IBM PowerPC 970MP RISC Microprocessor
User's Manual

Version 2.3

March 7, 2008

© Copyright International Business Machines Corporation 2005, 2008

All Rights Reserved
Printed in the United States of America March 2008

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both:

IBM POWER PowerPC
IBM Logo Power Architecture PowerPC Architecture
ibm.com

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or
both.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at ibm.com®
The IBM Semiconductor solutions home page can be found at ibm.com/chips

Version 2.3
March 7, 2008

http://www.ibm.com
http://www.ibm.com/chips

====%= User's Manual
IBM PowerPC 970MP RISC Microprocessor
Contents
= o T L] = 13
= o = o 1= 15
=T =] oo N o T 19
Y o T L0y A I T30 = LT 21
F AT Lo =T oo = PSPPSR 21
(@0 F=T a V4= 11[o] EEU TP PPSUUPPTPRPPRPRPN 21
R T=TF= 1= To I LYW 4 =Y o] £ PRSP 22
COMPANION IMANUAISoeiiiiiie ittt ettt e s bt e e e bt e e s be e e s aee e sneeeeneeeeneee 22
Additional DOCUMENTALIONoiiiiiieiie i e e e e e e e e e ree e e e e e e e e e s e e nnnnreeaneeeaeeees 23
General POWerPC DOCUMENTALIONcooviiiiiiiiiie et 24
L070) 0 1Y7= 101 (o] o 1= SRR 25
Acronyms and ADDIEVIAtIONScooi i 26
I daalTaTe] (oo 1Y A @] a1V =T o o] o - TSRS 31
1. POWErPC 970MP OVEIrVIEWccccerrriisssnmmenmmmsisssnnssssnnsssan 33
1.1 PowerPC 970MP MicroproCeSSOr OVEIVIEWeeeeeeieeeeieiieiiiiierneeeresasessssssssnssseeeeeaeesesssanasssesseees 33
1.2 PowerPC 970MP FUNCONAl UNIEScociiiiiiiiiiiii et 36
L Y= [117 To 18 e} 1o o H PR TP PP PRI 36
1.2.1.1 Key Design Fundamentals of the Microprocessor COreccecveererenreenieeeseencreeseenans 36
1.2.1.2 Detailed Features of the MiCroproCeSSOr COrEoccuueieiiiiiiiieeeiiiee e 37
1.3 970MP DUAI-COre MOAUIEcooiuieieiiiieiie ettt e e e e e eab e e e sabe e e snbe e e snreeeanee 41
2. Programming Modelccciiimmimmmmmmeeeeesssssssss s ssssssssssssssssssssssssssssssssssssnsnnnnns 43
2.1 970MP Processor REGISIEr Seloooiiiiiiii e e 43
2.1.1 Architected Registers in the 970MP Implementationcccccoiiiiieiiiiiiie e 49
2.1.1.1 MSR RegiSter (MSR) ...ttt ettt sttt b e e ae e e s ne e e e neeeeanes 49
2.1.1.2 Machine Status Save/Restore Register (SRR1) ..o 49
2.1.1.3 Time Base and Decrementer (TB, DEC)cooocciiiiiieeeee e 50
2.1.1.4 Processor ID Re@iStEr (PIR) ...coiiiiiiiiiiiiiiiee e eitee et et e et e e s e s e nnree e e e e e 50
2.1.2 PowerPC 970MP-SpecCific REQISIEIScoiiiiiiiiiii ettt s 50
2.1.2.1 Move To and Move From System Register Instructionsccccociiiiiiiniieneee, 50
2.1.2.2 HID Registers (HIDO, HID1, HID4, and HID5)ccociiiiiieiiiee e 54
2.1.2.3 Data Address Breakpoint Register (DABR)cooiiiiiiieiiiiiee e e 61
2.1.2.4 Instruction Address Breakpoint Register (IABR)coeeiiiiiiiii e 62
2.1.2.5 Instruction Match CAM Array Access Register (IMC)cccoeiiiiiiiiiiiiiieeee e 62
2.1.2.6 Performance Monitor Registers (MMCRO, MMCR1, MMCRA, PMC1-8)ccccccvevvnnen. 63
2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers (SIAR, SDAR) 64
2.1.2.8 Scan Communication Registers (SCOMC and SCOMD)ccccevueriiiereiiereniee e 64
2.1.2.9 Hypervisor Decrementer Interrupt Register (HDEC)cooiiiiiiiiiiiii e 65
2.1.2.10 Hypervisor Save/Restore Register (HSRRO, HSRR1) ...ccuviiiiiiiiiieee e 65
2.1.2.11 Hypervisor SPRGs (HSPRGO, HSPRGT)uuiiiiiiiiiie e 65
Version 2.3 Contents

March 7, 2008 Page 3 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.12 Trigger Registers (TRIGO, TRIGT, TRIG2)cccoiiiiiiieiiiiieee e 65
2.1.2.13 Hardware Interrupt Offset Register (HIOR)coocoiiiiiiiiiieei e 66

2.2 INSLrUCLION SEE SUMMIAIY ...t ee e e e e e e e e e e e e e e e e s s s reeeeeaeeeeseaasannnenseneeees 67
2.2.1 Classes Of INSITUCTIONScooiiiiiiiei et e e st e e s e st e e e s snaeeeeesanes 67
2.2.1.1 Definition of Boundedly Undefinedcccoiiiiiiiiiiiiiie e 68
2.2.1.2 Defined INSITUCHIONSeeiiiiiie it e e e e e eeas 68
2.2.1.3 11egal INSTIUCIONS e e e s e eaneeas 69
2.2.1.4 ReServed INSITUCLIONScooiiiiiiiiiiie ettt e e e e e e e e e e 69

2.2.2 INSLrUCHON SEE OVEIVIEWiviiiie ettt e et e e e st e e s sbbe e e e s esnteeeaessreneeeesane 69
2.2.3 FIXE@A-POINT PIrOCESSOL ...ttt ettt e e e e e e e e e e e e s eeeeeeaaaaeeeas 70
2.2.3.1 Fixed-Point Arithmetic and Compare INSIrUCtIONScoooiiiiiiiiiiiiiie e, 70
2.2.3.2 Fixed-Point Logical, Rotate, and Shift INStructionscccccoviiiiiiiiii e 70
2.2.3.3 Move to and Move from System Register INsStructionscccoceeiiiiiii e 70
2.2.3.4 Move to and Move from Machine State Registercccoiiiiiiiiiiiin e 70
2.2.3.5 Fixed-Point Invalid Forms and Undefined Conditionscccccoiiiiiiiieeiieiccccieieeeen 71

2.2.4 Floating-POiNt PrOCESSONcoiiiiiiiieeee ettt e e e e e e e e e e e e e e eeas 72
2.2.4.1 Floating-Point Arithmetic INStrUCtIONSooiiii e 72
2.2.4.2 Floating-Point Invalid Forms and Undefined Conditionscccoviiiriiiiniiiic e, 72

P IV =Y (o gl o o o7 === o SR 72
2.2.6 LOAA SEOrE PrOCESSON ...eeiiiiiiuiiieeeiitiiie e ettt te e ettt e e e sttt e e e e sttt e e e s sbeeeeessanbeeeeeeanbeeeeesansbeeeeesanes 73
2.2.6.1 Floating-Point Load-and-Store INStruCtionscccocoiiiiiiiiiiic e 73
2.2.6.2 Fixed-Point Load INSTIUCTIONSueeiiiiiiiieiie ittt 73
2.2.6.3 Fixed-Point Store INSrUCHIONSeiiiiiiiiee e 73
2.2.6.4 Fixed-Point Load-and-Store Multiple INStruCtionscccovvviiiciiiiiiieee e 73
2.2.6.5 Fixed-Point Load-and-Store String INStructionsccoceeeiiiiiiic e 74
2.2.6.6 Load/Store Invalid Forms and Undefined Conditionsccccoeveiieveiiiciiene e 75

P A 1= 1 Vo g T o oo === o] SRR 76
2.2.7.1 Branch Processor INSIIUCLIONSciiiiiiiiiiiiiiie e 76
2.2.7.2 Branch Processor Instructions with Undefined ReSultsccccoocvieiiiiiiiiiiiicee e, 76
2.2.7.3 Move To Condition Register Fields INStructionccociiiiiiiiiiii e 77

2.2.8 Storage Control INSTIUCHIONScoiuiiiiiiiiii e e e e 77
2.2.8.1 Key Aspects of Storage Control INStruCtionscceeiiiiiiiiiiiiiiiie e 77
2.2.8.2 Instruction Cache Block Invalidate (iChi)ccccceviiiiiiiiiiee e 78
2.2.8.3 Instruction Cache Synchronize (ISYNC)cccciiiiiiiiiiiiiiei e 78
2.2.8.4 Data Cache Block Touch (debt and debtst)ccoiiiiiiiiii, 78
2.2.8.5 Data Cache BIOCK Zero (dCD2z)ooeiiiiiiiiiiiiieeeee e e 79
2.2.8.6 Data Cache BIock Store (dCbhsSt)cccviiiiiiiiiiiii e 79
2.2.8.7 Data Cache Block Flush (debf)ccooiiiiiiiii e 80
2.2.8.8 Load and Reserve and Store Conditional Instructions (lwarx/Ildarx, stwex/stdex) 80

2.2.9 Memory Synchronization INSIrUCHIONScooiiiiiiiiii e 80
2.2.10 Recommended Simplified MNEMONICSccooiiuiiiiiiiiiiiiee et ee et e e s sreeee e enes 81

3. Storage SUDSYSIEM ... ————— 83
T IS (o) = To [o 11T = 1o | RPN 83
1 2 - Lo 1T S 84
2 IS (o] (= C =11 1= ¢ o T PP PP SPP 84

RIS (o] £=To [l 1Y (o T 1= E PRSP PP PRI 85
TR T Y (o] 11T PO PP PSP PPPPRRNY 85
3.3.2 Storage ACCESS OFUEINGeeiiiiiiiiiiii ettt sttt ee e et e e s esbe e s rae e e s sase e e easeesanbeeesbeaans 85
3.3.2.1 Storage Access AlIgNMENT SUPPOITooiiiiiiiiiiiiee e 85
Contents Version 2.3

Page 4 of 415 March 7, 2008

4. Exceptions

3.4

3.5

4.1
4.2

4.3

4.4
4.5

User's Manual

IBM PowerPC 970MP RISC Microprocessor

3.3.3 Atomic Updates and ReSErvations ...t 86
(0= Te g T- R Y F=Ta = o =T £ 4 T=T o | APPSO 87
3.4.1 Flushing the L1 1-Cacheooo e 87
3.4.2 FIushing the L1 D-Cacheoooiiiiiiiiiiiee ettt st ee e e 87
3.4.3 L2 Cache Disabling and Enablingcooouiiiiiiiiiiieie ettt 87
3.4.4 L2 CaChe FIUSNING ...ceiiiiiiiiii ettt rb e e eae e e rae e e s st e e e amree e s eneeaans 87
3.4.4.1 L2 Cache Flush in Direct-Mapped MOdEcoooiiiiiiiiiiiiieeeiee e 87
3.4.5 L2 Cache Flush AIGOITRMoeiiii et e e e e 88
FUNCHONAI UNIES et e e e e e e e ettt e e e e e e e e e e e e nnnnbeeaeeaeaaaeeas 90
3.5.1 Core INterface UNItoi ittt sttt b e e e s e e e s be e e enreeeneee 91
3.5.2 L2 Cache CONIIOHETooiiiieiee et e nee e e e 91
T2 I 0= Lo o =T 0o T=Y =1 o o SRR 93
3.5.2.2 Cache-CoherencCy ParadOXeScoccueiiiiiiiiieieiiee ettt ettt sne e 93
3.5.2.3 Cache State Transition TabIEsccoi i 93
B.5.3 Data PrefetCh ... 96
3.5.3.1 Optional debt Variant ..o 96
3.5.3.2 Enhanced debt Variant ... 97
... 99
970MP MiCroproCeSSOr EXCEPLIONSceiiiiiiiiiieiiiiieee ettt e e e e e e e e s 100
Exception Recognition and PrioritieS ... 103
4.2.1 EXCEPLON PrIOMLES .ottt s 103
EXCEPHON PrOCESSING ...eeiiiiriiieiiiiiie ettt ettt et e e s sn e e e e s s e e e e e sann e e e e e s anreeeenaans 105
4.3.1 Machine Status Save/Restore Register 0 (SRRO)oeviiiiiiiiiiiiiiiiee e 105
4.3.2 Machine Status Save/Restore Register 1 (SRRT)cooiiiiiiiiiiiiiee e 105
4.3.3 Machine State Register (MSR)cc.uuiiiiii e 106
4.3.4 Enabling and Disabling EXCEPLIONScoiiiiiiiiiiieie e 108
4.3.5 EXCEPLiON ProCESSING SEPS ..vveiiiiiiiiiiiiiiiiiieeeiititie e e sttt e e s sttt e e e s setee e e e s sneaeeeesenseeeeeaanneaeaes 108
4.3.6 Setting the Recoverable Exception in the MSRcooiiiiiiiiiie e 109
4.3.7 Returning from an Exception Handlerooo e 109
Process SWITCRINGveiiiiiiiie et e b e sane e e s e e e enreeaa 110
EXCEPON DEFINITIONScoiiiiiiiiie ettt e e e e e e e e s sbeeee e e e 110
4.5.1 System Reset EXCEPHONcoiiiiiiiii ettt 110
4.5.2 Machine Check EXCEPLIONScooiiiiiiiiiiiiiiiei ettt e e eea s 111
4.5.3 Data Storage EXCEPLON ...coooiiiiiii e 113
4.5.4 Data Segment EXCEPLIONccoiiiiiiiiieitiie ittt e s enn e sne s 113
4.5.5 Instruction Storage EXCEPLONcccuiiiiiiiiiie e 113
4.5.6 Instruction Segment EXCEPLIONuviiiiiiiiiie e 113
4.5.7 External Interrupt EXCEPLIONcccoiiiiii e e e e e e e e e e e e e e e e 114
4.5.8 AlIGNMENt EXCEPLIONoviiiiiiiieiiii e e e 114
4.5.9 Program EXCEPLIONueiiiiiiiiieies ittt s et e e s e e e e e e s e e e e e s 114
4.5.10 Floating-Point Unavailable EXCEPioN ... 115
4.5.11 Decrementer EXCEPLION ...ccocie e e e e e e e e e e e e e e e e e 115
4.5.12 System Call EXCEPLIONuuiiiiiieiiiie ettt e e e s snr e snne s 115
4.5 13 Trace EXCEPLON ..cooiiiiiiiei et e e 115
4.5.14 Performance Monitor EXCEPLIONoooiiiiiiiiiiiie e 116
4.5.15 VPU Unavailable EXCEPHIONccooiiiiiecee s e e e enanneneas 117
4.5.16 Instruction Address Breakpoint EXCEPtion ..o 117
Contents

Version 2.3
March 7, 2008

Page 5 of 415

User's Manual ====%Z
IBM PowerPC 970MP RISC Microprocessor
4.5.17 Maintenance EXCEPLIONc..oii i 117
4.5.18 VPU ASSISt EXCEPLION ...ooiiuiiiiiii ittt ettt e s e e e e e e e s snnneeee s 118
5. Memory Managementcccciiiiiiiiisnnnnsmmmmmmmnsnss s s ssssssssssss s e 119
L0 1 LU A=Y S 119
5.1.1 Speculative StOrage ACCESSESueiiiiiiiiiieei ittt e e sabre e s s rnneeeeeas 120
5.1.2 Storage ProteCioncooi i e e 121
5.1.3 StOrage ACCESS MOUESuuiiiiiiiiiiiie ettt e e sae e st e e e s be e e abeeesnee s 121
5.1.4 Support for 32-Bit Operating SYStEMSciiiiiiiiiiie e 121
5.2 Real AdAressSing MOEcccoo i e e e e e e 122
6. Software Optimization GuIidelinesccceiiiiiirrcnriirn e ————— 123
6.1 DeSigN CharacteriStICSceiiiiiiiiiiiiiiiiie et e e e e e s e s b e e e e e e e 123
6.2 Software Considerations for the 970MP MiCrOPrOCESSOIccvvveeiieiiciieieeieeee e e e e e e e s e e e e e e 126
8= [e 1= L == 2 T o) o o 129
A ST g T= L @] 1T 18] = 11T o I PSPPSR 130
7.2 SIGNAI DESCHIPHIONS ...eutiie ittt ettt ettt e st s e e st e e s be e e s be e e s abe e e eabe e e e anbeeeaneeeeanbeeennnes 131
7.2.1 ProCeSSOr INTEITACEoueiiiiiie ettt st n e e e s ne e e sanee s 131
7.2.1.1 Address/Data In (ADIN[O:43])—=INPULcoueiiiiiiiiiiiee et 131
7.2.1.2 Snoop Response In (SRIN[0:1], SRIN[O:1])—INPUt ..coerrieeiiiieeee e 132
7.2.1.3 Clock In (CLKIN/CLKIN)=INPULoeiiiiiieiiiie e 132
7.2.1.4 Address Data Out (ADOUTI[0:43])—OUIPULooeveiiiiiiiee e 133
7.2.1.5 Snoop Response Out (SROUT[0:1], SROUT[0: 1])—Outputccccvvereeriiiireeeeieee e, 133
7.2.1.6 Clock Out (CLKOUT/CLKOUT)—OULPUL ...eeieieiieiiiieeciee e see e 133
7.2.2 Processor Status and CONTIOlcoviiieiiiiieiiic et 133
7.2.2.1 Quiescent Request (CPO_QREQ and CP1_QREQ)—Outputccceeevieeeiieeeciee e 133
7.2.2.2 Quiescent Acknowledgment (CPO_QACK and CP1_QACK)—-Inputc.cccceeieniiiennns 134
7.2.2.3 Time-Base Enable (TBEN)—INPULccueeiiiii e 134
7.2.2.4 Processor ID (PROCID[O:1])=INPUL .eeeiiieeee e e e e e e e ee e 134
7.2.2.5 Bus Configuration Select (BUSCFG[0:2])—INPUtooviiiiiiiiieieieee e 134
7.2.2.6 PLL Locked (PLL_LOCK)—OUIPULuueieiiiieiiiie ittt 135
7.2.2.7 Clock Receiver Termination (CKTERM_DIS)—INputcccveiiiiiiiiiee e 135
7.2.3 CIOCK CONIIOL ...ttt e s s e s ne e s r e e e sne e e snre e e anree s 135
7.2.3.1 System Clock (SYSCLK/SYSCLK)—INPULc.evviieiiiiiiiee e 135
7.2.3.2 Phase Synchronization (PSYNC)—INPULcooiiiiiiiiiiie e 135
7.2.3.3 PLL Bypass (BYPASS)—INPULoooiiiiiiii ettt 135
7.2.3.4 PLL Multiplier (PLL_MULT)=INPUL ..o 136
7.2.3.5 PLL Range Select (PLL_RANGE[O: 1])—INPUL ...ooeeiiiiiieieiiiiie e 136
7.2.4 Interrupts and RESEISooi i e 136
7.2.4.1 Interrupt (CPO_INT and CP1_INT)—=INPUt ... 136
7.2.4.2 Machine Check Interrupt (MCP)—INPULc.oeoiieieieeeeee e 136
7.2.4.3 Checkstop (CHKSTOP) —BidireCtioNalcccveveeiiiiiieeeeiiieee e e 136
7.2.4.4 Hard Reset (CPO_HRESET and CP1_HRESET)—Inputccccoiiiiiiiiiiiiiee e 137
7.2.4.5 Soft Reset (CPO_SRESET and CP1_SRESET)—INputcoeviiiiiiieiee e 137
7.2.5 DebUQ/TESE INTEITACEeeiiiiiiieie et e s nnreeee s 137
7.2.5.1 Attention (ATTENTION)—OUIPULooviiiiiiiiieiiee ettt 137
7.2.5.2 Processor Interface Disable (EI_DISABLE)—INPULcccoiiiiiiiiiiiiiie e 137
7.2.5.3 Trigger Out (TRIGGEROUT)—OUIPULoiiiiiiiiiiiee e 137
Contents Version 2.3

