reload the buffer with the information needed for a hit so that the transaction can pro-
ceed. Therefore, an SLB miss causes an interrupt (trap) to indicate to the operating system that 
it needs to resolve the problem. 

D-TLB miss
A TLB miss for a data request occurred. Requests that miss the TLB can be retried until the 
instruction is in the next-to-complete group (unless HID4 is set to allow speculative tablewalks). 
This can result in multiple TLB misses for the same instruction.

Duration MSR(EE) equals ‘0’ The ISU sends the MSR[EE] bit to the PMU. It is up to the performance monitor to count the 
cycles while this bit is ‘0’.

MSR(EE) equals ‘0’ and interrupt 
pending

The ISU sends the MSR[EE] bit and a signal indicating that an interrupt is pending to the PMU. 
It is up to the performance monitor to count the cycles while MSR[EE] equals ‘0’ and the inter-
rupt is pending. 

FPR mapper full
The ISU sends a signal indicating that the FPR mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of mappers is full but the entire mapper might not be.

FPU0 add, mult, sub, compare, fsel This signal is active for one cycle when FPU0 is executing an add, mult, sub, compare, or fsel 
kind of instruction. The instruction could be fadd*, fmul*, fsub*, fcmp**, or fsel.

FPU0 denormalized operand This signal is active for one cycle when one of the operands is denormalized.

FPU0 divide This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a divide instruction. The instruction could be ffdiv, fdivs, fdiv., or fdivs.

FPU0 estimate This signal is active for one cycle when FPU0 is executing one of the estimate instructions. The 
instruction could be fres* or frsqrte* where xyz* means xyz or xyz. 

FPU0 finished and produced a result This signal only indicates finish, not completion. 

FPU0 mult-add
This signal is active for one cycle when FPU0 is executing a multiply-add kind of instruction. The 
instruction could be fmadd*, fnmadd*, fmsub*, or fnmsub* where xyz* means xyz, xyzs, xyz., 
xyzs.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 271 of 415

FPU0 move, estimate
This signal is active for one cycle when FPU0 is executing a move kind of instruction or one of 
the estimate instructions. The instruction could be fmr*, fneg*, fabs*, fnabs*, fres*, or frsqrte* 
where xyz* means xyz or xyz. 

FPU0 FPSCR
This signal is active for one cycle when FPU0 is executing an FPSCR move-related instruction. 
The instruction could be mtfsfi*, mtfsb0*, mtfsb1*, mffs*, mtfsf*, or mcrsf* where xyz* means 
xyz, xyzs, xyz., or xyzs..

FPU0 round, convert This signal is active for one cycle when FPU0 is executing frsp or a convert kind of instruction. 
The instruction could be frsp*, fcfid*, or fcti* where xyz* means xyz, xyzs, xyz., or xyzs..

FPU0 square root
This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a square root instruction. The instruction could be fsqrt* where xyz* means xyz, xyzs, xyz., 
xyzs..

FPU0 issue queue full The issue queue for FPU 0 cannot accept any more instructions. Issue is stopped.

FPU0 single precision This signal is active for one cycle when FPU0 is executing a single-precision instruction.

FPU0 stall 3
This signal indicates that FPU0 has generated a stall in pipe 3 because of overflow, underflow, 
massive cancel, convert to integer (sometimes), or convert from integer (always). This signal is 
active during the entire duration of the stall. 

FPU0 store This signal is active for one cycle when FPU0 is executing a store instruction.

FPU1 add, mult, sub, compare, fsel
This signal is active for one cycle when FPU1 is executing an add, mult, sub, compare, or fsel 
kind of instruction. The instruction could be fadd*, fmul*, fsub*, fcmp**, or fsel where xyz* 
means xyz, xyzs, xyz., xyzs. and xyz** means xyzu and xyzo.

FPU1 denormalized operand This signal is active for one cycle when one of the operands is denormalized.

FPU1 divide This signal is active for one cycle at the end of the microcode executed when FPU1 is executing 
a divide instruction. The instruction could be fdiv, fdivs, fdiv., or fdivs.

FPU1 estimate This signal is active for one cycle when FPU1 is executing one of the estimate instructions. The 
instruction could be fres* or frsqrte* where xyz* means xyz or xyz. .

FPU1 finished and produced a result This signal only indicates finish, not completion. 

FPU1 mult-add
This signal is active for one cycle when FPU1 is executing a multiply-add kind of instruction. The 
instruction could be fmadd*, fnmadd*, fmsub*, or fnmsub* where xyz* means xyz, xyzs, xyz., 
and xyzs..

FPU1 move, estimate
This signal is active for one cycle when FPU1 is executing a move kind of instruction or one of 
the estimate instructions. The instruction could be fmr*, fneg*, fabs*, fnabs*, fres*, or frsqrte* 
where xyz* means xyz or xyz.. 

FPU1 round, convert This signal is active for one cycle when FPU1 is executing frsp or convert kind of instruction. 
The instruction could be frsp*, fcfid*, or fcti* where xyz* means xyz, xyzs, xyz., xyzs..

FPU1 square root
This signal is active for one cycle at the end of the microcode executed when FPU1 is executing 
a square root instruction. The instruction could be fsqrt* where xyz* means xyz, xyzs, xyz., 
xyzs..

FPU1 issue queue full The issue queue for FPU 1 cannot accept any more instructions. Issue is stopped.

FPU1 single precision This signal is active for one cycle when FPU1 is executing a single-precision instruction.

FPU1 stall 3
This signal indicates that FPU1 has generated a stall in pipe 3 because of overflow, underflow, 
massive cancel, convert to integer (sometimes), or convert from integer (always). This signal is 
active during the entire duration of the stall. 

FPU1 store This signal is active for one cycle when FPU1 is executing a store instruction.

FXU0/LSU0 issue queue full The issue queue for FXU/LSU unit 0 cannot accept any more instructions. Issue is stopped.

FXU1/LSU1 issue queue full The issue queue for FXU/LSU 1 cannot accept any more instructions. Issue is stopped.

FXU0 produced a result The FXU0 finished an instruction and produced a result.

Table 10-17. Detailed Event Descriptions   (Page 2 of 8)

Event Description  Detailed Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 272 of 415

Version 2.3
March 7, 2008

FXU1 produced a result The FXU1 finished an instruction and produced a result.

GPR mapper full
The ISU sends a signal indicating that the GPR mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of mapper is full but the entire mapper might not be.

Dispatch blocked by scoreboard The ISU sends a signal indicating that dispatch is blocked by the scoreboard.

Dispatch reject Dispatch successful equals dispatch_valid and one cycle later ~dispatch_reject.

Dispatch valid The ISU sends dispatch_valid and dispatch_reject signals to the PMU. It is up to the perfor-
mance monitor to look at these signals to count the number of dispatch groups.

Instruction prefetch installed in 
prefetch buffer

This signal is asserted when a prefetch buffer entry (line) is allocated but the request is not a 
demand fetch.

Instruction prefetch request Asserted when a non-canceled prefetch is made to the CIU.

Translation written to I-ERAT

This signal is asserted each time the I-ERAT is written. This indicates that an ERAT miss has 
been serviced. ERAT misses will initiate a sequence resulting in the ERAT being written. ERAT 
misses that are later ignored will not be counted unless the ERAT is written before the instruc-
tion stream is changed. This should be a fairly accurate count of ERAT missed (best available).

Instructions dispatched count The ISU sends the number of instructions dispatched.

Valid instruction available Asserted each cycle when the IFU sends at least one instruction to the IDU. 

I-SLB miss An SLB miss for an instruction fetch has occurred.

I-TLB miss A TLB miss for an Instruction fetch has occurred.

L1 reload data source valid The data source information is valid.

L1 prefetches A request to prefetch data into the L1 was made.

L2 Prefetch A request to prefetch data into the L2 was made.

larx executed side 0 An larx (lwarx or ldarx) was executed on side 0 (there is no corresponding unit 1 event 
because larx instructions can only execute on unit 0).

L1 D-cache load miss side 0 A load, executing on unit 0, missed the D-cache.

L1 D-cache store side 1 A store executed on unit 1.

L1 D-cache load miss side 1 A load, executing on unit 1, missed the D-cache.

L1 D-cache load side 0 A load executed on unit 0.

LR/CTR mapper full

The ISU sends a signal indicating that the LR/CTR mapper cannot accept any more groups. 
Dispatch is stopped. 
Note:  This condition indicates that a pool of the mapper is full but the entire mapper might not 
be.

LMQ full The LMQ was full.

LMQ LHR merge A D-cache miss occurred for the same real cache line address as an earlier request already in 
the load miss queue and was merged into the LMQ entry.

LMQ slot 0 allocated The first entry in the LMQ was allocated.

LMQ slot 0 valid This signal is asserted every cycle when the first entry in the LMQ is valid. The LMQ has eight 
entries that are allocated on a FIFO basis.

LRQ full The ISU sends this signal when the LRQ is full.

LRQ slot 0 allocated LRQ slot zero was allocated.

LRQ slot 0 valid This signal is asserted every cycle that slot zero of the store request queue is valid. The SRQ is 
32 entries long and is allocated on a round-robin basis.

Table 10-17. Detailed Event Descriptions   (Page 3 of 8)

Event Description  Detailed Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 273 of 415

SRQ full The ISU sends this signal when the SRQ is full.

SRQ slot 0 allocated SRQ slot zero was allocated.

SRQ slot 0 valid This signal is asserted every cycle that slot zero of the store request queue is valid. The SRQ is 
32 entries long and is allocated round-robin.

SRQ sync duration This signal is asserted every cycle when a sync is in the SRQ.

LSU busy side 0 LSU 0 is busy rejecting instructions.

D-ERAT miss side 0
A data request (load or store) from LSU 0 missed the ERAT. Requests that miss the D-ERAT 
are rejected and retried until the request hits in the ERAT. This can result in multiple ERAT 
misses for the same instruction.

Flush from LRQ SHL, LHL side 0
A load was flushed by unit 1 because a a younger load executed before an older store executed 
and they had overlapping data. Alternatively, two loads executed out-of-order, they had byte 
overlap, and there was a snoop in between to an overlapped byte.

Flush SRQ LHS side 0 A store was flushed because a younger load hits an older store that is already in the SRQ or in 
the same group.

Flush unaligned load side 0 A load was flushed from unit 1 because it was unaligned (crossed a 64-byte boundary, or a 
32-byte boundary if it missed the L1).

Flush unaligned store side 0 A store was flushed from unit 1 because it was unaligned.

Floating point load side 0 A floating-point load was executed from LSU unit 0.

SRQ store forwarding side 0 Data from a store instruction was forwarded to a load on unit 0.

LSU busy side 1 LSU 0 is busy rejecting instructions.

D-ERAT miss side 1
A data request (load or store) from LSU 1 missed the ERAT. Requests that miss the D-ERAT 
are rejected and retried until the request hits in the ERAT. This can result in multiple ERAT 
misses for the same instruction. 

Flush from LRQ SHL, LHL side 1
A load was flushed by unit 1 because a a younger load executed before an older store executed 
and they had overlapping data. Alternatively, two loads executed out-of-order, they had byte 
overlap, and there was a snoop in between to an overlapped byte.

Flush SRQ LHS side 1 A store was flushed because younger load hits an older store that is already in the SRQ or in the 
same group. 

Flush unaligned load side 1 A load was flushed from unit 1 because it was unaligned (crossed a 64-byte boundary, or a 
32-byte boundary if it missed the L1).

Flush unaligned store side 1 A store was flushed from unit 1 because it was unaligned (crossed a 4KB boundary).

Floating point load side 1 A floating-point load was executed from LSU 1.

Marked IMR reload A Data L1 Cache reload occurred because of a marked load.

Marked L1 reload data source valid The source information is valid and is for a marked load.

Marked L1 D-cache load miss side 0 A marked load, executing on unit 0, missed the D-cache.

Marked L1 D-cache load miss side 1 A marked load, executing on unit 1, missed the D-cache.

Marked SRQ valid This signal is asserted every cycle when a marked request is resident in the store request 
queue.

Marked flush from LRQ SHL, LHL side 
0

A marked load was flushed by unit 0 because a a younger load executed before an older store 
executed and they had overlapping data. Alternatively, two loads executed out-of-order, they 
have byte overlap, and there was a snoop in between to an overlapped byte.

Marked flush SRQ LHS side 0 A marked store was flushed because a younger load hits an older store that is already in the 
SRQ or in the same group.

Marked flush unaligned store side 0 A marked store was flushed from unit 0 because it was unaligned.

Table 10-17. Detailed Event Descriptions   (Page 4 of 8)

Event Description  Detailed Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 274 of 415

Version 2.3
March 7, 2008

Marked flush unaligned load side 0 A marked load was flushed from unit 0 because it was unaligned (crossed a 64-byte boundary, 
or a 32-byte boundary if it missed the L1).

LSU side 0 finished IMR LSU unit 0 finished a marked instruction.

Marked flush from LRQ SHL, LHL 
side 1

A marked load was flushed by unit 1 because a a younger load executed before an older store 
executed and they had overlapping data. Alternatively, two loads executed out-of-order, they 
had byte overlap, and there was a snoop in between to an overlapped byte.

Marked flush SRQ LHS side 1
A marked load was flushed by unit 1 because a a younger load executed before an older store 
executed and they had overlapping data. Alternatively, two loads executed out-of-order, they 
had byte overlap, and there was a snoop in between to an overlapped byte.

Marked flush unaligned load side 1 A marked load was flushed from unit 1 because it was unaligned (crossed a 64-byte boundary, 
or a 32-byte boundary if it missed the L1).

Marked flush unaligned store side 1 A marked store was flushed from unit 1 because it was unaligned (crossed a 4KB page bound-
ary). 

LSU side 1 finished IMR LSU unit 1 finished a marked instruction.

Marked L1 D-cache store miss A marked store missed the D-cache.

Marked stcx fail A marked stcx (stwcx or stdcx) failed.

Snoop tlbie A tlbie was snooped from another processor.

L1 D-cache store miss A store missed the D-cache.

L1 D-cache store miss A store missed the D-cache.

L1 D-cache store side 0 A store executed on Unit 0.

L1 D-cache load side 1 A load executed on Unit 1.

stcx failed An stcx (stwcx or stdcx) failed.

stcx passed An stcx (stwcx or stdcx) instruction was successful.

XER mapper full

The ISU sends a signal indicating that the XER mapper cannot accept any more groups. Dis-
patch is stopped. 
Note:  This condition indicates that a pool of the mapper is full but the entire mapper might not 
be.

No instructions fetched No instructions were fetched this cycle (because of IFU hold, redirect, or I-cache miss).

One or more PowerPC instruction 
completed

A group containing at least one PowerPC instruction completed. For microcoded instructions 
that span multiple groups, this will only occur once.

BR issue queue full The ISU sends a signal indicating that the issue queue that feeds the IFU BR unit cannot accept 
any more groups (the queue is full of groups).

CR issue queue full The ISU sends a signal indicating that the issue queue that feeds the IFU CR unit cannot accept 
any more groups (the queue is full of groups).

Processor cycles Processor cycles.

Data loaded from L2 DL1 was reloaded from the local L2 because of a demand load.

Data loaded from memory DL1 was reloaded from memory because of a demand load.

New stream allocated A new prefetch stream was allocated.

External interrupts An external interrupt occurred.

FPU executed add
This signal is active for one cycle when FPU0 is executing an add, mult, sub, compare, or fsel 
kind of instruction. The instruction could be fadd*, fmul*, fsub*, fcmp**, or fsel where xyz* 
means xyz, xyzs, xyz., xyzs. and xyz** means xyzu and xyzo. Combined Unit 0 + Unit 1.

Table 10-17. Detailed Event Descriptions   (Page 5 of 8)

Event Description  Detailed Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 275 of 415

FPU received denormalized data This signal is active for one cycle when one of the operands is denormalized. Combined Unit 0 
+ Unit 1.

FPU executed FDIV instruction This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a divide instruction. The instruction could be fdiv, fdivs, fdiv. fdivs. Combined Unit 0 + Unit 1.

FPU executed FEST instruction This signal is active for one cycle when executing one of the estimate instructions. The instruc-
tion could be fres* or frsqrte* where xyz* means xyz or xyz. Combined Unit 0 + Unit 1.

FPU produced a result FPU finished and produced a result. This only indicates finish, not completion. Combined Unit 0 
+ Unit 1.

FPU executed multiply-add instruction
This signal is active for one cycle when FPU0 is executing a multiply-add kind of instruction. The 
instruction could be fmadd*, fnmadd*, fmsub*, or fnmsub* where xyz* means xyz, xyzs, xyz., 
xyzs. Combined Unit 0 + Unit 1.

FPU executing FMOV or FEST instruc-
tions

This signal is active for one cycle when executing a move kind of instruction or one of the esti-
mate instructions. The instruction could be fmr*, fneg*, fabs*, fnabs*, fres*, or frsqrte* where 
xyz* means xyz or xyz. Combined Unit 0 + Unit 1.

FPU executed FRSP or FCONV 
instructions

This signal is active for one cycle when executing frsp or a convert kind of instruction. The 
instruction could be frsp*, fcfid*, fcti* where xyz* means xyz, xyzs, xyz., xyzs. Combined Unit 
0 + Unit 1.

FPU executed FSQRT instruction
This signal is active for one cycle at the end of the microcode executed when FPU0 is executing 
a square root instruction. The instruction could be fsqrt* where xyz* means xyz, xyzs, xyz., 
xyzs. Combined Unit 0 + Unit 1.

Cycles FPU issue queue full Cycles when one or both FPU issue queues are full.

FPU executed single-precision instruc-
tion FPU is executing a single-precision instruction. Combined Unit 0 + Unit 1.

FPU stalled in pipe 3
FPU has generated a stall in pipe 3 because of overflow, underflow, massive cancel, convert to 
integer (sometimes), or convert from integer (always). This signal is active during the entire 
duration of the stall. Combined Unit 0 + Unit 1.

FPU executed store instruction FPU is executing a store instruction. Combined Unit 0 + Unit 1.

Cycles FXLS queue is full Cycles when one or both FXU/LSU issue queues are full.

FXU busy FXU0 and FXU1 are both busy.

FXU produced a result The fixed-point unit (Unit 0 + Unit 1) finished a marked instruction. Instructions that finish might 
not necessarily complete. 

FXU idle FXU0 and FXU1 are both busy.

FXU0 busy FXU1 idle FXU0 is busy while FXU1 is idle.

FXU1 busy FXU0 idle FXU0 is idle while FXU1 is busy.

Cycles GCT empty The global completion table is completely empty.

Completion table full The ISU sends a signal indicating that the GCT is full. 

Group completed A group completed. Microcoded instructions that span multiple groups will generate this event 
once per group.

Group dispatches A group was dispatched.

Group dispatch rejected A group that previously attempted dispatch was rejected.

Group dispatch success Number of groups successfully dispatched (not rejected).

Group marked in IDU A group was sampled (marked).

Instructions completed Number of eligible instructions that completed.

Table 10-17. Detailed Event Descriptions   (Page 6 of 8)

Event Description  Detailed Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 276 of 415

Version 2.3
March 7, 2008

Instructions fetched from L1 An instruction fetch group was fetched from L1. Fetch groups can contain up to eight instruc-
tions.

Instructions fetched from L2 An instruction fetch group was fetched from L2. Fetch groups can contain up to eight instruc-
tions.

Instructions fetched from memory An instruction fetch group was fetched from memory. Fetch groups can contain up to eight 
instructions.

Instructions fetched from prefetch An instruction fetch group was fetched from the prefetch buffer. Fetch groups can contain up to 
eight instructions.

Cycles is L1 write active This signal is asserted each cycle a cache write is active.

larx executed An larx (lwarx or ldarx) was executed. This is the combined count from LSU0 + LSU1, but 
these instructions only execute on LSU0.

L1 D-cache load misses Total DL1 load references that miss the DL1.

L1 D-cache load references Total DL1 load references.

LSU busy LSU (Unit 0 + Unit 1) is busy rejecting instructions.

D-ERAT misses
Total D-ERAT misses (Unit 0 + Unit 1). Requests that miss the D-ERAT are rejected and retried 
until the request hits in the ERAT. This can result in multiple ERAT misses for the same instruc-
tion.

LRQ flushes
A load was flushed because a younger load executed before an older store executed and they 
had overlapping data. Alternatively, two loads executed out-of-order, they had byte overlap, and 
there was a snoop in between to an overlapped byte.

SRQ flushes A store was flushed because a younger load hits an older store that is already in the SRQ or in 
the same group.

LRQ unaligned load flushes A load was flushed because it was unaligned (crossed a 64-byte boundary, or a 32-byte bound-
ary if it missed the L1).

SRQ unaligned store flushes A store was flushed because it was unaligned.

LSU executed floating-point load 
instruction

Cycles LMQ and SRQ empty Cycles when both the LMQ and SRQ are empty (LSU is idle).

Cycles SRQ empty The store request queue is empty.

SRQ store forwarding side 1 Data from a store instruction was forwarded to a load on Unit 1.

Marked instruction BRU processing 
finished

The branch unit finished a marked instruction. Instructions that finish might not necessarily com-
plete.

Marked instruction CRU processing 
finished

The condition register unit finished a marked instruction. Instructions that finish might not neces-
sarily complete.

Marked data loaded from L2 DL1 was reloaded with modified (M) data from the L2 of a chip on this MCM because of a 
marked load.

Marked data loaded from memory DL1 was reloaded with modified (M) data from the L2 of another MCM because of a marked 
load. 

Marked instruction FPU processing fin-
ished

One of the floating-point units finished a marked instruction. Instructions that finish might not 
necessarily complete.

Marked instruction FXU processing fin-
ished

One of the fixed-point units finished a marked instruction. Instructions that finish might not nec-
essarily complete. 

Marked group completed A group containing a sampled instruction completed. Microcoded instructions that span multiple 
groups will generate this event once per group.

Marked group dispatched A group containing a sampled instruction was dispatched.

Table 10-17. Detailed Event Descriptions   (Page 7 of 8)

Event Description  Detailed Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

970MP Performance Monitor
Page 277 of 415

Marked group issued A sampled instruction was issued.

Marked group completion timeout The sampling timeout expired indicating that the previously sampled instruction is no longer in 
the processor.

Marked instruction finished One of the execution units finished a marked instruction. Instructions that finish might not nec-
essarily complete.

Marked L1 D-cache load misses

Marked instruction LSU processing fin-
ished

One of the load/store units finished a marked instruction. Instructions that finish might not nec-
essarily complete.

Marked LRQ flushes
A marked load was flushed because a younger load executed before an older store executed 
and they had overlapping data. Alternatively, two loads executed out-of-order, they have byte 
overlap, and there was a snoop in between to an overlapped byte.

Marked SRQ flushes A marked store was flushed because a younger load hits an older store that is already in the 
SRQ or in the same group.

Marked unaligned load flushes A marked load was flushed because it was unaligned (crossed a 64-byte boundary, or a 32-byte 
boundary if it missed the L1).

Marked unaligned store flushes A marked store was flushed because it was unaligned.

Marked store instruction completed A sampled store has completed (data home).

Marked store completed with interven-
tion

A marked store previously sent to the memory subsystem completed (data home) after requiring 
intervention.

Marked store sent to storage sub-
system A sampled store has been sent to the memory subsystem.

Run cycles Processor cycles gated by the run latch.

L1 D-cache store references Total DL1 store references.

Completion stopped The RAS unit has signaled completion to stop.

Time-base bit transition Occurs when the selected time-base bit (as specified in MMCR0[TBSEL]) transitions from ‘0’ to 
‘1’.

Threshold timeout The threshold timer expired.

Work held The RAS unit has signaled completion to stop and there are groups waiting to complete.

Table 10-17. Detailed Event Descriptions   (Page 8 of 8)

Event Description  Detailed Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

970MP Performance Monitor
Page 278 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 279 of 415

11. System Design

11.1 I2C Interface

I2C (Interconnect for Integrated Circuits) is a standard bus developed by Philips Electronics.1 The I2C Slave 
in the 970MP converts data sent across an I2C bus into native JTAG commands. The I2C slave can be used 
as a test access port (TAP) controller that interfaces with the Access macro or with other IEEE 1149.1 
compatible devices in order to read, write, and scan registers within a chip.

11.2 Bus Initialization, Configuration, Power Management, and Test

11.2.1 Bus Initialization

The bus devices use a physical layer initialization sequence to initialize the bus. A specific pattern is sent 
across the bus, which initializes the processor interface in slave devices. This sequence is described in 
Section 11.3.1 Initialization at Power-On Reset on page 289. 

11.2.2 Configurable Parameters

The processor interconnect defines multiple configurable parameters for efficient operation of the bus. The 
values that can be programmed into these parameter registers are technology and implementation-depen-
dent. During the initialization process at system start-up, the power-management unit identifies the system 
configuration and programs the individual devices attached to the bus (that is, the North Bridge and the 
processors) with the appropriate values using the I2C device interfaces. All values are in bus beats. For 
parameters that cross the processor interface, the values are from the final locally clocked flip-flop or latch 
output to the first locally clocked flip-flop or latch input, after deskewing has taken place through the 
processor interconnect.

Figure 11-1 shows the configurable timing parameters, COMPACE and STATLAT. COMPACE is the 
minimum number of bus beats between command packets issued from the processor. STATLAT is the 
number of bus beats between the last beat of the address/data (AD) packet and the first beat of the transfer-
handshake (TH) packet.

1. I2C standard (IIC) for a serial bus. For more information see: http://www-us2.semiconductors.philips.com/i2c/.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 280 of 415

Version 2.3
March 7, 2008

Figure 11-2 shows the North Bridge configurable timing parameters, SNOOPWIN, SNOOPLAT, and 
PAAMWIN. SNOOPWIN is the minimum number of idle bus beats between reflected command packets. 
PAAMWIN is the minimum number of bus beats between command packets reflected from the North Bridge 
to the processors when there is an address collision (shown as A0 in Figure 11-2). SNOOPLAT is the number 
of bus beats between the last beat of a reflected command packet to the first beat of the individual snoop 
responses from each of the processors received at the North Bridge. SNOOPLAT includes the time of flight 
across the interface and any switch devices interposed between the North Bridge and a processor. 

Figure 11-3 shows the processor configurable timing parameters, SNOOPLAT and SNOOPACC. 
SNOOPLAT is defined above. SNOOPACC is the number of bus beats between the last beat of the individual 
snoop response sent from a processor to the first beat of the accumulated snoop response received from the 
North Bridge. SNOOPACC includes the time of flight across the interface and any switch devices interposed 
between a processor and the North Bridge. 

Figure 11-1. Configurable Timing Parameters 

Figure 11-2. North Bridge Configurable Timing Parameters 

ACK A0

RD A0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processor
THI
(input)

Processor
ADO
(output)

Beat

Rd A1

STATLAT

COMPACE

Rd A0

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

North Bridge 
SRO

(input)

North Bridge
ADI

(output)

Beat

Rd A1

PAAMWIN (16)

SNOOPWIN

22 23 24 25 26 27

Rd A0

Sh A0

[N] SNOOPLAT (10)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 281 of 415

Figure 11-3. Processor Configurable Timing Parameters 

Table 11-1. Programmable Delay Parameters  

Parameter Processor North 
Bridge

Range in Bus Beats
                       Description

Minimum Typical Maximum

COMPACE Y N 2 — 14 Command pipeline delay. See Section 8.2.1.4 Command Pac-
ing on page 151.

STATLAT Y N 4 — 30
Transfer-handshake response latency. See Section 8.2.3 
Transfer-Handshake Packets on page 155 and Section 8.4.2 
Memory Read Transactions (General) on page 164.

STATLAT N Y — 22 —

SNOOPWIN N Y — 4 —
Snoop window pacing. See Section 8.3.1 Snoop-Response Bus 
Implementation on page 159 and Section 8.4.2 Memory Read 
Transactions (General) on page 164.

SNOOPLAT N Y — 25 — North Bridge snoop latency. See Section 8.3.1 Snoop-
Response Bus Implementation on page 159.

SNOOPLAT Y N 6 6 12 Processor snoop latency. See Section 8.3.1 Snoop-Response 
Bus Implementation on page 159.

SNOOPACC Y N 9 — 24

North Bridge snoop accumulation delay. See Section 8.3.1 
Snoop-Response Bus Implementation on page 159 and 
Section 8.4.2.3 Read with Intent to Modify Burst Transaction on 
page 166.

SNOOPWIN (4)

Rd A0

10 11 12 13 14 15 16 17 18 19 20 21

Processor
SRO

(output)

Processor
ADI

(input)

Beat

Rd A1

SNOOPACC (6)

SNOOPWIN (4)

22 23 24 25 26 27

Rd A0

Sh A0

[P] SNOOPLAT (6)

28 29 30

Rt A1

Processor
SRI

(input) Rt A0



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 282 of 415

Version 2.3
March 7, 2008

11.2.3 Configuration Interface

An I2C interface is used by the power-management unit to configure the processor interconnect bus parame-
ters. The interface complies with the I2C Bus Specification. Table 11-2 lists the I2C interface signals. 
Table 11-3 lists the I2C registers, which are described in this section. 

The I2C interface consists of two bidirectional signals, I2CCK and I2CDT. Both signals use open-drain drivers 
that require external pull-up resistors. Multiple devices can be connected to the same signals. The 
PROCID[0:1] inputs are used to address a specific processor.

Table 11-2. I2C Interface Signals  

Signal Polarity Name

I2CCK Active Low I2C interface clock input

I2CDT Active Low I2C interface data input/output

PROCID[0:1] Active High Processor identification input

Table 11-3. I2C Registers Used by the 970MP Processor Interconnect  

Name Mode Address Description See 
Page

PI Status Register Read x‘084001’ Processor Interconnect Status Register 351

PI Mode Register 0 Read/Write x‘083000’ Processor Interconnect Mode Registers 0 347

PI Mode Register 1 Read/Write x‘083100’ Processor Interconnect Mode Registers 1 348

PI Mode Register 2 Read/Write x‘083200’ Processor Interconnect Mode Registers 2 349

PI Mode Register 3 Read/Write x‘083300’ Processor Interconnect Mode Registers 3 350

BUSCONF Read/Write x‘0A8000’ Processor Configurable Timing Delay Parameter Register 283



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 283 of 415

11.2.3.1 Processor Configurable Timing Delay Parameter Register (BUSCONF)

SCOM Address x‘0A8000’

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

COMPACE STATLAT SNOOPLAT SNOOPACC A
P

S
E

L

bc
fg

_e
n_

rw
w

_r
eg

bc
fg

_a
lig

n_
cm

d

bc
fg

_c
p_

ar
es

p_
en

a

bc
fg

_e
n_

cm
pc

_t
m

s_
8

bc
g_

en
_c

m
pc

_a
js

t

gr
s_

bf
b_

m
od

e_
re

g(
24

)

gr
s_

bf
b_

m
od

e_
re

g(
25

)

gr
s_

bf
b_

m
od

e_
re

g(
26

)

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 — Reserved.

32:35 COMPACE Command pipeline delay.

36:40 STATLAT Transfer-handshake response latency.

41:44 SNOOPLAT Processor snoop latency.

45:48 SNOOPACC Snoop accumulation delay.

49 APSEL Bus encode disable. (‘1’ = disable)

50 bcfg_en_rww_reg Enable commands during data writes. (‘0’ = enable) 

51:52 bcfg_align_cmd

Align command.
00 Command out on even or odd.
01 Command out on even.
10 Command out on odd.

53 bcfg_cp_aresp_ena Disables wait for cresp for castouts and pushes. (‘1’ = disable) 

54 bcfg_en_cmpc_tms_8 Enables a longer wait period before “back-off.” 

55 bcg_en_cmpc_ajst Enables bus “back-off” of sending command.

56 grs_bfb_mode_reg(24) Sets bus mode to no encode with single error correct and some double error detect.

57 grs_bfb_mode_reg(25) Sets bus mode to no encode with single error correct and double error detect. 

58 grs_bfb_mode_reg(26) Power tuning engine disable.

59:63 — Reserved.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 284 of 415

Version 2.3
March 7, 2008

11.2.3.2 North Bridge Configurable Timing Delay Parameter Register

SCOM Address x‘0A8000’

Reserved PAAMWIN Reserved SNOOPWIN Reserved B
C

M

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Reserved Reserved STATLAT R
es

er
ve

d

SNOOPLAT Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:9 — Reserved.

10:15 PAAMWIN Minimum number of bus beats between command packets reflected from the North Bridge to the proces-
sors when there is an address collision.

16:19 — Reserved.

20:23 SNOOPWIN Snoop window pacing.

24:30 — Reserved.

31 BCM
Bus encode disable. 
1 Disabled.

32:35 — Reserved.

36:39 — Reserved.

40:42 — Reserved.

43:47 STATLAT Transfer-handshake response latency. 

48:49 — Reserved.

50:55 SNOOPLAT North Bridge snoop latency. 