Page 6 of 415 March 7, 2008

====%= User's Manual
IBM PowerPC 970MP RISC Microprocessor
7.2.5.4 JTAG SIGNAIS ..eeieiiiiiiie ettt sttt e bt e s b e e ar e s nee e s anre e e anre e e anreeeaa 137
7.2.5.5 12C SIGNAIS ...vovoceeceeeeeeeeeeeeeee e s ettt 138
7.2.6 VOItage and GIrOUNGoooiiiiiiiiiiiiiiiee ettt e et e e et e e e e abb e e e e s anneeee s 138
8. Processor Interconnect BUScccoimimmeecemessssssnnnnsssss s ssssssssssssssssssssssssssssnnnns 139
S IO 1YY 1= PRSP 140
811 PACKELS ..o e e e e e e s e e e e e e e e an 141
8.1.2 BUS SEOMENTS ...ttt et e e sa e et e e e b e e e s r e e e ab e e e snbe e e anbeeeanneeen 141
8.1.2.1 Address/Data Bus SEgMENTooiiiiiiiiii e 141
8.1.2.2 Transfer-Handshake Bus SegmeNt ... 142
8.1.2.3 Snoop-Response BUS SEGMENTcooiiiiiiiiiie et 142
8.1.3 TranSACLIONS ...ttt e e e e e e et e e e e e e e e e e e e e e b e e et e eeeaaaaeas 142
8.1.3.1 Read TranSaCHONcooiiiiiiiiiie et e e e e e e e e e e e eeeas 143
ST G T2 VY 1 (=Y I = 7= Lo o] o 144
8.1.3.3 Command-Only TranSACONuueiiiiiieeiiiiiiiiiiire e e e e e e e e e s e e e e e e e e e e e s nnnaeeeeees 145
8.1.4 Memory and Cache CONEIENCYcoccueiiiuiiiiiieeiieeeriee ettt sbe e snneeeas 146
8.1.4.1 Physical MEMOIY SIiZEcoiiiiiiiiieiie ettt be e 146
8.1.4.2 CONEIreNCY PrOtOCOIocoiieiiiiiiiiieie et 146
8.1.4.3 COherencCy BIOCK SIZEccooieiiieeieeee et e e e e e e e e e e eeees 146
8.2 Packet Transfer PrOtOCOIot e e e e e e e e e e as 147
8.2.1 Command Packet DefiNitionc..coiiiiiiiiie et e e 147
LS 2 I Y [| =TT 1Y o T 1Y 147
8.2.1.2 Transfer TYPe FIeldccooiiiieeeee e e e e e e e e e e eee s 149
8.2.1.3 Tag DefiNItiONoiiiiii e e 151
<2 I X O7e 1001 g F=Ta To [o= Lol o To [TSP UTR 151
8.2.2 Data Packet DEfiNItiONcoooiieeceee e e e e e 152
8.2.2.1 TWO-Beat TranSTrSooi i e 153
8.2.2.2 MUIti-Beat TIaNSTEIS ...ciiiiiiiiiie it ettt e e e e ree e e e e b ree e e e enees 153
8.2.3 Transfer-Handshake Packets ... e 155
8.2.3.1 Null Transfer HaNdShakeeeeiiiiiiiiee e 156
8.2.3.2 Transfer-Handshake Acknowledgmentcoooiiiiiiiiiiee e 156
8.2.3.3 Transfer-Handshake Retry ..o 157
8.2.3.4 Transfer-Handshake Parity ErrOr ..o 158
RS IS T T o] oI mT=T] 0 o] 1 =] S 158
8.3.1 Snoop-Response Bus Implementationcccuuiiiiiiiriii e 159
8.3.2 SNoopP-ReSpoNSe DESCHPLONSuueiiiiiiiiiiiee it cteee e e et e e e s b e e e e s saraeeeeeanes 160
8.3.2.1 SResp Retry Response Code (Priority 1 - highest)cccoviiiiiiiiniiie e 160
8.3.2.2 SResp Modified-Intervention Response Code (Priofity 2)ccccceeeeiiieiiiiiiiieee e, 161
8.3.2.3 SResp Shared-Intervention Response Code (Priority 3)ccccceeeeeeeeeeeesieiiinieeeeeeeen, 161
8.3.2.4 SResp Modified Response Code (PriOrty 4)ooccueeeeiiiiieeeeeiiiee e 162
8.3.2.5 SResp Shared Response Code (Priority 5)cccoiiiiriiiiiiniee e 162
8.3.2.6 SResp Null or Clean Response Code (Priority 6 - loWest)cccceveviiieiiiiiiiieee e, 162
o T T L= I = F== T 1] 1= R 163
S I =T 01 PO PP PPPPPPPPPTP 163
8.4.2 Memory Read Transactions (GENEral)ccocceiiiiiiiiiie et 164
8.4.2.1 Read TranSACHONcoiiiiiiiiiii e e e e e e e e e e et e e e e e e e e e e e e e eeeeeeas 164
8.4.2.2 Read with No Intent to Cache Transactionccccceeeveeeeiiieciceee e 165
8.4.2.3 Read with Intent to Modify Burst Transactionccccvveeiiieeniieesiee e 166
8.4.2.4 LARX-ReSErve TranSaCHiONeeeiiiiiiiiiiiiiiiieiie ettt 166
Version 2.3 Contents

March 7, 2008 Page 7 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.3 Memory Write Transactions (GENEIAl)occuiiieiiiiiiie et ee e e e e s ee e 167
8.4.3.1 Write-With-Kill Transactionoooi e 167
8.4.3.2 Write-With-Clean TranSacCtioncoooiiiiioiiiiiiiiiiire e e e eeeeas 168
8.4.3.3 Write-With-Flush Transactioncceoeiiiiiiiiiiie e 168

8.4.4 Command-Only TranSACHONScciiiiiiiiieiiiee et sne e e 168
8.4.4.1 DCLAIM Transaction (Invalidate Others)c.ccceiiiiiiiiiiiiiiee e 168
LS 2l o [T o T I U 1= U (oo PP 169
8.4.4.3 Clean TranSACHONccciiiiiiieiiie et e e e sn e e nnnes 169
8.4.4.4 [Kill TrANSACHONeeiiiiiiiiiie ittt e s e e e e e e e e e e 169
8.4.4.5 TLBIE TranSaCHON ...coeiiiiiiiiiiieee ettt e e e e e e e e e e e e nnne e e e eeeeas 170
8.4.4.6 TLBSYNC TranSaCliONcccccueeiiiiiiiiieee e e et e e e e e e e e e e s e e e e e e e e e e e e nnnneeeeeeeeeeeens 170
8.4.4.7 SYNC TranSACHIONeeiiiieieiiieieiiie ettt sne e sne e e snee e s nnnes 170
8.4.4.8 EIEIO TranSaCHIONcoiiiiiiiiiie ittt ettt ettt e emr et e e snr e e s nnre e e nanes 171
8.4.4.9 NUIl TranSACHIONoiiiiiiiii it e e e e e e e e e e e e e e e e e nnnbeeeeeeeaeas 171

9. Power and Thermal Managementmmmiiiiniisiesssssssnssssssss s 173
S I T = 11 0o PR 173

9.1.1 FUIl POWEE MOAE ...ttt e e e e e e e et e e e e e e e e e e e e nnneneeeeeeaeaeeeeanan 173

9.1.2 DOZE MOAEot e e e e e e e e e e e s e e e e s e e e e e s anre e e e e anee 173

S B IR N\ F= T 1 o T [PPSO PPPPRTT 173

9.1.4 DEEP NAP MOUE ...ttt e e et e e e e e e e e e e s saab e e e e e e annreeeeeanes 174

9.1.5 Dynamic Power Managementcoooiiiiiiiiiiiiee et 174

9.2 Power-Management SUPPOIeiii ittt et e e e st e e e e st e e e e s bee e e e e snnteeeeeennneeas 174

9.2.1 Power-Management CONrol BitScooiiiiiiiiiiiiie e 174

S |01 (T ¢ (U] o) £ T PP PRSP PPPPOPPPPPRTN 175

B2 I = TV IS T g ToToT o1 o o PO PRPOPPPPPN 175
9.2.3.1 Delay CalCUIAtioncceieiiiiiicieieee e e e e e e e e e e aeeaes 178

9.2.4 ThermMal DIOAESccuriieeiiiiieeee ettt e e e s e e s st e e e e e aan e e e e e sanre e e e s eanrreeeeennes 179

9.2.5 Bus States while in Power Saving MOGESccoiiiiiiiiiiiee et 179

9.3 Software Considerations for Power Managementccoooiiiiiii e 180
9.3.1 Entering Power Saving MOTEooiiiiiiiiiie ettt 180
9.3.2 External Interrupt ENabIe ... e 180

9.4 Power Tuning FacCility OVEIVIEWcoiiiiiiiiiii e 181

9.4.1 Power Tuning Facility DefinitioNScooiiiiiii e 181

9.4.2 POWEI IMOESooiiiieiiiee ettt et e e e st e e e s e e e e snne e e e e sene e e e e e anneeeeennee 183

9.4.3 Power Transition LAtENCIESccuviiiiiiiiiiie et e s e e 186
9.4.3.1 Idle to RUN TranSItioNScooieeee e e e e e e eeeeeas 187
9.4.3.2 Exiting Deep Nap Using a Decrementer Interrupt ..o, 188
9.4.3.3 Frequency Transitions in the Power Tuning Facilityccccccoeiiiiiiiiiiiee, 188

SN o I B T=T] o | o PP PRSPPI 189

9.6 Time-Base and Decrementer REgISIErSuiiiiiiiiiiii e 191

9.7 12C BUS INTEIACEvuvveeieieoieeteise ettt 191

9.8 Frequency and Voltage SCaliNgccceiiiiiiiiiiie ettt sne e s 191

9.8.1 FrequeNCY SCaIINGoiuiiiiiiiiiii ettt ettt sttt e s bt e st e e s ann e e s ane e e s anneeean 191
9.8.1.1 Initiating @ Frequency Changecoooiiiiiii et 191
9.8.1.2 Power Control REQISIErcoii i 194
9.8.1.3 Power Control Register High (PCRH)cooiiiiiiii e 196
9.8.1.4 Power Status RegiSTercccuiii i s 197

9.8.2 Power Adjustment Bus TranSaCHioNccooiiiieiiiiiiiiee et 198

Contents Version 2.3

Page 8 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9.8.3 ClOCK DItNEIING ..eeuteieitiie ittt e st e st e e s e e e s b e e e s b e e e sabeeeanbeeesnneeaas 200
9.8.4 VORAGE SCAIING ..eeeieiiiiiiie ittt e et e e e s st e e e e sttt e e e e s staeeeesssstseeeesansaneeeeaasssneeeeanns 201
9.8.5 Frequency and Voltage Scaling LatencCies ..o e 202
9.9 Reducing CIOCK MESN POWEToiiiiiiiiiiieitiee ettt e s san e s snn e e s neeas 203
9.9.1 Power Saving iN DEEP NAP ..eeiiiiiiiiiieiiiiiiie ettt e e e s sttt e e e s st e e e s sssteeeeesssseeeaeanns 203
9.10 Additional Dynamic Power Managementcooiiiiiiiiiiiiieie et e e e e e e e e e 204
10. 970MP Performance MORNItOrcccoiimmmmemmmmssesssssssn s ssssssssssssssssssssssssssssnnnns 205
10.1 Instrumentation Facilities OVEIVIEWcooiieeee e e e e e e e e 205
10.1.1 Performance Monitor FACIlItIEScccuuueeeiiiiiiiiee et 206
10.1.2 Performance Monitor Event Selectionccccvveiiiiiiiee e 206
10.1.3 Machine States and Enabling the Performance Monitor Countersccccccceevceeenienennee. 206
10.1.4 Trigger Events and Enabling the Performance Monitor Counterscccccceevvicviereeeneen. 206
10.1.5 Performance Monitor EXCEPIONScoiiiiiiii e 206
LK GRS = VT o] 1 Vo PP 207
10.1.7 TRrESNOIAING ..o e s e e e e e n e e e e 207
10.1.8 Trace SUPPOrt FACITHIESeiiiiiieiiiiie ettt be e 207
10.2 Instruction Sampling FaCIlitiescooiiiiiiiii e 207
10.2.1 Special Purpose Registers and Fields Associated with Instrumentationcccoc....... 207
10.3 Performance Monitor COMPONENTSccoiiiiiiiiiiaiiiee ettt ettt e e e e saee e e sare e e sbeeeans 210
10.4 Performance Monitor Control REGISTEISoiiiiiiiiiiiiiii e 211
10.4.1 Performance Monitor Control Register MMCROcc.uiiiiiiiiiii e 211
10.4.2 Performance Monitor Control Register MMCRTcooiiiiiiiiiee e 214
10.4.3 Performance Monitor Control Register MMCRAcooiiiiiiiii e 217
10.4.4 Performance Monitor Count Registers PMC1 - 8cociiiiiiiiiiieeiee e 219
10.4.5 Performance Monitor and Trace Related Bits in the Machine State Register (MSR) 220
10.4.6 Performance Monitor Related Bits in Hardware Implementation-Dependent
REGISTEr O (HIDO) ...veeiieeiiieee ettt ettt ettt e e s st e e e s et e e e e s snte e e e e sasteeeeessnsaeeeenanes 221
10.4.7 Performance Monitor Related Bits in the Control Register (CTRL)cccoocveeiiiiiiiienenee. 221
10.4.8 Performance Monitor Related Bits in the SCOMO0240, 1240 Register (SCOM x240’) 222
10.4.9 Performance Monitor Related Bits in the SCOM0360,1360 Register (SCOM x‘360’) 223
10.4.10 Performance Monitor Related Bits in the IMC Array (IMC)ccoooiiieiiiiiiee e, 224
10.4.11 Performance Monitor Related Bits in the Sampled Instruction Address Register (SIAR) 224
10.4.12 Performance Monitor Related Bits in the Sampled Data Address Register (SDAR) 224
10.4.13 Performance Monitor Related Bits in the SRR1 (SRR1)ccooiiiiiiieee e, 225
10.4.14 Performance Monitor Related Bits in the Time-Base Register (TB)cccccvvvviveeeeennneen. 226
10.5 Performance Monitor Event SEIECHONooo i 227
ORI B 11 =Yoo= o | SR 228
10.5.1.1 CombiNed EVENTSeiiiiiiiiiie e e 228
10.5.1.2 SoUrce-ENCOEd EVENTScccuiiiiiiieieiie et 228
10.5.1.3 INSIrUCHION COUNES ...eiiiiiie it et e e e s st e e e e srraeeeesanseeeeeeaans 229
10.5.2 OVEr B2-Bit COUNL ... e e e e e e e s s e e e e e e e e e e e e s sanenneneeees 232
10.5.2.1 Examples of Over Bit COUNTccoeiiiieiiiiie e e e e e e e 232
10.5.3 SpeCUIative COUNT ...ttt e e e e e st ee e e e e abe e e e e e nntee e e e e e nrees 232
10.6 Configuring the Performance MONItor BUScoooiiiiiiiiiiic e 233
10.7 Enabling the Performance Monitor COUNTEIScoocuuiiiiiiiiiiieeeiiee e 243
10.7.1 MACKING STALES ...oeieeieiiie e e 243
Version 2.3 Contents

March 7, 2008 Page 9 of 415

User's Manual ====%Z
IBM PowerPC 970MP RISC Microprocessor
10.7.2 THQGEN EVENTS ...t e s e e e e e e e e e 244
10.7.2.1 Time-Base Transition EVENTS ... 245
10.7.2.2 PMC1 Counter Negative Condition EVents ... 245
10.7.2.3 PMC;j (2 < j £ 8) Counter Negative Condition EVENtscccceviiiieeeiiiiiie e 246
10.7.3 Method for Enabling or Disabling Performance Monitor Countingcccccueeivieeriieeennnen. 246
10.8 Performance Monitor EXCEPIONSccoiuuiiiiiiiiiiie et 247
10.9 Instruction Matching and SampPliNgcoooieiiiiiie e 248
10.9.1 Stage 1 Elgibilityeooieeeeeeeee e s 248
10.9.2 Stage 2 ElGiDilityeeeieieeeee e 248
10.9.3 Stage 3 ENGIDIIIYcoeiiiiiiie it e e e e e e e nee s 248
10.10 IFU Instruction Matching Facilityccc.eeiiiiiiii e 249
10.10.1 Overview of the IFU Instruction Matching Facilitycccccceiiiiiiiiniie e, 249
T0.T0.2 IMC AFTAY ..ttt ettt ettt ettt e ekt e e e ek b e e st e e e aab e e e sabe e e aabe e e eabe e e ambe e e saneeesanneesanbeeennnes 250
10.10.3 Reading the IMC SPR with the mfime InStructioncccooiiiiiiiiii e 251
10.10.4 Writing the IMC SPR With the mtime INStructionccooceiiiii e, 252
10.10.5 The vO and v1 Mask Criteriaccceeiieeiiiiieiiiee e 253
10.10.6 Instruction Matching EXamPIEscoioiiiiiiiiiiiiii e 254
10.11 IDU Instruction Sampling FacCilityeooiiiiiiiii e 254
10.11.1 Overview of the IDU Instruction Sampling Facilitycccooiiiiiiini e, 254
10.11.2 Stage 1 ENGIDIlIY ..oooceeeeeeee e e e 255
10.11.3 Stage 2 ENGIDIIIY ...cooeeeeeiee e 257
10.11.4 Stage 3 Mark/NO MAIKcoiiiiiiiiiii ettt e e s be e s ae e e s bee e e eaees 258
10.11.5 Complete Masking, Matching, and Marking CycCle ..o 260
10.11.6 Examples of Instruction Sampling SCENArIOScoocuiiiiiiiiiiiiii e 261
10.11.7 Enabling and Disabling Markingccueeieiiiiieieiieie e 264
10.12 SIAR and SDAR REJISIEIScoiuieiiiiiiiiee ettt et e s e e s 265
10.12.1 INStrUCtion SAMPIINGeoeiiiiiiii e e s 265
10.12.1.1 Performance Monitor EXCEPLIONSeciiiieeiiiiiiiiiiiiee e e e e e e e e 265
10.12.2 Single Step and Branch Trace Marking Modecccceiiieiiiiiiniee e 266
10.12.2.1 Single Step Trace MOEooiiiiiiiiii ittt re e e e snee s 266
10.12.2.2 BranCh TraCe MOGEceiiiiiiiiiiiiteeiceeee e er e e e e e e e e e st e e e e e e e e e eeeasnnnenes 267
10.12.3 Comparison to Previous POWEIPC ProCESSOISuuiiiiiieeiiiiiiiiiiiieeeeeee e e e e e essscnvvneeeeee s 267
KO RS I g T=T=T Te] o [T T PSPPSR UPTPP 267
10.14 Detailed Event INfOrMationooooiiiiiiiiiiiieiee e e e e e e e e e e e e s ennnnnnes 270
11. SyStem DeSigN ... s 279
19,1 120 INEEITACE ..ottt e et ee e ee e e ee e e et en e s ee s e eeen s seen s 279
11.2 Bus Initialization, Configuration, Power Management, and Testcccccceviiiiieiiiniiieee e 279
11.2.1 BUS INItTANIZATIONeeiieeeeee e 279
11.2.2 Configurable Parametersc.cooiiiiiiiiie e 279
11.2.3 Configuration INTEIMACEeiiiiii e et 282
11.2.3.1 Processor Configurable Timing Delay Parameter Register (BUSCONF) 283
11.2.3.2 North Bridge Configurable Timing Delay Parameter Registerc.ccocovveiviiiieenennne 284
11.2.4 POWer ManagemeNntooo ittt e s e e s 285
11.2.5 Reliability, Availability, and Serviceability (RAS) Requirementccccoceriiiiiiieninienennee. 287
11.3 Processor Interconnect Electrical INterfacecoccoiieeiiiiiiie e 288
11.3.1 Initialization at POWer-On RESet ... e 289
11.3.2 TArGEE CYCIE ...ttt e b et e e ae e e s b e e e e anr e e e nneesanneeennres 289
Contents Version 2.3