56:63 — Reserved.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 285 of 415

11.2.4 Power Management

The processor interconnect participates in the system power management through two asynchronous control 
signals called quiescent request (QREQ) and quiescent acknowledgment (QACK). QREQ is a processor 
output signal that is asynchronously sampled by the local clock of the North Bridge. QACK is a North Bridge 
output signal that is asynchronously sampled by the local clock of the processor and other bus masters.

Figure 11-4 on page 286 shows the sequence of steps for the processor to enter Doze or Nap mode. 
Figure 11-5 on page 287 shows the sequence of complementary steps taken by the North Bridge in response 
to the assertion or negation of QREQ by a processor. In Doze mode, the processor must be capable of 
snooping all reflected command packets from the North Bridge. In Nap mode, the processor is not required to 
snoop transactions, although it must be capable of returning to Doze mode for the purpose of snooping if 
QACK is negated.

In the normal (or preferred) sequence of events, the processor and North Bridge observe a 4-phase hand-
shake for QREQ and QACK. The processor first asserts QREQ after the processor has quiesced, the 
snoopers are idle, and all outstanding processor interconnect bus transactions have completed. The 
processor then waits for the North Bridge to assert QACK. While the processor is waiting for the assertion of 
QACK, it is in an intermediate mode called Doze. Once the North Bridge asserts QACK, the processor enters 
Nap mode. To exit Nap mode, the processor negates QREQ and then waits for the North Bridge to negate 
QACK before returning to the Run state.

There are a few scenarios in which the 4-phase handshake is preempted.

1. While in Doze mode, the North Bridge reflects command packet snooping. The action taken by the pro-
cessor is to negate QREQ while snooping the reflected command packet and while staying in Doze 
mode.

2. While in Doze mode, the processor receives an interrupt. The action taken by the processor is to negate 
QREQ and return to the Run state.

3. While in Nap mode, the North Bridge negates QACK while the processor has QREQ asserted. The pro-
cessor must then return to Doze mode within 64 bus clocks so that it can return to snooping reflected 
command packets from the North Bridge.

As shown in Figure 11-5 on page 287, the North Bridge normally negates QACK when QREQ is negated by 
any of the attached processors. However, it might also negate QACK if there is bus activity from any of the 
other attached bus devices that can be a bus master.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 286 of 415

Version 2.3
March 7, 2008

Figure 11-4.  Processor QREQ and QACK Signalling 

Note:  Processor ignores QACK 
during this period and whenever 
QREQ is negated.

HID0(NAP) = 1.

Snoop Idle and bus interface 
drained of all transactions:

• RWITM
• DClaim
• Speculative loads

Processor asserts QREQ.

Processor Wake Up
(50 - 100 processor clocks)

Processor sees
QACK negated.

Processor
Run

Software readies
system/processor 

for Nap.

Move To MSR(POW).

Processor
Doze

Processor sees
QACK asserted.

Processor Shut Down
(50 - 100 processor clocks)

Processor
Nap

Processor waits for QACK 
negated.

Processor negates QREQ.

Interrupt awakens processor 
core.

North Bridge issues snoop 
processor, not Snoop Idle.

Processor negates QREQ.

Processor negates QREQ.

Processor Wake Up
(50 - 100 Processor Clocks)

Interrupt awakens processor core.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 287 of 415

11.2.5 Reliability, Availability, and Serviceability (RAS) Requirement

All devices attached to the processor interconnect bus must implement three registers that capture errors and 
assist in the isolation of failures. RAS circuitry ensures that a processor interconnect implementation that 
targets a particular processor will remain stable across various target processors.

A Fault Isolation Register (FIR), a Fault Isolation Capture Register (FICR), and a Fault Isolation Mask 
Register (FIMR) must be implemented. The FIR captures all failures that occur. The register is not frozen on 
the first error but continues to accumulate all detected errors. The FICR is used to log the first detected error. 
This register is a masked copy of the FIR (output of the FIR is masked with the FIMR) and is frozen once the 
first error is detected. The actual errors that are logged and the error reporting mechanism are system-depen-
dent (see Chapter 4 Exceptions for more information). 

Figure 11-5. North Bridge QREQ and QACK Signalling 

Bus
Active

Bus
Idle

North Bridge issues snoop.

Bus activity from any master.
North Bridge sees QREQ 

from all ports.

North Bridge drains all trans-
actions:

• I/O cycles
• Snoop cycles (both 

address and data)

North Bridge waits for program delay.
(16 - 256 bus clocks)

North Bridge asserts QACK.

North Bridge waits for program delay.
(8 - 64 bus clocks)

Note:  North Bridge will TH RETRY to any bus cycle 
received during this period. 

North Bridge waits for 
program delay.

(8 - 64 bus clocks)

North Bridge negates 
QACK.

QREQ negated from 
any master. 

North Bridge TH 
RETRY to master. 

Bus activity from any 
master. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 288 of 415

Version 2.3
March 7, 2008

11.3 Processor Interconnect Electrical Interface

The processor interconnect uses high-speed, source-synchronous buses (SSBs) to transfer data between 
the PowerPC and North Bridge chips, and to support the cache-coherency snooping protocols for multipro-
cessor configurations. The SSBs are unidirectional point-to-point connections between a drive side (D) and a 
receive side (R). SSBs are put into pairs to form a bidirectional channel between a PowerPC and a North 
Bridge chip as shown in Figure 11-6.

Source-synchronous bus (SSB) data is transferred on every bus clock edge; that is, double the data rate 
(DDR) of the bus-clock frequency. There are 50 signal lines per SSB. Two lines are used for the differential 
bus clock lines, 44 signal lines are used to communicate 36 bits of logical data, and four signal lines are used 
for the differential snoop-response bus. The 36 data bits consist of 35 bits of the address/data (AD) channel 
and a single bit for the transfer-handshake bus (TH). 

The SSBs achieve high-speed operation using low-cost packaging solutions by exploiting four features:

1. Source-synchronous signalling. The differential bus clocks are bundled with the single-ended data sig-
nals. 

2. Far-end (parallel) termination. The single-ended data signals use parallel termination at the far end of 
the signal line to absorb signal reflections and maintain a quasi-constant current loading for each data 
signal line.

3. Balanced coding. The application of balanced coding to the SSB maintains a quasi-constant current 
loading across the entire SSB interface. Within the SSB, there is no net current flow across the power 
planes. This dramatically reduces noise problems due to power-supply rail collapse (that is, di/dt noise) 
and current voltage offsets between the chips.

4. Point-to-point unidirectional signalling. Restricting the signal fan-out to a single point and keeping the 
signal flow unidirectional mitigates problems associated with high-frequency signal attenuation.

Figure 11-6. Bus Diagram of a Dual-Processor 970MP Processor Interconnect-Based System 

D DR R

PowerPC PowerPC

North Bridge

A
D

+
T

H
S

S
S

B

A
D

+
T

H
S

S
S

B

D R D R

A
D

+
T

H
S

S
S

B

A
D

+
T

H
S

S
S

B



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 289 of 415

11.3.1 Initialization at Power-On Reset

The receive-side circuitry for the SSBs inside a processor interconnect system might require initialization at 
power-on to deskew data signal lines, align the bus clocks, and synchronize the receive-side FIFO queues to 
the local clock domains of the ASICs and processors. Within a processor interconnect system, there is the 
concept of time zero, which is globally established across all the chips. In the processor interconnect, time 
zero is derived from the phase synchronization (psync) and global system clock (SYSCLK) signals 
(see Section 11.3.2 Target Cycle on page 289).

The purpose of the initial alignment pattern (IAP) is to establish the settings for the delay lines of the per bit 
deskew circuitry and optimize the positioning of the sampling clocks on the receive side. During IAP, each 
drive side transmits a bit pattern sequence across each SSB. This pattern is repeated by the drive side for as 
many bit times (for example, 500,000) as needed by the initialization sequential circuitry on the receive side. 
The I2C interface controls for how long the pattern is repeated. Upon IAP completion, the receive-side reports 
its status through a 10-bit PI Status Register, which is accessible from the I2C interface. An all-zero result 
stored in PI Status Register indicates that the IAP completed without error. A non-zero pattern indicates that 
there was an error. Section  PI Status Register on page 351 describes the bit fields and their meaning.

The sequence of the power-on reset steps is:

1. Stabilize and lock the clocks to the globally distributed SYSCLK. 

2. The drive side of each SSB begins transmission of the test patterns for receive-side calibration and opti-
mization. This step is initiated from the I2C interface by a sequence that is system dependent. 

Wait for a completion signal from each receive side SSB that has completed the IAP. The completion signal is 
registered and can be accessed from the I2C interface. The location of the register and how it is accessed 
through the I2C interface is implementation dependent. The transmission of the test patterns is terminated 
once the completion signal is detected. The results of the initialization can be read out from the I2C interface, 
and the bus is ready for general system use. 

11.3.2 Target Cycle

The flight time of a data signal from the drive side to the receive side of an SSB can extend beyond the period 
of a single bus clock. The principles of the processor interface allow data and clocks signals to take multiple 
bus clock cycles to travel from one side to the other. 

Furthermore, each receive side can be programmed to transfer SSB data across the time-domain boundary 
on the same target beat relative to time zero, which is the globally synchronized time domain for all of the 
processors in a processor interconnect system.

This synchronization can be accomplished using a FIFO-type circuit such as the one in Figure 11-7. The four 
gate signals (Gate0 through Gate3) are derived from the incoming bus clock (bclk) of the SSB. These signals 
are half the frequency of the bus clock, have a 50% duty cycle, and are 90 degrees out of phase from each 
other (see Figure 11-8 on page 290). During the IAP, the gate signals are shifted one bit at a time until the ‘1’ 
in the IAP pattern is aligned into the rightmost latch (data 0) and the ‘0’ is captured in the leftmost latch (data 
3). This alignment procedure occurs in the shaded box of Figure 11-7.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 290 of 415

Version 2.3
March 7, 2008

The 4:1 multiplexer and the modulo 4 counter are used to cross the time domain from that of the SSB bus 
clock to the local clock (Lclk) of the chip. A static timing analysis determines the worst case aggregate latency 
from the drive side through the receive side up to the input point of the data out flip-flop (see Figure 11-7). 

The combination of the 4:1 multiplexer and modulo 4 counter establishes four possible target cycles for trans-
ferring data between the two time domains. The duration of each target cycle equals one bit time. Depending 
on the results of the worst case analysis, it might be determined that SSB input data cannot be clocked into 
the data out flip-flop in the same target cycle that it arrives. This will occur if the timing violates the set-up and 
hold time requirements of the data out flip-flop. In this case, one of the other three target cycles is selected. 
For example, the following cycle would allow the shortest safe latency, but later cycles would provide larger 
set-up times. The target cycle is programmed through the I2C interface by loading a 2-bit value into the Target 
Cycle Register, which in turns initializes the modulo 4 counter relative to time zero.

Figure 11-7. Receive-Side FIFO Circuit 

Figure 11-8. Timing Diagram Showing Relationship Between Bclk and the Four Gate Signals 

L L L L

FF

Data In

bclk
^

Gate3

bclk
^

Gate2

bclk
^

Gate1
^

Gate0

data 3 data 2 data 1 data 0

11 10 01 00
S0

S1
4:1 multiplexer

Data Out

lclk

Modulo 4
Counter T

ar
ge

t
C

yc
le

R
eg

is
te

r

bclk

bclk

Gate0

Gate1

Gate2

Gate3



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 291 of 415

11.4 Processor Interconnect Bus Error Detection and Correction

11.4.1 Error Detection for Balanced Encoding

The processor interconnect bus protocol defines an encoding of each beat of information on the inbound 
address/data (ADI) and outbound address/data (ADO) bus, so that exactly half the signals carry a '1' bit and 
half the signals carry a '0' bit on each beat. This is done by converting the 36 bits of information on each bus 
to the 44-bit pattern that is transferred, in a scheme called balanced coding. This balanced coding scheme 
implicitly provides parity checking of the bus signals, in that an unequal number of ones and zeros in any beat 
indicates an error. This balanced coding bus mode is selected by setting the BUSCONF bit 49 to ‘0’ (see 
Section 11.2.3.1 Processor Configurable Timing Delay Parameter Register (BUSCONF) on page 283).

11.4.2 Error Detection for Alternative Encodings

The 970MP design supports three unencoded bus modes, in which bits 0:35 of the ADI and ADO bus carry 
the address and data information, while bits 36:43 carry checking information. Bits 49, 56, and 57 determine 
the unencoded bus modes as follows:

100 This mode, described in Section 11.4.2.1 Single-Error and Double-Error Detection, does not provide 
single error correction. It only provides single and partial double bit detection.

110 This mode is the same as mode ‘100’ except that single bit errors are corrected.

101 This mode is described in Section 11.4.2.2 Single-Error Correct, Double-Error Detection.

111 This mode is undefined. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 292 of 415

Version 2.3
March 7, 2008

11.4.2.1 Single-Error and Double-Error Detection

The first of these unencoded bus modes implements the following 10-input parity functions to generate the 
eight check bits:

b36 = P( b0, b6, b7, b29, b30, b31, b32, b33, b34, b35 )
b37 = P( b0, b1, b6, b23, b24, b25, b26, b27, b28, b35 )
b38 = P( b0, b1, b2, b18, b19, b20, b21, b22, b28, b34 )
b39 = P( b1, b2, b3, b14, b15, b16, b17, b22, b27, b33 )
b40 = P( b2, b3, b4, b11, b12, b13, b17, b21, b26, b32 )
b41 = P( b3, b4, b5, b9, b10, b13, b16, b20, b25, b31 )
b42 = P( b4, b5, b7, b8, b10, b12, b15, b19, b24, b30 )
b43 = P( b5, b6, b7, b8, b9, b11, b14, b18, b23, b29 )

where P(0 to 7) computes even parity over its input signals. 

In the receiver, the error syndrome is computed by exclusive ORing the received and generated check bits. A 
syndrome of x‘00’ results when the received and generated check bits match, indicating that no error 
occurred. A non-zero syndrome indicates that an error occurred. This check bit implementation will detect any 
single-bit or double-bit error over the 44-bit pattern. This first unencoded bus mode is selected by setting 
BUSCONF bits 49, 56, and 57 to ‘100’.

Note:  Single-bit errors that occur using this bus mode yield syndromes that allow the failing bit to be identi-
fied. However, some double-bit errors yield those same single-bit error syndromes. For this reason, this mode 
can be used to detect all single-bit and double-bit errors, but cannot be safely used to correct single-bit errors.

11.4.2.2 Single-Error Correct, Double-Error Detection

The second unencoded bus mode implements the following even parity functions to generate the eight check 
bits:

b36 = P( b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35 )
b37 = P( b9,  b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22 )
b38 = P( b3,  b4, b5,  b6,  b7, b8, b18, b19, b20, b21, b22, b33, b34, b35 )
b39 = P( b2, b5,  b6,  b7, b8, b15, b16, b17, b22, b29, b30, b31, b32 )
b40 = P( b1,  b3,  b4,  b8, b12, b13, b14, b17, b21, b26, b27, b28, b32, b35 )
b41 = P( b0, b1,  b2, b4, b7, b10, b11, b14, b20, b24, b25, b28, b31 )
b42 = P( b0, b1, b3,  b6,  b9, b11, b13, b16, b19, b23, b25, b27, b30, b34 )
b43 = P( b0,  b2,  b5,  b9,  b10, b12, b15, b18, b23, b24, b26, b29, b33 )

In the receiver, the error syndrome is computed by exclusive ORing the received and generated check bits. A 
syndrome of x‘00’ results when the received and generated check bits match, indicating that no error 
occurred. A non-zero syndrome indicates that an error occurred. Table 11-4 on page 293 lists the syndromes 
from all single-bit errors, along with which failing bit causes that syndrome.

All non-zero syndromes that are not listed in Table 11-4 indicate double-bit errors.

This check bit implementation can be used to correct any single-bit error and to detect any double-bit error 
over the 44-bit pattern. This second unencoded bus mode is selected by setting BUSCONF bits 49, 56, and 
57 to ‘101’.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

System Design
Page 293 of 415

Table 11-4. Bit Error Position Identifier 

Syndrome Failing Bit

x‘07’ 0

x‘0E’ 1

x‘15’ 2

x‘2A’ 3

x‘2C’ 4

x‘31’ 5

x‘32’ 6

x‘34’ 7

x‘38’ 8

x‘43’ 9

x‘45’ 10

x‘46’ 11

x‘49’ 12

x‘4A’ 13

x‘4C’ 14

x‘51’ 15

x‘52’ 16

x‘58’ 17

x‘61’ 18

x‘62’ 19

x‘64’ 20

x‘68’ 21

x‘70’ 22

x‘83’ 23

x‘85’ 24

x‘86’ 25

x‘89’ 26

x‘8A’ 27

x‘8C’ 28

x‘91’ 29

x‘92’ 30

x‘94’ 31

x‘98’ 32

x‘A1’ 33

x‘A2’ 34

x‘A8’ 35

x‘80’ 36

x‘40’ 37

x‘20’ 38

x‘10’ 39

x‘08’ 40

x‘04’ 41

x‘02’ 42

x‘01’ 43

Syndrome Failing Bit



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

System Design
Page 294 of 415

Version 2.3
March 7, 2008



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 295 of 415

12. SCOM Interface and Registers

Scan communication (SCOM) is used to access vital chip debug and diagnostic facilities while the chip is 
running without stopping clocks. It is implemented as address and data serial rings running through the chip 
to limit the wiring. Each facility has a unique address on this ring, which is used to address it.

On the 970MP, all the SCOM facilities are per processor units except for the I/O SCOM facilities that are only 
available on the master processing unit (see Figure 12-1). The serial ring is split into four independent rings 
running in the four clock domains, so that a clock stop in the one domain will not break the SCOM. A small 
number of facilities that control the SCOM configuration and the chip clocks are addressed directly without 
using the serial ring.

12.1 Processor Core SCOM SPR Access

Each processor (core) has two special purpose registers (SPRs) used to access the SCOM interface: 
SCOMC and SCOMD. SCOMC and SCOMD are both 64-bit read/write SPRs and are used for SCOM Control 
and SCOM Data respectively. The interface is implemented as a direct connection to the parallel-to-serial 
converter, which handles the arbitration between the core and service processor. 

12.1.1 Operating System Protocol to Access SCOM SPRs

In the 970MP, SCOMC and SCOMD are complete operations. They do not require a software protocol in 
order to function properly except to disable external (asynchronous) interrupts. Software must check the error 
bits after performing an SCOMC to ensure that the command successfully completed. Table 12-1 on 
page 296 outlines a general software protocol for using these registers.

Figure 12-1. Processor Unit SCOM Topology 

SCOM
Parallel

SCOM
Ctl/Clock

SCOMSCOM
Core Ring

SCOM SCOM

SCOM
        I/O Ring

Master Processing

JTAG/I2C
Interface

Serializer

STS Ring ChipRAS Ring

Unit Only



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 296 of 415

Version 2.3
March 7, 2008

Asynchronous interrupts must be disabled during these blocks. Otherwise, an interrupt could arrive and make 
the SCOM port busy. If that occurs between the MF and MT instructions that cause the reads and writes, then 
the SCOM interface out of the core could malfunction (or at least not perform as software intended). 

12.1.2 SCOMD Format

The SCOMD is a 64-bit register. The interpretation of the contents of this register is determined by the 
SCOMC Status and Control bits. It is the source for outgoing data during an SCOM write access 
(SCOMC[RW] = ‘1’ when MTSCOMC is issued). It is the destination for incoming data after an SCOMC read 
access (SCOMC[RW] = ‘0’ after MTSCOMC completes).

Table 12-1. Operating System Code to Access SCOM 

For SCOM READ For SCOM WRITE

set MSR[EE] = ‘0’ 
MTSCOMC 
MFSCOMD 
MFSCOMC 
if Error = ‘1’, branch to SCOM error routine
set MSR[EE] = ‘1’

set MSR[EE] = ‘0’ 
MTSCOMD 
MTSCOMC 
MFSCOMC 
if Error = ‘1’ branch to SCOM error routine
set MSR[EE] = ‘1’



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 297 of 415

12.1.3 SCOMC Format

The SCOMC is divided into four 16-bit fields, as shown Figure 12-2.

:

The reserved fields should be written to zeros by the software on an MTSCOMC and return zeros on an 
MFSCOMC. The Address and Control fields are undefined while Failure equals ‘1’.

All SCOMC Status bits will be cleared by the hardware upon an MTSCOMC with the exception of Failure, 
which is set to indicate to the operating system that the SPR SCOM access is active. Additional status bits 
will be set depending on the status of the SCOM operation:

• Protocol Error: The SCOM hardware has violated a basic protocol, such as giving a grant when not 
asked or returning a data packet when expecting an address packet. This error bit is not cleared on the 
next MTSCOMC. 

Note:  This bit will probably cause a checkstop to occur and sets a corresponding bit in the Fault Isolation 
Register (FIR).

Figure 12-2. SCOMC SPR Format 

Reserved Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Control Status

SCOM Address R
/W Reserved R
es

er
ve

d

P
ro

to
co

l E
rr

or

A
dd

re
ss

 E
rr

or

In
te

rf
ac

e 
E

rr
or

S
C

O
M

 D
is

ab
le

d

R
es

er
ve

d

F
ai

lu
re

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

SCOMC 
Bits Type Usage Description

0:31 Unused – Reserved

32:47 Write-Only Address SCOM Address (0:15)

48 Write-Only Control
SCOM Read/Write Request Bit 
0 Write request
1 Read request

49:55 Unused Control Reserved

56 Read-Only Status Reserved

57 Read-Only Status SCOM Protocol Error

58 Read-Only Status SCOM Address Error

59 Read-Only Status SCOM Interface Error

60 Read-Only Status SCOMC disabled by service processor

61 Read-Only Status Reserved (Zero)

62 Read-Only Status Reserved (Zero)

63 Read-Only Status Failure (SCOMC disabled or Interface Error [formerly Busy])



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 298 of 415

Version 2.3
March 7, 2008

This bit indicates a problem has occurred in the SCOM hardware, and that this interface can no longer be 
trusted.

• Address Error: The SCOM address was not recognized by an SCOM satellite. This indicates that the 
write did not happen or that the read returned no data (depending on the R/W bit). This error bit is cleared 
on the next MTSCOMC. This indicates a probable software error.

• Interface Error: If the SCOM logic in the arbiter detects an error condition, such as a timeout on the 
SCOM interface, or if the core hang recovery engages while SCOMC is active, it sends a SCOM reset 
(screset). This causes the SCOMC operation to be killed and the logic to record an error. The error bit is 
cleared on the next MTSCOMC and is recoverable (the command must be retried).

• SCOMC Disabled: The service processor has the ability to disable a core from becoming an SCOM 
master, causing the core to treat MTSCOMC as a NOP. MFSCOMC will set this bit, along with Failure and 
Interface Error to ensure the software realizes this condition.

• Failure: Summary indicating if there were any errors since the last MTSCOMC. Formerly the “Busy” bit, 
which indicated if the SCOMC interface was in use.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 299 of 415

12.2 SCOM Address Allocation

Scan communications support a 23-bit address; the 24th bit is a parity bit. This is the address that would be 
sent to SCOM through the JTAG/I2C port. The internal SCOM bus, the part that is serialized, needs no more 
than 16 bits of addressing. So, to simplify the logic, addresses sent internally are truncated to 16 bits. Thus, 
bits 0 through 15 are sent to the parallel SCOM controller, and bits 16 through 22 must be zero for chip 
SCOM addresses.

For the bus interface unit (BIU), each unit’s SCOM serial address and data are daisy chained together. For 
example, the BIU SCOM address and SCOM data out connect to the SCOM address and SCOM data in of 
the L2 cache. The SCOM address and SCOM data out of the L2 cache connect to the BIU SCOM address 
and SCOM data in. The BIU SCOM address and SCOM data out connect to the BIU SCOM address and 
SCOM data in.

Within the BIU, bit 0 of the serial SCOM address is the start bit, and bit 18 is the stop bit. Bit 17 is for SCOM 
read or write operations (‘1’ equals read; ‘0’ equals write). Bits 1 through 8 are the SCOM base address for 
the BIU SCOM registers. Bits 9 through 16 are the actual SCOM address for each register. For the internal 
serial SCOM data bus, each SCOM register in the BIU is 32 bits wide. Bit 32 of the SCOM data bus is the 
stop bit.

Figure 12-3. Format of an SCOM Address 

Figure 12-4. Format of an SCOM Address within the BIU 

Figure 12-5. Format of an SCOM Data Bus 

0 7 8 15 16 23

Base Modifier P

0

Base Address Modifier Address

1 8 9 16

R SS

17 18

0

 

31 32

Data S



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 300 of 415

Version 2.3
March 7, 2008

Table 12-2 shows the base address decodes. All data accesses to the SCOM bus are 64 bits wide. The 
domain column in Table 12-2 lists the following information for each SCOM register access:

• which clock domain in the chip must be on (use SCOM 800000)

• which SCOM ring must be on (use SCOM 60000). The SCOM ring for the ChipRAS domain is always 
enabled. 

Table 12-3 lists the modifier address decodes. 

Table 12-2. SCOM Base Addresses 

Base SCOM Address (0:7) Functional Unit Macro Domain

x‘01’ Core (Debug Unit) td_cp_dbg Core

x‘02’ Core (RAS Unit) td_cp_ras Core

x‘03’ Core (Fault Isolation Register [FIR] Unit) td_cp_fir Core

x‘04’ L2 Slice v_cerrs STS/BIU

x‘08’ I/O z_ei_scom I/O

x‘0A’ BIU Controller t_gusras_reg STS/BIU

x‘40’ Power-On Reset (POR) tc_por ChipRAS

x‘50’ Global Controls (Free Running) ts_glob ChipRAS

x‘60’ SCOM Mode/Status (Free Running) t_pscom_cntl Always available

x‘8[0:4]’ Clock Controls (Free Running) tc_ccintf Always available

Table 12-3. SCOM Modifier Addresses  (Page 1 of 3)

Modifier SCOM Address 
(9:16) Register Domain See 

Page

x‘021001’ CoreRAS Control (Pulsed) Register Core 305

x‘021100’ CoreRAS Mode Register Core 307

x‘021200’ CoreRAS Status Register Core 311

x‘021301’ Core Hang-Recovery Control Register Core 314

x‘021400’ Core Power Down and Idle Status Register Core 317

x‘022001’ Service Processor Special Attention (SP-ATTN) Register Core 318

x‘022100’ Service Processor And-Mask Register Core 318

x‘022200’ Service Processor Or-Mask Register Core 318

x‘022601’ Asynchronous Machine-Check Source Register Core 319

x‘022700’ Asynchronous And-Mask Register Core 319

x‘022800’ Asynchronous Or-Mask Register Core 319

x‘023000’ Instruction Address Breakpoint Register Core 320

x‘023101’ Hardware Implementation Dependent Register 0 (HID0) Core 321

x‘023201’ Hardware Implementation Dependent Register 1 (HID1) Core 322

x‘023300’ Instruction Match CAM (IMC) Register Core 323

x‘023401’ Patch Map (IMC Write Control Register) Core 324

x‘023500’ Hypervisor Decrementer Core 325



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 301 of 415

x‘023600’ Time Base Register Core 326

x‘024001’ Performance Monitor Sampling Control Register Core 327

x‘030001’ Core Fault Isolation Register Core 328

x‘031000’ Core And-Mask Register Core 328

x‘032000’ Core Or-Mask Register Core 328

x‘030400’ Core Fault Isolation Mask Register Core 332

x‘031401’ Core And-Mask Register Core 332

x‘032401’ Core Or-Mask Register Core 332

x‘030800’ Core Checkstop Enable Registers Core 333

x‘030901’ Core Machine-Check Enable Register Core 334

x‘036001’ Instruction Mark Configuration Register Core 335

x‘040000’  L2 Fault Isolation Register STS/BIU 337

x‘041001’ L2 Fault Isolation And-Mask Register STS/BIU 337

x‘042001’ L2 Fault Isolation Or-Mask Register STS/BIU 337

x‘040801’ L2 Fault Isolation Checkstop Register STS/BIU 337

x‘040401’ L2 Error Mask Register STS/BIU 337

x‘041400’ L2 Error And-Mask Register STS/BIU 337

x‘042400’ L2 Error Or-Mask Register STS/BIU 337

x‘040801’ L2 Checkstop Enable STS/BIU 337

x‘043000’ BIU Mode Register STS/BIU 345

x‘083000’ PI Mode Register 0 I/O 347

x‘083101’ PI Mode Register 1 I/O 348

x‘083201’ PI Mode Register 2 I/O 349

x‘083300’ PI Mode Register 3 I/O 350

x‘084001’ PI Status Register I/O 351

x‘085000’ PI Command Register I/O 355

x‘086000’ Driver Initial Alignment Pattern (IAP) Register I/O 356

x‘086101’ Receiver IAP Register I/O 356

x‘0A0001’ BIU Fault Isolation Register/And-Mask/Or-Mask STS/BIU 340

x‘0A0400’ BIU Error Mask/And-Mask/Or-Mask STS/BIU 342

x‘0A0800’ BIU Checkstop Enable STS/BIU 343

x‘0A8000’ Processor Configurable Timing Delay Parameter Register (BUSCONF) STS/BIU  283

x‘0A9000’ BIU Status Register STS/BIU 344

x‘400000’ Power-On Reset Status Register ChipRAS 357

x‘400101’ Power-On Reset Continue Register ChipRAS 359

x‘400201’ Power-On Reset I2C/JTAG Arbitration Register ChipRAS 360

Table 12-3. SCOM Modifier Addresses  (Page 2 of 3)

Modifier SCOM Address 
(9:16) Register Domain See 

Page



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 302 of 415

Version 2.3
March 7, 2008

x‘400801’ Power-Management Control ChipRAS 361

x‘401400’ Power-On Reset Sequence Register 0 ChipRAS 363

x‘402400’ Power-On Reset Sequence Register 1 ChipRAS 364

x‘404400’ Power-On Reset Sequence Register 2 ChipRAS 365

x‘408001’ Power Tuning Status Register ChipRAS 366

x‘500001’ Global Fault Isolation for Checkstop Conditions (Global FIR) ChipRAS 367

x‘500400’ Error Enable Mask ChipRAS 368

x‘500601’ Mode Register for Fault Isolation Registers ChipRAS 369

x‘500700’ Debug Mode Register ChipRAS 370

x‘503001’ Hang Pulse Generation ChipRAS 372

x‘503100’ Early Hang Pulse Generation ChipRAS 373

x‘504101’ Chip ID Register ChipRAS 374

x‘600001’ SCOM Mode Register Always available 375

x‘600100’ SCOM Controller Error Register Always available 377

x‘600200’ Electronic Chip ID Always available 379

x‘600400’ Clock Ratio Register (N:1 Phase Hold Control) Always available 380

x‘800000’ Clock Command Register Always available 381

x‘800003’ Status Register Always available 383

x‘800006’ Phase Synchronization Control Register Always available 385

x‘800009’ Clock Command Control Register Always available 386

x‘80000A’ Energy Star Register Always available 391

x‘80000C’ Status Register Mask Always available 393

x‘80000F’ I/O Control Register Always available 394

x‘820004’ ABIST Status Register Always available 395

x‘840002’ LBIST Options Register Always available 396

x‘840008’ LBIST Channel Length Register Always available 398

x‘84000B’ LBIST Test Length Register Always available 399

x‘84000D’ Clock Ramping Configuration Register Always available 400

Table 12-3. SCOM Modifier Addresses  (Page 3 of 3)

Modifier SCOM Address 
(9:16) Register Domain See 

Page



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 303 of 415

12.2.1 Register Description Conventions

The descriptions of the SCOM registers use the following terms:

12.2.2 SCOM Error Handling

If an error occurs while servicing an SCOM command, the ANY_SCATTN bit in the Access Status Register is 
raised. The service processor unit (SPU) should issue an SCOM reset by using the Instruction Register (IR) 
operation code x‘1B’. Then, the SPU should read the SCOM Controller Error Register (x‘600100’) to see what 
the fault was. To clear ANY_SCATTN, first write all zeros to the SCOM Controller Error Register. Then write 
all zeros to the JTAG SCOM Status Register (x‘000080’). Finally write all zeros to the JTAG Access Status 
Register (x‘000002’). 

The following error indications in bits 0 through 23 of the SCOM Controller Error Register might be due to 
programming errors:

Name Refers to the instantiated latch name that will show up in the SCAN_DEF. The facility 
name enclosed in brackets is the data-out pin that can be referenced in the all event 
trace (AET) waveform file format.

Reserved Indicates that the latch might be implemented. The customer should write zeros and 
expect unknown data.

Not Implemented Indicates that the latch is not implemented (N/I). The customer should write zeros and 
expect zeros.

Type SCOM request type:

RW Read/Write

RO Read Only. Write requests to a read-only SCOM register are treated as 
NOPs, and the data is thrown away. A good response is returned.

WO Write Only. Read requests to a write-only SCOM register will result in an 
error condition.

RWor Read/Write OR. The write operation is a special type that will OR into 
the specified bits in the register. An associated write-only AND mask is 
provided to enable clearing bits in this type of SCOM register.

x‘010000’ Invalid address. Does not match any known address ranges.

x‘001041’ The address was decoded as a serial type and sent onto the SCOM serial ring, but no 
SCOM satellite accepted ownership of the address. This is probably due to the use of an 
invalid address.

x‘001040’ The address was decoded as a serial type read, but no data was returned. This is prob-
ably due to an invalid read request being sent on the serial SCOM bus. This error, for 
example, will happen if the customer attempts to read a write-only register.

Bits 24 through 27 of the SCOM Controller Error Register contain the failing SCOM address.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 304 of 415

Version 2.3
March 7, 2008

12.2.3 Access Status Register 

The Access Status Register contains bits that indicate error states that might occur during instruction or data 
scanning. This register is flushed to all zeros during POR. 

Modifier Address x‘000002’

A
tte

nt
io

n

M
_C

H
E

C
K

S
P

E
C

_A
T

T

R
E

C
_E

R
R

A
N

Y
_S

C
A

T
T

N

C
R

C
 M

is
co

m
pa

re

In
va

lid
 O

pc
od

e

In
va

lid
 M

od
ifi

er

M
od

ifi
er

 P
ar

ity
 E

rr
or

R
es

er
ve

d

C
I_

S
C

A
T

T
N

Reserved R
E

A
L_

M
A

C
H

_C
H

K

P
LL Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Names Description

0 Attention (Master) The source for this bit is ATTENT_DR.

1 M_CHECK 
Input to Access from the chip logic. 
Note:  This is the system checkstop.

2 SPEC_ATT SPEC_ATT input to Access from the chip logic.

3 REC_ERR REC_ERR input to Access from the chip logic.

4 ANY_SCATTN The OR of all SCOM attentions.

5 CRC Miscompare If set, a scan data check miscompare was found on a scan-in operation.

6 Invalid Opcode The IR opcode is not supported.

7 Invalid Modifier The instruction does not support the received modifier.

8 Modifier Parity Error Odd parity is required across bits 8 - 31 of the Instruction Register (the modifier address), except as 
noted in the Instruction Register description.

9 Reserved Reserved.

10 CI_SCATTN CI_SCATTN attention from the clock tree SCOM logic located in the ChipRAS clock control macro, 
ccintf.

11:13 Reserved Reserved.

14 REAL_MACH_CHK Machine check attention from the PowerPC 970 core.

15 PLL PLL has lost lock.

16:31 Reserved Reserved (not writable).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 305 of 415

12.3 Core Pervasive SCOM Register Definitions

12.3.1 Processor CoreRAS Facilities (x‘02[1:4]XXX’)

CoreRAS Control (Pulsed) Register

Address x‘021001’

Type WO

Reset N/A

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I pw
r_

dw
n

br
k_

hl
d

cn
cl

_p
en

d_
re

q

fr
c_

m
ch

k_
sr

es
et

fr
c_

qu
ie

s

fr
c_

co
re

_m
ai

nt

fr
c_

qu
ie

s_
st

at
e

fr
c_

ru
n_

st
at

e

in
j_

ftc
h_

hn
g

in
j_

fr
c_

rjc
t

in
j_

ds
pt

ch
_h

ng

in
j_

cm
pl

t_
hn

g

co
re

_r
un

_t
st

in
j_

nt
c

in
j_

nt
c+

1

cl
r_

in
st

_s
te

p

N/I N/I in
j_

sr
es

et
_m

an

in
j_

m
ch

k_
m

an

sr
es

et
_r

eq

in
st

_s
te

p

in
st

_s
ta

rt

in
st

_s
to

p

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:39 N/I Not implemented.

40 pwr_dwn Enter core Power Down mode. This works without setting the Power Management bit of the MSR Regis-
ter (MSR[POW]) (see bits 5:6 of the CoreRAS Mode Register on page 307).

41 brk_hld Break hold on IFU/LSU status after core hang detect due to external source (see bits 59:63 of the Cor-
eRAS Status Register on page 311).

42 cncl_pend_req Cancel pending requests (quiesce, soft reset, machine check, core step). Go ahead and accept pending 
mode changes as well.

43 frc_mchk_sreset Force the next machine check or soft reset (and all interrupts until then) to be marked nonrecoverable. 

44 frc_quies Force the core to quiesce manually (RAS LOGIC OVERRIDE).

45 frc_core_maint Force core maintenance mode (RAS LOGIC OVERRIDE).

46 frc_quies_state Force the quiesce state machine to the Quiesce state (RAS LOGIC OVERRIDE).

47 frc_run_state Force the quiesce state machine to the Run state (RAS LOGIC OVERRIDE).

48 inj_ftch_hng Inject fetch hang to test hang-recovery logic.

49 inj_frc_rjct Inject force reject hang to test hang-recovery logic.

50 inj_dsptch_hng Inject dispatch hang to test hang-recovery logic.

51 inj_cmplt_hng Inject completion hang to test hang-recovery logic.

52 core_run_tst

Core running test. Use to see if the core is running (clears bit 15 of the CoreRAS Status Register until a 
group completes).
Note:  Do not do this if in Maintenance Single Step mode (bit 54 of the CoreRAS Status Register must 
equal ‘0’). 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 306 of 415

Version 2.3
March 7, 2008

53 inj_ntc
Inject next to complete (NTC) for all instructions in the machine. Flush manually without the before and 
after waits.
Note:  Do not attempt if the processor is running.

54 inj_ntc+1
Inject next to complete plus one (NTC + 1) in all but the oldest instruction. Flush manually without the 
before and after waits. 
Note:  Do not attempt if the processor is running.

55 clr_inst_step Clear instruction stop due to checkstop. Also clears hang detection, hang history, and miscellaneous sta-
tus latches.

56 N/I Not implemented.

57 N/I Not implemented.

58 inj_sreset_man
Inject sreset manually (no auto quiesce). The ISU can OR x‘0100’ with another interrupt vector if they 
occur simultaneously. 
Note:  Do not attempt if the processor is running.

59 inj_mchk_man
Inject machine check manually (no auto quiesce). The ISU can OR x‘0200’ with another interrupt vector if 
they occur simultaneously.
Note:  Do not attempt if the processor is running.

Bit 15 of the CoreRAS Status Register will be cleared for bits 60:62 until a group completes (that is, until positive acknowledgment is 
received that the operation was successful).

60 sreset_req

SRESET request. This causes the core to first quiesce, and then vector to x‘0100’ and start instructions. 
If quiesce is unsuccessful, a soft reset will not occur. A special attention will be sent to the service pro-
cessor indicating a timeout on a quiesce request (assuming hang pulses are activated).
After the request, check that bit 15 of the CoreRAS Status Register equals ‘1’ to ensure that the soft reset 
was successful (core has started).

61 inst_step

Instruction step (core step).
Notes:  

• The core must be in Maintenance mode (quiesced) (see bit 12 of the CoreRAS Status Register on 
page 311). 

• Single Group Completion mode is active, which means a core flush and refetch occurs between 
each step. This allows the next instruction address (NIA) to be changed (via scan) between steps if 
wanted.

• Bit 43 of the CoreRAS Register determines the behavior. It is not determined by bit 54 of the 
CoreRAS Mode Register or bit 0 of Hardware Implementation Dependent Register 0 (HID0).

0 PowerPC instruction step (default). Completes more than one group if the PowerPC instruction 
is a microcoded, multi-group sequence.

1 Group step (for debug). Completes a single group or microcode group sequence. After the 
request, check that bit 15 of the CoreRAS Status Register equals ‘1’ to ensure that step was 
successful (core has started).

62 inst_start

Instruction start (core resume). 
Notes:  

• Core must be in Maintenance mode (quiesced) (see bit 12 of the CoreRAS Status Register on 
page 311).

• After the request, check that bit 15 of the CoreRAS Status Register equals ‘1’ to ensure that start 
was successful (core has started).

63 inst_stop
Instruction stop (core stop).
Note:  Causes core quiesce, and leaves core in Maintenance mode. 

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 307 of 415

CoreRAS Mode Register

Address x‘021100’

Type RW

Reset Reset to all zeros during POR.

dbg_thrtl pw
rd

w
n_

na
p/

do
ze

na
p_

ov
rid

e

in
_o

rd
er

_s
el

bl
k_

m
ch

k/
db

g_
in

t

Reserved N/I in
it_

is
u_

gl
bl

in
it_

is
u_

ar
ry

s

sc
om

c_
di

s

pe
rf

m
on

_i
nh

bt

en
_c

ia
br

pr
og

_m
ts

pr
_t

rig
0

do
n’

t_
st

op

do
n’

t_
qu

ie
s

trig_src in
t_

no
t_

ex
t_

tr
ig

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

db
g_

no
t_

ex
t_

tr
ig

ex
t_

tr
ig

_q
ui

es

db
g_

tr
ig

_a
ct

au
to

_c
or

e_
rs

m

cn
tl_

lo
gi

c

gp
s_

ld
_e

n

gd
_h

ng
_s

ta
te

gr
p_

cm
pl

t

gr
p_

st
ep

no
_q

ui
es

no
_w

ai
t_

sr
q

m
ch

k_
ex

t_
ck

st
p

qu
ie

s_
ex

t/f
ir_

ck
st

p

nt
c_

fls
h_

hn
g_

ac
t

m
an

_f
rc

_l
su

_r
jc

t

m
an

_h
ld

_f
tc

h

m
an

_s
to

p_
ds

pt
ch

m
an

_s
to

p_
cm

pl
t

1p
pc

/g
rp

si
ng

le
_g

rp
_c

m
pl

t

se
r_

gr
p_

ex
e

de
c_

hd
ec

_t
m

ba
se

kp
_a

sy
nc

_i
nt

hn
g_

rc
v_

lg
c_

ts
t

gp
s_

sr
c_

hn
g_

rc
v

di
s_

hn
g_

de
t_

rc
v

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:4 dbg_thrtl

Debug throttle modes. Periodically alter instruction flow based on Core Debug Throttle Control.
00000 None.
01xxx Stop fetch (both IFU and LSU prefetch).
0x1xx Stop dispatch.
0xx1x Stop completion.
0xxx1 Force LSU reject (stops issue from ISU to LSU).
11xxx One PowerPC per group (can quiesce depending on bit 44).
1x1xx Single group completion (will quiesce to change).
1xx1x Serialized group issue (will quiesce to change).
1xxx1 Serialized group dispatch (does not quiesce to change).

5 pwrdwn_nap/doze
Power down Nap/Doze mode enable override. (When set, ignores bits 8:9 of the Hardware Implementa-
tion Dependent Register 0 [HID0]) (see bit 6 for mode select).
Note:  To enter Power Down, software must either set MSR[POW] or use CoreRAS Control Register[40].

6 nap_ovride
Nap mode override selector.
0 Force Nap mode when bit 5 is set.
1 Force Doze mode when bit 5 is set.

7 in_order_sel

In-order issue select.
0 Serialized Group Execution, when selected, will serialize at dispatch. This is the most powerful 

form of serialization, and only allows one group in flight in the machine at a time. This includes 
branch and Condition Register (CR)-logical instructions. It also prevents groups from sharing 
ISU resources such as mappers and renames.

1 Serialized Group Execution, when selected, will serialize at issue. This does not include 
branches and CR-logical instructions and does not completely serialize the ISU.

8 blk_mchk/dbg_int

Blocks machine-check interrupt or debug interrupt injection based on debug triggers when one is already 
set in the Asynchronous Machine-Check Source Accumulation Register. This will prevent multiple trig-
gers from causing a checkstop with machine-check enable (ME) equal to ‘0’. It allows the interrupt han-
dler to ignore spurious triggers until it has a chance to clear the source register.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 308 of 415

Version 2.3
March 7, 2008

9:11 Reserved Spare.

12:19 N/I Not implemented.

20 init_isu_glbl Initialize ISU global completion table.

21 init_isu_arrys Initialize ISU SBM, SBX, and SFM arrays.

22 scomc_dis
SCOMC disable. This is a debug switch used to disable the core SCOM master accessible through the 
core SPR bus.
RAS logic treats an MTSCOMC instruction in the core as a NOP.

23 perfmon_inhbt Performance monitor inhibit (debug switch only; interrupts and multiplexer selects).

24 en_ciabr Enable CIABR (bit 22 in Hardware Implementation Dependent Register 0 [HID0] override active).

25 prog_mtspr_trig0

Programmable MTSPR TRIG0 mode.
0 SPR 976 mtspr_data is not used to form TRIG1 and TRIG2.
1 SPR 976 mtspr_data(63) causes TRIG1, and mtspr_data(62) causes TRIG2.
Note:  All zeros in SPR 976 mtspr_data(0:63) always cause TRIG0.

26 don’t_stop
Do not stop fetch, dispatch, and completion on checkstop. Set this bit when the chip is set to clock stop 
on a checkstop. Setting this bit prevents core scan rings from being corrupted when a checkstop occurs, 
because it takes several cycles to clock stop after a checkstop occurs.

27 don’t_quies
Do not attempt to quiesce, and then machine check or soft reset, during core hang recovery.
Note:  This will cause a checkstop if the first two attempts are unsuccessful.

RAS trigger sources to debug logic

28:30 trig_src

000 No internal trigger selected.
001 External trigger causes internal trigger.
010 Decrementer interrupt causes internal trigger.
011 External interrupt causes internal trigger.
100 Machine-check interrupt causes internal trigger.
101 Problem-state hang detect causes internal trigger.
110 Bad-state hang detect causes internal trigger.
111 Quiesce causes internal trigger.

31 int_not_ext_trig Internal trigger does not cause an external trigger.

32 dbg_not_ext_trig Core DBG trigger does not cause an external trigger.

RAS activities based on debug trigger

33 ext_trig_quies External trigger causes a core quiesce. Bit 37 determines behavior after the quiesce.

34:36 dbg_trig_act

Core DBG trigger causes:
000 No action selected.
001 Core quiesce (bit 37 determines behavior after the quiesce).
010 NTC flush (see bits 46:48 of the Core Hang-Recovery Control Register on page 314).
011 NTC + 1 flush (see bits 46:48 of the Core Hang-Recovery Control Register on page 314).
100 Machine-check interrupt (see bit 8 for mode to prevent checkstop).
101 Debug interrupt.
110 Enter Reduced Execution mode for a specified number of group completions (see bits 46:48 of 

the Core Hang-Recovery Control Register on page 314).
111 Pause (quiesce and hold prefetch) until core idle. 

37 auto_core_rsm

Auto core resume on core quiesce due to debug trigger. 
When debug or an external trigger causes quiesce:
0 Quiesce, set Special ATTN, and enter Core Maintenance mode.
1 Auto-start core immediately after ISU completes the quiesce, which implicitly causes a flush. 

Special ATTN is not set, and the core resumes normal instruction execution.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 309 of 415

RAS control logic modes

38:39 cntl_logic

00 No hang-pulse induced random periods.
10 Enter Reduced Execution mode for a random period after every hang pulse (see bits 46:48 of 

the Core Hang-Recovery Control Register on page 314).
01 Quiesce for a random period after every hang pulse.
11 Undefined.

40 gps_ld_en STS load mode enable. Throttle back core execution when the STS detects a memory subsystem hang.

41 gd_hng_state Return to the Good Hang state immediately after meeting the completion criteria. Do not wait on hang 
pulse to leave Reduced Throughput mode.

42 grp_cmplt

Use any group completed (instead of PowerPC) to debug logic (trace trigger) and to indicate progress for 
the hang detection logic.
0 PowerPC group completed.
1 Any group completed (including intermediate multi-group sequences).

43 grp_step Group step instead of PowerPC instruction step. Causes the instruction step not to enter a PowerPC 
mode automatically during Maintenance mode.

44 no_quies Do not quiesce when changing a PowerPC mode.

45 no_wait_srq Do not wait for the store reorder queue (SRQ) to be empty before auto-restarting after a quiesce due to a 
mode change, debug trigger, or when in single_group_completion mode.

46 mchk_ext_ckstp Machine check on an external checkstop, required for logical partitioning (LPAR).

47 quies_ext/fir_ckstp
Quiesce on external or FIR checkstop (default is hold completion). 
Note:  Causes Special ATTN to the service processor.

48:49 ntc_flsh_hng_act

Action to perform for NTC flush hang recovery when the LSU is not safe (that is, the load miss queue 
[LMQ] is not empty).
00 Do not attempt flush. This action continues to hold completion, dispatch, and force reject at the 

same time. It eventually transitions to the next Hang-Recovery state if the LSU is not safe.
01 Stop dispatch and completion (sets the Service Processor Special Attention (SP-ATTN) Regis-

ter).
10 Checkstop.
11 Do flush anyway. 

Caution:  For debug only.
Use the Unsafe NTC + 1 Mode (bit 17 of the Core Hang-Recovery Control Register) for NTC + 1 
flushes.

Core toolbox -- hooks for the service processor

50 man_frc_lsu_rjct Manually force LSU reject.

51 man_hld_ftch Manually hold fetch (both IFU and LSU).

52 man_stop_dsptch Manually stop dispatch.

53 man_stop_cmplt Manually stop completion.

Core toolbox -- behavior mode controls
Note:  The core must be quiesced before changing these fields. A corresponding HID0 change invokes the state machine to perform an 
automatic quiesce, mode change, and resume.

54 1ppc/grp
One PowerPC per Group mode. When set, ORed with HID0[0].
This means that no more than one PowerPC instruction will be placed in a group. Some instructions are 
expanded into a multiple-group, microcoded sequence.

55 single_grp_cmplt

Single Group Completion mode. When set, ORed with HID0[1], which causes an automatic group step.
This means that only one group (or microcoded group sequence) is allowed to complete at a time. A core 
quiesce (involving an instruction flush and refetch) occurs between the completion of each group. Subse-
quent groups of instructions will not be allowed to complete, but will be allowed to execute at the same 
time unless mode (bit 56) equals ‘1’.

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 310 of 415

Version 2.3
March 7, 2008

56 ser_grp_exe

Serialized Group Execution mode (in-order dispatch OR issue of groups).
• ORed with HID0[3] when inorder_issue_select equals ‘0’. 
• ORed with HID0[16] when inorder_issue_select equals ‘1’.

When set, this means that a group must be completed before the next one can be issued or dispatched, 
effectively serializing execution of groups in the processor. Subsequent groups of instructions are not 
allowed to execute at the same time (see inorder_issue_select, bit 7 of this register, for more details).

Core Maintenance Modes

57 dec_hdec_tmbase

Run decrementer (DEC), hypervisor decrementer (HDEC), and time base while instruction stepping (take 
ISU quiesced into account during maint_mode). This also allows DEC and HDEC interrupts, and only 
these interrupts, while instruction stepping.
Note:  DEC, HDEC, and time-base stopping only takes effect if bit 18 of HID0 equals ‘0’.

58 kp_async_int
Keep asynchronous interrupts during quiesce or instruction stepping. Asynchronous interrupts include 
decrementer, external, external machine-check, and performance monitor interrupts. If kept, the inter-
rupts present only after maintenance activity completes.

59:60 hng_rcv_lgc_tst

Hang-Recovery Logic Test modes.
00 None
01 Allow Problem Hang Recovery to break test hang.
10 Allow Bad Hang Recovery to break test hang.
11 Allow Machine-Check Hang Recovery to break test hang.

61:62 gps_src_hng_rcv

STS Source Core Hang-Recovery modes.
00 None (only attempt hang recovery if nothing is pending to the STS).
01 Special ATTN if ambiguous source or if either IFU or LSU indicates STS pending transactions.
10 Attempt core hang recovery if ambiguous source; there are possibly STS pending transactions. 
11 Always attempt a core hang recovery, even if ambiguous source or either IFU or LSU indicates 

STS pending transactions.
Note:  To cause Special ATTN for core-source hang detect (no STS pending), use bit 55 of the Core 
Hang-Recovery Control Register.

63 dis_hng_det_rcv Disable hang detection and recovery based on hang pulse.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 311 of 415

CoreRAS Status Register

Address x‘021200’

Type RO

Reset All zeros except bits 7, 12, 20, and 26. 

al
l_

qu
ie

s

is
u_

qu
ie

s

ck
st

p_
qu

ie
s

db
g_

qu
ie

s

pr
oc

/d
bg

_q
ui

es

at
tn

_q
ui

es

ls
ud

ab
r_

db
g_

qu
ie

s

po
r_

st

gc
t_

em
pt

y

sr
q_

em
pt

y

ls
u/

ifu
_n

o_
w

ai
t

ls
u_

qu
ie

s

m
ai

nt
_m

od
e

ck
st

p_
co

m
pl

t

qu
ie

s_
pe

nd

in
st

r_
co

m
pt

nt
c_

flu
sh

_n
ot

_s
af

e

nt
c_

no
t_

sa
fe

_s
tp

hn
g_

dt
ct

/r
cv

_s
tp

dm
an

d_
pe

nd

hng_state hng_state_hist

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmplt_cnt_lfsr gr
ps

_c
m

pl
t

ifu
/ls

u_
fe

tc
h_

hl
d

di
sp

tc
h_

st
p

cm
pl

t_
st

p

db
g_

th
rt

l_
hl

d

pe
rf

m
on

_i
nt

_h
ld

de
c_

in
t_

se
t

ex
t_

in
t_

se
t

th
er

m
_i

nt
_s

et

qu
ie

s_
st

at
e_

m
ch

1

qu
ie

s_
st

at
e_

m
ch

2

m
ai

nt
_s

ng
l_

st
ep

gp
s_

st
at

s_
hl

d

in
st

r_
st

ar
t_

pe
nd

m
od

e_
ch

g_
pe

nd

m
ch

k_
pe

nd

ifu
_d

em
an

d_
pe

nd

lm
q_

no
t_

em
pt

y

sr
q_

pe
nd

_b
us

y

sr
q_

pe
nd

_u
gl

y

xl
at

e_
pe

nd
in

g

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 all_quies Entire core is quiesced (that is, status[1] is equivalent to an AND of status[8:10]). 

1 isu_quies The ISU is quiesced for the reasons listed below.

2 ckstp_quies A checkstop caused the quiesce request.

3 dbg_quies Debug logic made the quiesce request to the ISU.

4 proc/dbg_quies The ISU completed quiesce as requested by the service processor or debug logic.

5 attn_quies An ATTN instruction quiesced the ISU.

6 lsudabr_dbg_quies
The LSU DABR Debug mode quiesced the ISU. 
Note:  CIABR will not set this bit, but bit 2 of the Service Processor Special Attention (SP-ATTN) Register 
will.

7 por_st
POR state (scan flush indicator). 
Forces stop dispatch.
When set, indicates a quiesce must be performed before starting the core.

8 gct_empty The ISU global completion table (GCT) is empty (quiesce indication).

9 srq_empty The ISU SRQ is empty (quiesce indication).

10 lsu/ifu_no_wait The LSU and IFU are not waiting for an STS transaction (NOR of the not-held but masked status sourc-
ing bits [59:63]).

11 lsu_quies

The LSU is quiesced.
• The LMQ is idle (there are no outstanding load misses, including speculative loads).
• The SRQ has no stores past completion.

The service processor should poll this bit to verify that both the STS and core are quiesced.

1. “Ugly” operations are unsafe instructions that are in flight, so that the machine state is not clean.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 312 of 415

Version 2.3
March 7, 2008

12 maint_mode

The core is in Maintenance mode; the ISU is quiesced or is being stepped. 
• Enter and stay in Maintenance mode when ISU quiesces (including during instruction stepping).
• Leave Maintenance mode when core resume, soft reset, or external machine check occurs (see 

bit 59 of the CoreRAS Mode Register on page 307).

13 ckstp_complt A checkstop stops completion.

14 quies_pend A quiesce request is pending.

15 instr_compt
An instruction (or group) completed since the last maintenance operation (that is, an instruction step, 
start, or soft reset). For a core running test, first use bit 55 of the CoreRAS Control (Pulsed) Register 
[x‘021001’]).

16 ntc_flush_not_safe An NTC flush is not safe and caused a checkstop (core HANG).

17 ntc_not_safe_stp An NTC is not safe and caused a Stop (ATTN).

18 hng_dtct/rcv_stp A hang detect/recovery caused a Stop (ATTN) on a Problem, Bad, or STS hang detect as programmed.

19 dmand_pend A Demand Instruction fetch has been pending since the last hang pulse.

20:25 hng_state

Hang state
Bit State
20 Good
21 Problem
22 Bad
23 Quiesce/Machine Check
24 Wait
25 Fail

26:31 hng_state_hist

Hang state history
Bit State
26 Good
27 Problem
28 Bad
29 Quiesce/Machine Check
30 Wait
31  Fail

32:39 cmplt_cnt_lfsr An 8-bit completion count LFSR. Matched against the Completion Count Limit in the Core Hang-Recov-
ery Control Register (see page 314).

40 grps_cmplt Set to one, once the programmed number of groups complete after Hang state. This bit clears on return 
to the Good state.

41 ifu/lsu_fetch_hld The CoreRAS logic is holding Fetch on both the IFU and LSU.

42 disptch_stp The CoreRAS logic has stopped Dispatch.

43 cmplt_stp The CoreRAS logic has stopped Completion.

44 dbg_thrtl_hld Work (instruction completion) is being held due debug throttle hooks to CoreRAS.

45 perfmon_int_hld Performance monitor interrupt is being held pending completion of a core maintenance operation.

46 dec_int_set Decrementer interrupt is set.

47 ext_int_set External interrupt is set.

48 therm_int_set Thermal interrupt is set.

49:51 quies_state_mch1

Quiesce state machine
Bit State
49 Quiesced
50 Running
51 Asynchronous interrupt

Bits Field Name Description

1. “Ugly” operations are unsafe instructions that are in flight, so that the machine state is not clean.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 313 of 415

52:53 quies_state_mch2

Quiesce state machine
Bit State
52 Change mode
53 Pause

54 maint_sngl_step Maintenance Single Stepping mode is in effect. The core is in Serial Dispatch mode (and automatically in 
a PowerPC mode if bit 43 of the CoreRAS Mode Register equals ‘0’).

55 gps_stats_hld The STS status (bits 59:63 of this register) is being held due to a core-STS hang detect for debug/fault 
isolation.

56 instr_start_pend Instruction start (core resume) pending, or an instruction (or group) step pending.

57 mode_chg_pend Mode change pending.

58 mchk_pend Machine check pending.

Note:  Bits 59 and 60:63 are maskable by scan latches (TDR.IFU_STAT_DIS and TDR.LSU_STAT_DIS). Normally, they follow the 
masked IFU/LSU signals. However, they are held when a core-STS hang detect occurs to aid in debug/fault isolation (indicated by bit 
55). Use bit 41 of the CoreRAS Control (Pulsed) Register to break the hold after an STS hang detect occurs. The hold is also broken 
during hang recovery as soon as a single group completes. However, it can take more than one group complete to deem hang recovery 
successful. In this case, if the processor is still hung, these status indicators follow the current status.

59 ifu_demand_pend The IFU has outstanding demand instruction fetches to the STS.

60 lmq_not_empty The LSU has outstanding loads to the STS (this also indicates that it is not safe to NTC flush).

61 srq_pend_busy The LSU has entries in the SRQ being held due to an STS busy on a store port.

62 srq_pend_ugly The LSU has outstanding ugly1 operations to the STS waiting for response. That is, an instruction cache 
block invalidate (ICBI), store word conditional (STWCX), or SYNC instruction is outstanding to the STS.

63 xlate_pending The LSU has an outstanding instruction or data-side table walk to the STS.

Bits Field Name Description

1. “Ugly” operations are unsafe instructions that are in flight, so that the machine state is not clean.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 314 of 415

Version 2.3
March 7, 2008

Core Hang-Recovery Control Register

Address x‘021301’

Type RW

Reset 0:7 Reset to x‘9F’ = 3 hang pulses 
8:15 Reset to x‘2D’ = 100 hang pulses
16:17 Reset to 00
18:27 Reset to x‘1FF’ = 1 × 255 default
36:43 Reset to x‘FE’ = 255 (maximum)
44:63 Reset to all zeros during POR, except bits 52 and 60.

hng_lmt gps_hng_lmt po
st

_f
lu

sh
_w

ai
t

un
sa

fe
_n

tc
+

1

pre_flush_wait hi
-r

es
_f

lu
sh

_c
nt

R
es

er
ve

d

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I cmplt_cnt_lmt ra
nd

_b
us

te
r_

cn
tl

se
r_

gr
p_

ex
e_

ra
nd

si
ng

l_
gr

p_
cm

pl
t_

ra
nd

1p
pc

/g
pr

_r
an

d

se
r_

gr
p_

ex
e_

pr
_h

ng

si
ng

l_
gr

p_
cm

pl
t_

pr
_h

ng

1p
pc

/g
pr

_p
r_

hn
g

nt
c+

1_
1s

t_
hn

g

sr
es

et
_3

rd
_h

ng

db
g_

in
t_

pr
_n

g

st
p_

at
tn

_1
st

_h
ng

se
r_

gr
p_

ex
e_

ba
d_

hn
g

si
ng

l_
gr

p_
cm

pl
t_

ba
d_

hn
g

1p
pc

/g
pr

_b
ad

_h
ng

st
p_

at
tn

_3
rd

_h
ng

nt
c_

flu
sh

_b
ad

_h
ng

db
g_

in
t_

ba
d_

hn
g

st
p_

at
tn

_b
ad

_h
ng

no
n_

re
co

ve
ra

bl
e

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:7 hng_lmt

Core hang limit (8-bit LFSR match value).
This is the number of hang pulses without a PowerPC instruction (or group) completion used to detect a 
core hang. It is used when the lsu_safe signal indicates there are no outstanding load/store (LD/ST) 
instructions to the STS.
This should be set to a minimum of 3 (LFSR code value for 3 is x‘9F’).

8:15 gps_hng_lmt

Core-STS hang limit (8-bit LFSR match value).
This is the number of hang pulses without a PowerPC instruction (or group) completion used to detect a 
core-STS hang. It is used when lsu_safe indicates outstanding load/store (LD/ST) instructions to the 
STS.
This must be set to a value greater than the core hang limit indicated in bits 0:7 of this register.

16 post_flush_wait
After flush wait time. After flush control.
0 Wait 255 cycles after attempting hang-recovery flush.
1 Use the before flush wait time, defined in bits 18:27, as the after flush wait time as well.

17 unsafe_ntc+1
Unsafe NTC + 1 mode.
0 Do not attempt NTC + 1 flushes if not safe.
1 Attempt NTC + 1 even if the LSU indicates not safe (the LMQ is not empty).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 315 of 415

18:27 pre_flush_wait

Before flush wait time. Wait time (x × 255 cycles) before hang-recovery flush (10-bit LFSR match value).
Dispatch and completion (and LSU force reject for NTC) are stopped during this wait before attempting 
flush.
1FF 1 × 255 = 255 cycles (minimum wait). 
3FE 1022 × 255 = 260610 cycles (maximum wait).
Note:  3FF (count of zero) is invalid and will cause undefined results.

28 hi-res_flush_cnt High-resolution flush counter (before and after wait times are single cycle instead of having a 255 multi-
plier).

29 Reserved Spare.

30:35 N/I Not implemented.

36:43 cmplt_cnt_lmt
Completion count limit (8-bit LFSR match value). 
This is the number of group completions to wait before returning to Good Hang state after a hang recov-
ery is attempted.

Random pulse hang buster controls

44:45 rand_buster_cntl

Random buster controls (use before and after wait times specified above).
00 Random pulse has no effect (disabled).
01 Random pulse injects NTC + 1 flush.
10 Random pulse injects NTC flush.

Caution:  A random NTC flush does not work in all cases. It should only be attempted in the 
bring-up lab. 

11 Random pulse stalls instruction dispatch and completion with no flush (only waits for the before 
flush time).

Note:  Bit 17 of this register and bits 48:49 of the CoreRAS Mode Register determine the behavior of 
these flushes when LSU indicates not safe. The recommended setting is to not flush when LSU is not 
safe if any of these Random Busters are enabled.

Degraded mode during random period (either random pulse or hang pulse induced)
Notes:  

• Bit 38 of the CoreRAS Mode Register must be set in order to enter these random periods. 
• These bits are also set until the programmed number of completions (above) have occurred after the flush on trigger. 
• inorder_issue_select (bit 7 of the CoreRAS Mode Register) affects the meaning of bits 46 and 49. 

46 ser_grp_exe_rand Serialized Group Execution mode during random period (or after flush on trigger).

47 singl_grp_cmplt_
rand Single Group Completion mode during random period (or after flush on trigger).

48 1ppc/gpr_rand One PowerPC per Group mode during random period (or after flush on trigger).

Degraded mode during first-level (problem) hang recovery (hang pulse based only)

49 ser_grp_exe_
pr_hng Serialized Group Execution mode during problem hang recovery.

50 singl_grp_cmplt_
pr_hng Single Group Completion mode during problem hang recovery.

51 1ppc/gpr_pr_hng One PowerPC per Group mode during problem hang recovery.

First-level (problem) hang state recovery actions (hang pulse based only)

52 ntc+1_1st_hng Attempt NTC + 1 flush for first hang detect (Problem Hang state). Default to ‘1’.