Page 10 of 415 March 7, 2008

=== User's Manual
IBM PowerPC 970MP RISC Microprocessor
11.4 Processor Interconnect Bus Error Detection and Correctionccocceveiieiiiieeenieeeniee e 291
11.4.1 Error Detection for Balanced ENCOAINGcvviiiiiiiiiiiiiiie e 291
11.4.2 Error Detection for Alternative ENCOTINGSocoouiiiiiiiiiiiie e 291
11.4.2.1 Single-Error and Double-Error Detectioncoooiiiiiiiiiiiiiiiec e 292
11.4.2.2 Single-Error Correct, Double-Error DeteCtioncccceeiiiiiiiireiiiiiieee e 292
12. SCOM Interface and RegiStersccccciiiiiiismmmmmminnsssmsss s s 295
12.1 Processor Core SCOM SPR ACCESScciiuuiiiiiieiitieeeiieeeaiee e sttt e st e e ssseeesbeeesanreessnseessnreessnreesans 295
12.1.1 Operating System Protocol to Access SCOM SPRScocciiiiiiiiiieeiiee e 295
12.1.2 SCOMD FOIMMAL ...uiiiiiiiiiiiiee ettt e sttt s s e e e st e e e e st ae e e e s s s beeeesanssaeeeeesnneaeaeeannsseeaeennsees 296
B P2 TG TR T @@ 1. @ o T - S 297
12.2 SCOM AdAress AlIOCALIONccueiiiiiieeiieie ettt ettt e s et e e sb e e e sne e e snneeeeanneeea 299
12.2.1 Register Description CONVENLIONSoiiiiiiiiiiieiiie e 303
12.2.2 SCOM Error HaNAIiNGooeiiiiiiieeeciiie ettt e sttt e e e st ee e s st e e e s nnsaeaaeennnteeaeeennees 303
12.2.3 ACCESS Status REQISIEreeeiiiiiie i 304
12.3 Core Pervasive SCOM Register Definitionscceeriiiiiiiiiiiieeseie e 305
12.3.1 Processor CoreRAS Facilities (X'02[1:4]XXX’) ..uuiiieiiiiiiiieeiiiiiieeesiieeeeeseeee e snree e e 305
12.3.2 Processor Core SPR SCOM AcCCESS (X' 02BXXX) .uviiiiueieiiieeiieeeaieeesieee e eiee e rnee e 320
12.3.3 Processor Core Performance Monitor Sampling Control (x‘02400X’)cccceeeiiiiieeeennnnen. 327
12.3.4 Processor Core FIR Facilities (X'03[0:5]XXX’) ooiiiiiiiiiieieeeiee e e e esecreneeeee e e e e e e e nneeneeees 328
12.3.5 Instruction Mark Configuration (X'03600X’)ccuuereiiiiriieeeiiiieee e e e e seeee e e snrree e e neeees 335
12.4 Storage Subsystem SCOM Register Definition ... 337
12.4.1 L2 SCOM Register Definitioneeeiiiiiiiii e 337
12.4.2 BIU SCOM Register Definitioncooiiiiiiiiiiiiieee et 340
12.4.3 Processor Interconnect REGISTErSooiciviiiiiiiiiiiie e 347
12.5 Chip Pervasive SCOM Register Definitioncooiiiiiiiiiiiii e 357
12.5.1 Power-On Reset Registers (X40XXXX) ittt 357
12.5.2 Chip Free-Running Clock Section Control/Status (X'50[0:4]XXX’) .eeeveiiiiiieieeeiiiee e, 367
12.5.3 Chip Parallel SCOM Control (XBXXXXX) ..uueiieiiiieeeiiiiieeeessiieeeesssneeeeessneeeeeessneeeesesnnnees 375
12.5.4 Chip Clock/Scan Control (X'8[0:41XXXX) ..uuuiiiiiieiiieeerieeeriee ettt siee e sae e sbe e e 381
13. Vector Processing UNit ... 401
13.1 970MP Vector and SIMD Multimedia OVEIVIEWcc.oueiiiiiiiicieiiiieee e e r e e e e e e eenenes 401
13.1.1 VPU IMPIEMENTAtIONeeiiiieiiee et 401
13.1.2 VECION ALU .t e e s e e s e e e e e s ne e 402
LR TV A= Yol (o] g = (=T o £ (=Y £ PR 403
13.2.1 VRSAVE REQISIEN ..eeeiiiiiiiiii ittt ettt s s e e e e sttt e e e st ae e e e s nnnteeaeeennnteeaeennnees 403
13.2.2 Vector Status and Control Register (VSCR)uiiiiiiiiie e 403
13.3 Effects on Existing POWErPC FaCIlIitIeSccoiuiiiiiiiiiiiieiie e 405
13.3.1 CONLIOL FIOW ...ttt et et b e e san e e s ene e e e s b e e e anne e e s beeeeanes 405
13.3.1.1 CoNdition REGISTENeeiiiiiiiiii et e e st e sne s 405
13.3.1.2 Machine State RegISterooii e 406
13.3.1.3 Machine Status Save/Restore Registers (SRR0O, SRR1)covviiiiiiiiiiiiiiieiiiiieeeees 407
BT o Cer=T o] (1] o1 PP PT PSPPI 407
13.4.1 VPU Unavailable EXCEPIONcocoiiiiiiiiiiiiie ettt 407
13.4.2 VPU ASSIST EXCEPLION ..ot 407
13.4.3 Data Storage EXCEPHONooo e e 407
Version 2.3 Contents

March 7, 2008 Page 11 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

13.5 OptioNal INSIIUCHIONSiiiiiiiiiiie et e e s e e e e snnae e e e e snneeeeeesnneeeaean 408
13.5.1 Java Mode Instruction Handling Implementationcccoeieiiiiiiie e 408

13.5.2 Least Recently Used INStrUCHIONSoooiiiiiiiiiiie e 408

13.5.3 Data Stream INSIIUCHONSooiiieiie et e e e e eas 408

13.6 VECtOr INSTIUCHION ST ...ccooiiieeee e e e e e e e e e et e e e e e e eaeeeeaeennnnnnes 409
Contents Version 2.3

Page 12 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

List of Figures

Figure 1-1. 970MP BIOCK DISQIamMuiiiiiiiiiiiee ettt ettt e e e et e e s s e abe e e e e e eaneeas 34
Figure 1-2. 970MP Dual Core with Common Arbitration LOGICceeriieiiiiiiiiiiiie e 35
Figure 2-1. 970MP Programming Model—RegiSters ... 44
Figure 2-2. Processor Attention INSIrUCIONcooiiiiiiiii e 76
Figure 3-1. 970MP Storage SUDSYSIEMciiiiiiiiiii ettt ettt be e sbne e s eaeeeeas 90
Figure 3-2. Data Flow in the 1MB L2 CAChEcooiuiiiiiiiiiiie et 92
Figure 3-3. Data Cache Block Touch X-Form (Optional Variant)ccccoooiiiiiiiiiiiiieee e, 96
Figure 3-4. Data Cache Block Touch X-Form (Enhanced Variant)ccccoiiiiriiiiiiien e 97
Figure 7-1. 970MP Microprocessor Signal GrOUPScocueiiiiiiiiiieeeiiiiiee ettt ee et e e e s st ee e s sareeee e anes 130
Figure 7-2. Encoding and Selection Logic for the Drive Side of a 970MP Interconnect SSB 132
Figure 8-1. Processor Interconnect Bus Configuration with Two 970MP Microprocessors 139
Figure 8-2. Two Microprocessors Connected to a North Bridgecceeiiiiiiiiiiiiiiiiie e 140
Figure 8-3. Read Transaction Timing DIiagramccoooiiiiiiiiiiiieee et e e sneeee e 143
Figure 8-4. Write Transaction Timing DIagramcoooiiiiiiiiiiiie e 144
Figure 8-5. Command-Only Transaction Timing Diagramccceeiiiieieiiiiiiee e 145
Figure 9-1. Processor QREQ/QACK SigNalliNgeeeiiiiiiiiiiiiiiiiiee ettt e e sreeee e 176
Figure 9-2. North Bridge QREQ/QACK Signallingccccueeiiieiiiiiieiiee ettt 177
Figure 9-3. Using a 970MP Microprocessor with a Single QREQ/QACK Paircccoevceiirieeeiieeenineens 178
Figure 9-4. 970MP Power MOde STAteSc.ueiiiiiiiiiiii et e e e 183
FIQUIEe 9-5. PLL DESIGN ...ttt ettt e e e bt e e e e s et e et e e e e ne e e e e e saabeeeeeeeaanrneeeeanes 190
Figure 9-6. Frequency Scaling EVent Orderingcoooiiiiiiiiiiiiiee ettt et e e 193
Figure 9-7. Clock Dithering BIOCK DIiagramcooiiuieiiiiiiieei ittt e e e e 200
Figure 9-8. Sample Shift Pattern ..ot enee s 201

Figure 10-1. Performance Monitor ArChiteCUreoooiiiiiiiiiiiiiiie e 210
Figure 10-2. EVENT SEIECHION ...ttt et e e e s e be e e e e e s abbeeeeeanes 227
Figure 10-3. 970MP Performance Monitor Bus Configurationcccuceeeiiiiniiiee e 234
Figure 10-4. PatCh IMIAPceieiiiiiieeie ettt e e e e s st e e e s n e e e e e sanr e e e e e e s snreeeenanes 251

Figure 10-5. IFU and IDU Instruction Sampling FIOWcoiiiiiiiiiiii e 259
Figure 10-6. Performance Monitor Threshold LOGICcccoiiuiiiiiiiiiiiiie e 268
Figure 11-1. Configurable Timing Parametersccccooiiiiiiiiiniie e 280
Figure 11-2. North Bridge Configurable Timing Parameterscccooiiiie i 280
Figure 11-3. Processor Configurable Timing Parameterscccoiiiiiiiiiiiiii e 281

Figure 11-4. Processor QREQ and QACK Signallingccccueiiiiiiiiiiiiiiieeniee et 286
Figure 11-5. North Bridge QREQ and QACK Signallingccoeiiiiiiiiiiiiiiie it 287
Figure 11-6. Bus Diagram of a Dual-Processor 970MP Processor Interconnect-Based System 288
Figure 11-7. Receive-Side FIFO CirCUILc.oiiiiiiiiiie et 290
Figure 11-8. Timing Diagram Showing Relationship Between Bclk and the Four Gate Signals 290
Figure 12-1. Processor Unit SCOM TOPOIOGYceeeiuiiiiiiiiiiieieiieee et et et e reee e s sae e s sbe e sne e e eneee s 295
Version 2.3 List of Figures

March 7, 2008 Page 13 of 415

User’'s Manual é;—én??:
IBM PowerPC 970MP RISC Microprocessor

Figure 12-2. SCOMUC SPR FOIMALccoiiiiiiiiieiie ettt ettt e e snre e e e snneeeas 297
Figure 12-3. Format of an SCOM AAIESSeiiiiiiiiiiee ettt e e et a e e e e e e s snbee e e e e nnees 299
Figure 12-4. Format of an SCOM Address within the BIUccooiiiiiiiiiie e 299
Figure 12-5. Format of an SCOM Data BUScooiiiiiiiiiiiii ettt 299
Figure 12-6. Common CIOCK COMMANGSuuiiiiiiiiiiieeeiiiee ettt e e et e e e e e rabee e e e s snbee e e e e nnees 382
Figure 12-7. Example of LBIST Commands using the EPS ENgiNeccocoiiiiiiiiiiiiiiiee e 390
Figure 13-1. VPU BIOCK DIGQIamoociiiiiiiiiiiie ettt e e e s e e s e 402
Figure 13-2. VSCR FOIMAL ...ooiiiiiiiiii ettt st e e e e st e e e e s nb e e e e e s nnreee e e nnnees 403
Figure 13-3. VSCR Moved t0 @ VeCtor REQISIEroiiiiiiiiiie ettt 404
Figure 13-4. Condition Register (CR)coiiiiiiiieiiie et e e 405

List of Figures
Page 14 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

List of Tables

Table i. Acronyms and Abbreviated TEIMSoc.uuiiii e 26
Table ii. Terminology CONVENTIONSoiiiiiiiieieee ettt ettt et e e sab e e s eabe e e sbe e e s be e e s aaneeas 31

Table iii. Instruction Field CONVENLIONScoiiiiiiie e e 31

LI Lo L= T 1 T B R 49
Table 2-2. Additional SRRT Bitcciiiiiiiiiieie et ne e e e anre e e eaees 49
Table 2-3. Implementation-SPeCific SPRScoiiiiieee e a e e 51

Table 2-4. Move To/Move From SPR BEhavVioroooiiiiiiiiii e 53
Table 2-5. Storage Control INSTIUCHONSccouiiiiiiii e 77
Table 2-6. ACDZ ACHONSoooiiieiiee et 79
Table 3-1. Storage Hierarchy CharacteriStiCSoiiiiiiiiiiiiie e 83
Table 3-2. Simple AAAreSSs DECOUEc.uiiiiiiieiiii ettt e b e e sbe e e be e e ebbee e eaees 87
Table 3-3. Storage Subsystem FUNCHONal UNItScccuuiiiiiiiiiiei e e 90
Table 3-4. Cache-Coherency ProtOCOIooiiiiiiiiiiiie et 93
Table 3-5. 970MP L2 Cache State Transitions Due to Processor Instructionscccoceeevieneniieeennen. 93
Table 3-6. 970MP L2 Cache State Transitions Due to Bus Operationscccccviiiieveeee e, 94
Table 4-1. 970MP Microprocessor Exception Classificationsccccoooiiiiiiiiiiin e 100
Table 4-2. Exceptions and CONITIONScc.ueiiiiiiiiiii e 101

Table 4-3. IEEE Floating-Point Exception Mode BitScooiiiiiiiiiiiiiii e 108
Table 4-4. Register Settings for Machine Check EXCepioncocceeiiiiiiiiiiiiee e 112
Table 4-5. Register Settings for Alignment EXCEPLIONccooiiiiiiiiiii e 114
Table 4-6. Register Settings for Trace EXCEPONcuuviiiiiiiiiii e 115
Table 4-7. Register Settings for the Performance Monitor Exceptionccccoiiiiiiiiie, 116
Table 4-8. Register Settings for VPU Unavailable INterruptccooeiiiiiiiiiiin e 117
Table 4-9. Register Settings for Maintenance EXCEption ... 117
Table 4-10. Register Settings for VPU AsSist EXCEPLIONccooiiiiiiiiiiiii e 118
Table 5-1. MMU Feature SUMMEAIY ...ttt et s be e be e e sbe e e sbee e sneeaaans 120
Table 5-2. Treatment of WIMG Bits in the 970MPcooiiiiie e 121

Table 8-1. Processor Interconnect Signal DesCrptionoocueiiiiiiiiiiiie e 141

Table 8-2. Command Packet DESCIIPONiiiiiiiiiie ittt 147
Table 8-3. Transfer TYPe ENCOINGccoiueiiiiiiiiiiie ettt ettt e et e e sne e e sbe e e snreeeaes 149
Table 8-4. Transfer Size ENCOAINGcoiiiiiiiiiiiiie e e e e e 150
Table 8-5. Tag DefiNItiON ..o e e e 151

Table 8-6. Read-Data Packet Header DeSCHPLIONcoiiiiiiiiiiiiieiceeeee e 152
Table 8-7. Data Beat DESCHPLIONcoiiiiiiieiii ittt st e e st e e e s aab e e e e e s anneeeeeas 152
Table 8-8. Two-Beat Data TranSfers ... 153
Table 8-9. Packet Ordering for 128-Byte Interleaved Packets on 32-Byte Boundariesccc....... 154
Table 8-10. Packet Ordering for 32-Byte Interleaved Packetscccccoviiiiiiiiiiine e, 154
Table 8-11. Transfer-Handshake Definitionccoooiiiiii e 155
Version 2.3 List of Tables

March 7, 2008

Page 15 of 415

User's Manual é;—én??:
IBM PowerPC 970MP RISC Microprocessor

Table 8-12. Snoop-Response Bit Definitionc.ueiiiiiiiiiiiiie e 158
Table 8-13. Allowed SNOOP RESPONSESceeveeeiieiiiiiieiieeie e e e e e e s s et r e e e e e e e e s assaaberaeeeeeaeaeeeessnnnnnrenanees 159
Table 8-14. Write-With-Kill Types SUPPOMEAeiiiiiiiiie et 167
Table 9-1. Power-Management CONtrol BitSccoceiiiiiiiiiiie et 174
Table 9-2. Minimum QAckldleDelay requirement in bus clocks for 970MPccccoeoviiiiiiiieieiiieeen, 179
Table 9-3. Minimum (QAckldleDelay + QAckMinLowTime) requirement in bus clocks for 970MP 179
Table 9-4. Power-Management MOOESccuviiiiiiieiee e e s e e s e e e 181

Table 9-5. POWEIr MOAE STALESooiiiiiiiieiiiiiiie et e e e s s e e e e eanbe e e e e e nnnees 184
Table 9-6. Transitions between POWEr MOAESeiiiiiiiiiiii et 185
Table 9-7. Valid Combinations of POWEr MOAESccoiuiiiiiiiiiiiii e 186
Table 9-8. Latency of Deep-Nap-to-Run Transitions in Full Frequency Cyclesccccocveeveeeeeeiiiiinnns 188
Table 9-9. Power Adjustment TranSACONccoiiiiiiiii i 198
Table 10-1. 970MP Performance Monitor and Trace-Related Special Purpose Registers 209
Table 10-2. Performance Monitor Internal Multiplexer PMCXSEL[0:4] Bit Valuesccccccceeevvvcevnvvnnnen. 227
Table 10-3. Event Data SoUrce ENCOTINGSoiiiiiiiiiiieaiiie ittt stee sttt sae e be e e ean e e ees 228
Table 10-4. Event Instruction Source ENCOAINGSccueeeiiiiiiiiiiiiie e 229
Table 10-5. DiIreCt EVENTS ...coiiiiiiiiee ettt e e e e e e e e et e e e e e e e e e e s nanrrnne e 230
Table 10-6. Speculative COUNt EVENEScoiiiiiiiiiie et s 233
Table 10-7. Performance Monitor Bus ASSIgNMENTEScccooiiiiiiiiiiiie e 235
Table 10-8. Examples of Event Counter Enabling Statesccccovoiiiiiii i 244
Table 10-9. Partial Match ROws in the IMC AITAYcoiiiiiiiiie et 250
Table 10-10. Complete Match ROWS in the IMC AITAYccceeiiiiiiiiiee e 250
Table 10-11. IMC SPR Patch Map Sample RESUISceeviiiiiiiiiiie e 252

Table 10-12. IMC SPR for a 17-Bit MatChcooiiiiiiii e 253
Table 10-13. IMC SPR Used when Writing the Second mtime Instruction for a 32-Bit Match 253
Table 10-14. Encoding Bits vO and v1 of the IMC Array Maskccccoiiiiiiiiiieeeeeeeeee e 254
Table 10-15. IFU BSFL Predecode Bit DefinitioNSccooeiiiiiiiiiiiiiieieee e 256
Table 10-16. Start and End Event Select Bits and the Performance Monitor Threshold Logic 269

Table 10-17. Detailed Event DeSCHPUONSccooieiiieeeeeee e e e e e e e e e e e e e e e e e e eeee e e ens 270
Table 11-1. Programmable Delay Parameters ... 281

Table 11-2. [2C INtErfACE SIGNAISvveveeeeeceeeeeeeeeeeeeeeeeeee s s s se s snes s snassenseseneenaneneans 282

Table 11-3. I°C Registers Used by the 970MP Processor Interconnectccccceeeeeeiiiiiiiiiieeeeneeeen, 282

Table 11-4. Bit Error PoSition 1deNntifieroooe oo e e e 293
Table 12-1. Operating System Code t0 ACCESS SCOMccoiiiiiiiiiiiiie et 296
Table 12-2. SCOM BaSE AGAIESSESeeiiiiiiiiiii ittt ettt e s ee e s s e e s e snb e e e e e sanbe e e e e enreeeeeeennes 300
Table 12-3. SCOM MOiIfier AQAIrESSES ...oiviieeiiiiiieieeiee et e et re e e e e e e e s s s e eeeeeeeaeeeeeseannnneenaeees 300
Table 12-4. EPS ENGINe DESCHPLONooiiiiiiiiiii ittt ne e 389
LI o) L= S R B VA 1@ o =1 o I 1YY o] 1o] S 404
Table 13-2. CR6 Field Bit Settings for Vector Compare InStructionscccccevviieiiinniiien e 405

List of Tables Version 2.3

Page 16 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 13-3. MSR Bit Settings Affecting the VPUoo o 406
Table 13-4. Supported VEeCtor INSIIUCIONScooiiiiiiiiiee ettt ee e e e e e e e e s s nnnenes 409
Version 2.3 List of Tables

March 7, 2008 Page 17 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

List of Tables Version 2.3
Page 18 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date Page Description
Version 2.3
90 » Revised description in Section 3.5 Functional Units.