53 sreset_3rd_hng Perform SRESET instead of machine check (MCHK) for third-level hang recovery, unless disabled by bit 
27 of the CoreRAS Mode Register.

54 dbg_int_pr_ng Cause maintenance (debug) interrupt to be taken after problem hang recovery.

55 stp_attn_1st_hng Stop completion and cause special attention on first-level hang detect (sets the Service Processor Spe-
cial Attention [SP-ATTN] Register).

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 316 of 415

Version 2.3
March 7, 2008

Degraded mode during second-level (bad) hang recovery

56 ser_grp_exe_
bad_hng Serialized Group Execution mode during bad hang recovery.

57 singl_grp_cmplt_
bad_hng Single Group Completion mode during bad hang recovery.

58 1ppc/gpr_bad_hng One PowerPC per Group mode during bad hang recovery.

Second-level (bad) Hang state recovery actions

59 stp_attn_3rd_hng
Stop completion and cause special attention on third-level hang (sets the Service Processor Special 
Attention (SP-ATTN) Register).
Note:  Should also set bit 27 of the CoreRAS Mode Register.

60 ntc_flush_bad_hng Attempt NTC flush on a bad hang. Defaults to ‘1’.

61 dbg_int_bad_hng Causes a maintenance (debug) interrupt to be taken after a bad hang recovery.

62 stp_attn_bad_hng Stop completion and cause a special attention on a bad hang (sets the Service Processor Special Atten-
tion (SP-ATTN) Register).

Nonrecoverable machine check for hang-recovery control

63 non_recoverable Make all hang-recovery MCHKs or SRESETs nonrecoverable (only has an effect if the quiesce was suc-
cessful).

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 317 of 415

Core Power Down and Idle Status Register

Address x‘021400’

Type RO

Reset Bits 0, 7, and 17 are initialized to ‘1’.

pwr_dwn st
p_

ifu
/ls

u_
ftc

h

pw
r_

dw
n_

w
ai

t

int_status as
yn

c_
in

t_
pe

nd

id
le

w
ai

t_
is

u_
id

le

id
le

_c
nt

_m
tc

h

idle_lfsr N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:6 pwr_dwn Power Down State Machine (0:6).

7 stp_ifu/lsu_ftch IFU fetch and LSU prefetch stopped.

8 pwr_dwn_wait Power down wait timer.

9:15 int_status

Interrupt status.
Bit
9 Thermal interrupt active.
10 External interrupt active.
11 External machine check active or held, or machine check pending.
12 External sreset active or held, or sreset pending.
13 Performance monitor interrupt held.
14 Decrementer interrupt active.
15 Reserved. 

16 async_int_pend Asynchronous interrupt pending in the ISU.

17 idle Core idle indication.

18 wait_isu_idle Wait for idle from ISU.

19 idle_cnt_mtch Idle count match.

20:27 idle_lfsr Idle LFSR value.

28:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 318 of 415

Version 2.3
March 7, 2008

Service Processor Special Attention (SP-ATTN) Register
Service Processor And-Mask Register
Service Processor Or-Mask Register

Any bit set in this register will drive a special attention to the service processor. The processor core can use 
this register to implement a mailbox function to communicate with the service processor.

Note:  This is an accumulation register, and each source must be cleared to deassert the special attention. 
The AND mask should be used to clear bits in the register. The OR-mask should be used by software to set 
new bits in order to prevent an attention from another source from being missed.

Address x‘022001’
x‘022100’ (AND)
x‘022200’ (OR)

Type RW
WO (AND)
WO (OR)

Reset Reset to all zeros during POR. 

sp
_a

ttn
_r

eq

sp
_a

ttn
_i

ns
t

db
g_

da
br

_s
tp

he
lp

_r
eq

_h
ng

ra
s_

tr
ig

_q
ui

es

fir
_s

p_
at

tn

qu
ie

s_
re

q_
tim

ou
t

pr
og

ra
m

m
ab

le

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 sp_attn_req Core-to-service-processor special-attention request.

1 sp_attn_inst SP-ATTN instruction. The ISU is quiesced for maintenance due to a software breakpoint.

2 dbg_dabr_stp A debug DABR soft stop (or ISU CIABR) caused the core quiesce.

3 help_req_hng

Core hang detected results from a CoreRAS help request to the service processor (see CoreRAS Status 
Register on page 311).
Bit 41 of the CoreRAS Mode Register and bits 55 and 62 of the Core Hang-Recovery Control Register 
determine the mode.
As a precaution, core dispatch and completion are stopped while this bit is set.

4 ras_trig_quies RAS trigger caused core quiesce.

5 fir_sp_attn Core FIR-induced Special ATTN.

6 quies_req_timout Time out on quiesce request (or pending change needing a quiesce). Two hang pulses have occurred 
and the request is still pending.

7:9 programmable Programmable by the software or operating system.

10:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 319 of 415

Asynchronous Machine-Check Source Register
Asynchronous And-Mask Register
Asynchronous Or-Mask Register

This register indicates the source of all asynchronous machine-check events. When any source event occurs, 
quiesce, then vector to x‘0200’, and restart instruction execution. If the quiesce is unsuccessful, a machine 
check will not occur. A special attention will be sent to the service processor indicating a timeout on the 
quiesce request (assuming hang pulses are activated). The service processor can then check bit 58 of the 
CoreRAS Status Register to see if the machine check was accepted or is still pending.

Note:  This is a history accumulation register and must be cleared after each interrupt to absolutely determine 
the new source. The AND mask should be used to clear bits in the register. Software should use the OR 
mask to set new bits to prevent an interrupt from another source from being missed.

Address x‘022601’ 
x‘022700’ (AND)
x‘022800’(OR)

Type RW
WO (AND)
WO (OR)

Reset Reset to all zeros during POR. 

ex
t_

m
ch

k

fir
_m

ch
k

hn
g_

rc
v_

m
ch

k_
in

t

db
g_

tr
ig

_m
ch

k_
in

t

m
ch

k_
no

t_
ex

t_
ch

ks
tp

pr
og

ra
m

m
ab

le

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 ext_mchk External machine check from the chip C4 pin.

1 fir_mchk FIR induced machine check (see Section 12.3.4 Processor Core FIR Facilities (x‘03[0:5]XXX’) on 
page 328). 

2 hng_rcv_mchk_int Hang-recovery machine-check interrupt attempt.

3 dbg_trig_mchk_int Debug-logic trigger machine-check interrupt.

4 mchk_not_ext_
chkstp

Machine check instead of external checkstop (see the CoreRAS Mode Register on page 307). Intended 
for the LPAR.

5:7 programmable Programmable by software or the operating system. 

8:63 N/I Not implemented



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 320 of 415

Version 2.3
March 7, 2008

12.3.2 Processor Core SPR SCOM Access (x‘023XXX’)

Instruction Address Breakpoint Register 

The Instruction Address Breakpoint Register (IABR) supports the address-breakpoint instruction. Writing this 
SCOM register only sets latches in the IFU, which can also be set by scan (GCP.PIFU.IFBT.IABR.L2[0:63]).

An IABR match occurs on the fetch of any instruction, even a speculative instruction. By default, the IABR 
matches if the address in the current fetch group is equal to or after the current IFAR. There can be multiple 
IABR matches for a single instruction before it is actually executed (or completed).

An additional mode bit accessible through scan only forces exact matches (GCP.PIFU.IFBC.ASSSCANON-
LYNEW[7]).

Note:  This register uses the IFU FETCH address, not the current instruction address (CIA) that is executing. 

Address x‘023000’

Type WO

Reset Reset to all zeros during POR. 

cmpr_addr

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

cmpr_addr br
kp

nt
_e

n

tr
an

s_
en

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:61 cmpr_addr Word address to be compared.

62 brkpnt_en Breakpoint enabled. An address match causes a trigger to the debug logic.

63 trans_en Translation enabled. An IABR match is signaled only if MSR[IR] matches this bit.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 321 of 415

Hardware Implementation Dependent Register 0 (HID0)

Address x‘023101’

Type RW

Reset Reset to all zeros during POR. 

HID0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

HID0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 HID0 See the HID0 SPR definition in Section 2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5) on page 54.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 322 of 415

Version 2.3
March 7, 2008

Hardware Implementation Dependent Register 1 (HID1)

Address x‘023201’

Type RW

Reset Reset to all zeros during POR. 

HID1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

HID1

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 HID1 See the HID1 SPR definition in Section 2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5) on page 54.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 323 of 415

Instruction Match CAM (IMC) Register

Address x‘023300’

Type WO

Reset N/A

match_config

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

match_config N/I replc_predecd(59) re
pl

c_
pr

ed
ec

d

en
_m

ar
k

cam_indx

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:41 match_config

Match configuration bits. 
See bits 61:63 of the current register for definitions of the v0 and v1 bits.
v0,v1 00 No match (disable entire entry).
v0,v1 01 Match a ‘1’.
v0,v1 10 Match a ‘0’.
v0,v1 11 Match always (zeros and ones are irrelevant).

42:52 N/I Not implemented.

53:58 replc_predecd(59)
Replacement predecode bits 0:5 (used only when bit 59 is set to ‘1’).
Note:  SPR cannot access this field.

59 replc_predecd
Replace predecode bits 0:5 with bits 53:58 of this register.
Note:  SPR cannot access this field.

60 en_mark

Enable mark (for power controller (SPU) sampling or enabling hardware workarounds).
Note:  Setting this bit is incompatible with Single-Step Trace Enable (MSR[SE]) mode. It will cause bits 
35, 36, and 42 of Save/Restore Register 1 (SRR1), as well as the Sampled Instruction Address Register 
(SIAR) and the Sampled Data Address Register (SDAR), to be undefined.

61:63 cam_indx

Content addressable memory (CAM) index (entry select).
000:101 IMC[0:20] v0

IMC[21:41] v1 Partial match (for entries 0-5)
Instruction bits 0:5, 21:31 Problem (PR), floating point (FP) available, 

Vector/SIMD Multimedia eXtension (VMX) Available mode 
110 IMC[0:35] v0

IMC[36:41] ‘000000’ Full match (v0 for entry 6)
Instruction bits 0:31 PR, FP, VMX mode

111 IMC[0:35] v1
IMC[36:41] ‘000000’ Full match (entry 7 = v1 for entry 6)
Instruction bits 0:31 PR, FP, VMX mode



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 324 of 415

Version 2.3
March 7, 2008

Patch Map (IMC Write Control Register)

Address x‘023401’

Type RW

Reset Reset to all zeros during POR. 

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I partial_imc fu
ll_

im
c

R
es

er
ve

d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:55 N/I Not implemented

56:61 partial_imc Partial match IMC entry (0:5) is being used for debug. Do not allow SPR write to corresponding IMC 
entry.

62 full_imc Full match IMC entries (6 AND 7) are used for debug. Do not allow SPR write to corresponding IMC 
entries.

63 Reserved Reserved.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 325 of 415

Hypervisor Decrementer 

Address x‘023500’

Type RO

Reset Reset to ‘7FFFFFFF’ during POR. 

hdec

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:32 hdec Current HDEC value. Continuously runs with 8:1 divided core clocks.

32:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 326 of 415

Version 2.3
March 7, 2008

Time Base Register 

Address x‘023600’

Type RO

Reset Reset to all zeros during POR. 

upper

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lower

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:32 upper Upper time base. Runs with 8:1 divided core clocks or off an external nonuniform memory access 
(NUMA) oscillator.

32:63 lower Lower time base. Runs with 8:1 divided core clocks or off an external NUMA oscillator.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 327 of 415

12.3.3 Processor Core Performance Monitor Sampling Control (x‘02400X’)

Performance Monitor Sampling Control Register

Address x‘024001’

Type RW

Reset Reset to x‘0414’ during POR. 

idle_dly cmplt_dly N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:7 idle_dly Idle delay. 

8:15 cmplt_dly Completion delay.

16:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 328 of 415

Version 2.3
March 7, 2008

12.3.4 Processor Core FIR Facilities (x‘03[0:5]XXX’)

Core Fault Isolation Register
Core And-Mask Register
Core Or-Mask Register

Address x‘030001’
x‘031000’ (AND)
x‘032000’ (OR) 

Type RW
WO (And)
WO (OR)

Reset Reset to all zeros during POR.

Ic
ch

_p
ar

_e
rr

Ic
ch

_t
g_

pa
r_

er
r

ie
ra

t_
pa

r_
er

r

ifu
_u

e_
l2

ifu
_c

hk
_s

tp

dc
ch

_p
ar

_e
rr

dc
ch

_t
g_

pa
r_

er
r

de
ra

t_
pa

r_
er

r

ls
u_

tlb
_p

ar
_e

rr

ls
u_

sl
b_

pa
r_

er
r

ls
u_

l2
_u

e

ls
u_

ck
_s

tp

fp
u_

ck
_s

tp

ch
k_

st
p_

tr
g

id
u_

ck
_s

tp

is
u_

ck
_s

tp

R
es

er
ve

d

fx
u_

ck
_s

tp

pr
oc

_h
ng

_u
kn

_s
rc

pr
oc

_h
ng

_i
nt

_s
rc

pr
oc

_h
ng

_e
xt

_s
rc

pr
oc

_h
ng

_n
o_

rp
r

m
ch

_c
hk

_m
e0

sp
r_

pr
tc

l_
vi

ol

sc
om

c_
ab

en
d

in
v_

sw
_a

cc
_i

m
c

in
v_

sc
om

c_
ad

dr

R
es

er
ve

d

in
v_

db
g_

th
rt

l

R
es

er
ve

d

ci
u_

ch
k_

st
p

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 Icch_par_err

I-cache parity error.
Treated as an L1 cache miss. Instructions fetched from L2 or the prefetch buffer, and first instruction 
bypassed to decode. 
Note:  Even with a hard failure in the I-cache, forward progress can be made because instructions are 
bypassed from the L2 to decode. Because the I-cache can report multiple errors for a soft fail, the operat-
ing system will be called to flush the I-cache.

(Service Element Threshold)

1:2 Icch_tg_par_err

I-cache tag parity error (array 0, array 1). 
Treated as an L1 cache miss. Instructions fetched from L2 or the prefetch buffer, and first instruction 
bypassed to decode.
Note:  Even with a hard failure in the I-cache, forward progress can be made because instructions are 
bypassed from the L2 to decode. Because the I-cache can report multiple errors for a soft fail, the operat-
ing system will be called to flush the I-cache.

(Service Processor Threshold)

Note:  For processor hang detects, reference bits 26:31 of the CoreRAS Status Register to determine the extent of hang recovery that 
was required. In addition, for a processor hang with either an external or unknown source, the specific LSU and IFU status is available 
in bits 59:63 of the CoreRAS Status Register. Write to bits 55 and 41 respectively of the CoreRAS Control Register when clearing these 
processor hang FIR bits to clear the recovery and status information (if the hang was successfully recovered) for future diagnostics. 
Check bits 61:63 of the CoreRAS Mode Register to see what types of hang recovery are enabled (these settings affect how the Check-
stop Enable mask should be set for these bits).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 329 of 415

3 ierat_par_err

I-ERAT parity error.
Treated as an I-ERAT miss. I-ERAT is reloaded from the TLB. Hardware does a flash invalidate of the 
I-ERAT. The hardware can tolerate one hard failure, but with slightly degraded performance because the 
error causes I-ERAT selection to go to the other processing unit where there will be a good I-ERAT. 
Note:  A stuck fault on side 0 will hang the machine.

(Service Processor Threshold)

4 ifu_ue_l2

The IFU fetched an uncorrected error (UE) from the L2.
Corrupted data is discarded (not written into the I-cache). A speculative fetch that is not needed is dis-
carded and instruction processing continues. An instruction that is required by the sequential execution 
model (SEM) causes a machine check interrupt.

• SRR0 Address of corrupted instruction
• SRR1 MSR bits and a bit indicating an instruction UE

(PASSED ERROR)

5 ifu_chk_stp
The IFU detected a checkstop condition.
Processor execution is halted. A system checkstop is raised that will halt the rest of the processors in the 
complex.

6 dcch_par_err

D-cache parity error.
If the load was speculative and is eventually cancelled, instruction processing continues on the correct 
path (no interrupt is generated). If the load is required by the SEM, a machine check interrupt is gener-
ated reporting the error. 

• Common D-cache error recovery
• SRR1 Bit indicating a LD/ST error
• DSISR Bit indicating L1 data array parity

(Machine Check Software Threshold)

7 dcch_tg_par_err

D-cache tag parity error.
If the load was speculative and is eventually cancelled, instruction processing continues on the correct 
path (no interrupt is generated). If the load is required by the SEM, a machine check interrupt is gener-
ated reporting the error.

• Common D-cache error recovery
• SRR1  Bit indicating a LD/ST error
• DSISR  Bit indicating L1 address tag parity error

8 derat_par_err

D-ERAT parity error.
If the access was speculative and is eventually cancelled, instruction processing continues on the correct 
path (no interrupt is generated). If the access is required by the SEM, a machine check interrupt is gener-
ated reporting the error.

• Common D-cache error recovery
• SRR1 Bit indicating a LD/ST error
• DSISR Bit indicating D-ERAT parity

(Machine Check Software Threshold)

9 lsu_tlb_par_err

LSU TLB parity error.
If the access was speculative and is eventually cancelled, instruction processing continues on the correct 
path (no interrupt is generated), but the DERAT might be corrupted. If the access is required by the SEM, 
a machine check interrupt is generated reporting the error.

• Common D-cache error recovery
• SRR1  Bit indicating a LD/ST error
• DSISR  Bit indicating a TLB parity error

(Machine Check Software Threshold)

Bits Field Name Description

Note:  For processor hang detects, reference bits 26:31 of the CoreRAS Status Register to determine the extent of hang recovery that 
was required. In addition, for a processor hang with either an external or unknown source, the specific LSU and IFU status is available 
in bits 59:63 of the CoreRAS Status Register. Write to bits 55 and 41 respectively of the CoreRAS Control Register when clearing these 
processor hang FIR bits to clear the recovery and status information (if the hang was successfully recovered) for future diagnostics. 
Check bits 61:63 of the CoreRAS Mode Register to see what types of hang recovery are enabled (these settings affect how the Check-
stop Enable mask should be set for these bits).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 330 of 415

Version 2.3
March 7, 2008

10 lsu_slb_par_err

LSU SLB parity error.
If the access was speculative and is eventually cancelled, instruction processing continues on the correct 
path (no interrupt is generated), but the DERAT might be corrupted. If the access is required by the SEM, 
a machine check interrupt is generated reporting the error.

• Common D-cache error recovery
• SRR1 Bit indicating a LD/ST error
• DSISR Bit indicating an SLB parity error

If a multiple hit occurs, this bit is also set, because it cannot be determined whether there was a data par-
ity error (because all the data is ORed together).
(Machine Check Software Threshold)

11 lsu_l2_ue

LSU fetched an L2 UE.
If the instruction is required by the SEM, a machine check interrupt is generated reporting the error.

• SRR0 Address of the instruction to be executed
• SRR1 Bit indicating a LD/ST error
• DSISR  Bit indicating the type of UE

The I-ERAT might be corrupted. The TLB might be corrupted.
(PASSED ERROR)

12 lsu_ck_stp
LSU detected checkstop condition.
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.

13 fpu_ck_stp
FPU 0 or FPU 1 detected a checkstop condition. 
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.

14 chk_stp_trg
Checkstop on trigger (debug only).
Programmable at the chip level. The trigger can be that processor execution is halted, a system check-
stop, or even a clock stop for debug.

15 idu_ck_stp
IDU detected a checkstop condition.
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.

16 isu_ck_stp
ISU detected a checkstop condition.
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.

17 Reserved Reserved (connected to additional ISU output).

18 fxu_ck_stp
FXU 0 or FXU 1 detected a checkstop condition.
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.

19 proc_hng_ukn_src

Processor hang detected with an unknown source (could be either internal or external).
The source is not known for sure to be internal or external to the core because the LSU indication of out-
standing transactions to the STS is not stable. A processor hang recovery will be invoked in an attempt to 
clear the hang condition only if recovery on unsure source has been enabled.

20 proc_hng_int_src

Processor hang detected that was due to an internal source. 
Source is known to be internal to the core because neither the IFU or LSU have outstanding demand 
requests to the STS. Processor hang recovery has been invoked in an attempt to clear the hang condi-
tion only if recovery on the internal source has been enabled.

Bits Field Name Description

Note:  For processor hang detects, reference bits 26:31 of the CoreRAS Status Register to determine the extent of hang recovery that 
was required. In addition, for a processor hang with either an external or unknown source, the specific LSU and IFU status is available 
in bits 59:63 of the CoreRAS Status Register. Write to bits 55 and 41 respectively of the CoreRAS Control Register when clearing these 
processor hang FIR bits to clear the recovery and status information (if the hang was successfully recovered) for future diagnostics. 
Check bits 61:63 of the CoreRAS Mode Register to see what types of hang recovery are enabled (these settings affect how the Check-
stop Enable mask should be set for these bits).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 331 of 415

21 proc_hng_ext_src

Processor hang detected that was due to an external source.
Source is external to the core because the LSU or IFU indicates that a demand request to the STS is out-
standing. Processor hang recovery has been invoked in an attempt to clear the hang condition only if 
recovery on the external source has been enabled. No field replaceable unit (FRU) call is possible; diag-
nostics should call for the next level of support. 

22 proc_hng_no_rpr

Processor hung beyond repair. 
Core hang recovery failed. The processor is not making forward progress after all attempts at hang 
recovery. A system checkstop is raised, which will halt the rest of the processors in the complex. No FRU 
call is possible; diagnostics should call for the next level of support.

23 mch_chk_me0

Machine check and MSR[ME] equals ‘0’. 
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.
This is a latent checkstop. In other words, another error in the system caused a machine check. If this 
error is on by itself, diagnostics should call out the run time abstraction software (RTAS) or System 
Licensed Internal Code (SLIC).

24 spr_prtcl_viol
Core SPR bus has violated protocol or SCOMC arbiter error.
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex. This is a software error. Diagnostics should call out the RTAS or SLIC.

25 scomc_abend
SCOMC ABEND.
Either an SCOM reset was issued through JTAG or a core hang recovery was activated while an 
SCOMC request was active. This error is recoverable.

26 inv_sw_acc_imc
Invalid software access to IMC.
The software, probably the performance monitor code, tried to write an IMC entry that was being used for 
debug (force only) according the patch map. The state of the machine is not altered.

27 inv_scomc_addr
Invalid SCOMC address.
The address used by SCOMC was not accepted by any of the SCOM satellites. This error is recoverable. 
This is a software error. Diagnostics should call out the RTAS or SLIC.

28 Reserved Spare. System checkstop.

29 inv_dbg_thrtl Service processor attempted an invalid debug throttle setting. Command is ignored.

30 Reserved Spare. System checkstop.

31 ciu_chk_stp
CIU detected checkstop condition. 
Processor execution is halted. A system checkstop is raised, which will halt the rest of the processors in 
the complex.

32:63 N/I Not implemented.

Bits Field Name Description

Note:  For processor hang detects, reference bits 26:31 of the CoreRAS Status Register to determine the extent of hang recovery that 
was required. In addition, for a processor hang with either an external or unknown source, the specific LSU and IFU status is available 
in bits 59:63 of the CoreRAS Status Register. Write to bits 55 and 41 respectively of the CoreRAS Control Register when clearing these 
processor hang FIR bits to clear the recovery and status information (if the hang was successfully recovered) for future diagnostics. 
Check bits 61:63 of the CoreRAS Mode Register to see what types of hang recovery are enabled (these settings affect how the Check-
stop Enable mask should be set for these bits).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 332 of 415

Version 2.3
March 7, 2008

Core Fault Isolation Mask Register
Core And-Mask Register
Core Or-Mask Register

Address x‘030400’
x‘031401’ (AND)
x‘032401’ (OR)

Type RW
WO (AND)
WO (OR)

Reset Reset to all ones during POR.

fir_mask

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 fir_mask
Mask
1 FIR bit masked off.

32:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 333 of 415

Core Checkstop Enable Registers

Address x‘030800’

Type RW

Reset Reset to all zeros during POR. 

fir_ckstp

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 fir_ckstp Causes a checkstop to occur when the corresponding FIR bit is set.

32:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 334 of 415

Version 2.3
March 7, 2008

Core Machine-Check Enable Register

Address x‘030901’

Type RW

Reset Reset to all zeros during POR. 

fir_mchk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 fir_mchk Causes a machine check to occur when the corresponding FIR bit is set.

32:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 335 of 415

12.3.5 Instruction Mark Configuration (x‘03600X’)

Instruction Mark Configuration Register

Address x‘036001’

Type RW

Reset Reset to nonmarking mode during POR.

imr_mask ‘1111’
imr_select  ‘1’

All other bits are zero at POR.

im
r_

se
le

ct

im
r_

m
ar

k_
m

od
e

imr_mask imr_match im
r_

fil
te

r_
m

od
e

sc
om

_i
m

r_
en

sa
m

pl
e_

ov
rd

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 imr_select
Determine stage-1 eligibility from:
0 Predecode match (uses imr_match and imr_mask, bits 3:10 below).
1 Instruction match (IMR bit from IMC match).

1:2 imr_mark_mode

Chooses which instructions are stage-2 eligible for marking based on:
00 All stage-1, eligible internal operations (IOPs). 
01 Only stage-1, eligible IOPs that resulted from microcode expansion.
10 Only one IOP per PowerPC instruction regardless of stage-1 eligibility.
11 First IOP that goes to the LSU for every PowerPC LD/ST instruction regardless of stage-1 eligi-

bility.

3:6 imr_mask Value ANDed with predecode before performing the predecode match.

7:10 imr_match Value used to perform an exact compare against the masked 4-bit predecode field, used in determining 
stage 1 eligibility. To predecode, match all IOPs; set imr_mask to ‘0000’ and imr_match to ‘0000’.

11:12 imr_filter_mode

Picks which stage 2, eligible IOPs are sampled as a marked group in the machine.
00 Sample all stage-2 eligible IOPs.
01 Sample only the first stage-2 eligible IOP in each group.
10 Randomly sample from all stage-2 eligible IOPs.
11 Sample only the first randomly picked stage-2 eligible IOP in each group.
Note:  Used for both Performance Monitor and Debug modes.

13 scom_imr_en SCOM IMR enable. Use the first eleven bits of this register instead of performance monitor selects from 
the Monitor Mode Control Register 2 (MMCR2).

Usage Note:  To use the IMC facility to set marks for debug triggering based on instruction match, set this register to “80060000 
00000000” after configuring the Instruction Match CAM (IMC) Register (x‘023300’).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 336 of 415

Version 2.3
March 7, 2008

14 sample_ovrd
Sample override. 
Overrides the active performance monitor “ok_to_sample” indication. Enables the above marking modes 
for use in debug.

15:63 N/I Not implemented. 

Bits Field Name Description

Usage Note:  To use the IMC facility to set marks for debug triggering based on instruction match, set this register to “80060000 
00000000” after configuring the Instruction Match CAM (IMC) Register (x‘023300’).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 337 of 415

12.4 Storage Subsystem SCOM Register Definition

12.4.1 L2 SCOM Register Definition

L2 Fault Isolation Register
L2 Fault Isolation And-Mask Register
L2 Fault Isolation Or-Mask Register
L2 Fault Isolation Checkstop Register
L2 Error Mask Register
L2 Error And-Mask Register
L2 Error Or-Mask Register
L2 Checkstop Enable

FIR Address x‘040000’
x‘041001’ (AND)
x‘042001’ (OR)

Error Mask Address x‘040401’
x‘041400’ (AND)
x‘042400’ (OR)

Checkstop Enable 
Address

x‘040801’ 

Type RW (FIR)
WO (And)
WO (OR)
WR (Checkstop)

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I  l2
_c

e

l2
_u

e

l2
_s

pe
c_

ue

l2
_d

ir_
pa

r_
er

r

l2
_d

ir_
ck

st
p

l2
_h

ng
_d

et
ec

t

l2
_s

tq
_p

ar
_e

rr

da
ta

_t
m

ou
t_

er
r

da
ta

_t
ag

_e
rr

st
q_

st
_e

rr

qu
ad

0_
ce

_t
hr

es
h

qu
ad

1_
ce

_t
hr

es
h

qu
ad

2_
ce

_t
hr

es
h

qu
ad

3_
ce

_t
hr

es
h

m
ul

t_
ca

ch
e_

ce

m
ul

t_
di

r_
pa

r_
er

r

ill
_c

re
sp

in
v_

m
er

si

nc
u_

sn
p_

pa
am

nc
u_

sn
p_

cr
es

p

nc
u_

cr
es

p_
ill

nc
u_

cr
es

p_
tm

ou
t

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

Default Mask Settings

Error Mask Checkstop 
Enable

0:41 N/I Not implemented 0 0



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 338 of 415

Version 2.3
March 7, 2008

42  l2_ce

L2-cache correctable data error (CE).
• L2 CE on processor request (instruction or data). Data is corrected before 

forwarding to the processor. Corrected data is written back to the L2 
cache.

• L2 CE on castout (flush, read with intent to modify [RWITM], or victim of a 
replacement). Data is corrected before forwarding to the BIU. The 
threshold equals 32.

0 0

43 l2_ue

L2-cache uncorrectable error (UE).
• A UE is detected in the L2-cache response to a processor load request. 

The UE response is sent to the requesting core. 
• A store hits in the L2 line that contains a UE. The store is merged into the 

line (timing does not permit discarding the store). Write a UE error check-
ing and correction (ECC) to distinguish between a passed error from 
another source and a local UE that has been altered. 

• Uncorrectable error detected in the L2 cache in response to a cast out 
operation. A special UE (SUE) is sent to memory.

0 1

44 l2_spec_ue
L2-cache special UE.
Same as bit 43, cache UE (passed error).

1 0

45 l2_dir_par_err
L2-directory parity error.
The failing directory is refreshed with the contents of the other directory. The 
threshold equals 32.

0 0

46 l2_dir_ckstp
L2-directory checkstop.
L2-directory parity error is detected on both halves of the directory. 
System checkstop.

0 1

47 l2_hng_detect

L2 hang detect.
No response to memory read request. The same action is taken regardless of 
whether some other component acknowledged the request and then never 
returned the data, or no component on the fabric acknowledged the request.
System checkstop.

0 1

48 l2_stq_par_err
L2 store-queue parity error.
Any of the four store queues has a parity error.
System checkstop.

0 1

49 data_tmout_err
Read/claim (RC) machine data timeout error. This is an internal control error.
System checkstop.

0 1

50 data_tag_err

Non-cacheable control or RC machine data tag error.
Either the non-cacheable control (ncctl) or the RC final state machine 
(rcfsm0-3) detected a valid data tag match when they were not expecting data. 
This is an internal control error.
System checkstop.

0 1

51 stq_st_err

Store-queue store error.
• A store command was interleaved between the first and second store-

queue write/store (stqw_seq_err). 
or 

• A store-queue request was detected when the 4-entry store queue was full 
(stq_overflow_err).

0 1

52 quad0_ce_thresh
Quadrant0 CE threshold.
Multiple cache CEs have been detected during a hang pulse duration.

0 0

53 quad1_ce_thresh
Quadrant1 CE threshold.
Multiple cache CEs have been detected during a hang pulse duration.

0 0

Bits Field Name Description

Default Mask Settings

Error Mask Checkstop 
Enable



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 339 of 415

54 quad2_ce_thresh
Quadrant2 CE threshold.
Multiple cache CEs have been detected during a hang pulse duration.

0 0

55 quad3_ce_thresh
Quadrant3 CE threshold.
Multiple cache CEs have been detected during a hang pulse duration.

0 0

56 mult_cache_ce
Multiple cache CEs.
Multiple cache CEs have been detected during a hang pulse duration from 
more that one quadrant.

0 0

57 mult_dir_par_err

Multiple directory parity errors.
Multiple directory parity errors were detected within a period of two hang 
pulses. This indicates that the array error is not an intermittent fault. Because 
the BIU cannot make forward progress with a stuck fault in the directory, the 
system will be checkstopped.

0 1

58 ill_cresp
Illegal CRESP seen in receive state machine (RCFSM).
The RC machine detected an illegal snoop, a combined response (CRESP) 
operation. 

0 1

59 inv_mersi
Invalid MERSI detected.
The RC machine detected or wrote an invalid modified/exclusive/reserved/ 
shared/invalid (MERSI) cache-coherency protocol state in the directories.

0 1

60 ncu_snp_paam

NCU snoop PAAM error checkstop. 
This error occurs when the NCU snooper detects another ICBI or translation 
lookaside buffer invalidate entry (TLBI) request while the previous request is 
still active. That is, CRESP has not returned yet. 
The illegal previous adjacent address match (PAAM) request will be lost 
because the snooper does not register it; hence, there is no snoop response.