* Added a new section on software optimization (see Section 6 Software Optimi-
zation Guidelines).

123

¢ Removed Section 2.2.1.3 Invalid Forms.
March 7, 2008 * Removed Section 3.5.3 Non-Cacheable Unit.

* Removed Section 3.5.4.1 Overview of the Hardware-Controlled Data Prefetch.
* Removed Section 3.5.4.2 Hardware Prefetch Engine Implementation.
¢ Removed Section 3.5.4.4 Vector Prefetch Instruction Support.
* Removed Section 3.5.4.5 Programmability.
* Removed Section 5.3 Memory Segment Model.

Version 2.2

* Added DABRX bit description table to Section 2.1.2.3 Data Address Breakpoint

61 Register (DABR).

* Modified DSISR[6] bit setting in Table 4-4 Register Settings for Machine Check

12 Exception.

114 * Modified DSISR[6] bit setting in Table 4-5 Register Settings for Alignment
March 21, 2007 Exception.

228 » Edited Table 10-3 Event Data Source Encodings.

* Defined bit [31] as BCM in Table 11.2.3.2 North Bridge Configurable Timing
Delay Parameter Register.

284

345 * Defined “g” as guarded access in the BIU Mode Register section.

297 ¢ Edited SCOMC bit description table in Section 12.1.3 SCOMC Format.
Version 2.1

24 ¢ Added SPRGS3 to User Model — USIA block in Figure 2-1 970MP Programming
Model—Registers and added a description.
June 2, 2006 194, 196 ¢ Corrected the SCOM address of the Power Control Register (PCR).

* Added commonly used SCOM registers and their descriptions (Section 12

295 SCOM Interface and Registers).

178 e Added Section 9.2.3.1 Delay Calculation

Version 2.3 Revision Log
March 7, 2008 Page 19 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Revision Date Page

50
75

June 28, 2005 153

173
174

281

January 17, 2005

Revision Log
Page 20 of 415

Description

Version 2.0

Clarified the explanation of illegal instructions.
Rewrote the description of the Load with Update instructions.

Updated Table 8-8 Two-Beat Data Transfers, the description of the data transfer
format, and Table 8-9 Packet Ordering for 128-Byte Interleaved Packets on 32-
Byte Boundaries.

Expanded the description of Doze mode and how it relates to power manage-
ment.

Corrected the programmable delay parameters for SNOOPLAT and
SNOOPACC.

Version 1.0 (Initial release)

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

About This Book

The primary objective of the IBM PowerPC® 970MP RISC Microprocessor User’s Manual is to define the
functionality of the PowerPC 970MP microprocessor for software and hardware developers.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page. As with any technical documentation, it is the readers’ responsibility to be sure they are using the most
recent version of the documentation. To locate any published errata or updates for this document, go to
ibm.com/chips/techlib.

Note: Soft copies of many of the latest versions of the manuals and documents referred to in this manual that
are produced by IBM can be accessed on the Web at ibm.com/chips/techlib.

Audience

This manual is intended for system software and hardware developers and application programmers who
want to develop products for the 970MP microprocessor. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of reduced instruction set computer (RISC)
processing, and details of the PowerPC Architecture™.

Organization

For ease in reference, the arrangement of topics in this book is similar to that of the PowerPC Microprocessor
Family: The Programming Environments Manual for 64-Bit Microprocessors and the PowerPC Micropro-
cessor Family: Vector/SIMD Multimedia Extension Technology Programming Environments Manual (see
Related Documents on page 22). Topics build upon one another, beginning with a description and summary
of 970MP-specific registers and instructions and progressing to more specialized topics such as 970MP-
specific details regarding the cache, exception, memory management models, and power management.
Thus, chapters might include information from multiple levels of the architecture. For example, the discussion
of the cache model uses information from both the virtual environment architecture (VEA) and the operating
environment architecture (OEA).

A summary and a brief description of the major sections of this manual follows:

e Chapter 1 PowerPC 970MP Overview is useful for readers who want a general understanding of the fea-
tures and functions of the PowerPC Architecture and the 970MP processor. This chapter describes the
flexible nature of the PowerPC Architecture definition, and provides an overview of how the PowerPC
Architecture defines the register set, operand conventions, addressing modes, instruction set, cache
model, exception model, and memory management model.

» Chapter 2 Programming Model is useful for software engineers who need to understand the 970MP-spe-
cific registers, operand conventions, and details regarding how the PowerPC instructions are imple-
mented on the 970MP microprocessor. Instructions are organized by function.

» Chapter 3 Storage Subsystem discusses the storage subsystem as implemented on the 970MP micro-
processor. The storage subsystem includes the core interface logic, the non-cacheable unit, the L2 cache
and controls, and the bus interface unit.

e Chapter 4 Exceptions describes the exception model defined in the PowerPC OEA and the specific
exception model implemented on the 970MP microprocessor.

Version 2.3 About This Book
March 7, 2008 Page 21 of 415

http://ibm.com/chips/techlib
http://www.ibm.com/chips/techlib

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

* Chapter 5 Memory Management describes the 970MP implementation of the memory management unit
specifications provided by the PowerPC OEA for PowerPC processors.

* Chapter 6 Software Optimization Guidelines describes key design characteristics of the 970MP micropro-
cessor.

* Chapter 7 Signal Description describes the individual signals of the 970MP microprocessor.

e Chapter 8 Processor Interconnect Bus describes the processor interface (Pl), which is a bus architecture
providing high-speed, high-performance interconnections for processors, I/O devices, memory sub-
systems, and bridge chips.

* Chapter 9 Power and Thermal Management provides information about power saving and thermal man-
agement modes for the 970MP microprocessor.

* Chapter 10 970MP Performance Monitor describes the operation of the performance monitor diagnostic
tool incorporated in the 970MP microprocessor and provides detailed event information.

» Chapter 11 System Design describes system-related features such as power-on reset and reliability,
availability, and serviceability (RAS) considerations.

* Chapter 12 SCOM Interface and Registers describes the scan communication (SCOM) facility that is
used to access processor debug and diagnostic facilities.

* Chapter 13 Vector Processing Unit provides a general understanding of the features and functions of the
vector processing unit (VPU) used on the 970MP microprocessor.

Related Documents

Companion Manuals

This manual is intended as a companion to the following reference manuals:

e PowerPC Architecture! books:

Note: The PowerPC Architecture books supersede the PowerPC Programming Environments Manual
for the 970MP implementation. However, not all features available in the PowerPC Architecture are sup-
ported in the 970MP microprocessor (such as, logical partitioning).

— PowerPC User Set Architecture (Book I, Version 2.01). Covers the base user instruction set architec-
ture (UISA), user-level registers, data types, memory conventions, memory and programming mod-
els, and related facilities available to the application programmer.

— PowerPC Virtual Environment Architecture (Book I, Version 2.01). Defines the storage model and
related instructions and facilities available to the programmer, and the time-keeping facilities avail-
able to the application programmer. The VEA, which is the smallest component of the PowerPC
Architecture, defines additional user-level functionality that falls outside typical user-level software
requirements. The VEA describes the memory model for an environment in which multiple proces-
sors or other devices can access external memory and define aspects of the cache model and cache
control instructions from a user-level perspective. The resources defined by the VEA are particularly
useful for optimizing memory accesses and for managing resources in an environment in which other
processors and other devices can access external memory.

1. PowerPC Architecture refers to the instructions and facilities described in Books I, I, and III.

About This Book Version 2.3
Page 22 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Implementations that conform to the PowerPC VEA also conform to the PowerPC UISA, but might
not necessarily adhere to the operating environment architecture (OEA).

— PowerPC Operating Environment Architecture (Book lll, Version 2.01). Defines the system (privi-
leged) instructions and related facilities. The OEA defines supervisor-level resources typically
required by an operating system. The OEA defines the PowerPC memory management model,
supervisor-level registers, and the exception model.

Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

* PowerPC Microprocessor Family: Programming Environments Manual for 64-Bit Microprocessors
(referred to as the Programming Environments Manual). Provides information about resources defined by
the PowerPC Architecture that are common to PowerPC processors. This manual describes the function-
ality of the 64-bit architecture model.

* PowerPC Microprocessor Family: Vector/SIMD Multimedia Extension Technology Programming Environ-
ments Manual. Describes how the vector/SIMD technology relates to both the 64-bit and the 32-bit por-
tions of the PowerPC Architecture.

* The PowerPC Architecture: A Specification for a New Family of RISC Processors by C. May, E. Silha, R.
Simpson, and H. Warren, Morgan Kaufman, May 1994. Defines the architecture from the perspective of
the three programming environments and remains the defining document for the PowerPC Architecture.

Because the PowerPC Architecture is designed to be flexible in order to support a broad range of processors,
these documents provide a general description of features that are common to PowerPC processors and indi-
cate those features that are optional or that might be implemented differently in the design of each processor.

It is important to note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that cause a floating-point unavailable exception are
defined by the UISA, while the exception mechanism itself is defined by the OEA.

Additional Documentation

Some additional PowerPC documentation is available at ibm.com/chips/techlib through IBM Customer
Connect at http://ibm.com/technologyconnect.

e IBM PowerPC 970MP RISC Microprocessor Datasheet. This datasheet provides specific data about bus
timing, signal behavior, and ac, dc, and thermal characteristics, as well as other design considerations for
the 970MP implementation.

* PowerPC 970MP Power On Reset Application Note. This document contains information about required
power-on-reset design and initialization.

* PowerPC Microprocessor Family: The Programmer’s Reference Guide (MPRPPCPRG-01). This is a con-
cise reference that includes the register summary, memory control model, exception vectors, and the
PowerPC instruction set.

¢ Application notes. These short documents contain information about specific design issues useful to pro-
grammers and engineers working with PowerPC processors.

Version 2.3 About This Book
March 7, 2008 Page 23 of 415

http://www.ibm.com/chips/techlib
http://ibm.com/technologyconnect
http://ibm.com/technologyconnect

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

General PowerPC Documentation

The following documentation provides useful information about the PowerPC Architecture and computer
architecture in general:

Ferraiolo, F., E. Cordero, D. Dreps, M. Floyd, “Power4: Synchronous Wave-Pipelined Interface.” Hot Chips
1999, Stanford, CA.

Hennessy, John L. and David A. Patterson. Computer Architecture: A Quantitative Approach. 2nd ed.
PC-Bus Specification. Version 2.1. Philips Semiconductors, 2000.

IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1a-1993.

McClanahan, Kip. PowerPC Programming for Intel Programmers. Foster City, CA: IDG Books Worldwide, Inc.

Shanley, Tom. PowerPC System Architecture. Richardson, TX: Mindshare, Inc.

About This Book Version 2.3
Page 24 of 415 March 7, 2008

Conventions

User's Manual

IBM PowerPC 970MP RISC Microprocessor

This document uses the following notational conventions:

&
I
‘0’

-

crfD

crfS

frA, frB, frC
frD

italics

mnemonics
n

overbar

rA, rB

rD
REGI[FIELD]

Reserved

VA, vB, vC
vD

Version 2.3
March 7, 2008

AND logical operator.
OR logical operator.

Binary values in text are either spelled out (zero and one) or appear in single quotation
marks. For example: ‘10101’. In tables, these quotation marks are omitted.

NOT logical operator.

Instruction syntax used to identify a destination CR field.

Instruction syntax used to identify a source Condition Register (CR) field.
Instruction syntax used to identify a source Floating-Point Register (FPR).
Instruction syntax used to identify a destination FPR.

Italics indicate variable command parameters. For example, bectrx. Book titles in text are
set in italics.

Instruction mnemonics are shown in lowercase bold.

Used to express an undefined numeric value.

Overbars designate active-low (non-differential) signals.

Instruction syntax used to identify a source General-Purpose Register (GPR).
Instruction syntax used to identify a destination GPR.

Abbreviations or acronyms for registers are shown in uppercase text. Specific bits, fields,
or ranges appear in brackets. For example, MSR[POW] refers to the Power-Management
bit in the Machine State Register.

Indicates reserved bits or bit fields in a register. Although these bits can be written to as
either ones or zeros, they are always read as zeros.

Instruction syntax used to identify a source Vector Register (VR).
Instruction syntax used to identify a destination VR.
In certain contexts, such as a signal encoding, this indicates a don’t care.

A lowercase x precedes hexadecimal values. For example, x‘0B00’.

About This Book
Page 25 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this document.

Table i. Acronyms and Abbreviated Terms (Page 1 of 5)

Term
ALU
AS
ASR
BAT
BCM
BHT
BIST
BIU
BPU
BSDL
CAM
CDF
Clu
CMOS
CoP
cQ
CR
CRA
CTR
DABR
DAR
D-cache
DCMP
DEC
DMISS
DPM
DSI
DSISR
DTLB
EA
EAR
ECC
eCR
eFPR

About This Book
Page 26 of 415

arithmetic logic unit

application system

Address Space Register

block address translation

balanced coding method

branch history table

built-in self test

bus interface unit

branch processing unit
boundary-scan description language
content-addressable memory

critical data forward

core interface unit

complementary metal-oxide semiconductor
common on-chip processor
completion queue

Condition Register

custom register array

Count Register

Data Address Breakpoint Register
Data Address Register

data cache

data translation lookaside buffer (TLB) compare
Decrementer Register

data TLB miss address

dynamic power management

data storage interrupt

Meaning

Data Storage Interrupt Status Register. Register used to determine the source of a DSI exception.

data translation lookaside buffer
effective address

External Access Register

error checking and correction
emulation CR

emulation FPR

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table i. Acronyms and Abbreviated Terms (Page 2 of 5)

Term
eGPR
ERAT
FIFO
FPECR
FPR
FPSCR
FPU
GCT
GPIO
GPR
HIDn
1’c
IABR
IAP
I-cache
IEEE
IFU
IMC
1Q
ISI
ISU
ITLB
JTAG
L2
L2C

LHR

LHS

LIFO
LMQ

LR

LRU
LSb
LSB
LSU

Version 2.3
March 7, 2008

Meaning
emulation GPR
effective-to-real-address translation
first-in-first-out
Floating-Point Exception Cause Register
Floating-Point Register
Floating-Point Status and Control Register
floating-point unit
global completion table
general-purpose /O pins
General-Purpose Register
Hardware Implementation-Dependent Register
inter-integrated circuit
Instruction Address Breakpoint Register
initial alignment pattern
instruction cache
Institute for Electrical and Electronics Engineers
instruction fetch unit
Instruction Match CAM Register
instruction queue
instruction storage interrupt
instruction sequencer unit
instruction translation lookaside buffer
Joint Test Action Group
secondary cache (level 2 cache)
L2 cache controller

load-hit-reload. A load presented through a load/store port to the LMQ matches an existing entry that has already
initiated a request to the L2.

load-hit-store. A load presented through a load/store port to the store reorder queue (SRQ) matches an existing
entry. Store forwarding may be attempted. If the store contains all the data required by the load, store forwarding
can occur. If the store does not contain all the data required by the load, store forwarding cannot occur and the
load is rejected or flushed.

last-in-first-out

load miss queue. An 8-entry queue, which tracks loads that miss the L1 and are awaiting data from the 970MP
storage subsystem (STS). Each entry can handle two loads associated with a cache line.

Link Register

least recently used
least-significant bit
least-significant byte

load/store unit. The unit in the microprocessor that executes load-and-store instructions.

About This Book
Page 27 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table i. Acronyms and Abbreviated Terms (Page 3 of 5)

Term
MERSI
MMCRn
MMU
MRU
MSb
MSB
MSR
NaN
NCU
NIA
no-op
NSA
NTC
OEA
PFQ
Pl
PID
PLL
PMCn
POR
POWER™
PRQ
PTE
PTEG
PVR
RAS
RAW
RCQ
RISC
RLM
RMCI
RTL
RWITM
RWNITM
SCOM
SCOMC
SCOMD

About This Book
Page 28 of 415

Meaning
modified/exclusive/recent/shared/invalid cache-coherency protocol
Monitor Mode Control Registers
memory management unit
most recently used
most-significant bit
most-significant byte
Machine State Register
not a number
non-cacheable unit
next instruction address
no operation
next sequential address
next to complete
operating environment architecture
data prefetch filter queue. Filter queue of 12 entries, which can detect data streams for prefetching.
processor interface
processor identification tag
phase-locked loop
Performance Monitor Counter Registers
power-on reset
Performance Optimized with Enhanced Reduced Instruction Set Computing (RISC) Architecture
data prefetch request queue. A prefetch queue of eight streams, which will be prefetched.
page table entry
page table entry group
Processor Version Register
reliability, availability, and serviceability
read-after-write
read/claim queue
reduced instruction set computing
random logic macro
real mode cache inhibited
register transfer language
read with intent to modify
read with no intent to modify
scan communications
SCOM control
SCOM data

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table i. Acronyms and Abbreviated Terms (Page 4 of 5)

Term

SDQ
SDR1
SHL

SHR

SIAR
SIMD
SIMM
SLB
SMP
SPR
SRn
SRQ
SRRO
SRR1
SSB
STE
sTQ

STS

B

TBL

TBU

TLB
TType
UIMM
UISA
UMMCRn
UPMCn
USIA

VA

VALU
VEA
VPERM
VPU, vector units

VR

Version 2.3
March 7, 2008

Meaning
sampled data address register
store data queue
Register that specifies the page table base address for virtual-to-physical address translation.
store-hit-load

store-hit-reload. A committed store ready to write to the L1 data cache (D-cache) line that matches an existing
LMQ entry. The store is stalled until the reload is complete.

Sampled Instruction Address Register
single-instruction, multiple-data

signed immediate value

segment lookaside buffer

symmetric multiprocessor

Special Purpose Register

Segment Register

store reorder queue. A 32-entry queue that tracks all stores active in the LSU.
Machine Status Save/Restore Register 0
Machine Status Save/Restore Register 1
source-synchronous bus

segment table entry

store queue

970MP storage subsystem, which includes core interface logic, a noncacheable unit, the L2 cache and controls,
and the bus interface unit.

timebase facility

Timebase Lower Register

Timebase Upper Register

translation lookaside buffer

transfer type

unsigned immediate value

user instruction set architecture

User Monitor Mode Control Registers

User Performance Monitor Counter Registers
User Sampled Instruction Address Register
virtual address

vector unit arithmetic logic unit (ALU)
virtual environment architecture

vector permute unit

vector processing units within the core.

Vector Register

About This Book
Page 29 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table i. Acronyms and Abbreviated Terms (Page 5 of 5)

Term Meaning

VRF Vector Register file

VRSAVE Vector Save/Restore Register

VSCR Vector Status and Control Register

WAR write-after-read

WAW write-after-write

WIMG write-through/caching-inhibited/memory-coherency enforced/guarded bits

XER Integer Exception Register, used to indicate conditions such as carries and overflows for integer operations.
About This Book Version 2.3

Page 30 of 415 March 7, 2008

Terminology Conventions

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table ii describes terminology conventions used in this manual and the equivalent terminology used in the

PowerPC Architecture specification.

Table ii. Terminology Conventions

Architecture Specification
Data storage interrupt (DSI)
Extended mnemonics
Instruction storage interrupt (ISI)
Interrupt
Privileged mode (or privileged state)
Problem mode (or problem state)
Real address
Relocation
Storage (locations)
Storage (the act of)
Store in
Store through

Swizzling

Current Manual
DSI exception
Simplified mnemonics
ISI exception
Exception
Supervisor-level privilege
User-level privilege
Physical address
Translation
Memory
Access
Write back
Write through

Double-word swap

Table iii describes instruction field notation used in this manual.

Table iii. Instruction Field Conventions

Architecture Specification
BA, BB, BT
BF, BFA
D
DS
FLM
FRA, FRB, FRC, FRT, FRS
FXM
RA, RB, RT, RS
Sl
U
ul
VA, VB, VT, VS
VEC

Version 2.3
March 7, 2008

Equivalent to:
crbA, crbB, crbD
crfD, crfS
d
ds
FM
frA, frB, frC, frD, frS
CRM
rA, rB, rD, rS
SIMM
IMM
UMM
VA, vB, vD, vS

Vector/SIMD multimedia extension technology

About This Book
Page 31 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

About This Book Version 2.3
Page 32 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

1. PowerPC 970MP Overview

The IBM PowerPC 970MP reduced instruction set computer (RISC) microprocessor is an implementation of
the PowerPC Architecture. This chapter provides an overview of the features of the 970MP microprocessor
and includes two block diagrams showing the major functional components.

Note: The 970MP microprocessor incorporates two complete microprocessors on a single chip, along with
some common logic to connect these microprocessors to a system. The terms microprocessor, processor,
and processing unit are used interchangeably to describe each of the two individual processors. The term
core refers to the instruction fetch and execution logic, including the L1 cache, but excluding the storage sub-
system, of each processor. The term PowerPC 970MP or 970MP refers to the single chip module comprising
the two processing units and the common logic.

1.1 PowerPC 970MP Microprocessor Overview

The 970MP microprocessor is a dual core, 64-bit PowerPC RISC microprocessor with vector processing unit
(VPU) extensions—the single-instruction, multiple-data (SIMD) operations that accelerate data intensive
processing tasks. This processor is designed to support multiple system configurations ranging from desktop
and low-end server applications, up through 4-way symmetric multiprocessor (SMP) configurations.

Each processing unit of the IBM PowerPC 970MP RISC Microprocessor consists of three main components:
e The core, which includes the VPUs

* The storage subsystem (STS), which includes the core interface logic, noncacheable unit, L2 cache and
controls, and bus interface unit

* Pervasive functions
The block diagram in Figure 1-1 on page 34 shows the major functional units comprising the core and storage

subsystem. In the core, these units include instruction fetch, decode and dispatch units, plus the register files
and execution units. The storage subsystem includes the second level (L2) cache and interface units.

The block diagram in Figure 1-2 on page 35 shows how the two processing units (PUO and PU1) are
connected through the common logic to the processor interface.

Version 2.3 PowerPC 970MP Overview
March 7, 2008 Page 33 of 415

S1¥ 10 pg abed

MBINIBAQ dINOLE Ddiemod

8002 ‘/ Yose
€2 UOISIaN

Figure 1-1. 970MP Block Diagram

Instruction Instruction
Decode Unit Fetch Unit

Dispatch Buffer
Register Maps - GPR, FPR, VRF, CR, CTR, LK Global
Completion Table

CR BR FPU VPU Permute VPU ALU FXU1/LSU1 FXU2/Lsu2
Issue Queue| [ssue Queue| |Issue Queue Issue Queue Issue Queue Issue Queue Issue Queue

32KB
E FPU1 || FPU2 | | VPERM VALU Fxu1 |l Lsut | | Exuz | | Lsu2 D-Cache

Core Interface Unit

' 1MB
L2 Dir/Cntl L2 Cache
Bus Interface Unit

970MP Bus

lossadoido.dlIy OSIH dINOL6 DdIamod gl

[enuep sJasn

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 1-2. 970MP Dual Core with Common Arbitration Logic

Processing Unit 0 Processing Unit 1

Header Packet Header Packet

Encode

Version 2.3
March 7, 2008

PowerPC 970MP Overview
Page 35 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

1.2 PowerPC 970MP Functional Units

1.2.1 Introduction

This section provides an overview of the 970MP microprocessor core, VPU, storage, and bus interface units
of each processing unit. It includes a summary and details of key design fundamentals.

1.2.1.1 Key

Design Fundamentals of the Microprocessor Core

¢ 64-bit implementation of the PowerPC Architecture (version 2.01)

— Binary compatibility with all PowerPC Architecture application level code (user [problem] state)

— Sup

port for the 32-bit operating system bridge facility

— Vector/SIMD multimedia extension

e Layered

— Dee

implementation strategy for very high-frequency operation

ply pipelined design

16 stages for most fixed-point register-to-register operations

18 stages for most load-and-store operations (assuming an L1 D-cache hit)
21 stages for most floating-point operations

19 stages for fixed-point, 22 stages for complex-fixed, and 25 stages for floating-point operations

in the vector arithmetic logic unit (VALU)
19 stages for VPU permute operations

— Dynamic instruction cracking1 for some instructions allows for simpler inner core dataflow

e Specula

Agg

Dedicated dataflow for cracking one instruction into two internal operations
Microcoded templates for longer emulation sequences

tive superscalar inner core organization

ressive branch prediction

Prediction for up to two branches per cycle

Support for up to 16 predicted branches in flight

Prediction support for branch direction and branch addresses

In-order dispatch of up to five operations into the distributed issue queue structure

Out-of-order issue of up to 10 operations into 10 execution pipelines

Two load or store operations

Two fixed-point register-to-register operations
Two floating-point operations

One branch operation

One Condition Register operation

One VPU permute operation

One VPU arithmetic logic unit (ALU) operation

Register renaming on General Purpose Registers (GPRs), Floating-Point Registers (FPRs), Vector

Registers (VRs), Condition Register (CR) fields, two bits of the Integer Exception Register (XER),
Floating-Point Status and Control Register (FPSCR), the Vector Save/Restore Register (VRSAVE),
Vector Status and Control Register (VSCR), Link Register (LR), and Count Register (CTR)

1. Process by which some complex instructions are broken into two simpler, more RISC-like instructions.

PowerPC 970MP Overview

Page 36 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

* Large number of instructions in flight (theoretical maximum of 215 instructions)

— Up to 16 instructions in the instruction fetch unit (fetch buffer and overflow buffer)
— Up to 32 instructions in the instruction fetch buffer in the instruction decode unit
— Up to 35 instructions in three decode pipe stages and four dispatch buffers

— Up to 100 instructions in the inner core (after dispatch)

— Up to 32 stores queued in the store queue (STQ) (available for forwarding)

— Fast, selective flush of incorrect speculative instructions and results

¢ Specific focus on storage latency management

Out-of-order and speculative issue of load operations

Support for up to eight outstanding L1 cache line misses

Hardware-initiated instruction prefetching from the L2 cache

Software-initiated data stream prefetching with support for up to eight active streams
Critical word forwarding—critical sector first

New branch processing—Prediction hints on branch instructions

* Power management

— Static power management
* Software initiated Doze, Nap, and Deep Nap low-power modes

— Dynamic power management
* Parts of the design stop their clocks when not in use under hardware control

— Power tuning through frequency scaling
¢ Software initiated slow down of the processor; selectable to a half or quarter of the nominal oper-
ating frequency
* Programmable latency for power mode transitions to control current spikes

1.2.1.2 Detailed Features of the Microprocessor Core
* Instruction fetching and branch prediction

— 64KB, direct-mapped instruction cache (l-cache)
* 128-byte lines (broken into four 32-byte sectors)
» Dedicated 32-byte read/write interface from the L2 cache with a critical-sector-first reload policy
o Effective-address index, real address tags
¢ Cache supports one read or one write per cycle
* Five additional predecode bits per word to aid in fast decoding and group formation
» Parity protected with a force invalidate and reload on parity error

128 total entries in the effective-to-real-address translation (ERAT) cache; 2-way, set-associative
* Organization is 64 entries by two ways
* Each entry translates 4 KB (no large page support; large pages take multiple entries)

4-entry, 128-byte, instruction prefetch queue above the I-cache; hardware-initiated prefetches

Fetch a 32-byte aligned block of eight instructions per cycle

Branch prediction
* Scan all eight fetched instructions for branches each cycle
¢ Predict up to two branches per cycle
» 3-table prediction structure: global, local, and selector (16 K entries x 1 bit each)
* 16-entry link stack for address prediction (with stack recovery)
e 32-entry count cache for address prediction (indexed by the address of the Branch Conditional to
Count Register [becetr] instructions)

Version 2.3 PowerPC 970MP Overview
March 7, 2008 Page 37 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

¢ |Instructi

on decode and preprocessing

3-cycle pipeline to decode and preprocess instructions

Dedicated dataflow for cracking one instruction into two internal operations
Microcoded templates for longer emulation sequences of internal operations

All internal operations expanded into 86-bit internal form to simplify subsequent processing and

explicitly expose register dependencies for all register pools
Dispatch groups (up to five instructions) formulated along with inter-instruction dependence
masks

Cracked and microcoded instructions have access to four renamed emulation GPRs (eGPRs), one
renamed emulation FPR (eFPR), and one renamed emulation CR (eCR) field (in addition to archi-

tected facilities)

duri

8-entry (16 bytes per entry) instruction fetch buffer (up to eight instructions in and five instructions out

ng each cycle)

Microcode patch facility allows most instructions other than branches to trap to microcode, which can

be programmed to either emulate the effects of the instruction or cause an interrupt.

¢ Instructi

Fou

on dispatch, sequencing, and completion control

r dispatch buffers, which can hold up to four dispatch groups when the global completion table

(GCT) is full

Sup

Reg

20-entry global completion table

Group-oriented tracking associates a 5-operation dispatch group with a single GCT entry
Tracks internal operations from dispatch to completion for up to 100 operations

Capable of restoring the machine state for any of the instructions in flight

— Very fast restoration for instructions on group boundaries (that is, branches)

— Slower for instructions contained within a group

ports precise exceptions (including machine check interrupt)

ister renaming resources

80-entry GPR rename mapper (32 architected GPRs plus four eGPRs and VRSAVE)
80-entry FPR rename mapper (32 architected FPRs plus one eFPR)

80-entry Vector Register file (VRF) rename mapper (32 architected VRFs)

24-entry XER rename mapper (the XER is broken into mappable and nonmappable fields)
— Two mappable fields: ov and ca

— Nonmappable field: string-count

16-entry LR/CTR rename mapper (one architected LR and one architected CTR)
32-entry CR rename mapper (eight architected CR fields plus one eCR field)
20-entry FPSCR rename mapper
VRSAVE
VSCR

— Instruction queuing resources:

PowerPC 970MP Overview

Page 38 of 415

Two 18-entry issue queues for fixed-point and load/store instructions
Two 10-entry issue queues for floating-point instructions

12-entry issue queue for branch instructions

10-entry issue queue for CR-logical instructions

16-entry issue queue for vector permute instructions

20-entry issue queue for vector ALU instructions and VPU stores

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

¢ Two fixed-point execution pipelines
¢ Both capable of basic arithmetic, logical, and shifting operations
* Both capable of multiplies
¢ One capable of divides; the other capable of SPR operations

— Out-of-order issue with bias towards oldest operations first

— Symmetric forwarding between fixed-point and load/store execution pipelines
* Load/store execution pipelines

— Two 6-stage load/store execution pipelines

— OQut-of-order issue with bias towards oldest operations first
* Stores issue twice—an address generation operation (load/store), and a data steering operation
(FXU/FPU/VPU)

— 32KB, 2-way, set-associative D-cache
* Triple ported to support two reads and one write every cycle (no banking)
e 2-cycle load-use penalty for FXU loads
¢ 4-cycle load-use penalty for FPU loads
¢ 3-cycle load-use penalty for loads to vector permute unit (VPERM)
* 4-cycle load-use penalty for loads to VALU
» Store-through policy; no allocation on store misses
e 128-byte cache line
¢ Least recently used (LRU) replacement policy
» Dedicated 32-byte reload interface from the L2 cache
» Effective-address index, real address tags (hardware fix up on alias cases)
* Parity protected; precise machine check interrupt on parity error; software fix if HID5[50] equals
‘1’. Otherwise, recovery is done by hardware (default).

128-entry (total) ERAT cache, 2-way, set-associative
* Organization is 64 entries by two ways
e Each entry translates 4 KB (no large page support; large pages take multiple entries)

32-entry store queue logically above the D-cache (real address based; content-addressable memory
[CAM] structure)

» Store addresses and store data can be supplied on different cycles

» Stores wait in this queue until they are completed; then they write the cache

e Supports store forwarding to inclusive subsequent loads (even if both are speculative)

32-entry load reorder queue (real address based; CAM structure)
¢ Keeps track of out-of-order loads and watches for hazards
— Previous store to the same address that gets executed after the load causes a flush
— Previous load from the same address when a cross-invalidate has occurred causes a flush

8-entry load miss queue (LMQ) (real address based)
¢ Keeps track of loads that have missed in the L1 D-cache
* Allows a second load from the same cache line to merge onto a single entry

Version 2.3 PowerPC 970MP Overview
March 7, 2008 Page 39 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

¢ Branch and Condition Register execution pipelines

— One branch execution pipeline
* Computes actual branch address and branch direction for comparison with prediction
¢ Redirects instruction fetching if either prediction was incorrect
¢ Assists in training and maintaining the branch table predictors, the link stack, and the count
cache

— One Condition Register logical pipeline
» Executes CR logical instructions and the CR movement operations
* Executes some Move To Special Purpose Register (mtspr) and Move From Special Purpose
Register (mfspr) instructions also

— Out-of-order issue with a bias towards oldest operations first

* Floating-point execution pipelines

Two 9-stage floating-point execution pipelines (6-stage execution)
¢ Both capable of the full set of floating-point instructions
* All data formats supported in hardware (no floating-point assist interrupts)

Out-of-order issue with bias towards oldest operations first

Symmetric forwarding between the floating-point pipelines

No support for the non-IEEE mode
* VPU execution pipelines

— Two dispatchable units:
* VALU contains three subunits:
— Vector simple fixed: 1-stage execution
— Vector complex fixed: 4-stage execution
— Vector floating point: 7-stage execution
* VPERM: 1-stage execution

— Out-of-order issue with a bias towards oldest operations first
— Symmetric forwarding between the permute and VALU pipelines
¢ Unified second-level memory management (address translation)

— 1024-entry, 4-way, set-associative translation lookaside buffer (TLB)
* Supports new large page architecture (16 MB large pages supported)
» Hardware-based reload (from the L2 cache interface; no L1 D-cache impact)
* Hardware-based update of the referenced (R) and changed (C) bits in a page table entry (PTE)
¢ Parity protected; precise machine check interrupt on parity error (software fix up)

— 64-entry fully associative segment lookaside buffer (SLB)
¢ SLB miss results in an interrupt; software reload of the SLB
¢ SLB can also be loaded by the 32-bit PowerPC Segment Register instructions

— Supports a 65-bit virtual address and a 42-bit real address
¢ Data stream prefetch

— Eight data prefetch streams supported in hardware. Eight hardware streams are only available if VPU
prefetch instructions are disabled.

— Four VPU prefetch streams supported using four of the eight hardware streams. The VPU prefetch
mapping algorithm supports most commonly used forms of vector prefetch instructions.

PowerPC 970MP QOverview Version 2.3
Page 40 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

1.3 970MP Dual-Core Module

The 970MP chip consists of two processing units, each containing an execution core with L1 caches, a
storage subsystem including an L2 cache, and pervasive functions. In addition, a small amount of common
logic that is outside either processing unit is included to connect each processing unit to the single bus inter-
face.

Generally, the two processing units function as would two processing units on separate chips. For example,
they maintain memory coherence through the North Bridge; they are able to Doze independently; they have
private access to most processor resources, including their own L2 cache. Also, like processors on separate
chips, they scale frequency together, using the power tuning facility.

However, sharing the same chip constrains the behavior of the two processing units in several ways. First,
the two processing units have separate voltage planes for power, but the processing unit voltages will always
be the same when the two processors are running. Similarly, the processing unit frequencies will always be
the same. The two 970MP processing units must go into and come out of Deep Nap together.

The other difference between having dual processing units on a single chip, versus two separate chips, is that
they share a single processor interface (PI) to the North Bridge. This requires that the interface between the
bus interface unit (BIU) and the PI logic be enhanced with buffers and multiplexers to support the sharing of
the PI between the two processing units. Figure 1-2 on page 35 shows the relationship among the two
processing units and the common logic.

For incoming PI data and commands, the output of the PI decoder is passed directly to both processors. For
outgoing Pl data and commands, an arbiter and multiplexer are introduced in front of the Pl encoder to give
one or the other processor access to the outgoing Pl bus at any given time. The arbiter implements a round
robin scheme, with provisions for adjusting priorities when one processing unit receives repeated serial
retries. Logic in the BIU of each processing unit is modified to allow the arbiter to prevent that processing unit
from sending data to the Pl bus when a transaction from the other processor is in progress. The Pl bus
configuration parameters apply to a single bus, not to the individual processors. The arbiter enforces those
parameters, such as the command pipeline delay (COMPACE) timing. To minimize dead time on the bus,
header packets for each processor are queued at the arbiter. Finally, snoop responses from the two proces-
sors are combined on chip, and sent as a single response over the Pl bus to the North Bridge, as indicated in
the lower left corner of Figure 1-2 on page 35.

The additional logic at the PI/BIU interface might require different values for the programmable bus delay
parameters than those used for the previous design. The range of some of these parameters has therefore
been increased (see Table 11-1 on page 281).

Intercommunication between the processors on chip occurs just as if they were on separate chips, through
the North Bridge. In particular, on-chip L2-to-L2 intervention is not supported.

Version 2.3 PowerPC 970MP Overview
March 7, 2008 Page 41 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

PowerPC 970MP QOverview Version 2.3
Page 42 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2. Programming Model

This chapter describes the 970MP programming model, emphasizing those features specific to the 970MP
microprocessor and summarizing those that are common to PowerPC processors. It consists of two major
sections, which describe the following:

* Registers implemented in each 970MP processing unit
* 970MP instruction set

2.1 970MP Processor Register Set

This section describes the registers implemented in each 970MP processing unit. It includes an overview of
registers defined by the PowerPC Architecture, highlighting differences in how these registers are imple-
mented in the 970MP processing units. It also includes a detailed description of 970MP-specific registers.

Registers are defined at all three levels of the PowerPC Architecture—user instruction set architecture
(UISA), virtual environment architecture (VEA), and operating environment architecture (OEA). The PowerPC
Architecture defines register-to-register operations for all computational instructions. Source data for these
instructions is accessed from the on-chip registers or is provided as immediate values embedded in the
opcode. The 3-register instruction format allows specification of a target register distinct from the two source
registers, thus preserving the original data for use by other instructions and reducing the number of instruc-
tions required for certain operations. Data is transferred between memory and registers with explicit load-and-
store instructions only.

PowerPC processors have two levels of privilege—supervisor mode of operation (typically used by the oper-
ating system) and user mode of operation (used by the application software; also called problem state). The
programming models incorporate 32 General Purpose Registers (GPRs), 32 Floating-Point Registers
(FPRs), 32 Vector Registers (VRs), Special-Purpose Registers (SPRs), and several miscellaneous registers.
Each PowerPC microprocessor also has its own unique set of Hardware Implementation-Dependent (HID)
Registers.

While running in supervisor mode, the operating system is able to execute all instructions and access all
registers defined in the PowerPC Architecture. In this mode, the operating system establishes all address
translations and protection mechanisms, loads all Processor State Registers, and sets up all other control
mechanisms defined on the 970MP microprocessor. While running in user mode (problem state), many of
these registers and facilities are not accessible. Any attempt to read or write to these registers in user mode
results in a program exception.

The registers implemented on each of the 970MP processing units are shown in Figure 2-1 970MP Program-
ming Model—Registers on page 44. The number to the right of the SPRs indicates the number that is used in
the syntax of the instruction operands to access the register (for example, the number used to access the
Integer Exception Register (XER) is SPR 1). These registers can be accessed using the Move To Special
Purpose Register (mtspr) and Move From Special Purpose Register (mfspr) instructions. The inclusion of
the vector processing unit (VPU) involves additional registers, and affects bit settings in some of the PowerPC
registers (including the Machine State Register [MSR], Machine Status Save/Restore Register 1 [SRR1], and
Condition Register [CR]) when the VPU facility is in use.