0 1

61 ncu_snp_cresp

NCU snoop CRESP error checkstop.
This error occurs when an NCU snooper detects illegal values on CRESP(0:3):
0000 Good
xxx1 Retry
other Illegal
The errors are registered, and the snooper hangs while waiting for a good or 
retry response. A secondary PAAM error can occur as a result.
A debug switch, cfg_snp_cresp_ckstp_en, is provided to turn error detection 
off. In this case, the snooper will hang, and the result is undermined.

0 1

62 ncu_cresp_ill
NCU CRESP illegal error.
This error occurs when the NCU receives a cresp_valid from the BIU with a 
CRESP(0:3) value that is illegal based on the transaction sent.

0 1

63 ncu_cresp_tmout

NCU CRESP timeout error.
This error occurs when any of the state machines sourcing a transaction (store, 
load, or a micro-operation) to the bus time out while waiting for a valid and good 
CRESP. The timeout occurs upon the second hang pulse seen while waiting for 
the good CRESP. 

0 1

Bits Field Name Description

Default Mask Settings

Error Mask Checkstop 
Enable



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 340 of 415

Version 2.3
March 7, 2008

12.4.2 BIU SCOM Register Definition

BIU Fault Isolation Register/And-Mask/Or-Mask

Address x‘0A0001’ 

Type RW (FIR)
WO (AND)
WO (OR)

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved pa
r_

er
r_

in
_n

cu

pa
r_

er
r_

in
_l

2

pa
r_

er
r_

in
_d

at
a

bi
u_

sl
av

e_
pa

r_
er

r

nu
ll_

re
sp

on
se

re
tr

y_
re

sp
on

se

in
te

rv
en

tio
n

da
ta

in
_e

rr

od
d_

bt
s_

cm
d_

pk
t

od
d_

bt
s_

da
ta

_h
dr

od
d_

bt
s_

da
ta

_p
kt

hd
rp

kt
_i

n_
da

ta
pk

t

cr
es

p_
pa

am
_v

io
l

R
es

er
ve

d

exe_halt

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description Error Mask Checkstop 
Enable

0:31 N/I Not implemented. — —

32:44 Reserved Spare. — —

45 par_err_in_ncu Parity error for input from NCU. Processor execution is halted. A system check-
stop is raised, which will halt the rest of the processors in the complex. 0 1

46 par_err_in_l2 Parity error for input from L2. Processor execution is halted. A system check-
stop is raised, which will halt the rest of the processors in the complex. 0 1

47 par_err_in_data
Parity error for input from encoded data. Processor execution is halted. A sys-
tem checkstop is raised, which will halt the rest of the processors in the com-
plex.

0 1

48 biu_slave_par_err
A BIU slave reports a parity error using a transaction response. Processor exe-
cution is halted. A system checkstop is raised, which will halt the rest of the 
processors in the complex.

0 1

49 null_response A transaction response returns null. Processor execution is halted. A system 
checkstop is raised, which will halt the rest of the processors in the complex. 0 1

50 retry_response
A bus slave returns a transaction response retry on a data packet. Processor 
execution is halted. A system checkstop is raised, which will halt the rest of the 
processors in the complex.

0 1

51 intervention

A bus slave returns an intervention without shared or modified, or returns 
shared, modified, or intervention on a castout. Processor execution is halted. A 
system checkstop is raised, which will halt the rest of the processors in the 
complex.

0 1

52 datain_err
An error occurs on bus input data when encode is disabled. Processor execu-
tion is halted. A system checkstop is raised, which will halt the rest of the pro-
cessors in the complex.

0 1



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 341 of 415

53 odd_bts_cmd_pkt
The command packet is an odd number of beats. Processor execution is 
halted. A system checkstop is raised, which will halt the rest of the processors 
in the complex.

0 1

54 odd_bts_data_hdr
The data header packet is an odd number of beats. Processor execution is 
halted. A system checkstop is raised, which will halt the rest of the processors 
in the complex.

0 1

55 odd_bts_data_pkt
The data packet is an odd number of beats. Processor execution is halted. A 
system checkstop is raised, which will halt the rest of the processors in the 
complex.

0 1

56 hdrpkt_in_datapkt
A header packet appears inside a data packet. Processor execution is halted. 
A system checkstop is raised, which will halt the rest of the processors in the 
complex.

0 1

57 cresp_paam_viol CRESP PAAM window violation. Processor execution is halted. A system 
checkstop is raised, which will halt the rest of the processors in the complex. 0 1

58 Reserved Spare. — —

59:63 exe_halt
Tag associated with transaction response in reported errors. Processor execu-
tion is halted. A system checkstop is raised, which will halt the rest of the pro-
cessors in the complex.

0 1

Bits Field Name Description Error Mask Checkstop 
Enable



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 342 of 415

Version 2.3
March 7, 2008

BIU Error Mask/And-Mask/Or-Mask

Address x‘0A0400’ 

Type RW
WO (AND) 
WO (OR)

Reset Reset to ones during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I fir_mask

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:44 N/I Not implemented.

45:63 fir_mask
Mask.
1 FIR bit is masked off.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 343 of 415

BIU Checkstop Enable

Address x‘0A0800’ 

Type RW

Reset Reset to zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I chkstp_mask

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:44 N/I Not implemented.

45:63 chkstp_mask
Mask.
1 Checkstop.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 344 of 415

Version 2.3
March 7, 2008

BIU Status Register

Address x‘0A9000’

Type RW

Reset Reset to all zeros during POR. 

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I rc
_a

ct

co
_a

ct

ps
h_

ac
t

nc
us

t_
ac

t

nc
ul

d_
ac

t

in
t_

ac
t

sn
p_

ac
t

rd
_d

at
a_

ac
t

bi
u_

co
re

_i
dl

e

bi
u_

sn
p_

id
le

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:53 N/I Not implemented.

54 rc_act RC is the active operation (bfb_status_decode[0:3] equals ‘0000’ or ‘1000’). 

55 co_act Cast Out (CO) is the active operation (bfb_status_decode[0:3] equals ‘0001’ or ‘1001’). 

56 psh_act Cache push on snoop response (PSH) is the active operation (bfb_status_decode[0:3] equals ‘0010’ or 
‘1010’).

57 ncust_act Noncacheable unit store (NCUST) is the active operation (bfb_status_decode[0:3] equals ‘0011’ or 
‘1011’).

58 nculd_act Noncacheable unit load (NCULD) is the active operation (bfb_status_decode[0:3] equals ‘0100’ or 
‘1100’).

59 int_act INT is the active operation (bfb_status_decode[0:3] equals ‘0101’ or ‘1101’).

60 snp_act The snoop command is the active operation (bfb_status_decode[0:3] equals ‘0110’ or ‘1110’).

61 rd_data_act Read data is the active operation (bfb_status_decode[0:3] equals [‘0111’ to ‘1110’]).

62 biu_core_idle The BIU core is idle.

63 biu_snp_idle The BIU snoop is idle.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 345 of 415

BIU Mode Register

Address x‘043000’ 

Type RW

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I dm
ap

_e
n

vr
lc

tl_
cf

g_
rc

_s
l_

st
at

_d
is

vr
cd

sp
_c

fg
_c

ac
_e

cc
_c

hk
_d

is

vr
lc

tl_
cf

g_
rc

_i
nt

v_
di

s

vr
lc

tl_
cf

g_
rc

_e
_s

ta
t_

di
s

R
es

er
ve

d

vr
cd

sp
_c

fg
_h

an
gd

et
_c

hk
st

op
_e

n

R
es

er
ve

d

nc
s_

sc
om

_c
fg

_s
t_

gt
_d

is
ab

le

nc
s_

sc
om

_c
fg

_s
t_

in
or

de
r

nc
s_

sc
om

_c
fg

_g
th

_t
m

r_
lim

it

nc
s_

sc
om

_c
fg

_g
th

_t
m

r_
of

f

nc
s_

sc
om

_c
fg

_s
pa

re

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented.

32:47 N/I Not implemented.

48 dmap_en When set to ‘1’, puts the L2 cache into Direct Mapped mode so that victim selection is based on a straight 
decode of address bits 42:44. 

49 vrlctl_cfg_rc_sl_
stat_dis v_rcfsm disables going to the Shared Invalid (Sl) state. Instead, it goes to Shared (S).

50 vrcdsp_cfg_cac_
ecc_chk_dis Disables viewing of any error correction code check (ECCCK) error detection.

51 vrlctl_cfg_rc_intv_
dis

v_rctag:
1 Forces the intervention bit off.

52 vrlctl_cfg_rc_e_
stat_dis

v_rcfsm:
1 Forces all Exclusive (E) directory states to Shared (S). 
0 (Default) Allows E state. 

53 Reserved Spare.

54 vrcdsp_cfg_hangd
et_chkstop_en Enables a livelock warning signal to be sent to the L2 slice macro, where it can cause a checkstop. 

55 Reserved Spare.

56 ncs_scom_cfg_st_
gt_disable  NCU store gather control disable.

57 ncs_scom_cfg_st_
inorder

Force guarded access bit to ‘0’. Stores go out to the bus in order. Hence, one instruction has to complete 
with no retry before the other instruction can go out. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 346 of 415

Version 2.3
March 7, 2008

58:60 ncs_scom_cfg_gth
_tmr_limit

These bits set the value for the timeout counter for the gather logic. The timeout counter is programma-
ble for gather fine tuning. Setting these bits to zeros, in effect, discourages gathering although it does not 
totally disable it. Its value is (^bit0 & ^bit1 & bit2 & 0 & 0). The timeout is set as default ‘11000’ pclk count 
when the latches are set to ‘000’. Its range is (0:56 pclks, step by 4).

61 ncs_scom_cfg_gth
_tmr_off Turn off gather timer. No timeout for gather.

62:63 ncs_scom_cfg_
spare Spare.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 347 of 415

12.4.3 Processor Interconnect Registers

PI Mode Register 0 

Address x‘083000’

Type R/W

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I w
ia

p

ria
p

i/o
_r

es
et

es
t_

m
od

e

es
t_

on
e

rd
t_

m
od

e

target_time ltc
_c

on
tr

ol

gb_min_thresh

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:47 N/I Not implemented.

48 wiap Starts the IAP or self test on the driver.

49 riap Starts the IAP or self test on the receiver.

50 i/o_reset Resets the receiver, and readies for the IAP.

51 est_mode Selects the shorts/open test.

52 est_one
Selects the polarity of the shorts test.
0 Creates a walking ones pattern
1 Creates a walking zeros pattern

53 rdt_mode Selects random data test (RDT) mode.

54:56 target_time Sets the target time.

57:58 ltc_control

Learned target cycle (LTC).
00 Minimum
01 Minimum + 1
10 Minimum + 2
11 Don’t use LTC

59:63 gb_min_thresh Guardband minimum threshold.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 348 of 415

Version 2.3
March 7, 2008

PI Mode Register 1

Address x‘083101’ 

Type R/W

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I pr
ec

om
p_

en

lo
_o

hm
_m

od
e

w
id

e_
gb

_m
od

e

R
es

er
ve

d

dy
n_

te
rm

_e
n

te
rm

_d
is

_i
nt

re
f_

fo
rw

ar
d

vref_wind 8_
cy

cl
e_

ia
p

av
ai

la
bl

e

el
as

tic
_f

iv
e_

m
od

e

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:47 N/I Not implemented.

48 precomp_en

Enables Precompensation mode at the drivers.
Note: Bit 48 and bit 49 work together to determine how precompensation works.

Bit 48 Bit 49
0 0 Precompensation is not enabled; high impedance is selected.
1 0 Precompensation is enabled; high impedance is selected. Precompensation can 

improve intersymbol interference.
0 1 Precompensation is not enabled; low impedance is selected.
1 1 Precompensation is enabled; low impedance is selected. Although precompensation 

is enabled, it has no effect when the drivers are in low-impedance mode.

49 lo_ohm_mode Enables low Ω mode at the drivers.

50 wide_gb_mode

Defines the meaning of the double guardband fail calculation.
0 Enables a narrow mode where a double guardband fail can occur if the bit fails a setup and a 

hold test at any time.
1 Enables a wide mode where a double guardband fail only occurs if the bit fails a setup and a 

hold for the same data beat. 

51:52 Reserved Not used but available.

53 dyn_term_en Switches between clamp and termination on.

54 term_dis_int Disables termination on the receivers.

55 ref_forward Apply a reference voltage (VREF) to the receivers. Calculated from the swing in the clock receiver.

56:59 vref_wind Signed number used to offset VREF.

60 8_cycle_iap
Selects IAP pattern length (4 or 8). 
0 4
1 8

61:62 available Not used but available.

63 elastic_five_mode This special mode of the PI is not supported.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 349 of 415

PI Mode Register 2 

Address x‘083201’ 

Type R/W 

Note:  Do not write during functional mode.

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I Iogrp_sel da
ta

_s
ta

t_
se

l

re
se

t_
st

at

by
pa

ss

data_wind av
ai

la
bl

e

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:47 N/I Not implemented.

48:51 Iogrp_sel Selects the clock group for the status register.

52:54 data_stat_sel Selects information to be retrieved for the status register.

55 reset_stat Resets status information (stat[0:8] in the PI Status Register). Also begins a learn target cycle command.

56 bypass Puts the receiver in bypass mode (no bit alignment and target cycle). For the second generation of PI 
(PI2), the PI bypass is not implemented the same way as for the first generation of PI (PI1). 

57:61 data_wind Add or subtract a delay from each bit. (Dissimilar to PI1).

62:63 available Not used but available.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 350 of 415

Version 2.3
March 7, 2008

PI Mode Register 3 

Address x‘083300’ 

Type WO

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I re
ic

al

w
ei

ca
l

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:47 N/I Not implemented.

48 reical Enables processor interface recalibration (EICAL) for the receivers.

49 weical Enables EICAL for the drivers.

48:63 Reserved Reserved; not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 351 of 415

PI Status Register

iogrp_sel = ‘0000’ and data_stat_sel = ‘000’

iogrp_sel = ‘0000’ and data_stat_sel = ‘001’

iogrp_sel = ‘0000’ and data_stat_sel = ‘010’

iogrp_sel = ‘0000’ and data_stat_sel = ‘011’

iogrp_sel = ‘1111’ and data_stat_sel = ‘000’

Address x‘084001’

Type RO

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I i/o_delay flag0

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/I flag1 flag2

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/I ei
ca

l_
st

at
_p

bd
_o

vr

ei
ca

l_
st

at
_p

bd
_u

nd
r

ei
ca

l_
st

at
_g

b_
un

dr

ei
ca

l_
st

at
_g

b_
ov

r

gb
_t

hr
es

h_
ba

d

gb_min available

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/I st
at

(0
)

st
at

(1
)

st
at

(2
)

st
at

(3
)

st
at

(4
)

st
at

(5
)

st
at

(6
)

st
at

(7
)

st
at

(8
)

available

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/I clock_period available

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 352 of 415

Version 2.3
March 7, 2008

iogrp_sel = ‘1111’ and data_stat_sel = ‘001’

iogrp_sel = ‘1111’ and data_stat_sel = ‘011’

iogrp_sel = ‘1111’ and data_stat_sel = ‘111’

N/I ei
ca

l_
st

at
_p

bd
_o

vr

ei
ca

l_
st

at
_p

bd
_u

nd
r

ei
ca

l_
st

at
_g

b_
un

dr

ei
ca

l_
st

at
_g

b_
ov

r

gb
_t

hr
es

h_
ba

d

Reserved eical_ltc ei
ca

l_
ltc

_s
pr

ea
d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/I available

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

N/I st
at

(0
)

st
at

(1
)

st
at

(2
)

st
at

(3
)

st
at

(4
)

st
at

(5
)

st
at

(6
)

st
at

(7
)

st
at

(8
)

ria
p_

do
ne

ltc
_p

as
se

d

ltc
_f

ai
le

d

es
t/r

dt
_p

as
se

d

es
t/r

dt
_f

ai
le

d

av
ai

la
bl

e

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

If iogrp_sel = ‘0000’ and data_stat_sel = ‘000’ (Set in Mode Register 2)

0:47 N/I Not implemented.

48:55 i/o_delay Number of delay elements in clock path.

56:63 flag0 Number of delay elements for flag 0.

If iogrp_sel = ‘0000’ and data_stat_sel = ‘001’ 

0:47 N/I Not implemented.

48:55 flag1 Number of delay elements for flag 1.

56:63 flag2 Number of delay elements for flag 2.

If iogrp_sel = ‘0000’ and data_stat_sel = ‘010’

0:47 N/I Not implemented.

48 eical_stat_pbd_ovr Overflow of per-bit-deskew counter during IAP or EICAL.

49 eical_stat_pbd_
undr Underflow of per-bit-deskew counter during IAP or EICAL.

50 eical_stat_gb_undr Guardband underflow during IAP or EICAL.

51 eical_stat_gb_ovr Guardband overflow during IAP or EICAL.

52 gb_thresh_bad Minimum guardband less than minimum required guardband.

53:57 gb_min Minimum guardband value.

58:63 available Not used but available.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 353 of 415

If iogrp_sel = ‘0000’ and data_stat_sel = ‘011’

0:47 N/I Not implemented.

48 stat(0) Clock period too large to be measured with delay elements available.

49 stat(1) IAP pattern ‘1’ could not be found.

50 stat(2) Right edge of data eye not found.

51 stat(3) PBD maximum reached in one or more channels.

52 stat(4) Failed to find flag 0.

53 stat(5) Failed to find flag 1.

54 stat(6) Failed to find flag 2.

55 stat(7) Final clock delay does not find IAP pattern.

56 stat(8) Negative I/O clock delay.

57:63 available Not used but available.

If iogrp_sel = ‘1111’ and data_stat_sel = ‘000’

0:47 N/I Not implemented.

48:55 clock_period Clock period expressed in delay elements.

56:63 available Not used but available.

If iogrp_sel = ‘1111’ and data_stat_sel = ‘001’

0:47 N/I Not implemented.

48 eical_stat_pbd_ovr Overflow of per-bit-deskew counter during IAP or EICAL.

49 eical_stat_pbd_
undr Underflow of per-bit-deskew counter during IAP or EICAL.

50 eical_stat_gb_undr Guardband underflow during IAP or EICAL.

51 eical_stat_gb_ovr Guardband overflow during IAP or EICAL.

52 gb_thresh_bad Minimum guardband less than minimum required guardband.

53:57 Reserved Not used but available.

58:60 eical_ltc Learned target cycle value.

61:63 eical_ltc_spread Difference in LTC between clock groups.

If iogrp_sel = ‘1111’ and data_stat_sel = ‘011’

0:47 N/I Not implemented.

48:63 available Not used but available.

If iogrp_sel = ‘1111’ and data_stat_sel = ‘111’

0:47 N/I Not implemented.

48 stat(0) Clock period too large to be measured with delay elements available.

49 stat(1) IAP pattern ‘1’ could not be found.

50 stat(2) Right edge of data eye not found.

51 stat(3) PBD maximum reached in one or more channels.

52 stat(4) Failed to find flag 0.

53 stat(5) Failed to find flag 1.

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 354 of 415

Version 2.3
March 7, 2008

54 stat(6) Failed to find flag 2.

55 stat(7) Final clock delay does not find IAP pattern.

56 stat(8) Negative I/O clock delay.

57 riap_done Receiver IAP completed.

58 ltc_passed Learned target cycle passed.

59 ltc_failed Learned target cycle failed.

60 est/rdt_passed EST or RDT passed.

61 est/rdt_failed EST or RDT failed.

62:63 available Not used but available.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 355 of 415

PI Command Register

Address x‘085000’

Type WO

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I i/o_clk_delay available N/I cl
k_

de
la

y_
se

nd

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:47 N/I Not implemented.

48:55 i/o_clk_delay Value of I/O clock delay to be loaded.

56:59 available Not used but available.

60:62 N/I Not implemented.

63 clk_delay_send Set this bit to send the I/O clock delay to the I/O control macro.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 356 of 415

Version 2.3
March 7, 2008

Driver IAP Register
Receiver IAP Register

Address x‘086000’ (Driver)
x‘086101’ (Receiver)

Type R/W

Reset Reset to all zeros during POR.

N/I addr_data

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

addr_data sn
re

sp
(0

)

sn
re

sp
_b

(0
)

sn
re

sp
(1

)

sn
re

sp
_b

(1
)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:15 N/I Not implemented.

16:59 addr_data Mask for adin/out(0:43).

60 snresp(0) Mask for srin/out(0).

61 snresp_b(0) Mask for srin/out_b(0).

62 snresp(1) Mask for srin/out(1).

63 snresp_b(1) Mask for srin/out_b(1).

Note:  To take effect, requires est_one set (PI Mode Register 0, bit 52).



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 357 of 415

12.5 Chip Pervasive SCOM Register Definition

12.5.1 Power-On Reset Registers (x‘40XXXX’)

Power-On Reset Status Register

Address x‘400000’

Type RO/WO
Clear entries are marked with an asterisk (*).

Reset Reset to all zeros during POR (inactive).

N/I fu
se

_c
py

_c
m

pl
t

da
bi

st
in

itl
1_

cm
pl

t

N/I sc
ab

is
tin

it_
cm

pl
t

N/I da
bi

st
in

itl
2_

cm
pl

t

N/I ph
as

e_
sy

nc
_c

m
pl

t

w
ia

p_
dr

v

pi
_s

yn
c_

sc
cs

s

in
itc

or
e_

cm
pl

t

N/I por_cnt_addr ill
_i

ns
tr

ct
_d

et
ec

t

co
nt

_n
ot

w
ai

t

i2
cg

o

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

po
r_

w
ai

t

po
r_

w
ai

td
bg

po
r_

la
st

_i
ns

tr
ct

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Clear 
Entry Description

0:1 N/I Not implemented.

2 fuse_cpy_cmplt * Status is active after fuse copy completion.

3 dabistinitl1_cmplt * Status is active after DABISTINITL1 completion.

4 N/I Not implemented.

5 scabistinit_cmplt * Status is active after SCABISTINIT completion.

6 N/I Not implemented.

7 dabistinitl2_cmplt * Status is active after DABISTINITL2 completion.

8:15 N/I Not implemented.

16 phase_sync_cmplt * Status is active after phase synchronization completion.

17 wiap_drv Status is active while the writer initial alignment pattern (WIAP) is driven by POR.

18 pi_sync_sccss * Status is active after successful processor interface synchronization.

19 initcore_cmplt * Status is active after INITCORE completion.

20:23 N/I Not implemented.

24:28 por_cnt_addr Contains the current POR program counter address.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 358 of 415

Version 2.3
March 7, 2008

29 ill_instrct_detect * Status is active after an illegal instruction is detected. 

30 cont_notwait * Status is active if a continue was received while not in the Wait state.

31 i2cgo Status is active after an I2CGO command until the next CONT command.

32 por_wait Status is active when the POR state machine is in the Wait state.

33 por_waitdbg Status is active when in the POR state machine is in the Waitdbg state.

34 por_last_instrct Status is active when the POR state machine has reached the last instruction.

35:63 N/I Not implemented.

Bits Field Name Clear 
Entry Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 359 of 415

Power-On Reset Continue Register

Address x‘400101’

Type WO

Reset Reset to inactive during POR.

co
nt

_c
m

d

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 cont_cmd
Command bit. Sends a continue command to the POR state machine. This command also invalidates 
the i2cgo pin the next time the JTAG state machine enters the Test-Mode-Reset state or the Run-Idle 
state.

1:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 360 of 415

Version 2.3
March 7, 2008

Power-On Reset I2C/JTAG Arbitration Register

Address x‘400201’

Type WO

Reset Reset to inactive during POR.

i2
cg

o_
cm

d

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 i2cgo_cmd Command bit. Asserts and holds the i2cgo pin when the JTAG state machine enters the Test-Mode-
Reset or Run-Idle state.

1:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 361 of 415

Power-Management Control

Address x‘400801’ 

Type Bits 0:3 and 24:26: RW
Bits 4:22: RO

Reset Reset to all zeros during POR.

re
al

_d
oz

e_
en

qa
ck

_t
m

ou
t_

en

re
se

t_
pm

c

pl
s_

de
ga

te
_p

en
d

state_ltch na
p_

re
ad

y

do
ze

_r
ea

dy

bi
u_

sn
oo

p_
id

le

qa
ck

in
te

rr
up

t_
pe

nd
in

g

cl
oc

k_
ra

m
p_

do
ne

do
ze

_r
am

p_
do

ne

qr
eg

st
op

_r
eq

_n
ap

st
op

_r
eq

_d
oz

e

de
ga

te
_p

en
d

st
at

e_
m

ch
_e

rr

bi
u_

sn
p_

dr
p

tm
ou

t_
er

r_
cl

k_
rm

p

tm
ou

t_
er

r_
qa

ck
_n

ot
_d

ro
p

fu
nc

_f
re

q

se
l_

pm
c_

tr
ac

e

fr
c_

tm
ba

se
_e

n

R
es

er
ve

d

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 real_doze_en Real Doze mode enable.

1 qack_tmout_en Advance on quiescent acknowledgment (QACK) drop timeout enable.

2 reset_pmc Reset power management control state machine.

3 pls_degate_pend Pulse degate pending.

PMC Status Bits

4:7 state_ltch State latches.

8 nap_ready Nap_ready received.

9 doze_ready Doze_ready received.

10 biu_snoop_idle biu_snoop_idle received.

11 qack QACK received.

12 interrupt_pending interrupt_pending received.

13 clock_ramp_done clock_ramp_done received.

14 doze_ramp_done doze_ramp_done received.

15 qreg QREG sent.

16 stop_req_nap stop_req_nap sent.

17 stop_req_doze stop_req_doze sent.

18 degate_pend degate_pending sent.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 362 of 415

Version 2.3
March 7, 2008

PMC Error Bits

19 state_mch_err State-machine error (undefined state).

20 biu_snp_drp BIU Snoop Idle dropped while QACK active.

21 tmout_err_clk_rmp Timeout error on clock ramp done.

22 tmout_err_qack_
not_drop Timeout error on QACK not dropped.

Miscellaneous

23 func_freq If set, allows f/64 as the functional frequency. In addition, if this bit is set, it sets the write margin in 
dynamic arrays to the maximum for the f/2 and f/4 frequencies. 

24 sel_pmc_trace Select PMC tracing.

25 frc_tmbase_en Force time-base enable.

26 Reserved Reserved.

27:63 N/I Not implemented.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 363 of 415

Power-On Reset Sequence Register 0

Address x‘401400’

Type WO

Reset Initialized during POR (see the Power-On Reset Specification for more information).

por_instrct0 por_instrct1 por_instrct2 por_instrct3 por_instrct4 por_instrct5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

por_instrct6 por_instrct7 por_instrct8 por_instrct9 por_instrct10 por_instrct11 N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:4 por_instrct0 Data: POR instruction 0 (first instruction).

5:9 por_instrct1 Data: POR instruction 1.

10:14 por_instrct2 Data: POR instruction 2.

15:19 por_instrct3 Data: POR instruction 3.

20:24 por_instrct4 Data: POR instruction 4.

25:29 por_instrct5 Data: POR instruction 5.

30:34 por_instrct6 Data: POR instruction 6.

35:39 por_instrct7 Data: POR instruction 7.

40:44 por_instrct8 Data: POR instruction 8.

45:49 por_instrct9 Data: POR instruction 9.

50:54 por_instrct10 Data: POR instruction 10.

55:59 por_instrct11 Data: POR instruction 11.

60:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 364 of 415

Version 2.3
March 7, 2008

Power-On Reset Sequence Register 1

Address x‘402400’

Type WO

Reset Initialized during POR (see the Power-On Reset Specification for more information).

por_instrct12 por_instrct13 por_instrct14 por_instrct15 por_instrct16 por_instrct17 por_

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

instrct18 por_instrct19 por_instrct20 por_instrct21 por_instrct22 por_instrct23 N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:4 por_instrct12 Data: POR instruction 12.

5:9 por_instrct13 Data: POR instruction 13.

10:14 por_instrct14 Data: POR instruction 14.

15:19 por_instrct15 Data: POR instruction 15.

20:24 por_instrct16 Data: POR instruction 16.

25:29 por_instrct17 Data: POR instruction 17.

30:34 por_instrct18 Data: POR instruction 18.

35:39 por_instrct19 Data: POR instruction 19.

40:44 por_instrct20 Data: POR instruction 20.

45:49 por_instrct21 Data: POR instruction 21.

50:54 por_instrct22 Data: POR instruction 22.

55:59 por_instrct23 Data: POR instruction 23.

60:63 N/I Not implemented



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 365 of 415

Power-On Reset Sequence Register 2

Address x‘404400’

Type WO

Reset Initialized during POR (see the Power-On Reset Specification for more information).

por_instrct24 por_instrct25 por_instrct26 por_instrct27 por_instrct28 por_instrct29 por_

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

instrct30 por_instrct31 N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:4 por_instrct24 Data: POR instruction 24.

5:9 por_instrct25 Data: POR instruction 25.

10:14 por_instrct26 Data: POR instruction 26.

15:19 por_instrct27 Data: POR instruction 27.

20:24 por_instrct28 Data: POR instruction 28.

25:29 por_instrct29 Data: POR instruction 29.

30:34 por_instrct30 Data: POR instruction 30.

35:39 por_instrct31 Data: POR instruction 31 (last instruction).

40:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 366 of 415

Version 2.3
March 7, 2008

Power Tuning Status Register

Address x‘408001’ 

Type RW: bits 2:3, 7:8,16:19
WO: bit 15

Reset Initialized to all zeros during POR.

N/I bi
u_

rc
vd

_p
w

r_
tu

ne

pw
r_

tu
ne

_c
m

pl
t

N/I fr
eq

_v
al

ue

N/I re
se

t_
pw

r_
tu

ne

in
it_

ca
p

f/4
_o

ffs
et

f/4
_o

ffs
et

_a
dj

_m
sk

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 N/I Not implemented.

2 biu_rcvd_pwr_tune Turned on when the BIU has received a power tuning command from the North Bridge. Reset after a 
read to this register, and after power tuning command completion.

3 pwr_tune_cmplt Turned on after completion of a power tuning command. Reset after a read to this register, and after 
power tuning command completion.

4:5 N/I Not implemented.

6:7 freq_value Current/requested frequency value.

8:14 N/I Not implemented.

15 reset_pwr_tune Reset the power tuning machine inside ChipRAS. The BIU received the normal power tuning complete 
acknowledgment. No error is reported.

16 init_cap Initialize clock alignment procedure (CAP). Set and then unset to start CAP.

17:18 f/4_offset
Read: Computed the low-speed (f/4) frequency offset to SYSCLK. 
Write: Value to add to the f/4-frequency offset counter. Then toggle bit 19 to execute.

19 f/4_offset_adj_msk Mask the f/4 offset counter adjust command. Set only to measure offset.

20:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 367 of 415

12.5.2 Chip Free-Running Clock Section Control/Status (x‘50[0:4]XXX’)

Global Fault Isolation for Checkstop Conditions (Global FIR)

 

Address x‘500001’ 

Type RO

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

pr
oc

es
so

r

l2 bi
u

pw
r_

m
ng

m
nt

_c
nt

rl

sy
nc

_e
rr

ch
ks

tp
_p

in

ra
di

at
io

n_
de

t_
er

r

ch
ks

tp
_o

n_
tr

ig

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented. 

32 processor Processor core.

33 l2 L2.

34 biu BIU.

35 pwr_mngmnt_cntrl Power-management control.

36 sync_err Synchronization error in the free-running clock controls macro, tc_ccintf.

37 chkstp_pin Checkstop pin.

38 radiation_det_err Radiation detection error.

39 chkstp_on_trig Checkstop on trigger. 

40:63 N/I Not implemented. 



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 368 of 415

Version 2.3
March 7, 2008

Error Enable Mask

Address x‘500400’ 

Type RW

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ph
y_

co
re

0

l2 bi
u

pw
r_

m
ng

m
nt

_c
nt

rl

tc
_c

ci
nt

f_
sy

nc
_e

rr

ch
ks

tp
_p

in

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented. 

32 phy_core0 Physical core0.

33 l2 L2.

34 biu BIU.

35 pwr_mngmnt_cntrl Power-management control.

36 tc_ccintf_sync_err Synchronization error in TC_CCINTF.

37 chkstp_pin Checkstop pin.

38:63 N/I Not implemented. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 369 of 415

Mode Register for Fault Isolation Registers

Address x‘500601’

Type RW

Reset Reset to all zeros during POR. 

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

hl
d_

re
cv

r_
flt

_i
so

l

ch
ks

tp
_a

ttn

m
ch

k_
re

cv
r_

at
tn

m
ch

k_
sp

_a
ttn

m
ch

k_
ch

ck
st

p_
at

tn

gl
b_

ch
ks

tp

lc
l_

ch
ks

tp

N/I N/I N/I N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented.

32 hld_recvr_flt_isol Hold recoverable-fault isolation when error is detected. Behaves like the checkstop FIR.

33 chkstp_attn Checkstop indications from the checkstop pin, or checkstop trigger will set the checkstop attention.

34 mchk_recvr_attn Processor machine check will set recoverable attention.

35 mchk_sp_attn Processor machine check will set special attention.

36 mchk_chckstp_
attn Processor machine check will set checkstop attention.