Version 2.3 Programming Model
March 7, 2008 Page 43 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 2-1. 970MP Programming Model—Registers

-

Hypervisor SPRGs

HSPRGO SPR 304
HSPRG1| SPR 305

HYPERVISOR MODEL

LPAR Function Registers

Hardware Interrupt

Hypervisor Decrementer Save and Restore

Offset Register
HDEC | SPR310 9 HSRRO SP!
HIOR SPR 311 HSRR1 | SP

~

Registers?

R 314
R 315

SUPERVISOR MODEL—OEA

/
/

USER MODEL—VEA

\ Configuration Registers

Hardware Implementation Processor Version

Machine Status

~

Register?
MSR

. .y . 1’3
Timebase Facility (for Reading) Registers Register3
TBR 269
TBL TBR 268 TBU HIDO | SPR 1008 PVR SPR 287
HID1 | SPR 1009
/ USER MODEL UISA 53 sPR 1012
Count Register General-Purpose HID5 | SPR 1014

CTR SPR 9 Registers .
GPRO Memory Management Registers
Fixed-Point GPR1 Address Space Register SDR1
Exception Register o ASR SPR 280 m SPR 25
XER SPR 1 : [soR1 |
GPR31
Link Register . . . Exception Handling Registers
Floating-Point Registers
SPR 8 FPRO SPRGs Data Address Register ~ DSISR®
FPR1 SPRGO | SPR 272 DAR sPR19 [DSISR |sPR1s
. ° SPRG1 SPR 273) 2
Performance Monitor ° SPRG2 SPR 274 Save and Restore Registers'
Registers =
. 1
(For Reading) 3 SPRG3 SPR 275 SRRO SPR 26
Condition Register® 3 SRR SPR27
Performance Counters® 9 . i
UPvicT |sPR 771 Miscellaneous Registers
UPMC2 |SPR772 3
UPMC3 |SPR773 Floating-Point Status Scan Communications Timebase Facility Decrementer
UPMC4 |SPR 774 and Control Register® Facility (For Writing)® DEC SPR 22
upcs A SCOMC SPR 276 TBL SPR 284 Processor
6
UPMC7 |SPR777 SCOMD SPR 277 TBU SPR 285 Identification
UPMC8 _|SPR778 Register®
Vector Save

Data Address Breakpoint

Sampled Address Restore Register? Register SPR 799
Registers VRSAVE SPR 256 DABR SPR 1013
Trigger Registers
USIAR SPR 780 Vector Status and DABRX SPR 1015 Hardware Interrupt TGO PR 76
USDAR _ |SPR781 Control Register? Offset Register TRIGT SPR 977
Monitor Control VSCR HIOR SPR 311 TRIG2 |SPR 978
UMMCRO |SPR 779 Vector Registers
UMMCR1 |SPR 782 VRO
UMMCRA |SPR 770 VR1 Performance Monitor Registers
o
IMC Array Address ° Performange Samplefl Address
° Counters Registers'
uImMC SPR 783 VR31 SPR 787
PMCT SIAR SPR 796
. . PMC2 SPR 788
Exception Handling SDAR SPR 797
. PMC3 SPR 789
Register PMC4 SPR 790
Monitor Control
USPRG3 | SPR 259 PMCS SPR 791
\ / PMICE SPR 792 MMCRO |SPR 795
K J PMC7 |SPR 793 MMCR1 |SPR 798
KK PMCE |SPR 794 MMCRA |SPR 786 //

IMC Array Address

SPR 1023

Notes: 1. TBR268 is read as a 64-bit value.
2. PowerPC registers affected by vector instructions.
3. 32-bit registers

Programming Model
Page 44 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

The PowerPC UISA registers are user-level. GPRs, FPRs, and VRs are accessed through instruction oper-
ands. Access to registers can be explicit (by using instructions for that purpose such as mtspr and mfspr) or
implicit as part of the execution of an instruction. Some registers are accessed both explicitly and implicitly.

Implementation Note: The 970MP microprocessor fully decodes the special purpose register (SPR) field of
the instruction. If the SPR specified is undefined, an illegal instruction program exception occurs.

* User-level registers (UISA)—The user-level registers can be accessed by all software with either user or
supervisor privileges. They include the following registers:

— General-Purpose Registers (GPRs). The 32 GPRs (GPR0O—-GPR31) serve as data source or destina-
tion registers for fixed-point instructions and provide data for generating addresses.

— Floating-Point Registers (FPRs). The 32 FPRs (FPRO-FPR31) serve as the data source or destina-
tion for all floating-point instructions.

— Condition Register (CR). The 32-bit CR consists of eight 4-bit fields, CR0-CR7, that reflect results of
certain arithmetic operations and provide a mechanism for testing and branching.

— Floating-Point Status and Control Register (FPSCR). The FPSCR contains all floating-point excep-
tion signal bits, exception summary bits, exception enable bits, and rounding control bits needed for
compliance with the IEEE 754 standard.

— Vector Registers (VRs). The vector register file consists of 32 VRs (VR0-VR31). The VRs serve as
vector source and vector destination registers for all vector instructions.

— Vector Status and Control Register (VSCR). The VSCR contains the non-Java™ control bit and the
saturation status bit associated with vector operations.

The remaining user-level registers are SPRs. Note that the PowerPC Architecture provides a separate
mechanism for accessing SPRs (the mtspr and mfspr instructions). These instructions are commonly
used to explicitly access certain registers, while other SPRs might be more typically accessed as a side
effect of executing other instructions.

— Link Register (LR). The LR provides the branch target address for the Branch Conditional to Link
Register (belrx) instruction. It can be used to hold the logical address of the instruction that follows a
branch and link instruction, typically used for linking to subroutines.

— Count Register (CTR). The CTR holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR can also provide the branch target address for the
Branch Conditional to Count Register (beccetrx) instruction.

— Vector Save/Restore Register (VRSAVE). The VRSAVE assists the application and operating system
software in saving and restoring the Vector Register architectural state across context-switching
events.

— User Performance Monitor Counter Registers (UPMC1-UPMC8). UPMC1-UPMCS8 provide user-level
read access to the Performance Monitor Counter Registers (PMC1-PMCS8).

— User Monitor Mode Control Registers (UMMCRO, UMMCR1, UMMCRA). These registers provide
user-level read access to the Monitor Mode Control Registers (MMCRO, MMCR1, MMCRA).

— User Instruction Match Content-Addressable Memory (CAM) Register (UIMC). The UIMC provides
user-level read access to the Instruction Match CAM Register (IMC).

— User Sampled Instruction Address Register (USIAR). The USIA provides user-level read access to
the Sampled Instruction Address Register (SIAR).

Version 2.3 Programming Model
March 7, 2008 Page 45 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

— User Sampled Data Address Register (USDAR). The USDA provides user-level read access to the
Sampled Data Address Register (SDAR).

— Integer Exception Register (XER). The XER indicates overflow and carries for integer operations and
the number of bytes to be transferred by the indexed instructions of the load/store string.

Implementation Note: The architecture defines XER[44:56] as reserved.

— Software Use Special Purpose Register 3 (SPRG3). SPRG3 can be read in problem state using
SPR 259.

¢ User-level registers (VEA)—The PowerPC VEA defines the time-base facility (TB), which consists of
two 32-bit registers—Time-Base Upper (TBU) and Time-Base Lower (TBL). The Time-Base Registers
can be written to only by supervisor-level instructions, but can be read by both user and supervisor-level
software.

e Supervisor-level registers (OEA)—The OEA defines the registers that an operating system uses for
memory management, configuration, exception handling, and other operating system functions. The OEA
defines the following supervisor-level registers:

— Configuration registers

* Machine State Register (MSR). The MSR defines the state of the processor. The MSR can be
modified by the Move to Machine State Register (mtmsr), Move to Machine State Register Dou-
bleword (mtmsrd), System Call (s¢), and Return from Exception Doubleword (rfid) instructions.
It can be read by the Move from Machine State Register (mfmsr) instruction. When an exception
is taken, the contents of the MSR are saved to the Machine Status Save/Restore Register 1
(SRR1). See Section 2.1.1.1 MSR Register (MSR) on page 49 for more information.

* Processor Version Register (PVR). This is a read-only register that identifies the version (model)
and revision level of the PowerPC processor. See the IBM PowerPC 970MP RISC Microproces-
sor Datasheet for details of the PVR.

— Memory management registers

¢ Address Space Register (ASR). In the 970MP microprocessor, the Address Space Register is
supported. Due to the software reload of the segment lookaside buffers (SLBs) on the 970MP
microprocessor, this register does not actually participate in any other specific hardware func-
tions on the chip. It has been included as a convenience (and performance enhancement) for the
SLB reload software.

* Storage Description Register (SDR1). SDR1 specifies the page-table base address used in vir-
tual-to-physical address translation.

— Exception-handling registers
* Data Address Register (DAR). After a data storage interrupt (DSI) exception or an alignment
exception, the DAR is set to the effective address (EA) generated by the faulting instruction.
* Software Use Special Purpose Registers 0 - 3 (SPRG0-SPRG3). SPRG0-SPRG3 are provided
for operating system use.
e Data Storage Interrupt Status Register (DSISR). DSISR defines the cause of DSI and alignment
exceptions.

* Machine Status Save and Restore Register 0 (SRR0). SRRO is used to save the address of the
instruction at which execution continues when rfid executes at the end of an exception handler
routine. See Section 2.1.1.2 Machine Status Save/Restore Register (SRR1) on page 49 for more
information.

Programming Model Version 2.3
Page 46 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

* Machine Status Save and Restore Register 1 (SRR1). SRR1 is a 64-bit register used to save
machine status on exceptions and restore the Machine Status Register when an rfid instruction
is executed. See Section 2.1.1.2 Machine Status Save/Restore Register (SRR1) on page 49 for
more information.

Note: Forinformation about how specific exceptions affect SRR1, see the individual exception in
Section 4.5 Exception Definitions on page 110.

— Miscellaneous registers

* Time Base (TB). This register is a 64-bit structure provided for maintaining the time of day and
operating interval timers. The TB consists of two 32-bit registers—Time-Base Upper (TBU) and
Time-Base Lower (TBL). The Time-Base Registers can be written to only by supervisor-level
software, but can be read by both user- and supervisor-level software. See Section 2.1.1.3 Time
Base and Decrementer (TB, DEC) on page 50 for more information.

Implementation Note: In the 970MP microprocessor, the Time-Base Register is incremented
once every sixteen full frequency processor clocks. Alternatively, when HIDO[19] is set to ‘17, the
Time-Base Register is incremented at the input frequency of the timebase_enable input pin
(TBEN).

Decrementer Register (DEC). This register is a 32-bit decrementing counter that provides a
mechanism for causing a decrementer exception after a programmable delay. See
Section 2.1.1.3 Time Base and Decrementer (TB, DEC) on page 50 for more information.

Implementation Note: In the 970MP microprocessor, the Decrementer Register is decremented
once every 16 full frequency processor clocks. Alternatively, when HIDO[19] is set to ‘1°, the Dec-
rementer Register is decremented at the TBEN input frequency.

Processor ID Register (PIR). The PIR Register is used to differentiate between individual proces-
sors in a multiprocessor environment. See Section 2.1.1.4 Processor ID Register (PIR) on
page 50 for more information.

— Performance Monitor Registers. The following registers are used to define and count events for use
by the performance monitor:

¢ The Performance Monitor Counter Registers (PMC1-PMC8) are used to record the number of
times a certain event has occurred. See Section 2.1.2.6 Performance Monitor Registers
(MMCRO, MMCR1, MMCRA, PMC1-8) on page 63 for more information.

The Monitor Mode Control Registers (MMCRO, MMCR1, MMCRA) are used to identify what
events will be monitored and to enable various performance monitor interrupt functions. See
Section 2.1.2.6 Performance Monitor Registers (MMCRO, MMCR1, MMCRA, PMC1-8) on
page 63 for more information.

The Sampled Instruction Address Register (SIAR) contains the effective address of an instruction
executing at or around the time that the processor signals the performance-monitor interrupt con-
dition. See Section 2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers
(SIAR, SDAR) on page 64 for more information.

The Sampled Data Address Register (SDAR) contains the effective address of the storage
access instruction executing at or around the time that the processor signals the performance
monitor interrupt condition. See Section 2.1.2.7 Sampled Instruction Address and Sampled Data
Address Registers (SIAR, SDAR) on page 64 for more information.

Programming Model

March 7, 2008 Page 47 of 415

User’'s Manual

IBM Po

werPC 970MP RISC Microprocessor

* 970MP-specific registers—The PowerPC Architecture allows implementation- specific SPRs. The fol-
lowing registers are incorporated in each 970MP processing unit:

Note: In the 970MP microprocessor, these registers are all supervisor-level registers.

Note:

Hardware Implementation-Dependent Register 0 (HIDO). This register controls various functions,
such as enabling checkstop' conditions, locking, enabling, invalidating the instruction and data
caches, and power modes. See Section 2.1.2.2 HID Registers (HIDO, HID1, HID4, and HID5) on
page 54 for more information.

Hardware Implementation-Dependent Register 1 (HID1). HID1 contains additional mode bits that are
related to the instruction fetch and instruction decode functions in the 970MP microprocessor. See
Section 2.1.2.2 HID Registers (HIDO, HID1, HID4, and HID5) on page 54 for more information.

Hardware Implementation-Dependent Register 4 (HID4). HID4 contains bits related to the load/store
function in the 970MP microprocessor. See Section 2.1.2.2 HID Registers (HIDO, HID1, HID4, and
HID5) on page 54 for more information.

Hardware Implementation-Dependent Register 5 (HID5). HID5 contains bits related to the load/store
function in the 970MP microprocessor. See Section 2.1.2.2 HID Registers (HIDO, HID1, HID4, and
HID5) on page 54 for more information.

Data Address Breakpoint Register (DABR) and Data Address Breakpoint Register Extension
(DABRX). The DABR controls the data address breakpoint mechanism, which provides a means of
detecting load-and-store accesses to a designated double word. See Section 2.1.2.3 Data Address
Breakpoint Register (DABR) on page 61 for more information.

Scan Communications Register (SCOMC). SCOMC is a control register that includes a command
field, a destination field, and a set of status bits. See Section 2.1.2.8 Scan Communication Registers
(SCOMC and SCOMD) on page 64 for more information.

Scan Communications Register (SCOMD). SCOMD is an associated data register that acts as either
a source of data or as a destination for data depending on the command placed into the SCOMC.
See Section 2.1.2.8 Scan Communication Registers (SCOMC and SCOMD) on page 64 for more
information.

Instruction Match CAM Registers (IMCs). The IMC SPRs are used to access the IMC array, which
contains the mask values used for instruction matching. The mtime and mfime instructions can be
executed only in supervisor mode. See Section 2.1.2.5 Instruction Match CAM Array Access Register
(IMC) on page 62 for more information.

Trigger Registers (TRIGO-TRIG2). Writes to the Trigger Registers, named TRIGO, TRIG1, and
TRIG2, can be inserted in the instruction stream to cause triggers to the on-chip trace array debug
logic. These are intended to be used for debug and bring-up only and architecturally behave as no-
ops. See Section 2.1.2.12 Trigger Registers (TRIGO, TRIG1, TRIG2) on page 65 for more informa-
tion.

Hardware Interrupt Offset Register (HIOR). The HIOR is used for interrupt vector relocation. See
Section 2.1.2.13 Hardware Interrupt Offset Register (HIOR) on page 66 for more information.

While it is not guaranteed that the implementation of 970MP-specific registers is consistent among

PowerPC processors, other processors might implement similar or identical registers.

1.

Programming Model

Page 48

Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.

Version 2.3

of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.1 Architected Registers in the 970MP Implementation

Several architected registers are implemented in each 970MP processing unit in a way that varies from, or
extends, the definition in the PowerPC Architecture.

2.1.1.1 MSR Register (MSR)

The PowerPC Architecture describes the MSR bits 2, 4:47, 57, 60, and 63 as either optional or reserved. In
the 970MP microprocessor, bit 38 is used as the vector processor available (VP) enable and bit 45 is used as
the power management (POW) enable. The other bits are not implemented and will return the value ‘0’ when
read.

Note: Little-endian mode is not supported (that is, MSR[LE] and MSR[ILE] are treated as reserved).

Implementation Note: Table 2-1 describes MSR bits that the 970MP microprocessor implements that
deviate from the PowerPC Architecture.

Table 2-1. MSR Bits

Bit Name Description
3 — Reserved; returns a value of ‘1’ when read.

VP available.

0 The processor prevents execution of all vector instructions including loads, stores, and moves. If
38 VP such execution is attempted, a VP unavailable exception is raised.

1 The processor can execute all vector instructions.

The VRSAVE Register is not protected by MSR [VP]. The data streaming family of instructions (dst, dstt,
dstst, dststt, dss, and dssall) are not affected by the MSR[VP].

Activates power management. The 970MP microprocessor will clear the POW bit when it leaves a power

45 POW saving mode. See Chapter 9 Power and Thermal Management for more information.
47 — Reserved. The ILE bit is not implemented in the 970MP microprocessor.
External interrupt enable
0 The processor delays recognition of external interrupts and decrementer exception conditions.
48 EE 1 The processor is enabled to take an external interrupt or the decrementer exception.
Note: Resetting MSR[EE] masks not only the architecture-defined external interrupt and decrementer
exceptions, but also the 970MP-specific instrumentation, debug, and performance monitor exceptions.
63 — Reserved. The LE bit is not implemented in the 970MP microprocessor.

2.1.1.2 Machine Status Save/Restore Register (SRR1)

This register is used to save machine status during interrupts. In the 970MP microprocessor, SRR1 bits 1:2,
4:32, 37, 39:41, 47, 56:57, 60, and 63 are treated as reserved. These bits are not implemented and will return
the value ‘0’ when read. See Section 4.3.2 Machine Status Save/Restore Register 1 (SRR 1) on page 105 for
additional information.

Table 2-2. Additional SRR1 Bit

Bit Function
33 SIAR and SDAR contents synchronized.
Version 2.3 Programming Model

March 7, 2008 Page 49 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.1.3 Time Base and Decrementer (TB, DEC)

The time-base counter and the decrementer are clocked at 1/16 (one-sixteenth) of the full frequency
processor. The 970MP microprocessor supports two modes of operation (controlled by HIDO[19] and the
time-base enable input pin) for updating the time base and decrementer. When HIDO[19] is zero, then the
counters constantly update as long as the TBEN is high (traditional mode of operation). When HIDO[19] is
one, the counters update only on the rising edge of the TBEN input pin.

When the processor is stopped due to various breakpoint, debug and support processor functions, an addi-
tional mode bit, HIDO[18], determines whether the time base and the decrementer continue counting. Note
that some support processor operations require the use of an alternate clocking mode for scan, and in these
cases, the time base and the decrementer will not continue counting.

2.1.1.4 Processor ID Register (PIR)

The Processor Identification Register (PIR) is a 32-bit register that holds a processor identification tag. In the
970MP processing unit, this tag is in the three least-significant bits (29:31). The least-significant bit of the
processor identification tag (PID) is hardwired to ‘0’ for PUO and to ‘1’ for PU1. This tag is used to tag bus
transactions and to differentiate processors in multiprocessor systems. The PIR is a read-only register. The
format of the register is as follows:

Zeros PID
v v v v
|0 1 2 3 4 5 6 7 8 9 10 11 1213141516171819202122232425262728‘293031|
Bits Field Name Description
0:28 — Reserved (read as zeros)
29:31 PID 3-bit processor ID value (least-significant bit hardwired to differentiate PUO and PU1)

During power-on reset, PID is set to a unique value for each processor in a multi processor system. For more
information about the power-on reset configuration process, see Section 11.3.1 Initialization at Power-On
Reset on page 289.

2.1.2 PowerPC 970MP-Specific Registers
This section describes registers that are defined for the 970MP microprocessor, but are not included in the
PowerPC Architecture.

2.1.2.1 Move To and Move From System Register Instructions

The 970MP architecture defines several new implementation-specific system registers. Note that some of
these registers are also readable in user mode through a second set of SPR encodings, and that some of
these registers have special software synchronization requirements.

The encoded SPR values for these implementation-specific registers are shown in Table 2-3. Note that the
SPR is encoded in the mfspr and mtspr instructions. Bits 5:9 of the SPR field represent the 5 high-order bits
of the SPR number, and bits 0:4 of the SPR field represent the 5 low-order bits of the SPR number.

Programming Model Version 2.3
Page 50 of 415 March 7, 2008

Table 2-3. Implementation-Specific SPRs

Decimal
(privileged)

1023

1013

1015
1008
1009
1012
1014
795
798
786
787
788
789
790
791
792
793
794
276
277
796
797
799
976
977
978
256
311

Version 2.3
March 7, 2008

SPR

Decimal
(user)

779
782
770
771
772
773
774
775
776
777
778

780
781
783

SPR(5:9)
SPR(0:4)

11111 11111

11111 10101

11111 10111
11111 10000
11111 10001
11111 10100
11111 10110
11000 n1011
11000 n1110
11000 n0010
11000 n0011
11000 n0100
11000 n0101
11000 n0110
11000 n0111
11000 n1000
11000 n1001
11000 n1010
01000 10100
01000 10101
11000 n1100
11000 n1101
11000 n1111
11110 10000
11110 10001
11110 10010
01000 00000
01001 10111

Register Name

PIR

DABR

DABRX
HIDO
HID1
HID4
HID5

MMCRO

MMCRH1

MMCRA

PMC1
PMC2
PMC3
PMC4
PMC5
PMC6
PMC7
PMC8

SCOMC

SCOMD
SIAR

SDAR
IMC

TRIGO

TRIG1

TRIG2

VRSAVE
HIOR

R/W

R/W

R/W
R/W
R/wW
R/W
R/W
R/wW
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Synchronization Requirements

Before Reads

none

none

none
none
none
none
none
none
none
sync
sync
sync
sync
sync
sync
sync
sync
none
none
sync
sync
none
N/A
N/A
N/A
N/A

After Writes

N/A
context
synchronizing

instruction
(CslI)

Note 1
Note 2
Note 3
Note 4
Note 5
Note 5
Note 5
none
none
none
none
none
none
none
none
Csil
Csl
none
none
Csil
none
none
none

none

Before Writes

N/A

sync

Note 1
Note 2
Note 3
Note 4
Note 5
Note 5
Note 5
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none
none

none

Programming Model

Page 51 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 2-3. Implementation-Specific SPRs (Continued)

For mtspr, n must be ‘1’. For mfspr, reading the SPR is privileged if and only if n equals ‘1°.

Notes:

1.

The following sequence must be used when modifying HIDO:

sync

mtspr HIDO,Rx

mfspr Rx,HIDO

mfspr Rx,HIDO

mfspr Rx,HIDO

mfspr Rx,HIDO

mfspr Rx,HIDO

mfspr Rx,HIDO

After modifying HIDO, executing six mfspr instructions specifying HIDO as the source and specifying the same target General Pur-
pose Register (GPR) (Rx) in all six instructions is necessary to ensure that the modification is effective and that the processor is in
a valid state to continue executing subsequent instructions.

2. The following sequence must be used when modifying HID1:
mtspr HID1,Rx
mtspr HID1,Rx
isync
Executing two mtspr instructions is necessary to ensure that updates to all portions of HID1 will be complete before the Instruction
Cache Synchronize (isync) instruction completes.

3. The following sequence must be used when modifying HID4:
sync
mtspr HID4,Rx
isync
When HID4[23] is changed, the previous sequence should be preceded by a Move to Segment Register (mtsr) and Synchronize
(sync) instruction, which will cause the effective-to-real-address translations (ERATS) to be flushed.

4. The following sequence must be used when modifying HID5:
sync
mtspr HID5,Rx
isync
Whenever HID5[56] or HID5[57] is changed, the entire instruction cache must be flushed to ensure that any succeeding Data
Cache Block Set to Zero (dcbz) instruction is executed in the context of the new HID5 bit settings.

5. Although it is not necessary to use synchronizing instructions when modifying the MMCR(0,1,A) registers, it is recommended that
the following sequence be used:
sync
mtspr MMCRz,Rx
isync

Programming Model Version 2.3

Page 52 of 415 March 7, 2008

Table 2-4. Move To/Move From SPR Behavior

Condition
SPR
Register
Any invalid SPR encoding
Any invalid SPR encoding

Address Compare Control Register (ACCR), ASR,
Control Register (CTRL), DABR, DAR, DEC, DSISR,
HIDO, HID1, HID4, HID5, IMC, SCOMC, SCOMD,
SDR1, SDAR, SIAR, SRR0, SRR1, SPRGO,
SPRG1, SPRG2, SPRG3, TBL, TBU, Performance
Monitor Registers

TRIGO, TRIG1, TRIG2

PIR

Any SPR encoding (with SPR(0) equal to ‘1°)

Any invalid SPR encoding except:
spr(0:9) = ‘00000 00000’

‘00110 00000’

spr(0:9) = ‘00100 00000’

spr(0:9) = ‘00101 00000’

spr(0:9) = ‘00110 00000’

spr(0:9) = ‘00000 00000’

spr(0:9) = ‘00100 00000’

spr(0:9) = ‘00101 00000’
) =

spr(0:9

Version 2.3
March 7, 2008

MSRIPR]

o

R/W

mfspr
mtspr

mfspr

mtspr

mfspr

mtspr

mfspr
mtspr

mtspr
mfspr

mfspr

mtspr

mtspr
mfspr

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 2-4 describes the behavior of the 970MP microprocessor for the mtspr and mfspr instructions.

Resulting Action

No-op (target register is unchanged)
No action (write is inhibited)

Returns a value to a GPR.

Target SPR is updated.

Causes an illegal instruction type of program
interrupt.

Causes a trigger to the trace array debug logic.
Returns a value to a GPR.

Causes an illegal instruction type of program
interrupt.

Causes a privileged instruction type of program
interrupt.

No-op (target register is unchanged)

No action (write is inhibited)

Causes an illegal instruction type of program
interrupt.

Programming Model
Page 53 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.2 HID Registers (HIDO, HID1, HID4, and HID5)

The 970MP microprocessor includes many implementation-dependent mode bits that allow various features
of the chip to be enabled and disabled. These bits are included in the Hardware Implementation-Dependent
Registers (HIDO, HID1, HID4, and HID5). In general, HIDO attempts to line up the 970MP microprocessor
modes with the relevant ones from earlier PowerPC implementations and then adds a few new ones. HID1
contains additional mode bits that are related to the instruction fetch and instruction decode functions in the

970MP microprocessor.

HID4 and HID5 contain bits related to the load/store function in the 970MP micropro-

cessor. All of these registers are supervisor resources.

The state of each of the

HID Registers after a normal scan-based POR is all zeros. The preferred state of

these registers for optimal performance and function is also all zeros, except where indicated.

HIDO Bit Functions

858 g g 8 ¢ _3¥_5 % 558 c
3'@8"-” %ﬂ,’gggg §_§§5£|§B|8§ T
582 §PReseved $ § EE 8 ofE2def & §2¢ Reserved 5
IR IR 2 TR T R 2 N N R TR AR 2R IR 2 . =
lo]1]2]3[4 5 6|7][8]9][10[11][12]13]14[15][16[17[18[19]20 21[22]23[24[25 26 27 28 29 30[31]
S

EI

S Reserved

vy

v

32|33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63’

Bits Field Name
0 one_ppc
1 do_single
2 isync_sc
3 ser-gp

4:6 —

7 deep nap
8 doze
9 nap

10 —

11 dpm
12 —

13 tg

14 hang_dis

15 nhr

16 inorder

Programming Model
Page 54 of 415

Description

One PowerPC Architecture instruction per dispatch group mode. An instruction might span more than
one group.

Single group completion mode.

Flush and refetch after the completion of each group or the completion of each microcoded instruction, if
the instruction spans multiple groups.

Disable isync scoreboard optimization.

Serialize group dispatch. The next group is not dispatched until the previous group completes.
Reserved

Deep nap

Doze

Nap

Reserved

Enable dynamic power management.

Reserved

Performance monitor threshold granularity control.

Disable processor hang-detection mechanism.

Not hard reset. Check after snoop response in (SRI) to see if hard or soft.

Serialized group issue mode. The next group is not issued until the previous group completes. Does not
include branch or CR-logical instructions.

Version 2.3
March 7, 2008

20:21

22

23

24:30
31
32

33:63

Version 2.3
March 7, 2008

Field Name

tb_ctrl

ext_tb_en

ciabr_en

hdice_en

en_attn

en_mck

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Description
Reserved
Enable time-base counting when the processor is stopped.

External time-base enable.

0 Use TBEN input as enable. TB is clocked at 1/8 of the full processor frequency.
1 Use TBEN input to clock time base (external clock).
Reserved

Enable Completion Instruction Address Breakpoint Register (CIABR).

Enable hypervisor decrementer interrupt conditionally (HDICE). The initial reset value must be
‘0’ and disables hypervisor interrupts.

Reserved
Enable support processor attention instruction.
Enable external machine check interrupts (preferred state equals ‘1°).

Reserved

Programming Model
Page 55 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

HID1 Bit Functions

=
T g _§88°8 =
g‘ 2|8|'9|§-§ﬁl'y’(::'g:'-g:E:g-i-l%g'l%:
5 §55& 5 6565555838286 Reserved
R R RN RN g
(0 1 2[3[4][5]6]|7 8]9[10[11][12]13]14]15][16][17[18]19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved

v

32 33 34 35 36 37 38

39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits

0:2

o o~ W

7:8

10

11
12
13
14
15
16
17

18

19:63

Field Name

bht_pm

en_ls
en_cc

en_ic

pf_mode

en_icbi

en_if_cach

en_ic_rec
en_id_rec
en_er_rec
ic_pe
icdO_pe
icd1_pe

ier_pe

en_sp_itw

Programming Model
Page 56 of 415

Description

Branch history table (BHT) prediction mode.

000 Static prediction

001 Unused (same as 000)

010 Global BHT prediction only

011 Global prediction with history compression

100 Local BHT prediction only

101 Unused (same as 100)

110 Full global/local prediction with global selection (gsel)

111 Full global/local prediction with gsel and history compression (preferred state)

Enable link stack (preferred state equals ‘1°).

Enable count cache (preferred state equals ‘1°).

Enable instruction cache (must be ‘1’ for proper functioning).
Reserved

Prefetch mode.

00 No instruction prefetch.

01 Select next sequential address (NSA) instruction prefetch.

10 Select NSA and NSA + 1 instruction prefetch (preferred state).
11 Disable prefetch buffer.

Enable forced Instruction Cache Block Invalidate (icbi) match mode.

Enable instruction fetch cacheability control.

0 All instruction fetch accesses are treated as cache inhibited regardless of the state of the | bit in
the page table.

1 Instruction fetch cacheability is controlled by the state of the | bit in the page table (preferred
state).

Enable I-cache parity error recovery (preferred state equals ‘1°).

Enable I-directory parity error recovery (preferred state equals ‘1°).

Enable instruction ERAT (I-ERAT) parity error recovery (preferred state equals ‘1°).
Force instruction cache parity error (error inject).

Force instruction cache directory 0 parity error (error inject).

Force instruction cache directory 1 parity error (error inject).

Force |I-ERAT parity error (error inject).

Enable speculative tablewalks. The ERAT is never loaded using a page table entry (PTE) if PTE[G] is set
to ‘1’ (preferred state equals ‘1°).

Reserved

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

HID4 Bit Functions
E [S] [o))
) s 3 8 98 £ £
N _ 2 = 4 = o] [}
2 T 58 394 9 79
E E Ipid(2:5) rmor(0:15) ES L2352 £ 2
VoV vy vy VY VY vy vy v vy vy
(01 2[3 4 5 6|7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22[23[24[25/2627|28[29 30[31]
— Q
T 8 2% s g ¢ 2 8 B o2 858 -
[} 3} 3} O [3) [3) 15} s} 2 9 £ £ S o | p
5, I 5]]] I, = B @ N 5 % Qe 2 @ 2 %
g 2 £ 2 £ £ 2 dewpe £ dstset 222 g&8E L2 d B
\ VY VY vy v vy Vv v VY vy Y Yy v Yy oy vy
132 33[34 35[36[37 38|39 40[41[42 43[44 45 46 47[48[49 50 51 52|53|54|55[56]57 58|59 60|61[62 63]

Bits Field Name Description

LPAR environment selector bit [0]. LPES[0:1] are located in HID4[0, 57].

0 IpesO LPES[0:1] determine how MSR[HV] is set using interrupts and how memory access is performed when
not in hypervisor mode. This is described in the PowerPC Architecture version 2.01.

1:2 rmir(1:2) LPAR real mode limit register (see HID4[58] for bit [0]).

3:6 Ipid(2:5) LPAR partition identity bits [2:5] (see also bits [62:63] for Ipid(0:1)).
7:22 rmor(0:15) LPAR real mode offset register [0:15].

23 rm_ci Data accesses in real mode are treated as cache-inhibited.

. Force alignment interrupt instead of microcoding unaligned operations (that is instead of breaking
24 force_ai

unaligned operations into multiple smaller operations).
25 dis_pref Disables data prefetching.

Setting HID4[26] to ‘1’ resets the data prefetch mechanism, suppressing subsequent prefetch requests
26 res_pref and clearing the stream detection logic, therefore stream detection is not affected by accesses performed
before setting the bit back to ‘0’.

27 en_sp_dtw Enable speculative load tablewalk.

L1 data cache flash invalidate.

28 11dc_flsh 0 Normal operation
1 All sectors set to invalid and held invalid
29:30 dis_derpc Disable data ERAT (D-ERAT) parity checking (one bit for each set).
31 dis_derpg Disable D-ERAT parity generation (force parity to ‘0’ on EA[0:45] only).
32:33 dis_derat g)ri%a:)(lje one or more ways of the 4-way set associative D-ERAT (one bit per set); valid states are 00, 01,
34:35 dis_dctpc Disable data cache tag parity checking (one bit for each set).
36 dis_dctpg Disable data cache tag parity generation.
37:38 dis_dcset Disable data cache set (one bit for each set).
39:40 dis_dcpc Disable parity checking in one or more ways of the 4-way set-associative data cache (one bit per set).
41 dis_dcpg Disable data cache parity generation.
42:43 dis_dcrtpc Disable parity checking on the physical address tag of the data cache (one bit per set).
44:47 dis_tlbpc Disable parlty checking in one or more ways of the 4-way set-associative translation lookaside buffer
(TLB) (one bit per set).
48 dis_tlbpg Disable TLB parity generation.
Version 2.3 Programming Model

March 7, 2008 Page 57 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Bits

49:52

53
54
55
56

57

58

59

60

61

62:63

Field Name
dis_tlbset

dis_slbpc
dis_slbpg
mck_inj

dis_stfwd

Ipes1

rmir0

dis_splarx

lg_pg_dis

Ipid(0:1)

Programming Model
Page 58 of 415

Description

Disable set in one or more ways of the 4-way set associative TLB (one bit per set); valid states are x‘0’,
X7, x'B’, x'D’, and x'E’.

Disable SLB parity checking.

Disable SLB parity generation.

Enable machine-check error injection.
Disable store forwarding (cause reject).

LPAR environment selector bit [1]. LPES[0:1] are located in HID4[0, 57].

LPES[0:1] determine how MSR[HV] is set using interrupts and how memory access is performed when
not in hypervisor mode. This is described in the PowerPC Architecture version 2.01.

HID4 bits [58, 1:2] are real mode limit register bits [0:2].

011 64 MB
111 128 MB
100 256 MB
x10 1 GB
x01 16 GB
000 256 GB
Reserved

Disable speculative Load Word and Reserve Indexed (lwarx) and Load Double Word and Reserve
Indexed (ldarx) instructions.

Disable large page support. The large page (L) bit input to SLB will be forced to zero (software will read a
zero L bit).

LPAR partition identity bits [0:1]. HID4[62:63, 3:6] are LPID[0:5] respectively.

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

HID5 Bit Functions
Reserved
v v
|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
2 o = s =
- @ » N T . 23 A
¢ 3203 ES28 o5 R gl
e £ 3 g 5 29 cHNEI? @ T
8 O 4 S 05454008 298¢
hrmor(0:15) c a8 s 0 28 a2 EEc S E
v VOV YV Y YY YN YV Y YyY oYYy
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47|48 49[50|51 52|53 |54 |55]56]57 58|59 60 |61]62]63]
Bits Field Name Description
0:31 — Reserved
32:47 hrmor(0:15) LPAR hypervisor real mode offset register.
48:49 — Reserved
50 DC_mck Machine check enabled for data cache and data cache tag parity errors (software recovery enabled).
51 dis_pwrsave L1 data cache (D-cache), L1 D-cache tag, D-ERAT power savings disable.
52 force_G Force guarded (G equals ‘1’) load.
Data cache replacement algorithm.
53 DC_repl 0 Least recently used (LRU) (default)
1 First-in-first-out (FIFO)
Number of available hardware prefetch streams.
54 hwr_stms 0 Four hardware streams and four VPU streams
1 Eight hardware streams (HID5[55] must also be ‘1)
Data Stream Touch (DST) instructions no-op.
55 dst_noop 0 DSTs are enabled.
1 DSTs are a no-ops and discarded in the load/store unit (LSU).
56 DCBZ_size Makes dcbz a 32-byte store when bit 10 of the dcbz instruction is set to ‘0’.
57 DCBz32_ll Makes a dcbz instruction with bit 10 equal to ‘0’ an illegal instruction.
TLB mapping.
0 4-way set associative
58 tlb_map 1 Direct mapped
Note: When setting HID5[58] to make the TLB direct mapped, the TLB set disable bits, HID4[49:52],
must be cleared; otherwise, translation will not work.
Demand miss (load miss queue [LMQ] to 970MP storage subsystem [STS)).
59 Imq_port 0 Permit two per cycle.
1 Permit only one per cycle (this setting is not currently supported).
Number of outstanding requests to STS.
Maximum
HID5 outstanding
[60, 63] requests
60 Imqg_size(0) 00 8
01 1 (this setting is not currently supported)
10 2
11 4
61 — Reserved
Version 2.3 Programming Model

March 7, 2008

Page 59 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Bits Field Name Description
62 tch no Make the Data Cache Block Touch (dcbt) and Data Cache Block Touch for Store (dcbtst) instructions
-hop act like no-ops.
63 Imq_size(1) See description of HID5[60].
Programming Model Version 2.3

Page 60 of 415 March 7, 2008

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor
2.1.2.3 Data Address Breakpoint Register (DABR)

The data address breakpoint facility provides a means of detecting load-and-store accesses to a designated
double word. The address comparison is done on an effective address. The data address breakpoint facility is
controlled by the architected Data Address Breakpoint Register (DABR) and the 970MP microprocessor-
specific Data Address Breakpoint Register Extension (DABRX).

Data Address Breakpoint Register Extension (DABRX)

The DABRX register is only active in hypervisor mode.

Reserved
J >
‘012345678910111213141516171819202122232425262728293031
3
[=)) 4_-
2w oz B
g4 83
Reserved 5 2 &£ &
) R 2 2R
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59|60‘61|62‘63’
Bits Name Description
0:59 — Reserved
60 BTI Breakpoint translation ignore
61 HYP Hypervisor state
62 PNH Privileged but non-hypervisor state
63 PRO Problem state (user mode)

Note: Bits [61:63] are termed the privileged mask (PRIVM).

Data Address Compare

The 970MP microprocessor supports the address compare control facility and the Address Compare Control
Register (ACCR) as defined in the architecture. In addition, the 970MP microprocessor supports the optional
data address breakpoint facility and associated Data Address Breakpoint Register (DABR) described in the

architecture. In either case, upon taking a data storage interrupt, the 970MP processing unit sets the DAR
correctly.

The architecture allows some flexibility on whether an ACCR match, a DABR match, or both actually occurs
for certain conditions. More specifically, in the 970MP processing unit, store conditional instructions that are
executed but not successful (that is, the store does not actually occur) will cause either an ACCR match or a
DABR match if the appropriate match conditions are met. String instructions with zero length will not cause

ACCR or DABR matches. The dcbz instruction will cause a DABR match if the appropriate match conditions
are met.