37 glb_chkstp Global checkstop signal will signal checkstop to processor cores.

38 lcl_chkstp Local checkstop signal will signal checkstop to processor cores.

39:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 370 of 415

Version 2.3
March 7, 2008

Debug Mode Register

Address x‘500700’

Type RW

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

fr
c_

ph
_c

lk
st

p_
gl

b

fr
c_

ph
_c

lk
st

p_
lc

l

fr
c_

im
m

_c
lk

st
p_

gb
l

fr
c_

im
m

_c
lk

st
p_

lc
l

N/I sp
_a

ttn
_c

hk
st

p

in
c_

hn
g_

pl
s

N/I di
s_

bi
u_

hn
g_

pl
s

N/I di
s_

co
re

_h
ng

_p
ls

di
s_

c/
b_

hn
g_

pl
s_

rc
v_

at
tn

di
s_

c/
b_

hn
g_

pl
s_

sp
_a

ttn

di
s_

c/
b_

hn
g_

pl
sc

hk
st

p_
at

tn

di
s_

ea
rly

_h
ng

_p
ls

N/I di
s_

ea
rly

_h
ng

_p
ls

_r
cv

_a
ttn

di
s_

ea
rly

_h
ng

_p
ls

_s
p_

at
tn

di
s_

ea
rly

_h
ng

_p
ls

_c
hk

st
p_

at
tn

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented.

32 frc_ph_clkstp_glb Force a phase-aligned clock stop when the global checkstop signal is active.

33 frc_ph_clkstp_lcl Force a phase-aligned clock stop when the local checkstop signal is active.

34 frc_imm_clkstp_
gbl Force an immediate clock stop when the global checkstop signal is active.

35 frc_imm_clkstp_lcl Force an immediate clock stop when the local checkstop signal is active.

36:37 N/I Not implemented.

38 sp_attn_chkstp Core special attention will cause a checkstop.

39 inc_hng_pls Increase hang pulse rate by 100 times.

40:47 N/I Not implemented.

48 dis_biu_hng_pls Disable BIU hang pulses.

49:51 N/I Not implemented.

52 dis_core_hng_pls Disable core hang pulses.

53 dis_c/b_hng_pls
_rcv_attn Disable core and BIU hang pulses when recoverable attention is set.

54 dis_c/b_hng_pls
_sp_attn Disable core and BIU hang pulses when special attention is set.

55 dis_c/b_hng_pls
chkstp_attn Disable core and BIU hang pulses when checkstop attention is set.

56 dis_early_hng_pls Disable early hang pulse to core.

57:60 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 371 of 415

61 dis_early_hng_pls
_rcv_attn Disable early hang pulses when recoverable attention is set.

62 dis_early_hng_pls
_sp_attn Disable early hang pulses when special attention is set.

63 dis_early_hng_pls
_chkstp_attn Disable early hang pulses when checkstop attention is set.

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 372 of 415

Version 2.3
March 7, 2008

Hang Pulse Generation

Address x‘503001’

Type RW

Reset Reset to all zeros during POR. 

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

biu_hng_msk core_hng_msk N/I hng_cntr_lmt_msk

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented.

32:39 biu_hng_msk

BIU hang mask.
x‘01’ Hang pulse generated every Counter x 2.
x‘02’ Hang pulse generated every Counter x 4.
x‘04’ Hang pulse generated every Counter x 8.
x‘08’ Hang pulse generated every Counter x 16.
x‘10’ Hang pulse generated every Counter x 32.
x‘20’ Hang pulse generated every Counter x 64.
x‘40’ Hang pulse generated every Counter x 128.
x‘80’ Hang pulse generated every Counter x 256.

40:47 core_hng_msk

Core hang mask.
x‘01’ Hang pulse generated every Counter x 2.
x‘02’ Hang pulse generated every Counter x 4.
x‘04’ Hang pulse generated every Counter x 8.
x‘08’ Hang pulse generated every Counter x 16.
x‘10’ Hang pulse generated every Counter x 32.
x‘20’ Hang pulse generated every Counter x 64.
x‘40’ Hang pulse generated every Counter x 128.
x‘80’ Hang pulse generated every Counter x 256.

48:51 N/I Not implemented.

52:63 hng_cntr_lmt_msk

Hang counter limit mask (12-bit LFSR).
x‘4FC’ 100 cycles
x‘CF0’ 200 cycles
x‘DAE’ 300 cycles
x‘E89’ 400 cycles
x‘D1A’ 500 cycles
x‘0A3’ 600 cycles
x‘F8C’ 700 cycles
x‘FAA’ 800 cycles
x‘8F3’ 900 cycles
x‘6C8’ 1000 cycles
x‘5D1’ 2000 cycles
x‘668’ 3000 cycles
x‘D3E’ 4000 cycles



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 373 of 415

Early Hang Pulse Generation

Address x‘503100’

Type RW

Reset Reset to all zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I hng_cnt_lmt_msk

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:51 N/I Not implemented.

52:63 hng_cnt_lmt_msk

Hang counter limit mask (12-bit LFSR).
x‘6A8’ 20 cycles
x‘BA0’ 50 cycles
x‘4FC’ 100 cycles
x‘CF0’ 200 cycles
x‘DAE’ 300 cycles
x‘E89’ 400 cycles
x‘D1A’ 500 cycles
x‘0A3’ 600 cycles
x‘F8C’ 700 cycles
x‘FAA’ 800 cycles
x‘8F3’ 900 cycles
x‘6C8’ 1000 cycles
x‘5D1’ 2000 cycles
x‘668’ 3000 cycles
x‘D3E’ 4000 cycles



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 374 of 415

Version 2.3
March 7, 2008

Chip ID Register

Address x‘504101’ 

Type RW (Bit 35 is WO)

Reset Reset to zeros during POR.

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

proc_id in N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:31 N/I Not implemented.

32:34 proc_id Processor ID (0:2).

35 in Capture values from processor ID (PID) primary C4 inputs. (This is a write only bit.)

36:63 N/I Not implemented. Returns zeros.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 375 of 415

12.5.3 Chip Parallel SCOM Control (x‘6XXXXX’)

SCOM Mode Register

Address x‘600001’

Type R/W

Reset Set to x‘0000 0FFE 0000 0000’ during POR or SCRESET.

en
_s

tm
ch

_e
rr

_c
hk

en
_d

at
a_

w
ra

p_
ts

t

en
_a

dd
r_

w
rp

_c
hk

en
_v

al
_a

dd
r_

ch
k

en
_s

co
m

_g
lb

_h
ng

N/I en
_m

od
_p

ar
_c

hk

en
_v

al
id

_c
lk

_s
co

m

en
_b

iu
_s

co
m

_r
ng

en
_c

or
e

en
_t

rc
_a

rr
ay

_s
co

m
_r

ng

N/I N/I fn
c_

co
re

_c
hk

st
p

ra
is

e_
co

re
/b

iu
_f

nc

scom_hng_detct

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 en_stmch_err_chk Enable state-machine error checking.

1 en_data_wrap_tst Enable data wrap test.

2 en_addr_wrp_chk Enable address wrap check.

3 en_val_addr_chk Enable valid address checking.

4 en_scom_glb_hng Enable SCOM global hang checking.

5:6 N/I Not implemented.

7 en_mod_par_chk Enable modifier parity checking.

8 en_valid_clk_scom Enable valid clock SCOM address checking.

9 en_biu_scom_rng Enable STS/BIU SCOM ring. Set to ‘0’ before scanning BIU.

10 en_core Enable core SCOM ring. Enables SCOM ring and functional fences. Set to ‘0’ before scanning core.

11 en_trc_array_
scom_rng Enable I/O SCOM ring. Set to ‘0’ before scanning I/O.

12:17 N/I Not implemented.

18 fnc_core_chkstp
Fence cores on checkstop.
Note:  Bits 37:38 of the Mode Register for Fault Isolation Registers controls the core checkstop.

19 raise_core/biu_fnc

Raise core and BIU fences on a clock stop.
Note:  A clock stop is seen by the free-running logic several cycles before the clocks are actually 
stopped.

By default, software should set this bit to ‘1’. However, it must be set to ‘0’ before cycle stepping for 
debug.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 376 of 415

Version 2.3
March 7, 2008

20:31 scom_hng_detct

When the LFSR counter matches the value in the register before the SCOM operation completes, a 
SCOM hang has been detected.
Processor LFSR
Clock Counter
Cycles: Values:
500 x‘D1A’
1000 x‘6C8’
2000 x‘5D1’
3000 x‘668’
4095 x‘FFE’

32:63 N/I Not implemented.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 377 of 415

SCOM Controller Error Register

Address x‘600100’

Type RO (Write zeros to clear after SCRESET).

Reset Reset to all zeros during POR.

m
od

_p
ar

_e
rr

pa
r_

er
r_

pa
r_

sc
om

pa
r_

er
r_

se
r_

sc
om

pa
r_

er
r_

sc
om

_c
nt

r

pa
r_

er
r_

sc
om

_a
rb

sc
w

rit
e_

sc
re

ad

ba
d_

sc
om

_a
dd

r

un
k_

sc
om

_a
dd

r

in
v_

sc
om

_a
dd

r

sc
om

_c
ol

lis
io

n

N/I sc
om

_h
ng

Reserved as
i_

w
ai

t_
ad

dr

as
i_

w
ai

t_
gr

nt

as
i_

w
ai

t_
rd

rt
n

as
i_

w
ai

t_
pa

r/
se

r_
sc

om
_r

d

as
i_

w
ai

t_
pa

r/
se

r_
sc

om
_w

r

as
i_

w
ai

t_
pa

r/
pa

r_
sc

om
_r

d

as
i_

w
ai

t_
pa

r/
pa

r_
sc

om
_w

r

as
i_

w
ai

t_
rd

_s
hi

ft

as
i_

ad
dr

_n
ot

_a
cc

scom_addr_pend

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

scom_addr_pend N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 mod_par_err Modifier parity error.

1 par_err_par_scom Parity error in the parallel SCOM state machine.

2 par_err_ser_scom Parity error in the serial SCOM state machine.

3 par_err_scom_cntr Parity error in the main SCOM controller state machine.

4 par_err_scom_arb Parity error in the SCOM arbiter state machine.

5 scwrite_scread The SCWRITE pipe latch and SCREAD pipe latch were both on. 

6 bad_scom_addr Bad address in the SCOM ring.

7 unk_scom_addr The SCOM address was not recognized.

8 inv_scom_addr The SCOM address for the clock command was invalid.

9 scom_collision An SCOM collision in the core.

10 N/I Not implemented.

11 scom_hng SCOM hang. The active source identifier (ASI) in bits 15:23 indicates what was pending.

12:14 Reserved Reserved. 

15 asi_wait_addr (ASI) Waiting for the address to return.

16 asi_wait_grnt (ASI) Waiting for a grant from the arbiter.

17 asi_wait_rdrtn (ASI) Waiting for read data to return.

18 asi_wait_par/ser_
scom_rd (ASI) The parallel-to-serial state machine is waiting for SCOM Read to drop.

19 asi_wait_par/ser_
scom_wr (ASI) The parallel-to-serial state machine is waiting for SCOM Write to drop.

20 asi_wait_par/par_
scom_rd (ASI) The parallel-to-parallel state machine is waiting for SCOM Read to drop.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 378 of 415

Version 2.3
March 7, 2008

21 asi_wait_par/par_
scom_wr (ASI) The parallel-to-parallel state machine is waiting for SCOM Write to drop.

22 asi_wait_rd_shift (ASI) Waiting for the read shifter to empty.

23 asi_addr_not_acc (ASI) The address was returned and not accepted.

24:47 scom_addr_pend The SCOM address that was pending at the time of the error.

48:63 N/I Not implemented.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 379 of 415

Electronic Chip ID

Address x‘600200’

Type RO

Reset Set to fuse values when the fuse ring is scanned.

ecid

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

ecid

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:63 ecid Electronic chip ID (ECID).



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 380 of 415

Version 2.3
March 7, 2008

Clock Ratio Register (N:1 Phase Hold Control)

Address x‘600400’

Type RW

Reset ratio: Reset to all zeros during POR.
iap_encode: Reset to ‘1’ during POR. 
count1us_factor: Reset to all ones during POR.

N/I bu
s_

cl
k_

ra
tio

bu
s_

cf
g

i2
c_

cl
k_

ra
tio

R
es

er
ve

d

Reserved Reserved N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 N/I Not implemented.

1:3 bus_clk_ratio

Bus clock ratio (for N:1 phase_hold generation).
000 2:1
001 3:1
010 4:1
011 6:1
100 8:1
101 12:1
110 24:1
111 1:1

4 bus_cfg Writing a ‘1’ to this bit triggers the bus_cfg read operation, which captures values from the bus_cfg pri-
mary C4 inputs. Reads return ‘0’.

5:7 i2c_clk_ratio

I2C clock ratio. 
This counter is asynchronous to the mod48 counter and scales with the processing unit frequency.
000 16:1 (full speed), 8:1 (half speed), 4:1 (quarter speed)
001 Not supported
010 8:1 (full speed), 4:1 (half speed), 2:1 (quarter speed)
011 Not supported
100 Not supported
101 Not supported
110 Not supported
111 1:1

8:19 Reserved Reserved.

20:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 381 of 415

12.5.4 Chip Clock/Scan Control (x‘8[0:4]XXXX’)

Clock Command Register

See Figure 12-6 Common Clock Commands on page 382. 

Address x‘800000’

Type R/W

Reset Set to all zeros during POR. 

Reserved sy
nc

_c
lk

_s
el

clk_cmd co
re

R
es

er
ve

d

R
es

er
ve

d

biu i/o cm
d_

ra
m

c2
_c

lk

cm
d_

c2
st

ar
_c

lk

R
es

er
ve

d

cm
d_

c1
_c

lk

ch
ip

ra
s

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:10 Reserved Unused. 

11 sync_clk_sel SYNC clock select. Must be programmed to logic level zero [‘0’].

12:15 clk_cmd

Clock command
x‘4’ Pulse selected clocks
x‘8’ Start selected clocks
x‘C’ Stop selected clocks
Note:  Bits 14:15 are not implemented.

Domain Select

16 core Domain select core. 

17:18 Reserved Unused.

19 biu Domain select STS/BIU.

20 i/o Domain select I/O.

Array Clock Commands (applies to Start, Pulse, and Stop)

21 cmd_ramc2_clk Apply command to RAMC2 clock signal (not valid for I/O). 

22 cmd_c2star_clk Apply command to C2star clock signals. 

23 Reserved Unused.

Latch Clock Commands (applies to Start or Pulse, and Stop)

24 cmd_c1_clk Apply command to C1 clock signal.

Free-Running Clock Section

25 chipras Domain select: ChipRAS.

26:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 382 of 415

Version 2.3
March 7, 2008

Figure 12-6. Common Clock Commands 

-- Start --
x‘0008868000000000’ Core

x‘0008168000000000’ BIU
x‘00080E8000000000’ I/O 
x‘00089E8000000000’ All

-- Stop --
x‘000C868000000000’ Core

x‘000C168000000000’ BIU
x‘000C0E8000000000’ I/O 
x‘000C9E8000000000’ All
-- Clock 1 (C1/C2*/RAMC2) --
x‘0004868000000000’ Core

x‘0004168000000000’ BIU
x‘00040E8000000000’ I/O 
x‘00049E8000000000’ All

-- RAMC2 (RAM Clock only) --
x‘0004840000000000’ Core RAMC2

x‘0004140000000000’ BIU RAMC2

-- C1 (plus C2*) --
x‘0004828000000000’ Core C1
x
x‘0004128000000000’ BIU C1

Latch C2

RAM/L2*C2

Latch C1

Latch C2

RAM C2

Latch C1/L2* C2

Latch C2

L2* C2

Latch C1

Latch C2

RAM/L2* C2

Latch C1

Latch C2

RAM/L2* C2

Latch C1

RAM C2
x‘00040A8000000000’ I/O C1
x‘00049A8000000000’ All C1

-- Start RAM Clock only --
x‘0008840000000000’ Core RAMC2

x‘0008140000000000’ BIU RAMC2
Latch C2

RAM C2

Latch C1/L2* C2

x‘0008940000000000’ All RAMC2



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 383 of 415

Status Register

Note:  Bits 0:12 of the Status Register can be masked or blocked by setting bits 0:12 of the Status Register 
Mask.

Address x‘800003’

Type R/W: bits 2, 4, 7:9, 31. RO: bits 20:21, 23:24

Reset Set to x‘0000 0040 0000 0000’ during POR.

R
es

er
ve

d

in
v_

rd
/w

r_
er

r

R
es

er
ve

d

jta
g/

bi
st

_c
ol

l_
er

r

R
es

er
ve

d

re
g_

w
r_

er
r

pl
l_

lc
k_

st
at

e

ba
d_

ps
yn

c

Reserved clk_state Reserved tc
l_

tc
_o

rt
ho

_c
lk

_c
hk

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 Reserved Reserved.

2 inv_rd/wr_err Invalid read/write address error. An attempt was made to read or write to a clock interface address that 
does not exist. Raises SCATTN unless blocked.

3 Reserved Reserved.

4 jtag/bist_coll_err JTAG/BIST collision error. JTAG attempted to initiate a write to a valid register while the event processor 
or array built-in self test (ABIST) was in progress. Raises SCATTN unless blocked.

5:6 Reserved Reserved.

7 reg_wr_err

Register write error. Either of the following actions raises SCATTN unless it is blocked:
• A write to the Clock Command Register (address x‘800009’) while not all of the core0 or STS clocks 

are off.
• A write to the I/O Control Register (address x‘80000F’) while the I/O clocks are running. 

8 pll_lck_state pll_lock state. If ‘1’, PLL unlock is detected. Raises SCATTN unless blocked.

9 bad_psync Bad psync1 detected. The Clock Controls mod48 counter does not match the Power Tuning mod48 
counter. 

10:19 Reserved Reserved.

1. A signal provided by the North Bridge, which is active for one rising edge of SYSCLK every 24 SYSCLK cycles.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 384 of 415

Version 2.3
March 7, 2008

20:27 clk_state

Clock state bits (CLK_STATE[0:7]). These correspond one-to-one with the domains defined in bits 16 to 
20 of the Clock Command Register. A value of ‘1’ indicates that the C! clocks are running. These bits 
cannot be written.
Bits
20 Core
21 Pervasive
22 Reserved
23 STS
24 I/O
25:27 Reserved

28:30 Reserved Reserved.

31 tcl_tc_ortho_clk_
chk Indicates that an attempt was made to scan a domain while the clocks were not stopped.

32:63 N/I Not implemented.

Bits Field Name Description

1. A signal provided by the North Bridge, which is active for one rising edge of SYSCLK every 24 SYSCLK cycles.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 385 of 415

Phase Synchronization Control Register

Address x‘800006’

Type R/W: 0:2, 16:17 
WO: 22:27

Reset Set to all zeros during POR. 

pv
r_

fr
z

ph
as

e_
sy

nc
_c

m
d

co
nf

ig

m
ov

ed

N/I m
as

k_
cl

k_
fr

z

ep
s_

sy
nc

N/I Reserved ca
lli

br
at

e_
st

s

t0
_o

bs
er

ve

ep
s_

sy
nc

R
es

er
ve

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

en
_d

ee
pn

ap
_f

ix

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 pvr_frz Processor Version Register (PVR) freeze. If set, the PVR latches in the fixed-point unit (FXU) can be 
scanned to an arbitrary value.

1 phase_sync_cmd Command bit. Run phase synchronization.

2 config Configuration bit. Do not checkstop on bad_sync.

3 moved Moved to bit 9 of the Status Register. 

4:15 N/I Not implemented.

16 mask_clk_frz Mask clock freeze. When set to ‘1’, the clock-freeze signal from the free-running global controls macro, 
ts_glob, is ignored.

17 eps_sync Event processing sequencer (EPS) synchronization. If set, starts the EPS engine processing synchro-
nously to the EPS engine of the other processing unit. 

18:21 N/I Not implemented.

22:27 Reserved Reserved (all zeros).

28 callibrate_sts STS calibrate. Used during test to generate a test-only (TO) initialization pulse to the STS. 

29 t0_observe T0 observation. If set, toggles the quiescent request (QREQ) pin on every T0 pulse. 

30:31 Reserved Reserved(all zeros).

32 en_deepnap_fix Enable deep nap delaying to prevent clock race condition at certain bus ratios.

33:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 386 of 415

Version 2.3
March 7, 2008

Clock Command Control Register

This SCOM register controls the Event Processing Sequencer (EPS) used to generate clock patterns for 
LBIST, ABIST, POR, and debugging.

Address x‘800009’

Type R/W (Writing this register while the core or BIU is running will raise an attention.)

Reset Set to x‘0000000 0314001A’ during POR.

event_reg generic_cnt

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

lo_phs_hld_cnt hi
_p

hs
_h

ld
_c

nt

cm
d_

re
g(

0)

cm
d_

re
g(

2)

cm
d_

re
g(

3)

cm
d_

re
g(

4)

cm
d_

re
g(

5)

cm
d_

re
g(

6)

cm
d_

re
g(

7)

cm
d_

re
g(

8)

cm
d_

re
g(

9)

cm
d_

re
g(

10
)

cm
d_

re
g(

11
)

cm
d_

re
g(

12
)

cm
d_

re
g(

13
)

cm
d_

re
g(

14
)

cm
d_

re
g(

15
)

cm
d_

re
g(

16
)

cm
d_

re
g(

17
)

cm
d_

re
g(

18
:2

0)

cm
d_

re
g(

21
)

cm
d_

re
g(

22
:2

5)

cm
d_

re
g(

26
)

cm
d_

re
g(

27
)

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:27 event_reg

Event register (four fields of 7 control bits per field).
Bits
21:27 First event field.
14:20 Second event field.
7:13 Third event field.
0:6 Fourth event field.

Field bit definitions:
Bits
0, 7, 14, 21: Run system C1 clock.
1, 8, 15, 22: Run scan SC1 clock.
2, 9, 16, 23: Run RAM_C2 clock.
3, 10, 17, 24: Run C2STAR clock.
4, 11, 18, 25: Ignored.
5, 12, 19, 26: Enable clock-rate divide counter. This slows down the application of clock events.
6, 13, 20, 27: Enable generic counter, specifying the number of times to loop on the event field.

28:31 generic_cnt Generic counter (0:3).
Programmed count value: down counter.

32:35 lo_phs_hld_cnt
Lower-order phase hold counter (mod48) for event processing.
Valid values are 0 to 11.
Note:  This counter cannot be used while the PHASESYNC POR instruction is active.

Notes:  

• The system C2 clock is always running in functional mode.
• The domain selects (bits 38:42) only control the scope of C1, RAM_C2, and C2STAR.
• Bit 52 initiates this sequence, which performs the events in order. Bits 55:57 control looping on these events. The SCOM LBIST 

Test Length Register must be used to configure the TEST LENGTH count.
• If scan SC1 is the only clock selected for an event, then the CHANNEL LENGTH count is used for that event. The SCOM LBIST 

Channel Length Register must be used to configure the CHANNEL LENGTH count. If SC1 is selected in addition to either a SYS-
TEM or RAM clock, then only a single clock is given.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 387 of 415

36:37 hi_phs_hld_cnt

Upper-order phase hold counter for event processing.
Programmed count value: up counters 0 to 3.
Notes:  

• This counter cannot be used while the PHASESYNC POR instruction is active.
• This counter counts the carry out of the lower-order phase hold counter (for event processing).

38 cmd_reg(0) CORE 0 select.

39 cmd_reg(2) BIU select.

40 cmd_reg(3) I/O select.

41 cmd_reg(4) Free-running select.

42 cmd_reg(5) Domain select for hard stop. Free-running domain.

43 cmd_reg(6)

Global array inhibit. This signal gets ORed with ABIST_EN and Local_Latch OR ESP_RAMSCAN and 
NOT Local_Lt OR LSSD/GSD Scan-Active. If the scan 0 has not occurred through the scan-ABIST sec-
tion, the arrays will be enabled functionally when the global array inhibit is inactive. Set during POR. 
Need to clear by writing. 

44 cmd_reg(7) SCAN 0 command (similar to the FLUSH 0 Access Command). Scan in ‘0’ to all the selected domains 
specified by Cmd_reg(0:3) except the FUSE and NOT_BIST (timing chain) rings.

45 cmd_reg(8) FULL SCAN 0 command. Used in conjunction with the SCAN 0 Command. Causes the FUSE and 
NOT_BIST (timing chain) to also scan to ‘0’. POR sets it to ‘1’ (clean NOT_BIST chain).

46 cmd_reg(9)

LBIST. When set to run LBIST, causes LBIST ring-selects and causes the Multiple Input Signature Reg-
ister (MISR) connections to be established. The LBIST logic is fenced out in the free-running domain. 
This bit has no effect on the EPS engine.
Bit 11 in the I/O Control Register (x‘80000F’) is automatically set to fence the I2C. It is not reset when the 
LBIST bit is reset.

47 cmd_reg(10) CAM BIST. Set for testing content-addressable memory (CAM) arrays with scanned ABIST.

48 cmd_reg(11) Central scanned ABIST core. Set to test core arrays covered by scanned ABIST.

49 cmd_reg(12) Central scanned ABIST not core. Set to test noncore arrays covered by scanned ABIST.

50 cmd_reg(13)
Decentral ABIST. Set to test arrays covered by the following dedicated ABIST engines: L2 cache, L2 
directory, L2 least recently used (LRU), IFU cache, IFU directory, IFU branch history table (BHT), L1 
cache data (L1D).

51 cmd_reg(14) Decentral ABIST RAM_SELECT. Zeros for the first half of the arrays; ones for the second half.

52 cmd_reg(15) Event processing command. Initiates a clock event process (see Figure 12-7 on page 390 for more infor-
mation).

53 cmd_reg(16) Phase load control(0). Load the phase counter with the programmed value at event processor state 2.

54 cmd_reg(17)
Phase load control(1). Load the phase counter with the programmed value with Event Complete. Nor-
mally, for LBIST, this bit would be set. Not programming this bit makes it possible to change the 
RUN_CLOCK pulse to PHASE_HOLD alignment.

Bits Field Name Description

Notes:  

• The system C2 clock is always running in functional mode.
• The domain selects (bits 38:42) only control the scope of C1, RAM_C2, and C2STAR.
• Bit 52 initiates this sequence, which performs the events in order. Bits 55:57 control looping on these events. The SCOM LBIST 

Test Length Register must be used to configure the TEST LENGTH count.
• If scan SC1 is the only clock selected for an event, then the CHANNEL LENGTH count is used for that event. The SCOM LBIST 

Channel Length Register must be used to configure the CHANNEL LENGTH count. If SC1 is selected in addition to either a SYS-
TEM or RAM clock, then only a single clock is given.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 388 of 415

Version 2.3
March 7, 2008

55:57 cmd_reg(18:20)

Run_N Command control. Causes the event processor to loop back to different event fields. This pro-
vides the capability of an initialization setup. 
000 Loop on all events. Branches back to first event.
100 Loop on fourth event. 
101 Branch back to second event.
110 Branch back to third event.

58 cmd_reg(21) Event processing override. Provides the means to interrupt an event process that is in progress.

59:61 cmd_reg(22:25)

Domain select for hard stop.
SCOM bits    cmd_reg bit
59                 22         Core active high.
                     23         Reserved.
60                 24         STS active high.
61                 25         I/O active high.

62 cmd_reg(26) I/O mesh clock select. The processor interface runs off an input clock called the IO_CLOCK. For LBIST 
and scanning of the I/O domain, this bit should be set first. POR sets this bit to ‘1’.

63 cmd_reg(27) LBIST ac mode. Causes 8:1 logic clocks to turn off.

Bits Field Name Description

Notes:  

• The system C2 clock is always running in functional mode.
• The domain selects (bits 38:42) only control the scope of C1, RAM_C2, and C2STAR.
• Bit 52 initiates this sequence, which performs the events in order. Bits 55:57 control looping on these events. The SCOM LBIST 

Test Length Register must be used to configure the TEST LENGTH count.
• If scan SC1 is the only clock selected for an event, then the CHANNEL LENGTH count is used for that event. The SCOM LBIST 

Channel Length Register must be used to configure the CHANNEL LENGTH count. If SC1 is selected in addition to either a SYS-
TEM or RAM clock, then only a single clock is given.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 389 of 415

Table 12-4. EPS Engine Description  

  alias eps_start                = rch9<52>                          // set to start
  alias event_code[1:4]    = { rch9<0:6>, rch9<7:13>,rch9<14:20>, rch9<21:27> }         // micro-code
  alias cnt_gen                 = rch9<28:31>                     // generic counter
  alias cnt_scan                = rch8<0:15>                       // scan counter
  alias slow_clk                 = rcha<0:5>                         // sleep between clock
  alias scan_speed           = rch2<28:31>                      // sc1 speed
  alias loop_type              = rch9<55:57>                      // where to loop after last instr
  alias test_len                 = rchb<0:19>                        // # of loops
  alias load_phase_imm  = rch9<53>                           // load phase prior to EPS run
  alias load_phase           = rch9<54>                           // load phase after each instr.
  alias mod48val              = rch9<36:37>rch9<32:35>  // phase value to load
  alias eps_running           = rch4<0>                            // running
  alias eps_complete        = rch4<1>                             // completed
  alias run_continuous      = rch2<22>                           // loops for ever
  alias eps_break               = rch9<58>                          // stop EPS machine

  waitfor (eps_start == 1);
  
  eps_running=1; eps_complete=0;
  pc=4;
  if(load_phase_imm) mod48 = mod48val;

loop1:
  event           = event_code[pc];
  c1_stop        = event[0];
  sc1_stop       = event[1];
  ramc2_stop   = event[2];
  c2star_stop   = event[3];
  killdynclk      = event[4];
  useslowclks   = event[5];

  if(       c1_stop == 1 AND sc1_stop == 0 AND event[6] == 1) cnt = cnt_gen;
  else if(c1_stop == 0 AND sc1_stop == 1                              ) cnt = cnt_scan;
  else cnt=0;

loop2:
  if(useslowclks) stop c1,sc1,ramc2,c2star clocks for slow_clk cycles;
  start clks for 1 cycle depending on c1_stop,sc1_stop,ramc2_stop,c2star_stop,killdynclk;
  if(sc1_stop) stop c1,sc1,ramc2,c2star clocks for scan_speed cycles;

  cnt--; if (cnt >= 0) goto loop2;
  
  pc--; if(pc==0)
  switch (loop_type)
      case ‘000’: pc=4; // loop to 1st event
      case ‘100’: pc=1; // loop to 4th event
      case ‘101’: pc=3; // loop to 2nd event
      case ‘110’: pc=2; // loop to 3rd event
  test_len--;

  if(load_phase) mod48 = mod48val;
  if((test_len>=0 OR continuous_run) AND NOT eps_break) goto loop1;
  eps_running=0; eps_complete=1;



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 390 of 415

Version 2.3
March 7, 2008

Figure 12-7. Example of LBIST Commands using the EPS Engine 

-- Scan / Wait / Clock 2 (N:1 Clocks occur with first 1:1 C1) --
x‘840002’ x‘0000 0005 0000 0000’ Scan Clock Speed = 5
x‘600400’ x‘0000 0000 0000 0000’ N:1 Bus Ratios set to 2:1 
x‘80000A’ x‘7800 000E 0000 0000’ slow clock=15

x‘800009’ x‘BA19 2041 1392 0A03’ LBIST Clock Event (generic counter=1)
x‘84000B’ x‘vvvv v000 0000 0000’ Test Length Value: 2**20 max loops

-- Scan / Wait / Clock 2 (First C1 clock is only 1:1) --
x‘840002’ x‘0000 0005 0000 0000’ Scan Clock Speed = 5
x‘600400’ x‘0000 0000 0000 0000’ N:1 Bus Ratios set to 2:1 
x‘80000A’ x‘7800 000E 0000 0000’ slow clock=15

x‘800009’ x‘BA19 2041 0392 0A03’ LBIST Clock Event (generic counter=1)
x‘84000B’ x‘vvvv v000 0000 0000’ Test Length Value: 2**20 max loops

-- Scan / Wait / Clock 1 (All C1 Clocks) --
x‘840002’ x‘0000 0005 0000 0000’ Scan Clock Speed = 5
x‘600400’ x‘7000 0000 0000 0000’ N:1 Bus Ratios set to 1:1 
x‘80000A’ x‘7800 000E 0000 0000’ slow clock=15

x‘800009’ x‘B819 2040 0392 0802’ LBIST Clock Event
x‘84000B’ x‘vvvv v000 0000 0000’ Test Length Value: 2**20 max loops

 

 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 391 of 415

Energy Star Register

Address x‘80000A’

Type R/W

Reset Set to x‘xx00 0x20 0000 0000’ during POR (values marked as x depend on POR 
sequence).

rcha_reg(7:12) rc
ha

_r
eg

(1
3)

rc
ha

_r
eg

(1
4)

N/I shad_cnt rc
ha

_r
eg

(0
)

rc
ha

_r
eg

(1
)

rc
ha

_r
eg

(2
)

rc
ha

_r
eg

(3
)

rc
ha

_r
eg

(4
)

rc
ha

_r
eg

(5
)

rc
ha

_r
eg

(6
)

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:5 rcha_reg(7:12)
Clock rate divide counter (0 to 5). 
Programmed count value: down counter.
Note:  Moved here from the Clock Command Control Register due to space limitation.

6 rcha_reg(13) Enable debug logic on. The initial value is ‘0’. 

7 rcha_reg(14) Fuse clock control. The initial value is ‘0’.

8:17 N/I Not implemented.

18:23 shad_cnt

Shadow counter (Read-Only).
The master counter values at the time of the clock freeze on an immediate stop are in the shadow 
counter. This shadow counter value can be read and then loaded into the master mod48 counter to 
restart the clocks using Run-N in the event processor exactly where they were stopped.

24 rcha_reg(0) Enter Energy Star mode.

25 rcha_reg(1) Exit Energy Star mode.

26 rcha_reg(2)

Configuration shadow stop enable. Allow starting and pulsing clocks based on the saved value for the 
master phase hold counter. 
Note:  In order for this mode to work, this bit must be written while both the STS and I/O clocks are run-
ning. From the POR state, the following sequence must be programmed:

1. x‘80_00_00’ x‘0008_1800_0000_0000’ Start both STS and I/O clocks.
2. x‘80_00_0A’ x‘0000_0020_0000_0000’ Enable shadow stop.
3. x‘80_00_00’ x‘000C_1800_0000_0000’ Stop either STS or I/O clocks.
4. x‘80_00_09’ x‘0000_0000_0F38_1002’ Scan0.
5. x‘80_00_09’ x‘0000_0000_0000_0000’ Clear array inhibit and receiver inhibit.
6. x‘80_00_00’ x‘0004_D800_0000_0000’ Pulse clocks (repeat as needed).
...
7. x‘80_00_00’ x‘0008_D800_0000_0000’ Run clocks. Clocks resume at the next, subsequent 

phase_hold alignment after the last pulse clock.

27 rcha_reg(3) Unconditional immediate exit from Energy Star mode.

28 rcha_reg(4) If ‘0’, stops ABIST clocks in core and VMX.

29 rcha_reg(5) If ‘0’, stops ABIST clocks in STS.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 392 of 415

Version 2.3
March 7, 2008

30 rcha_reg(6)
If ‘0’, stops ABIST clocks in scanned ABIST machines. 
In addition, if ‘0’ this bit prevents scanning through the local clock (lclk) domain.

31 N/I Not implemented.

32:63 N/I Not implemented.

Bits Field Name Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 393 of 415

Status Register Mask

Address x‘80000C’

Type R/W

Reset Set to x‘0080 0000 0000 0000’ during POR.

R
es

er
ve

d

bl
kr

w
ae

rr

R
es

er
ve

d

bl
kj

bc
er

r

R
es

er
ve

d

bl
ko

rw
er

r

bl
kp

lle
rr

Reserved bl
kc

lk
or

th
at

tn

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:1 Reserved Reserved.

2 blkrwaerr Block invalid read/write address error.

3 Reserved Reserved.

4 blkjbcerr Block JTAG/BIST collision error.

5:6 Reserved Reserved.

7 blkorwerr Block Options Register write error.

8 blkpllerr Block PLL lock error.

9:30 Reserved Reserved.

31 blkclkorthattn Block clock orthogonality check from generating attention.

32:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 394 of 415

Version 2.3
March 7, 2008

I/O Control Register

Address x‘80000F’

Type R/W (Writing this register while I/O is running will raise an attention.)

Reset Set to x‘2200 0000 0000 0000’ during POR.

N/I dr
vi

nh
bt

N/I rc
vi

nh
bt

N/I ki
ll_

dy
n_

cl
k_

di
s

st
op

_p
ip

e_
di

s

w
ra

pi
oc

m
d

i2
ci

nh
ib

it
N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

Note:  The tristate control bits(0:6) determine whether drivers are placed in a high-impedance state. A bit value of ‘1’ places the appro-
priate drivers in the high-impedance state. These bits should be set before executing LBIST, and are reset to all ones during POR.

0:1 N/I Not implemented.

2 drvinhbt Drivers inhibit.

3:5 N/I Not implemented.

6 rcvinhbt Receivers inhibit. 

7 N/I Not implemented.

8 kill_dyn_clk_dis
This bit is asserted to stop the kill_dyn_clk (that is, it asserts the kill_dyn_clk signal).
Note:  This bit must be zero at all times.

9 stop_pipe_dis

This bit disables the global stop_pipe signal, which is used to enable the stop_ctl to dynamic logic. The 
stop_pipe signal is asynchronous. 
Note:  This control turns on the clocks to the dynamic, nonscan L1 latches in order to initialize them after 
SCAN 0 initialization. This bit must be zero at all other times.

10 wrapiocmd Prevents driver inhibit during the wrap I/O test.

11 i2cinhibit I2C inhibit. If set, the I2C outputs to the JTAG macro are fenced. This bit is set when the LBIST bit, bit 46 
in the Clock Command Control Register, is set (not reset when resetting LBIST bit).

12:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 395 of 415

ABIST Status Register

Address x‘820004’

Type R/W

Bits 21:26 are unspecified after an LBIST SCAN0.SCAN and should be reinitialized 
before an ABIST. ABIST fail bits are only valid if the corresponding ABIST done bit is 
asserted.

Bits in this register are only updated during an EPS controlled operation. Turn on 
ccintf_local_psav_dis if using ABIST with functional clocks.

Reset Set to x‘0000 0000 0000 0000’ during POR.

ep
s/

ab
is

t_
ru

n

an
y_

ev
nt

_c
m

pl
t

N/I co
re

0_
ab

is
t_

do
ne

vm
x_

sc
an

_a
bi

st
_d

on
e

bi
u_

sc
an

_a
bi

st
_d

on
e

bi
u_

de
d_

ab
is

t_
do

ne

co
re

0_
ab

is
t_

fa
il

vm
x_

sc
an

_a
bi

st
_f

ai
l

bi
u_

sc
an

_a
bi

st
_f

ai
l

bi
u_

de
d_

ab
is

t_
fa

il

N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0 eps/abist_run EPS running, or a decentral ABIST in progress. This is a read-only bit. 

1 any_evnt_cmplt
Any event complete. Cleared by running an event. Set and held after completion of event processing.
Cleared when bit 52 of the Clock Command Control Register is zero.

2:19 N/I Not implemented.

20 core0_abist_done Physical core0 (without VMX) ABIST done.

21 vmx_scan_
abist_done VMX scanned; ABIST done.

22 biu_scan_
abist_done BIU scanned; ABIST done.

23 biu_ded
_abist_done BIU dedicated; ABIST done.

24 core0_abist_fail Core ABIST Fail. The ABIST Fail is held after being set. To clear this bit with an SCOM write to this reg-
ister, the abist_out must be cleared first. 

25 vmx_scan
_abist_fail

VMX scanned; ABIST fail. The ABIST Fail is held after being set. To clear this bit with an SCOM write to 
this register, abist_out must be cleared first. 

26 biu_scan
_abist_fail

BIU scanned; ABIST fail. The ABIST Fail is held after being set. To clear this bit with an SCOM write to 
this register, abist_out must be cleared first. 

27 biu_ded
_abist_fail

BIU dedicated; ABIST fail. The ABIST Fail is held after being set. To clear this bit with an SCOM write to 
this register, abist_out must be cleared first.

28:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 396 of 415

Version 2.3
March 7, 2008

LBIST Options Register

Address x‘840002’

Type R/W

Reset Set to x‘000E 0005 0000 0000’ during POR.

N/I co
re

_a
bi

st
_d

on
e_

m
sk

bi
u/

vm
x_

ab
is

t_
do

ne
_m

sk

gp
s_

ab
is

t_
do

ne
_m

sk
N/I N/I co

nt
_a

bi
st

N/I ov
rd

_a
bi

st
_d

on
e_

m
sk

en
_t

do
_r

ti

scan_clk_spd

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:11 N/I Not implemented.

12 core_abist_done_
msk

Physical core ABIST done mask. Mask ABIST done from the core. (ABIST pass is also masked as a 
result of the masking.)

13 biu/vmx_abist_
done_msk BIU + VMX scanned ABIST done mask.

14 gps_abist_
done_msk

STS ABIST done mask. Mask ABIST done from STS. (ABIST pass is also masked as a result of the 
masking.)

15:21 N/I Not implemented.

22 cont_abist
Continual LBIST. Set in order to override the LBIST Test Length Register. Useful for power and noise 
measurements. Continual LBIST is stopped with a write to the eps_override bit (bit 58) of the Clock Com-
mand Register (x‘800009’).

23:25 N/I Not implemented.

26 ovrd_abist_done_
msk

Override ABIST done mask. The ABIST pass bit is gated by not abist_done. If abist_done is not 
asserted, then the ABIST pass status cannot be determined. However, by setting this override bit, you 
can observe the ABIST pass status. 

Notes:  
• The abist_fail is ‘0’ until abist_done is set. Once abist_done is set, then abist_fail can be set. 
• This override effects all three domains: core, scanned ABIST not core, and STS.

Programming Note:  The gps_scan_abist requires x‘FFFFF’ + 1 number of tester loops to complete. 
Each tester loop is 131 times the Scan_Clock_Rate number of mesh clocks. Thus, only x‘4FFFF’ tester 
loops are run. Therefore, the abist_done status bit will not be set, and the Override ABIST DONE Mask 
should be set in order to validate the ABIST_FAIL status. The abist_done signal from the 
GPS_SCAN_ABIST engine (HTBC RLM) should be checked.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 397 of 415

27 en_tdo_rti

Enable TDO during RUN_TEST_IDLE (for ABIST real time fail observation). The bit-fail mapping and 
array diagnostics for debugging ABIST fails on the tester often need to observe the ABIST fail on a real-
time basis. Because the ABIST fail information is sent to ACCESS for status, it is conveniently routed to 
TDO, which is typically a burn-in pin as well. A special TDO_ENABLE is required to observe this signal. 
Note:  The normal IEEE JTAG Specification has the TDO in a high-impedance state during run-test-idle. 
This state is then used to enable the TDO_ENABLE during ABIST operations when bit 27 is asserted.

28:31 scan_clk_spd

Scan clock speed. Set to the divide-by value to limit scan clock frequency during scan events on the 
event processor. This accommodates relaxed timing on the scan paths. Typical applications are flush0, 
LBIST, and scanned ABIST. The scan clock speed has no effect on system scan-ring access using the 
0F access command, which occurs with TCK frequency when in the SHIFT_DR state. Bit 31 is the LSb. 

• The nominal value is ‘0101’ (that is, 1/6th of the system clock). 
• A value of ‘0000’ is supported, and can be used for increased simulation throughput. 
• The value x‘0001’ is invalid and must not be used. 

32:63 N/I Not implemented.

Bits Field Name Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 398 of 415

Version 2.3
March 7, 2008

LBIST Channel Length Register

Address x‘840008’

Type R/W

Reset Set to x‘0800 0000 0000 0000’ during POR.

channel_length N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:15 channel_length

Channel length. Contains the number of cycles minus one the event processor is to loop on a particular 
event that has the SCAN_CTL bit asserted in the microcoded instructions.
Exception:  When RAMSTOP_CTL is set coincident with SCAN_CTL, only one scan clock pulse and 
one ramc2 clock pulse are generated together after a delay of the SCAN_SPEED value from the begin-
ning of the event. 

16:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

SCOM Interface and Registers
Page 399 of 415

LBIST Test Length Register

Address x‘84000B’

Type R/W

Reset Set to x‘4000 0000 0000 0000’ during POR.

test_length N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:19 test_length

Test length. Contains the number of cycles minus one that the event processor is to loop on the micro-
coded instructions. For LBIST, it would be the number of pseudo-random test pattern generator (PRPG) 
loads and system clock loops to run. If loaded to all zeros, then one PRPG load and system clock cycle is 
run. MISR CLEAR has no overriding effect on the test length.
Example: To loop four times, program 3 into this register (‘00000000000000000011’).
Note:  Do not attempt less than two loops in this register while doing a RUN_N that is using the last event 
due to logic implementation (pipelining). 

20:63 N/I Not implemented.



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

SCOM Interface and Registers
Page 400 of 415

Version 2.3
March 7, 2008

Clock Ramping Configuration Register

Address x‘84000D’

Type R/W

Reset Set to x‘2D75 E300 0000 0000’ during POR. 

1st_pause 2nd_pause 3rd_pause Reserved N/I

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

N/I

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:5 1st_pause First pause in ramping up or down.           5 cycles at f,   2 cycles at f/2, 1 cycle at f/4

6:11 2nd_pause Second pause in ramping up or down.    21 cycles at f, 10 cycles at f/2, 5 cycles at f/4

12:17 3rd_pause Third pause in ramping up or down.        26 cycles at f, 13 cycles at f/2, 6 cycles at f/4

18:23 Reserved Reserved.

24:63 N/I Not implemented.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 401 of 415

13. Vector Processing Unit

The Vector/SIMD technology, referred to in this document as the vector processing unit (VPU), provides a 
software model that accelerates the performance of various software applications and runs on reduced 
instruction set computing (RISC) microprocessors. This is a short vector parallel architecture that extends the 
instruction set architecture (ISA) of the PowerPC Architecture. It is based on separate vector/SIMD1-style 
execution units that have high data parallelism. This parallelism allows it to perform on multiple data elements 
in a single instruction. The term vector refers to the spatial parallel processing of short, fixed-length, one-
dimensional matrices performed by an execution unit. It should not be confused with the temporal parallel 
(pipelined) processing of long, variable-length vectors performed by classical vector machines. High degrees 
of parallelism are achievable with simple in-order instruction dispatch and low-instruction bandwidth. 
However, the ISA is designed so as not to impede additional parallelism through superscalar dispatch to 
multiple execution units or multithreaded execution unit pipelines.

13.1 970MP Vector and SIMD Multimedia Overview

The VPU expands the current PowerPC Architecture through the addition of a 128-bit vector execution unit, 
which operates concurrently with the existing scalar integer and floating-point units. This new engine provides 
for highly parallel operations, allowing for the simultaneous execution of up to four 32-bit floating operations 
or sixteen 8-bit fixed-point operations in one instruction. All VPU data paths and execution units are 128 bits 
wide and are fully pipelined.

13.1.1 VPU Implementation

The 970MP microprocessor implements many aspects of a preferred implementation as described in the 
PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Programming Environ-
ments Manual. The key features of a preferred implementation include:

• All data paths and execution units are 128 bits wide.

• There are two independent VPU sub-units, one for all arithmetic logic unit (ALU) instructions and one for 
permute operations.

The VPU is divided into two dispatchable units: vector ALU and vector permute. The vector ALU unit is further 
subdivided into a vector floating-point unit, a vector simple-fixed unit, and a vector complex-fixed unit. The 
vector ALU and permute units receive predecoded instructions from the issue queue in the instruction 
sequencer unit for the VPU (ISV). Vector instructions are issued to the appropriate vector unit when all of the 
source operands are available. Vector loads, stores, and data stream touch (DST) instructions are executed 
in the load/store unit (LSU) pipes. There are two copies of the Vector Register files; one provides operands 
for the vector permute unit, and one provides operands for the vector ALU. Figure 13-1 on page 402 provides 
a high-level view of the instruction sequencer unit (ISU) interaction with the VPUs.

1. Single instruction stream, multiple data streams



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 402 of 415

Version 2.3
March 7, 2008

13.1.2 Vector ALU

Conceptually, the vector unit ALU is capable of operating on three source vectors and producing a single 
result vector on each instruction. The ALU is an SIMD-style arithmetic unit, where an instruction performs the 
same operation on all the data elements that comprise each vector. The ALU is partitioned into four separate 
ALUs for 32-bit integers and for single-precision floating-point operands. For 16-bit integers, the ALU is parti-
tioned into 8 ALUs, and for 8-bit integers it is partitioned into 16 separate ALUs. No arithmetic is performed on 
elements larger than 32 bits. The largest adder in the vector ALU is 32 bits wide, and the largest multiplier 
array is 24 bits wide for the single-precision floating-point mantissa.

Figure 13-1. VPU Block Diagram 

Instructions

I0 I1 I2 I3 BR

LSU0
Load
Data

LSU1
Load
Data

Store
Data

Mapper

ISQ0 ISQ1

VRF0 VRF1

Permute Simple Complex Floating
Fixed Fixed Point

8 Ports 8 Ports 
128 x 80128 x 80

1 x 16 2 x 10

Store
Staging

unused

(4-Write, 4-Read)(4-Write, 4-Read)

Permute

ALU

Data

Control



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 403 of 415

13.2 Vector Registers

13.2.1 VRSAVE Register

This 32-bit register is maintained and managed by software only. Each bit in the VRSAVE Register corre-
sponds to a Vector Register and indicates whether the corresponding register is currently being used by the 
executing process. Therefore, the operating system needs to save and restore only those Vector Registers 
(VRs) when an exception occurs. The register is handled as a renamed register within the General Purpose 
Register (GPR) file in the 970MP microprocessor. 

Note:  If this approach is taken, it must be applied rigorously. If a program fails to indicate that a given vector 
register is in use, software errors can occur that will be difficult to detect and correct because they are timing-
dependent. Some operating systems save and restore VRSAVE only for programs that also use other vector 
registers.

The VRSAVE Register can be accessed only by the Move From Special Purpose Register (mfspr) or Move 
To Special Purpose Register (mtspr) instructions. The mfspr instruction copies VRSAVE to the low-order 32 
bits of a GPR; the mtspr instruction copies the low-order 32 bits of a GPR to VRSAVE. 

13.2.2 Vector Status and Control Register (VSCR)

The Vector Status and Control Register is a special 32-bit register (not an SPR) that is read and written in a 
manner similar to the Floating-Point Status and Control Register (FPSCR) in the scalar floating-point unit. 
Two special instructions, Move From Vector Status and Control Register (mfvscr) and Move To Vector 
Status and Control Register (mtvscr), are provided to move the VSCR from and to a Vector Register. When 
moved to or from a Vector Register, the 32-bit VSCR is right justified in the 128-bit Vector Register. When 
moved to a Vector Register, the upper 96 bits (0:95) of the Vector Register are cleared (set to zeros). 

The VSCR has two defined bits, the non-Java mode (NJ) bit (VSCR[15]) and the saturation (SAT) bit 
(VSCR[31]). The remaining bits are reserved. VSCR bit settings are shown in Table 13-1 on page 404. 

Figure 13-2. VSCR Format 

Reserved NJ Reserved S
A

T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 404 of 415

Version 2.3
March 7, 2008

The VSCR bits, after being moved to a Vector Register, are shown in Figure 13-3.

The mtvscr instruction is context synchronizing. This implies that all vector instructions logically preceding an 
mtvscr in the program flow will execute in the architectural context (NJ mode) that existed before completion 
of the mtvscr. It also implies that all instructions logically following the mtvscr will execute in the new context 
(NJ mode) established by the mtvscr.

After an mfvscr instruction executes, the result in the target Vector Register is architecturally precise. It 
reflects all updates to the SAT bit that could have been made by vector instructions logically preceding it in 
the program flow. Further, it will not reflect any SAT updates that can be made to it by vector instructions logi-
cally following it in the program flow. Reading the VSCR can be much slower than typical vector instructions, 
and therefore care must be taken in reading it to avoid performance problems.

Figure 13-3. VSCR Moved to a Vector Register 

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Reserved

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Reserved NJ S
A

T

96 97 98 99 10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

11
0

11
1

11
2

11
3

11
4

11
5

11
6

11
7

11
8

11
9

12
0

12
1

12
2

12
3

12
4

12
5

12
6

12
7

Table 13-1. VSCR Field Descriptions  

Bits Field Name Description

0:14 — Reserved. 

15 NJ

Non-Java. A mode control bit that determines whether VPU floating-point operations are performed in a 
mode that is compliant with Java, IEEE, and C9X or in a possibly faster noncompliant mode.
0 The Java-IEEE-C9X–compliant mode is selected. Denormalized values are handled as speci-

fied by the Java, IEEE, and C9X standard.
1 The non-Java/non-IEEE–compliant mode is selected. If an element in a source Vector Register 

contains a denormalized value, the value ‘0’ is used instead. If an instruction causes an under-
flow exception, the corresponding element in the target Vector Register (VR) is cleared to ‘0’. In 
both cases, the ‘0’ has the same sign as the denormalized or underflowing value.

16:30 — Reserved. 

31 SAT

Saturation. A sticky status bit indicating that some field in a saturating instruction became saturated since 
the last time SAT was cleared. In other words, when SAT is set to ‘1’, it remains set to ‘1’ until it is cleared 
to ‘0’ by a mtvscr instruction. 
0 Indicates no saturation has occurred since this bit was last cleared by a mtvscr instruction. 
1 The vector saturate instruction implicitly sets when saturation has occurred on the results of one 

of the vector instructions having saturate in its name. (See Table 13-4 on page 409.)



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 405 of 415

13.3 Effects on Existing PowerPC Facilities

13.3.1 Control Flow

Vector instructions can be freely intermixed with existing PowerPC instructions to form a complete program. 
Vector instructions provide a vector compare and select mechanism to implement conditional execution as 
the preferred mechanism to control data flow in VPU programs. Vector compare instructions can update the 
Condition Register, thus providing the communication from the vector execution units to the PowerPC branch 
instructions necessary to modify program flow based on vector data.

13.3.1.1 Condition Register

The Condition Register (CR) is affected by the VPU architecture. The CR is a 32-bit register, divided into 
eight 4-bit fields, CR0-CR7 (see Figure 13-4), that reflect the results of certain arithmetic operations and 
provide a mechanism for testing and branching. For the VPU ISA, the CR6 field can optionally be used. If the 
record bit (Rc) of a vector instruction field is set in a vector compare instruction, then the CR6 field is updated 
according to Table 13-2. 

The Rc bit should be used sparingly. As for other PowerPC instructions, in some implementations, instruc-
tions with the Rc bit set to ‘1’ could have a longer latency or be more disruptive to the instruction pipeline flow 
than instructions with the Rc bit set to ‘0’. Therefore, techniques of accumulating results and testing infre-
quently are advised.

Figure 13-4. Condition Register (CR) 

CR0 CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Table 13-2. CR6 Field Bit Settings for Vector Compare Instructions  

Bits Description

Vector Compare

0
1 Comparison successful for all fields
0 Comparison failed for at least one field

1 Always zero

2
1 Comparison failed for all fields
0 Comparison successful for at least one field 

3 Always zero

Vector Compare Bounds (vcmpbfp)

0 Always zero

1 Always zero

2
1 All values within bounds
0 Not all values within bounds

3 Always zero



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 406 of 415

Version 2.3
March 7, 2008

13.3.1.2 Machine State Register 

Certain bits in the Machine State Register (MSR) affect instructions in the vector data stream. MSR[VP] indi-
cates whether the vector processor is available. Table 13-3 defines the VP, PR, and DR bits. 
 

Table 13-3. MSR Bit Settings Affecting the VPU  

Bits Field Name Description

38 VP

VP available.
0 The processor prevents execution of all vector instructions, including loads, stores, and moves. 

If such execution is attempted, a VPU unavailable exception is raised. 
1 The processor can execute all vector instructions.
Note:  The VRSAVE Register is not protected by MSR[VP]. The data streaming family of instructions 
(dst, dstt, dstst, dststt, dss, and dssall) are not affected by the MSR[VP].

49 PR

Problem (user) state. 
0 The processor is privileged to execute any instruction.
1 The processor can only execute non-privileged instructions.
Note:  Care should be taken if data-stream prefetching is used in a supervisor (privileged) state 
(MSR[PR] is set to ‘0’). For each existing data stream, prefetching is enabled if (a) MSR[DR] is set to ‘1’ 
and (b) MSR[PR] has the value it had when the dst or dstst instruction that specified the data stream 
was executed. Otherwise, prefetching for the data stream is suspended.

59 DR

Data address translation. 
0 Data address translation is disabled. If data stream touch (dst) and data stream touch for store 

(dstst) instructions are executed when DR is set to ‘0’, the results are boundedly undefined.
1 Data address translation is enabled. Data stream touch (dst) and data stream touch for store 

(dstst) instructions are supported when DR is set to ‘1’. 



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 407 of 415

13.3.1.3 Machine Status Save/Restore Registers (SRR0, SRR1)

SRR0 holds the effective address (EA) for the instruction that caused the VPU unavailable exception, and 
SRR1 holds the machine state status as described in Chapter 4 Exceptions.

13.4 Exceptions

There are  three exceptions that can result from the execution of a vector instruction:

• VPU unavailable exception
• VPU assist exception
• Data storage exception 

13.4.1 VPU Unavailable Exception

This interrupt is described in Section 13.3.1.2 Machine State Register on page 406.

13.4.2 VPU Assist Exception

The VPU assist exception happens when operating in Java mode and either the input operands or the result 
of an operation are denormalized. After this exception, execution resumes at offset x‘0000 0000 0000 1700’. 
See Section 4.5.18 VPU Assist Exception on page 118 for more information. 

13.4.3 Data Storage Exception

Load Vector Indexed and Store Vector Indexed instructions transfer quadword vectors between memory and 
Vector Registers. Load Vector Element Indexed and Store Vector Element Indexed instructions transfer byte, 
halfword, and word scalar elements between memory and Vector Registers. All vector loads and vector 
stores use the index (rA|0 + rB) addressing mode to specify the target memory address. No update forms are 
provided. A Load Vector Element Indexed instruction transfers a scalar data element from memory into the 
destination Vector Register, leaving other elements in the vector with boundedly-undefined values. A Store 
Vector Element Indexed transfers a scalar data element from the source Vector Register to memory leaving 
other elements in the quadword unchanged. No data alignment occurs; that is, all scalar data elements are 
transferred directly on their natural memory byte-lanes to or from the corresponding element in the Vector 
Register. Quadword memory accesses made by Load Vector Indexed and Store Vector Indexed are not 
guaranteed to be atomic. Direct-store segments (where T equals ‘1’) are not supported. Any vector load or 
store that attempts to access a direct-store segment will cause a data storage exception (DSI). 

SRR0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SRR0 00 R
es

er
ve

d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 408 of 415

Version 2.3
March 7, 2008

13.5 Optional Instructions

The 970MP microprocessor implements all vector instructions as listed in the PowerPC Microprocessor 
Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual. See Table 13-4 
Supported Vector Instructions on page 409. 

13.5.1 Java Mode Instruction Handling Implementation

The 970MP VPU implementation handles certain instructions differently based on the Java mode setting in 
the VSCR. Java compliance does require compliance with certain aspects of the IEEE Standard including:

• Support of denorms as inputs and results (gradual underflow) for arithmetic operations

• Not a number (NaN) results for invalid operations

• NaNs compare unordered with respect to everything, so that the result of any comparison of any NaN to 
any data type is always false

• NaNs are handled the same way in both the Java or non-Java mode for the 970MP implementation.

For some instructions, denormalization produces the exact result without trapping. The 970MP implementa-
tion of the VPU handles most denormalization by trapping at interrupt vector x‘0000 0000 0000 1700’ (VPU 
assist interrupt).

13.5.2 Least Recently Used Instructions 

The Vector/SIMD Architecture suggests that Load Vector Indexed LRU (lvxl) and Store Vector Indexed LRU 
(stvxl) are handled differently than the regular load/store instructions in that they leave cache entries in the 
least recently used (LRU) state instead of a most recently used (MRU) state. This supports efficient 
processing of data that is known to have little reuse and poor caching characteristics. 

The 970MP microprocessor will treat lvxl and stvxl as a regular load and store with respect to the replace-
ment algorithm. That is, the cache entry will be set as MRU.

13.5.3 Data Stream Instructions

DST instructions are broken up into two internal instructions (IOPs), one for the effective address and one for 
the prefetch information. They are marked serialized and are not executed until they are the next instruction 
to complete. Additional information can be found in Section 3.5.3 Data Prefetch on page 96.



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 409 of 415

13.6 Vector Instruction Set

Table 13-4 lists the supported vector instructions.

Table 13-4. Supported Vector Instructions  (Page 1 of 7)

Number Mnemonic Operands Execution 
Unit Description

Load Vector Element Indexed

1 lvebx vD,rA,rB LOAD Load Vector Element Byte Indexed

2 lvehx vD,rA,rB LOAD Load Vector Element Halfword Indexed

3 lvewx vD,rA,rB LOAD Load Vector Element Word Indexed

4 lvx vD,rA,rB LOAD Load Vector Indexed

5 lvxl vD,rA,rB LOAD Load Vector Indexed LRU

Store Vector Element Indexed

6 stvebx vS,rA,rB STORE Store Vector Element Byte Indexed

7 stvehx vS,rA,rB STORE Store Vector Element Halfword Indexed

8 stvewx vS,rA,rB STORE Store Vector Element Word Indexed

9 stvx vS,rA,rB STORE Store Vector Indexed

10 stvxl vS,rA,rB STORE Store Vector Indexed LRU

Load Vector for Shift

11 lvsl vD,rA,rB LOAD Load Vector for Shift Left

12 lvsr vD,rA,rB LOAD Load Vector for Shift Right

Move To and Move From Vector Status and Control Register

13 mtvscr vB Simple Move To Vector Status and Control Register

14 mfvscr vD Simple Move From Vector Status and Control Register

Data Stream

15 dst rA,rB,tag LSU Data Stream Touch

16 dstt rA,rB,tag LSU Data Stream Touch Transient (treated as dst) 

17 dstst rA,rB,tag LSU Data Stream Touch for Store (treated as dst)

18 dststt rA,rB,tag LSU Data Stream Touch for Store Transient (treated as dst)

19 dss tag LSU Data Stream Stop

20 dssall LSU Data Stream Stop All

Vector Add

21 vaddubm vD,vA,vB Simple Vector Add Unsigned Byte Modulo

22 vaddubs vD,vA,vB Simple Vector Add Unsigned Byte Saturate

23 vaddsbs vD,vA,vB Simple Vector Add Signed Byte Saturate

24 vadduhm vD,vA,vB Simple Vector Add Unsigned Halfword Modulo

25 vadduhs vD,vA,vB Simple Vector Add Unsigned Halfword Saturate

26 vaddshs vD,vA,vB Simple Vector Add Signed Halfword Saturate

27 vadduwm vD,vA,vB Simple Vector Add Unsigned Word Modulo



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 410 of 415

Version 2.3
March 7, 2008

28 vadduws vD,vA,vB Simple Vector Add Unsigned Word Saturate

29 vaddsws vD,vA,vB Simple Vector Add Signed Word Saturate

30 vaddfp vD,vA,vB Float Vector Add Float

Vector Add and Write Carry-Out

31 vaddcuw vD,vA,vB Simple Vector Add and Write Carry-Out Unsigned Word

Vector Subtract

32 vsububm vD,vA,vB Simple Vector Subtract Unsigned Byte Modulo

33 vsububs vD,vA,vB Simple Vector Subtract Unsigned Byte Saturate

34 vsubsbs vD,vA,vB Simple Vector Subtract Signed Byte Saturate

35 vsubuhm vD,vA,vB Simple Vector Subtract Unsigned Halfword Modulo

36 vsubuhs vD,vA,vB Simple Vector Subtract Unsigned Halfword Saturate

37 vsubshs vD,vA,vB Simple Vector Subtract Signed Halfword Saturate

38 vsubuwm vD,vA,vB Simple Vector Subtract Unsigned Word Modulo

39 vsubuws vD,vA,vB Simple Vector Subtract Unsigned Word Saturate

40 vsubsws vD,vA,vB Simple Vector Subtract Signed Word Saturate

41 vsubfp vD,vA,vB Float Vector Subtract Float

Vector Subtract and Write Carry-Out

42 vsubcuw vD,vA,vB Simple Vector Subtract and Write Carry-Out Unsigned Word

Vector Multiply Odd Integer

43 vmuloub vD,vA,vB Complex Vector Multiply Odd Unsigned Byte

44 vmulosb vD,vA,vB Complex Vector Multiply Odd Signed Byte

45 vmulouh vD,vA,vB Complex Vector Multiply Odd Unsigned Halfword

46 vmulosh vD,vA,vB Complex Vector Multiply Odd Signed Halfword

Vector Multiply Even Integer

47 vmuleub vD,vA,vB Complex Vector Multiply Even Unsigned Byte

48 vmulesb vD,vA,vB Complex Vector Multiply Even Signed Byte

49 vmuleuh vD,vA,vB Complex Vector Multiply Even Unsigned Halfword

50 vmulesh vD,vA,vB Complex Vector Multiply Even Signed Halfword

Vector Multiply-Add

51 vmhaddshs vD,vA,vB,vC Complex Vector Multiply-High and Add Signed Halfword Saturate

52 vmhraddshs vD,vA,vB,vC Complex Vector Multiply-High Round and Add Signed Halfword Saturate

53 vmladduhm vD,vA,vB,vC Complex Vector Multiply-Low and Add Unsigned Halfword Modulo

54 vmaddfp vD,vA,vC,vB Float Vector Multiply-Add Float

Table 13-4. Supported Vector Instructions  (Page 2 of 7)

Number Mnemonic Operands Execution 
Unit Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 411 of 415

Vector Multiply-Sum Integer

55 vmsumubm vD,vA,vB,vC Complex Vector Multiply-Sum Unsigned Byte Modulo

56 vmsummbm vD,vA,vB,vC Complex Vector Multiply-Sum Mixed-Sign Byte Modulo

57 vmsumuhm vD,vA,vB,vC Complex Vector Multiply-Sum Unsigned Halfword Modulo

58 vmsumuhs vD,vA,vB,vC Complex Vector Multiply-Sum Unsigned Halfword Saturate

59 vmsumshm vD,vA,vB,vC Complex Vector Multiply-Sum Signed Halfword Modulo

60 vmsumshs vD,vA,vB,vC Complex Vector Multiply-Sum Signed Halfword Saturate

Vector Sum Across Signed Integer Saturate

61 vsumsws vD,vA,vB Complex Vector Sum Across Signed Word Saturate

Vector Sum Across Partial (1/2) Signed Integer Saturate

62 vsum2sws vD,vA,vB Complex Vector Sum Across Partial (1/2) Signed Word Saturate

Vector Sum Across Partial (1/4) Integer Saturate

63 vsum4ubs vD,vA,vB Complex Vector Sum Across Partial (1/4) Unsigned Byte Saturate

64 vsum4sbs vD,vA,vB Complex Vector Sum Across Partial (1/4) Signed Byte Saturate

65 vsum4shs vD,vA,vB Complex Vector Sum Across Partial (1/4) Signed Halfword Saturate

Vector Average Integer

66 vavgub vD,vA,vB Simple Vector Average Unsigned Byte

67 vavgsb vD,vA,vB Simple Vector Average Signed Byte

68 vavguh vD,vA,vB Simple Vector Average Unsigned Halfword

69 vavgsh vD,vA,vB Simple Vector Average Signed Halfword

70 vavguw vD,vA,vB Simple Vector Average Unsigned Word

71 vavgsw vD,vA,vB Simple Vector Average Signed Word

Vector Logical

72 vand vD,vA,vB Simple Vector Logical AND

73 vor vD,vA,vB Simple Vector Logical OR

74 vxor vD,vA,vB Simple Vector Logical XOR

75 vandc vD,vA,vB Simple Vector Logical AND with Complement

76 vnor vD,vA,vB Simple Vector Logical NOR

Vector Rotate Left Integer

77 vrlb vD,vA,vB Simple Vector Rotate Left Integer Byte

78 vrlh vD,vA,vB Simple Vector Rotate Left Integer Halfword

79 vrlw vD,vA,vB Simple Vector Rotate Left Integer Word

Table 13-4. Supported Vector Instructions  (Page 3 of 7)

Number Mnemonic Operands Execution 
Unit Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 412 of 415

Version 2.3
March 7, 2008

Vector Shift Left Integer

80 vslb vD,vA,vB Simple Vector Shift Left Integer Byte

81 vslh vD,vA,vB Simple Vector Shift Left Integer Halfword

82 vslw vD,vA,vB Simple Vector Shift Left Integer Word

83 vsl vD,vA,vB Simple Vector Shift Left

Vector Shift Right Integer

84 vsrb vD,vA,vB Simple Vector Shift Right Byte 

85 vsrab vD,vA,vB Simple Vector Shift Right Algebraic Byte 

86 vsrh vD,vA,vB Simple Vector Shift Right Halfword 

87 vsrah vD,vA,vB Simple Vector Shift Right Algebraic Halfword 

88 vsrw vD,vA,vB Simple Vector Shift Right Word 

89 vsraw vD,vA,vB Simple Vector Shift Right Algebraic Word 

90 vsr vD,vA,vB Simple Vector Shift Right

Vector Compare Greater-Than

91 vcmpgtub[.] vD,vA,vB Simple Vector Compare Greater-Than Unsigned Byte [Record]

92 vcmpgtsb[.] vD,vA,vB Simple Vector Compare Greater-Than Signed Byte [Record]

93 vcmpgtuh[.] vD,vA,vB Simple Vector Compare Greater-Than Unsigned Halfword [Record]

94 vcmpgtsh[.] vD,vA,vB Simple Vector Compare Greater-Than Signed Halfword [Record]

95 vcmpgtuw[.] vD,vA,vB Simple Vector Compare Greater-Than Unsigned Word [Record]

96 vcmpgtsw[.] vD,vA,vB Simple Vector Compare Greater-Than Signed Word [Record]

97 vcmpgtfp[.] vD,vA,vB Simple Vector Compare Greater-Than Float [Record]

Vector Compare Equal-To

98 vcmpequb[.] vD,vA,vB Simple Vector Compare Equal-To Unsigned Byte [Record]

99 vcmpequh[.] vD,vA,vB Simple Vector Compare Equal-To Unsigned Halfword [Record]

100 vcmpequw[.] vD,vA,vB Simple Vector Compare Equal-To Unsigned Word [Record]

101 vcmpeqfp[.] vD,vA,vB Simple Vector Compare Equal-To Float [Record]

Vector Compare Greater-Than-or-Equal-To

102 vcmpgefp[.] vD,vA,vB Simple Vector Compare Greater-Than-or-Equal-To Float [Record]

Vector Compare Bounds Float

103 vcmpbfp[.] vD,vA,vB Simple Vector Compare Bounds Float [Record]

Vector Conditional Select

104 vsel vD,vA,vB,vC Simple Vector Conditional Select

Vector Pack

105 vpkuhum vD,vA,vB Permute Vector Pack Unsigned Halfword Unsigned Modulo

106 vpkuhus vD,vA,vB Permute Vector Pack Unsigned Halfword Unsigned Saturate

107 vpkshus vD,vA,vB Permute Vector Pack Signed Halfword Unsigned Saturate

Table 13-4. Supported Vector Instructions  (Page 4 of 7)

Number Mnemonic Operands Execution 
Unit Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 413 of 415

108 vpkshss vD,vA,vB Permute Vector Pack Signed Halfword Signed Saturate

109 vpkuwum vD,vA,vB Permute Vector Pack Unsigned Word Unsigned Modulo

110 vpkuwus vD,vA,vB Permute Vector Pack Unsigned Word Unsigned Saturate

111 vpkswus vD,vA,vB Permute Vector Pack Signed Word Unsigned Saturate

112 vpkswss vD,vA,vB Permute Vector Pack Signed Word Signed Saturate

113 vpkpx vD,vA,vB Permute Vector Pack Pixel32

Vector Unpack High

114 vupkhsb vD,vB Permute Vector Unpack High Signed Byte

115 vupkhsh vD,vB Permute Vector Unpack High Signed Halfword

116 vupkhpx vD,vB Permute Vector Unpack High Pixel16

Vector Unpack Low

117 vupklsb vD,vB Permute Vector Unpack Low Signed Byte

118 vupklsh vD,vB Permute Vector Unpack Low Signed Halfword

119 vupklpx vD,vB Permute Vector Unpack Low Pixel16

Vector Merge High

120 vmrghb vD,vA,vB Permute Vector Merge High Byte

121 vmrghh vD,vA,vB Permute Vector Merge High Halfword

122 vmrghw vD,vA,vB Permute Vector Merge High Word

Vector Merge Low

123 vmrglb vD,vA,vB Permute Vector Merge Low Byte

124 vmrglh vD,vA,vB Permute Vector Merge Low Halfword

125 vmrglw vD,vA,vB Permute Vector Merge Low Word

Vector Splat

126 vspltb vD,vB,UIM Permute Vector Splat Byte 

127 vsplth vD,vB,UIM Permute Vector Splat Halfword

128 vspltw vD,vB,UIM Permute Vector Splat Word

Vector Splat Immediate Signed Integer

129 vspltisb vD,SIM Permute Vector Splat Immediate Signed Byte

130 vspltish vD,SIM Permute Vector Splat Immediate Signed Halfword

131 vspltisw vD,SIM Permute Vector Splat Immediate Signed Word

Vector Permute

132 vperm vD,vA,vB,vC Permute Vector Permute

Vector Shift Left Double by Octet Immediate

133 vsldoi vD,vA,vB,SH Permute Vector Shift Left Double by Octet Immediate 

Table 13-4. Supported Vector Instructions  (Page 5 of 7)

Number Mnemonic Operands Execution 
Unit Description



User’s Manual
 
IBM PowerPC 970MP RISC Microprocessor  

Vector Processing Unit
Page 414 of 415

Version 2.3
March 7, 2008

Vector Shift by Octet

134 vslo vD,vA,vB Permute Vector Shift Left by Octet 

135 vsro vD,vA,vB Permute Vector Shift Right by Octet

Vector Maximum

136 vmaxub vD,vA,vB Simple Vector Maximum Unsigned Byte

137 vmaxsb vD,vA,vB Simple Vector Maximum Signed Byte

138 vmaxuh vD,vA,vB Simple Vector Maximum Unsigned Halfword

139 vmaxsh vD,vA,vB Simple Vector Maximum Signed Halfword

140 vmaxuw vD,vA,vB Simple Vector Maximum Unsigned Word

141 vmaxsw vD,vA,vB Simple Vector Maximum Signed Word

142 vmaxfp vD,vA,vB Simple Vector Maximum Float

Vector Minimum

143 vminub vD,vA,vB Simple Vector Minimum Unsigned Byte

144 vminsb vD,vA,vB Simple Vector Minimum Signed Byte

145 vminuh vD,vA,vB Simple Vector Minimum Unsigned Halfword

146 vminsh vD,vA,vB Simple Vector Minimum Signed Halfword

147 vminuw vD,vA,vB Simple Vector Minimum Unsigned Word

148 vminsw vD,vA,vB Simple Vector Minimum Signed Word

149 vminfp vD,vA,vB Simple Vector Minimum Float

Vector Estimate Float

150 vrefp vD,vB Float Vector Reciprocal Estimate Float

151 vrsqrtefp vD,vB Float Vector Reciprocal Square Root Estimate Float 

152 vlogefp vD,vB Float Vector Log 2 Estimate Float

153 vexptefp vD,vB Float Vector 2 Raised to the Exponent Estimate Float

Vector Negative Multiply-Subtract Float

154 vnmsubfp vD,vA,vC,vB Float Vector Negative Multiply-Subtract Float

Vector Round to Floating-Point Integral Value

155 vrfin vD,vB Float Vector Round to Floating-Point Integer Nearest 

156 vrfiz vD,vB Float Vector Round to Floating-Point Integer toward Zero 

157 vrfip vD,vB Float Vector Round to Floating-Point Integer toward Positive infinity 

158 vrfim vD,vB Float Vector Round to Floating-Point Integer toward Minus infinity 

Vector Convert To Fixed-Point

159 vctuxs vD,vB,UIM Float Vector Convert to Unsigned Fixed-Point Word Saturate

160 vctsxs vD,vB,UIM Float Vector Convert to Signed Fixed-Point Word Saturate 

Table 13-4. Supported Vector Instructions  (Page 6 of 7)

Number Mnemonic Operands Execution 
Unit Description



User’s Manual

 IBM PowerPC 970MP RISC Microprocessor

Version 2.3
March 7, 2008 
 

Vector Processing Unit
Page 415 of 415

Vector Convert From Fixed-point

161 vcfux vD,vB,UIM Float Vector Convert From Unsigned Fixed-Point Word 

162 vcfsx vD,vB,UIM Float Vector Convert From Signed Fixed-Point Word 

Table 13-4. Supported Vector Instructions  (Page 7 of 7)

Number Mnemonic Operands Execution 
Unit Description


	Title Page
	Copyright and Disclaimer
	Contents
	List of Figures
	List of Tables
	Revision Log
	About This Book
	Audience
	Organization
	Related Documents
	Companion Manuals
	Additional Documentation
	General PowerPC Documentation

	Conventions
	Acronyms and Abbreviations
	Terminology Conventions

	1. PowerPC 970MP Overview
	1.1 PowerPC 970MP Microprocessor Overview
	1.2 PowerPC 970MP Functional Units
	1.2.1 Introduction
	1.2.1.1 Key Design Fundamentals of the Microprocessor Core
	1.2.1.2 Detailed Features of the Microprocessor Core


	1.3 970MP Dual-Core Module

	2. Programming Model
	2.1 970MP Processor Register Set
	2.1.1 Architected Registers in the 970MP Implementation
	2.1.1.1 MSR Register (MSR)
	2.1.1.2 Machine Status Save/Restore Register (SRR1)
	2.1.1.3 Time Base and Decrementer (TB, DEC)
	2.1.1.4 Processor ID Register (PIR)

	2.1.2 PowerPC 970MP-Specific Registers
	2.1.2.1 Move To and Move From System Register Instructions
	2.1.2.2 HID Registers (HID0, HID1, HID4, and HID5)
	2.1.2.3 Data Address Breakpoint Register (DABR)
	2.1.2.4 Instruction Address Breakpoint Register (IABR)
	2.1.2.5 Instruction Match CAM Array Access Register (IMC)
	2.1.2.6 Performance Monitor Registers (MMCR0, MMCR1, MMCRA, PMC1-8)
	2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers (SIAR, SDAR)
	2.1.2.8 Scan Communication Registers (SCOMC and SCOMD)
	2.1.2.9 Hypervisor Decrementer Interrupt Register (HDEC)
	2.1.2.10 Hypervisor Save/Restore Register (HSRR0, HSRR1)
	2.1.2.11 Hypervisor SPRGs (HSPRG0, HSPRG1)
	2.1.2.12 Trigger Registers (TRIG0, TRIG1, TRIG2)
	2.1.2.13 Hardware Interrupt Offset Register (HIOR)


	2.2 Instruction Set Summary
	2.2.1 Classes of Instructions
	2.2.1.1 Definition of Boundedly Undefined
	2.2.1.2 Defined Instructions
	2.2.1.3 Illegal Instructions
	2.2.1.4 Reserved Instructions

	2.2.2 Instruction Set Overview
	2.2.3 Fixed-Point Processor
	2.2.3.1 Fixed-Point Arithmetic and Compare Instructions
	2.2.3.2 Fixed-Point Logical, Rotate, and Shift Instructions
	2.2.3.3 Move to and Move from System Register Instructions
	2.2.3.4 Move to and Move from Machine State Register
	2.2.3.5 Fixed-Point Invalid Forms and Undefined Conditions

	2.2.4 Floating-Point Processor
	2.2.4.1 Floating-Point Arithmetic Instructions
	2.2.4.2 Floating-Point Invalid Forms and Undefined Conditions

	2.2.5 Vector Processor
	2.2.6 Load Store Processor
	2.2.6.1 Floating-Point Load-and-Store Instructions
	2.2.6.2 Fixed-Point Load Instructions
	2.2.6.3 Fixed-Point Store Instructions
	2.2.6.4 Fixed-Point Load-and-Store Multiple Instructions
	2.2.6.5 Fixed-Point Load-and-Store String Instructions
	2.2.6.6 Load/Store Invalid Forms and Undefined Conditions

	2.2.7 Branch Processor
	2.2.7.1 Branch Processor Instructions
	2.2.7.2 Branch Processor Instructions with Undefined Results
	2.2.7.3 Move To Condition Register Fields Instruction

	2.2.8 Storage Control Instructions
	2.2.8.1 Key Aspects of Storage Control Instructions
	2.2.8.2 Instruction Cache Block Invalidate (icbi)
	2.2.8.3 Instruction Cache Synchronize (isync)
	2.2.8.4 Data Cache Block Touch (dcbt and dcbtst)
	2.2.8.5 Data Cache Block Zero (dcbz)
	2.2.8.6 Data Cache Block Store (dcbst)
	2.2.8.7 Data Cache Block Flush (dcbf)
	2.2.8.8 Load and Reserve and Store Conditional Instructions (lwarx/ldarx, stwcx/stdcx)

	2.2.9 Memory Synchronization Instructions
	2.2.10 Recommended Simplified Mnemonics


	3. Storage Subsystem
	3.1 Storage Hierarchy
	3.2 Caches
	3.2.1 Store Gathering

	3.3 Storage Model
	3.3.1 Atomicity
	3.3.2 Storage Access Ordering
	3.3.2.1 Storage Access Alignment Support

	3.3.3 Atomic Updates and Reservations

	3.4 Cache Management
	3.4.1 Flushing the L1 I-Cache
	3.4.2 Flushing the L1 D-Cache
	3.4.3 L2 Cache Disabling and Enabling
	3.4.4 L2 Cache Flushing
	3.4.4.1 L2 Cache Flush in Direct-Mapped Mode

	3.4.5 L2 Cache Flush Algorithm

	3.5 Functional Units
	3.5.1 Core Interface Unit
	3.5.2 L2 Cache Controller
	3.5.2.1 Cache Coherency
	3.5.2.2 Cache-Coherency Paradoxes
	3.5.2.3 Cache State Transition Tables

	3.5.3 Data Prefetch
	3.5.3.1 Optional dcbt Variant
	3.5.3.2 Enhanced dcbt Variant



	4. Exceptions
	4.1 970MP Microprocessor Exceptions
	4.2 Exception Recognition and Priorities
	4.2.1 Exception Priorities

	4.3 Exception Processing
	4.3.1 Machine Status Save/Restore Register 0 (SRR0)
	4.3.2 Machine Status Save/Restore Register 1 (SRR1)
	4.3.3 Machine State Register (MSR)
	4.3.4 Enabling and Disabling Exceptions
	4.3.5 Exception Processing Steps
	4.3.6 Setting the Recoverable Exception in the MSR
	4.3.7 Returning from an Exception Handler

	4.4 Process Switching
	4.5 Exception Definitions
	4.5.1 System Reset Exception
	4.5.2 Machine Check Exceptions
	4.5.3 Data Storage Exception
	4.5.4 Data Segment Exception
	4.5.5 Instruction Storage Exception
	4.5.6 Instruction Segment Exception
	4.5.7 External Interrupt Exception
	4.5.8 Alignment Exception
	4.5.9 Program Exception
	4.5.10 Floating-Point Unavailable Exception
	4.5.11 Decrementer Exception
	4.5.12 System Call Exception
	4.5.13 Trace Exception
	4.5.14 Performance Monitor Exception
	4.5.15 VPU Unavailable Exception
	4.5.16 Instruction Address Breakpoint Exception
	4.5.17 Maintenance Exception
	4.5.18 VPU Assist Exception


	5. Memory Management
	5.1 MMU Overview
	5.1.1 Speculative Storage Accesses
	5.1.2 Storage Protection
	5.1.3 Storage Access Modes
	5.1.4 Support for 32-Bit Operating Systems

	5.2 Real Addressing Mode

	6. Software Optimization Guidelines
	6.1 Design Characteristics
	6.2 Software Considerations for the 970MP Microprocessor

	7. Signal Description
	7.1 Signal Configuration
	7.2 Signal Descriptions
	7.2.1 Processor Interface
	7.2.1.1 Address/Data In (ADIN[0:43])-Input
	7.2.1.2 Snoop Response In (SRIN[0:1], SRIN[0:1])-Input
	7.2.1.3 Clock In (CLKIN/CLKIN)-Input
	7.2.1.4 Address Data Out (ADOUT[0:43])-Output
	7.2.1.5 Snoop Response Out (SROUT[0:1], SROUT[0:1])-Output
	7.2.1.6 Clock Out (CLKOUT/CLKOUT)-Output

	7.2.2 Processor Status and Control
	7.2.2.1 Quiescent Request (CP0_QREQ and CP1_QREQ)-Output
	7.2.2.2 Quiescent Acknowledgment (CP0_QACK and CP1_QACK)-Input
	7.2.2.3 Time-Base Enable (TBEN)-Input
	7.2.2.4 Processor ID (PROCID[0:1])-Input
	7.2.2.5 Bus Configuration Select (BUSCFG[0:2])-Input
	7.2.2.6 PLL Locked (PLL_LOCK)-Output
	7.2.2.7 Clock Receiver Termination (CKTERM_DIS)-Input

	7.2.3 Clock Control
	7.2.3.1 System Clock (SYSCLK/SYSCLK)-Input
	7.2.3.2 Phase Synchronization (psync)-Input
	7.2.3.3 PLL Bypass (BYPASS)-Input
	7.2.3.4 PLL Multiplier (PLL_MULT)-Input
	7.2.3.5 PLL Range Select (PLL_RANGE[0:1])-Input

	7.2.4 Interrupts and Resets
	7.2.4.1 Interrupt (CP0_INT and CP1_INT)-Input
	7.2.4.2 Machine Check Interrupt (MCP)-Input
	7.2.4.3 Checkstop (CHKSTOP) -Bidirectional
	7.2.4.4 Hard Reset (CP0_HRESET and CP1_HRESET)-Input
	7.2.4.5 Soft Reset (CP0_SRESET and CP1_SRESET)-Input

	7.2.5 Debug/Test Interface
	7.2.5.1 Attention (ATTENTION)-Output
	7.2.5.2 Processor Interface Disable (EI_DISABLE)-Input
	7.2.5.3 Trigger Out (TRIGGEROUT)-Output
	7.2.5.4 JTAG Signals
	7.2.5.5 I2C Signals

	7.2.6 Voltage and Ground


	8. Processor Interconnect Bus
	8.1 Overview
	8.1.1 Packets
	8.1.2 Bus Segments
	8.1.2.1 Address/Data Bus Segment
	8.1.2.2 Transfer-Handshake Bus Segment
	8.1.2.3 Snoop-Response Bus Segment

	8.1.3 Transactions
	8.1.3.1 Read Transaction
	8.1.3.2 Write Transaction
	8.1.3.3 Command-Only Transaction

	8.1.4 Memory and Cache Coherency
	8.1.4.1 Physical Memory Size
	8.1.4.2 Coherency Protocol
	8.1.4.3 Coherency Block Size


	8.2 Packet Transfer Protocol
	8.2.1 Command Packet Definition
	8.2.1.1 Address Modifiers
	8.2.1.2 Transfer Type Field
	8.2.1.3 Tag Definition
	8.2.1.4 Command Pacing

	8.2.2 Data Packet Definition
	8.2.2.1 Two-Beat Transfers
	8.2.2.2 Multi-Beat Transfers

	8.2.3 Transfer-Handshake Packets
	8.2.3.1 Null Transfer Handshake
	8.2.3.2 Transfer-Handshake Acknowledgment
	8.2.3.3 Transfer-Handshake Retry
	8.2.3.4 Transfer-Handshake Parity Error


	8.3 Snoop Responses
	8.3.1 Snoop-Response Bus Implementation
	8.3.2 Snoop-Response Descriptions
	8.3.2.1 SResp Retry Response Code (Priority 1 - highest)
	8.3.2.2 SResp Modified-Intervention Response Code (Priority 2)
	8.3.2.3 SResp Shared-Intervention Response Code (Priority 3)
	8.3.2.4 SResp Modified Response Code (Priority 4)
	8.3.2.5 SResp Shared Response Code (Priority 5)
	8.3.2.6 SResp Null or Clean Response Code (Priority 6 - lowest)


	8.4 Bus Transactions
	8.4.1 Terms
	8.4.2 Memory Read Transactions (General)
	8.4.2.1 Read Transaction
	8.4.2.2 Read with No Intent to Cache Transaction
	8.4.2.3 Read with Intent to Modify Burst Transaction
	8.4.2.4 LARX-Reserve Transaction

	8.4.3 Memory Write Transactions (General)
	8.4.3.1 Write-With-Kill Transaction
	8.4.3.2 Write-With-Clean Transaction
	8.4.3.3 Write-With-Flush Transaction

	8.4.4 Command-Only Transactions
	8.4.4.1 DCLAIM Transaction (Invalidate Others)
	8.4.4.2 Flush Transaction
	8.4.4.3 Clean Transaction
	8.4.4.4 IKill Transaction
	8.4.4.5 TLBIE Transaction
	8.4.4.6 TLBSYNC Transaction
	8.4.4.7 SYNC Transaction
	8.4.4.8 EIEIO Transaction
	8.4.4.9 Null Transaction



	9. Power and Thermal Management
	9.1 Definitions
	9.1.1 Full Power Mode
	9.1.2 Doze Mode
	9.1.3 Nap Mode
	9.1.4 Deep Nap Mode
	9.1.5 Dynamic Power Management

	9.2 Power-Management Support
	9.2.1 Power-Management Control Bits
	9.2.2 Interrupts
	9.2.3 Bus Snooping
	9.2.3.1 Delay Calculation

	9.2.4 Thermal Diodes
	9.2.5 Bus States while in Power Saving Modes

	9.3 Software Considerations for Power Management
	9.3.1 Entering Power Saving Mode
	9.3.2 External Interrupt Enable

	9.4 Power Tuning Facility Overview
	9.4.1 Power Tuning Facility Definitions
	9.4.2 Power Modes
	9.4.3 Power Transition Latencies
	9.4.3.1 Idle to Run Transitions
	9.4.3.2 Exiting Deep Nap Using a Decrementer Interrupt
	9.4.3.3 Frequency Transitions in the Power Tuning Facility


	9.5 PLL Design
	9.6 Time-Base and Decrementer Registers
	9.7 I2C Bus Interface
	9.8 Frequency and Voltage Scaling
	9.8.1 Frequency Scaling
	9.8.1.1 Initiating a Frequency Change
	9.8.1.2 Power Control Register
	9.8.1.3 Power Control Register High (PCRH)
	9.8.1.4 Power Status Register

	9.8.2 Power Adjustment Bus Transaction
	9.8.3 Clock Dithering
	9.8.4 Voltage Scaling
	9.8.5 Frequency and Voltage Scaling Latencies

	9.9 Reducing Clock Mesh Power
	9.9.1 Power Saving in Deep Nap

	9.10 Additional Dynamic Power Management

	10. 970MP Performance Monitor
	10.1 Instrumentation Facilities Overview
	10.1.1 Performance Monitor Facilities
	10.1.2 Performance Monitor Event Selection
	10.1.3 Machine States and Enabling the Performance Monitor Counters
	10.1.4 Trigger Events and Enabling the Performance Monitor Counters
	10.1.5 Performance Monitor Exceptions
	10.1.6 Sampling
	10.1.7 Thresholding
	10.1.8 Trace Support Facilities

	10.2 Instruction Sampling Facilities
	10.2.1 Special Purpose Registers and Fields Associated with Instrumentation

	10.3 Performance Monitor Components
	10.4 Performance Monitor Control Registers
	10.4.1 Performance Monitor Control Register MMCR0
	10.4.2 Performance Monitor Control Register MMCR1
	10.4.3 Performance Monitor Control Register MMCRA
	10.4.4 Performance Monitor Count Registers PMC1 - 8
	10.4.5 Performance Monitor and Trace Related Bits in the Machine State Register (MSR)
	10.4.6 Performance Monitor Related Bits in Hardware Implementation-Dependent Register 0 (HID0)
	10.4.7 Performance Monitor Related Bits in the Control Register (CTRL)
	10.4.8 Performance Monitor Related Bits in the SCOM0240, 1240 Register (SCOM x‘240’)
	10.4.9 Performance Monitor Related Bits in the SCOM0360,1360 Register (SCOM x‘360’)
	10.4.10 Performance Monitor Related Bits in the IMC Array (IMC)
	10.4.11 Performance Monitor Related Bits in the Sampled Instruction Address Register (SIAR)
	10.4.12 Performance Monitor Related Bits in the Sampled Data Address Register (SDAR)
	10.4.13 Performance Monitor Related Bits in the SRR1 (SRR1)
	10.4.14 Performance Monitor Related Bits in the Time-Base Register (TB)

	10.5 Performance Monitor Event Selection
	10.5.1 Direct Events
	10.5.1.1 Combined Events
	10.5.1.2 Source-Encoded Events
	10.5.1.3 Instruction Counts

	10.5.2 Over 32-Bit Count
	10.5.2.1 Examples of Over Bit Count

	10.5.3 Speculative Count

	10.6 Configuring the Performance Monitor Bus
	10.7 Enabling the Performance Monitor Counters
	10.7.1 Machine States
	10.7.2 Trigger Events
	10.7.2.1 Time-Base Transition Events
	10.7.2.2 PMC1 Counter Negative Condition Events
	10.7.2.3 PMCj (2 £ j £ 8) Counter Negative Condition Events

	10.7.3 Method for Enabling or Disabling Performance Monitor Counting

	10.8 Performance Monitor Exceptions
	10.9 Instruction Matching and Sampling
	10.9.1 Stage 1 Eligibility
	10.9.2 Stage 2 Eligibility
	10.9.3 Stage 3 Eligibility

	10.10 IFU Instruction Matching Facility
	10.10.1 Overview of the IFU Instruction Matching Facility
	10.10.2 IMC Array
	10.10.3 Reading the IMC SPR with the mfimc Instruction
	10.10.4 Writing the IMC SPR With the mtimc Instruction
	10.10.5 The v0 and v1 Mask Criteria
	10.10.6 Instruction Matching Examples

	10.11 IDU Instruction Sampling Facility
	10.11.1 Overview of the IDU Instruction Sampling Facility
	10.11.2 Stage 1 Eligibility
	10.11.3 Stage 2 Eligibility
	10.11.4 Stage 3 Mark/No Mark
	10.11.5 Complete Masking, Matching, and Marking Cycle
	10.11.6 Examples of Instruction Sampling Scenarios
	10.11.7 Enabling and Disabling Marking

	10.12 SIAR and SDAR Registers
	10.12.1 Instruction Sampling
	10.12.1.1 Performance Monitor Exceptions

	10.12.2 Single Step and Branch Trace Marking Mode
	10.12.2.1 Single Step Trace Mode
	10.12.2.2 Branch Trace Mode

	10.12.3 Comparison to Previous PowerPC Processors

	10.13 Thresholding
	10.14 Detailed Event Information

	11. System Design
	11.1 I2C Interface
	11.2 Bus Initialization, Configuration, Power Management, and Test
	11.2.1 Bus Initialization
	11.2.2 Configurable Parameters
	11.2.3 Configuration Interface
	11.2.3.1 Processor Configurable Timing Delay Parameter Register (BUSCONF)
	11.2.3.2 North Bridge Configurable Timing Delay Parameter Register

	11.2.4 Power Management
	11.2.5 Reliability, Availability, and Serviceability (RAS) Requirement

	11.3 Processor Interconnect Electrical Interface
	11.3.1 Initialization at Power-On Reset
	11.3.2 Target Cycle

	11.4 Processor Interconnect Bus Error Detection and Correction
	11.4.1 Error Detection for Balanced Encoding
	11.4.2 Error Detection for Alternative Encodings
	11.4.2.1 Single-Error and Double-Error Detection
	11.4.2.2 Single-Error Correct, Double-Error Detection



	12. SCOM Interface and Registers
	12.1 Processor Core SCOM SPR Access
	12.1.1 Operating System Protocol to Access SCOM SPRs
	12.1.2 SCOMD Format
	12.1.3 SCOMC Format

	12.2 SCOM Address Allocation
	12.2.1 Register Description Conventions
	12.2.2 SCOM Error Handling
	12.2.3 Access Status Register

	12.3 Core Pervasive SCOM Register Definitions
	12.3.1 Processor CoreRAS Facilities (x‘02[1:4]XXX’)
	12.3.2 Processor Core SPR SCOM Access (x‘023XXX’)
	12.3.3 Processor Core Performance Monitor Sampling Control (x‘02400X’)
	12.3.4 Processor Core FIR Facilities (x‘03[0:5]XXX’)
	12.3.5 Instruction Mark Configuration (x‘03600X’)

	12.4 Storage Subsystem SCOM Register Definition
	12.4.1 L2 SCOM Register Definition
	12.4.2 BIU SCOM Register Definition
	12.4.3 Processor Interconnect Registers

	12.5 Chip Pervasive SCOM Register Definition
	12.5.1 Power-On Reset Registers (x‘40XXXX’)
	12.5.2 Chip Free-Running Clock Section Control/Status (x‘50[0:4]XXX’)
	12.5.3 Chip Parallel SCOM Control (x‘6XXXXX’)
	12.5.4 Chip Clock/Scan Control (x‘8[0:4]XXXX’)


	13. Vector Processing Unit
	13.1 970MP Vector and SIMD Multimedia Overview
	13.1.1 VPU Implementation
	13.1.2 Vector ALU

	13.2 Vector Registers
	13.2.1 VRSAVE Register
	13.2.2 Vector Status and Control Register (VSCR)

	13.3 Effects on Existing PowerPC Facilities
	13.3.1 Control Flow
	13.3.1.1 Condition Register
	13.3.1.2 Machine State Register
	13.3.1.3 Machine Status Save/Restore Registers (SRR0, SRR1)


	13.4 Exceptions
	13.4.1 VPU Unavailable Exception
	13.4.2 VPU Assist Exception
	13.4.3 Data Storage Exception

	13.5 Optional Instructions
	13.5.1 Java Mode Instruction Handling Implementation
	13.5.2 Least Recently Used Instructions
	13.5.3 Data Stream Instructions

	13.6 Vector Instruction Set