As an alternative to causing an interrupt, a DABR match can be made to cause various forms of hard stops or
soft stops for use as a debug aid (these controls are available through special SCOM commands). In general,
this capability is not recommended for use in normal system operation because it might require the presence
of an engineering support processor to restart the processing unit.

Version 2.3 Programming Model
March 7, 2008 Page 61 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.4 Instruction Address Breakpoint Register (IABR)

The Instruction Address Breakpoint Register can be used as a debug tool to trigger an event upon the fetch of
a particular instruction address. The address in the IABR is compared to the Instruction Fetch Address
Register, which will also contain addresses of speculative instruction fetches. The IABR is set up as
described in the PowerPC Microprocessor Family: The Programming Environments manual, except, in the
970MP microprocessor, the IABR is only available as a trigger to the debug logic. This trigger can be
programmed to perform functions such as quiesce or checkstop. If the word specified in the IABR is fetched,
the instruction breakpoint handler is invoked. The instruction that triggers the breakpoint does not execute
before the handler is invoked.

CIABR can be enabled by either HID0[22] (software accessible) or scan/SCOM override.

The IABR uses the IFU FETCH address, not the current instruction address (CIA) that is executing. An IABR
match occurs on the fetch of any instruction, even a speculative instruction.

Note: There can be multiple IABR matches for a single instruction before it is actually executed (or com-
pleted).

During power-on reset, all bits are reset to ‘0’.

Address
I >
|012345678910111213141516171819202122232425262728293031
Address BE TE
‘ vy
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61|62‘63|
Bits Field Name Description
0:61 Address Word address to be compared
62 BE Breakpoint enabled. An address match causes a trigger to the debug logic.
63 TE Translation enabled. An IABR match is signaled if this bit matches MSRJIR].

2.1.2.5 Instruction Match CAM Array Access Register (IMC)

The instruction match CAM (IMC) array facility is used for performance monitoring instrumentation. This latter
use is restricted for the support processor and is not available through SPR access to this register array. The
array has privileged write access and user-level read access through this SPR. Writes to the register array
are used to configure the IMC, and reads return information about the availability of registers within the
facility. See Instruction Match CAM (IMC) Register on page 323 for additional details on the IMC register.

Programming Model Version 2.3
Page 62 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.6 Performance Monitor Registers (MMCRO, MMCR1, MMCRA, PMC1-8)

The Performance Monitor Counter Registers (PMC1-PMC8) and the Performance Monitor Control Registers
(MMCRO, MMCR1, MMCRA) are supported in the 970MP microprocessor.

The Performance Monitor Control Registers, MMCRO, MMCR1, and MMCRA, are used with the MSR and
other SPRs to set up the performance monitor enable states, interrupt conditions, threshold values, match
criteria, and selection of the events counted in each of the Performance Monitor Counter Registers,
PMC1-PMCS.

The MMCRXx Register bit assignments are shown in Section 10.4.1 on page 211; Section 10.4.2 on page 214;
and Section 10.4.3 on page 217. All of the MMCRx and PMCx Registers flush to zero unless otherwise noted
in the MMCRx and PMCx tables.

The MSR bits that relate to performance monitor functions are shown in Section 4.3.3 on page 106. The
value of the SRR1 Registers when a performance monitor interrupt is taken is shown in Chapter 10 970MP
Performance Monitor.

Performance Monitor Counter Registers (PMC1-8)

O]
|
=
o
5 CTRDATA
v v v
|0‘12345678910111213141516171819202122232425262728293031|
Bits Field Name Description
0 CTR_NEG Counter negative bit
1:31 CTRDATA Count data
Version 2.3 Programming Model

March 7, 2008 Page 63 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.7 Sampled Instruction Address and Sampled Data Address Registers (SIAR, SDAR)

The Sampled Instruction Address Register (SIAR) and the Sampled Data Address Register (SDAR) are
supported in the 970MP microprocessor. The SIAR is used to save the effective address of a sampled
instruction and the SDAR is used the effective address of a storage operand for a sampled instruction, when
the processor is in either trace-marking mode or performance-marking mode. The terms ‘sampled’ and
‘marked’ are used interchangeably in this document.

Sampled Instruction Address Register (SIAR)

samp_iaddr
J >
|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

samp_iaddr
) v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description

0:63 samp_iaddr Sampled Instruction Address

Sampled Data Address Register (SDAR)

samp_daddr
I >
|O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

samp_daddr

<
<

v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description

0:63 samp_daddr Sampled Data Address

2.1.2.8 Scan Communication Registers (SCOMC and SCOMD)

Each 970MP processing unit includes a pair of registers to aid in communicating with the Scan Communica-
tions facility (SCOM). The SCOMC Register is a control register that includes a command field, a destination
field, and a set of status bits. The SCOMD Register is an associated data register that acts as either a source
of data or as a destination for data depending on the command placed into the SCOMC Register.

The SCOM facility contains an arbiter, which serializes use of the facility among the bus masters (processor
cores and core service processor). However, there are very specific programming conventions associated
with the use of this facility. See Chapter 12 SCOM Interface and Registers on 295 for a detailed description of
the SCOM facility.

Programming Model Version 2.3
Page 64 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.9 Hypervisor Decrementer Interrupt Register (HDEC)

The Hypervisor Decrementer Interrupt Register (HDEC) is a 32-bit decrementing counter that provides a
mechanism for causing a hypervisor decrementer interrupt after a programmable delay.

The HDEC is driven by the same frequency as the Time Base Register, and in the same manner as the
Decrementer Register. The Hypervisor Decrementer Register counts down, causing an interrupt and is imple-
mented in SPR 310.

2.1.2.10 Hypervisor Save/Restore Register (HSRRO, HSRR1)

The Hypervisor Machine Status Save/Restore Register 0 (HSRRO) is located in SPR 314 and HSRR1 is
located in SPR 315. When a hypervisor decrementer interrupt occurs, the state of the machine is saved in the
Hypervisor Machine Status Save/Restore Registers (HSRRO and HSRR1). The effective address is stored in
HSRRO and the MSR in HSRR1. The contents of these registers is used to restore machine state when a
hrfid instruction is executed.

2.1.2.11 Hypervisor SPRGs (HSPRGO, HSPRG1)

HSPRGO and HSPRG1 are 64-bit registers provided for use by hypervisor programs. HSPRGO is located at
SPR 304 and HSPRG1 is located at SPR 305.

Note: Neither the contents of the HSPRGs, nor accessing them using mtspr or mfspr, has a side effect on
the operation of the processor. One of more of the registers is likely to be needed by hypervisor interrupt han-
dler programs (for example, as scratch registers, pointers, or both to processor save areas).

2.1.2.12 Trigger Registers (TRIGO, TRIG1, TRIG2)

Writes to the Trigger Registers, named TRIGO, TRIG1, and TRIG2, can be inserted in the instruction stream
to cause triggers to the on-chip debug logic of the trace array. These are intended to be used for lab debug
and bring-up only and architecturally behave as a no-op.

Version 2.3 Programming Model
March 7, 2008 Page 65 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.1.2.13 Hardware Interrupt Offset Register (HIOR)

The Hardware Interrupt Offset Register (HIOR) should be scanned (the HIOR is on the mode ring) to the
system’s starting address during initialization. Subsequently, the HIOR should be set to zero.

The physical address of the interrupt vector is found using HIOR[22:43] combined with the 20-bit vector offset
for the particular exception.

Reserved offset

v v v g

|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21|22 23 24 25 26 27 28 29 30 3t
offset Reserved

) v oy v
32 33 34 35 36 37 38 39 40 41 42 43|44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description

0:21 — Reserved

22:43 offset Offset

44:63 — Reserved
Programming Model Version 2.3

Page 66 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.2 Instruction Set Summary

This section describes instructions and addressing modes defined for the 970MP microprocessor. These
instructions are divided into the following execution unit categories:

¢ Fixed-Point Processor

¢ Floating-Point Processor
e \ector Processor

¢ |Load-and-Store Processor
¢ Branch and Flow Control
e Storage Control

¢ Memory Synchronization

Fixed-point instructions operate on byte, half-word, word, and double-word operands. Floating-point instruc-
tions operate on single-precision and double-precision floating-point operands. The PowerPC Architecture
uses instructions that are 4 bytes long and word-aligned. It provides for byte, half-word, word, and
double-word operand loads and stores between memory and a set of 32 General-Purpose Registers (GPRs).
It provides for word and double-word operand loads and stores between memory and a set of 32
Floating-Point Registers (FPRs). The VPU extension to the PowerPC Architecture provides for quadword
operand loads and stores between memory and a set of 32 Vector Registers.

Arithmetic and logical instructions do not read or modify memory. To use the contents of a memory location in
a computation and then modify the same or another memory location, the memory contents must be loaded
into a register, modified, and then written to the target location using load-and-store instructions.

2.2.1 Classes of Instructions

The 970MP microprocessor instructions belong to one of the following three classes:

¢ Defined
* lllegal
¢ Reserved

Note: While the definitions of these terms are consistent among the PowerPC processors, the assignment of
these classifications is not.

The class is determined by examining the primary opcode and the extended opcode, if any. If the opcode or
the combination of opcode and extended opcode, is not that of a defined instruction or of a reserved instruc-
tion, then the instruction is illegal. Instruction encodings that are now illegal might become assigned to
instructions in the architecture or might be reserved by being assigned to processor-specific instructions.

Version 2.3 Programming Model
March 7, 2008 Page 67 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.1.1 Definition of Boundedly Undefined

If instructions are encoded with incorrectly set bits in the reserved fields, the results of execution can be said
to be boundedly undefined. If a user-level program executes the incorrectly coded instruction, the resulting
undefined results are bounded in that a spurious change from user to supervisor state is not allowed, and the
level of privilege exercised by the program in relation to memory access and other system resources cannot
be exceeded. Boundedly-undefined results for a given instruction can vary between implementations, and
between execution attempts in the same implementation.

2.2.1.2 Defined Instructions

The 970MP microprocessor provides support for the following optional instructions:

fsqrt Floating-Point Square Root

fsqrts Floating-Point Square Root Single

fres Floating-Point Reciprocal Estimate Single
frsqrte Floating-Point Reciprocal Square Root Estimate A-Form
fsel Floating-Point Select

mfsr Move from Segment Register

mfsrin Move from Segment Register Indirect
mtmsr Move to Machine State Register (32-bit)
mtsr Move to Segment Register

mtsrin Move to Segment Register Indirect

slbie SLB Invalidate Entry

slbia SLB Invalidate All

tibie TLB Invalidate Entry

tibsync TLB Synchronize

The 970MP microprocessor does not provide support for the following optional or obsolete instructions (or
instruction forms). Attempted use of these will result in an illegal instruction type of program interrupt.

becbr Branch Conditional to CBR (obsolete)

dcba Data Cache Block Allocate (obsolete)

dcbi Data Cache Block Invalidate (obsolete)

eciwx External Control In Word Indexed

ecowx External Control Out Word Indexed

mcrxr Move to Condition Register from XER Register (obsolete)
mtsrd Move to Segment Register Double Word (obsolete)
mtsrdin Move to Segment Register Double Word Indirect (obsolete)
rfi Return from Interrupt (obsolete)

tibia TLB Invalidate All

tibiex TLB Invalidate Entry by Index (obsolete)

slbiex SLB Invalidate Entry by Index (obsolete)

Programming Model

Page 68 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.1.3 lllegal Instructions

lllegal instructions can be grouped into the following categories:

¢ Instructions not defined in the PowerPC Architecture. The following primary opcodes are defined as ille-
gal, but might be used in future extensions to the architecture: 1, 5, 6, 56, 57, 60, 61.

Note: Primary opcode 4 is used in the 970MP microprocessor to implement the vector extensions that
are described in Chapter 10 970MP Performance Monitor.

¢ Instructions defined in the PowerPC Architecture but not implemented in a specific PowerPC implementa-
tion. For example, the following primary opcodes that are legal on 64-bit PowerPC processors are consid-
ered illegal by 32-bit processors: 30, 62.

Note: On the 970MP microprocessor, these instructions are executed in 32-bit mode.

¢ All unused extended opcodes for instructions. Notice that extended opcodes for instructions defined only
for 64-bit implementations are illegal in 32-bit implementations. The following primary opcodes have
unused extended opcodes: 19, 30, 31, 56, 57, 59, 60, 61, 62, 63. (Primary opcodes 30 and 62 are illegal
for 32-bit implementations, but as 64-bit opcodes they have some unused extended opcodes.)

* An instruction consisting entirely of zeros is guaranteed to be an illegal instruction. This increases the
probability that an attempt to execute data or uninitialized memory invokes the system illegal instruction
error handler (a program exception).

See Section 4.5.9 Program Exception on page 114 for additional information about illegal and invalid instruc-
tion exceptions. Except for an instruction consisting of binary zeros, illegal instructions are available for addi-
tions to the PowerPC Architecture.

2.2.1.4 Reserved Instructions

The PowerPC Architecture breaks the reserved instruction class down into several categories. The 970MP
microprocessor behaves as described below for each category of reserved instructions:

¢ Primary opcode equals zero. The 970MP processing unit will take an illegal instruction type of program
interrupt for all cases except the Support Processor Attention (attn) instruction when HIDO[31] is set to
‘1 1.

* Power Architecture® instructions not in the PowerPC Architecture. The 970MP processing unit will take
an illegal instruction type of program interrupt.

* Implementation-specific instructions used to conform to the architecture. No action taken.
¢ Other instructions. The 970MP processing unit supports the implementation-specific instruction, tibiel
(the processor local form of the TLB Invalidate entry used for managing TLB parity errors).

In addition, several implementation-specific registers are available for access through the mtspr and mfspr
instructions. These are described in Section 2.1.2.1 Move To and Move From System Register Instructions
on page 50.

2.2.2 Instruction Set Overview

The following sections provide a brief overview of the PowerPC instructions implemented in the 970MP
microprocessor and highlight how a 970MP microprocessor implements a particular instruction. Note that the
categories used in this section correspond to those used in “Addressing Modes and Instruction Set Summary”

Version 2.3 Programming Model
March 7, 2008 Page 69 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

in the PowerPC Microprocessor Family: The Programming Environments manual. These categorizations are
somewhat arbitrary and are provided for the convenience of the programmer. They do not necessarily reflect
the PowerPC Architecture specification.

Note: Some instructions have the following optional features:

¢ CR Update. The dot (.) suffix on the mnemonic enables the update of the CR.
* Overflow option. The o suffix indicates that the overflow bit in the XER is enabled.

2.2.3 Fixed-Point Processor

2.2.3.1 Fixed-Point Arithmetic and Compare Instructions

The architecture states that instructions that have the overflow exception (OE) bit set, or instructions that can
set the carry (CA) bit, might execute more slowly than instructions that do not. In the 970MP microprocessor,
the summary overflow (SO) bit in the XER is not renamed. For instructions with the OE set, it is initially
assumed that no overflow will occur and that the SO bit does not need to be changed. If the instruction does
cause an overflow and the SO bit was not set before the instruction executed (and therefore needs to be set),
the machine will flush this instruction and those beyond this instruction, set the non-renamed SO bit, and then
refetch and re-execute the instructions that follow. In general, if no overflow occurs or the SO bit has already
been set, this strategy will not have an adverse effect on performance.

Alternatively most instructions that set and use the CA bit do not have any particular performance consider-
ations. This field of the XER is renamed, and many of the common dependence hazards are minimized.

2.2.3.2 Fixed-Point Logical, Rotate, and Shift Instructions

The architecture defines the preferred no-op to be OR Immediate (ori) 0,0,0. In the 970MP microprocessor,
this no-op form is recognized by the hardware and allowed to complete without taking any execution
resources. This makes the instruction valuable for padding other instructions to achieve better alignment or
better separation.

2.2.3.3 Move to and Move from System Register Instructions

The mtspr instruction provide access to system registers using a GPR as the source register. The mfspr
instruction provides access to the system registers using a GPR as the destination register. Table 2-3 Imple-
mentation-Specific SPRs on page 51 lists the SPR numbers for both user-level and supervisor-level access
to 970MP-specific registers.

2.2.3.4 Move to and Move from Machine State Register

The 970MP microprocessor supports both the 32-bit mtmsr instruction and the 64-bit mtmsrd instruction.
The 970MP microprocessor works to optimize the mtmsr instruction to help speed up cases where little or no
synchronization is required (that is, updates to the MSR[EE] bit).

Programming Model Version 2.3
Page 70 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.3.5 Fixed-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a fixed-point instruction or an instance of a fixed-point instruction
for which the architecture specifies that some results are undefined are described below for the cases in
which executing an instruction does not cause an exception. Only results that differ from those specified by
the architecture are described in the following list.

* Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

» Divide Word (divw), Divide Word Overflow (divwo), Divide Word Unsigned (divwu), and Divide
Word Unsigned Overflow (divwuo) Instructions
Bits 0:31 of the rD are set to x‘0000 0000'.

¢ Multiply High Word (mulhw) and Multiply High Word Unsigned (mulhwu) Instructions
rD bits 0:31 contain the same result as rD[32:63].

¢ Divide Instructions (divide by zero)
If the divisor is zero, rD is set to zero. If, in addition, the record bit (RC) in the vector instruction field
equals ‘1’, CRO is set to ‘0010’.

* Move To and Move From Special Purpose Register Instructions
Table 2-4 on page 53 describes the results of specifying an SPR value that is not defined for
the implementation.

¢ Move From Time-Base Instruction
The mftb instruction is treated as an alias for the mfspr instruction; the results are the same as for exe-
cuting an mfspr instruction.

* Move From Condition Register Instruction (bit 11 is set to ‘1)
One CR field is copied into the associated bits of the rD, and the remaining bits of the rD are set to zeros.

* Move From Condition Register Instruction (bit 11 is set to ‘1’, and multiple bits of the FXM? field are
setto ‘1)
The source is CR(n), where n is the CR field specified by the bit in the FXM that is set and has the small-
est index value. If no bit in FXM is set to ‘1’, the results will be the same as if the FXM was set to
‘00000001°.

* Move To Condition Register Fields Instruction (bit 11 is set to ‘1’, and multiple bits of the FXM field are
setto ‘1)
CR(n) is updated where n is the CR field specified by the bit in FXM that is set and has the smallest index
value. If no bit in the FXM is set to ‘1’, executing the instruction does not modify the CR.

1. Field used to specify a General Purpose Register (GPR) to be used as a target.
2. Field mask used to identify the CR fields to be updated by the mtcrf instructions.

Version 2.3 Programming Model
March 7, 2008 Page 71 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.4 Floating-Point Processor

Each 970MP processing unit contains two double-precision floating-point units. Each of these units is opti-
mized for fully pipelined double-precision multiply-add functionality. In addition, each unit is capable of
performing floating-point divide and square root instructions. For more information about the performance of
floating-point operations.

The optional floating-point instructions (fsqrt, fsqrts, fres, frsqrte, and fsel) defined in the PowerPC Micro-
processor Family: The Programming Environments manual are implemented.

Note: The 970MP microprocessor does not support the non-IEEE mode that was defined in earlier versions
of the architecture.

2.2.4.1 Floating-Point Arithmetic Instructions

The architecture requires operands for single-precision floating-point arithmetic instructions to be represent-
able in single-precision format. If they are not, then the results of the single-precision arithmetic instructions

are undefined. For the single-precision divide and square-root instructions, fdivs and fsqrts, single-precision
algorithms are executed on the double-precision data with the final results rounded to single-precision.

2.2.4.2 Floating-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a floating-point instruction or an instance of a floating-point instruc-
tion for which the architecture specifies that some results are undefined are described below for the cases in
which executing an instruction does not cause an exception. Only results that differ from those specified by
the architecture are described.

* Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

* Floating-Point Convert to Integer Word Instructions: fctiw or fctiwz
The Instruction target register (frD[0:31]) is set to x'FFF8 0000’.

* Floating-Point Convert to Fixed-Point Instructions (fctiw, fctiwz, fctid, and fctidz)
The contents of FPSCR(FPRF) are set to ‘00000’

* Move from FPSCR Instruction
frD[0:31] is set to x'FFF8 0000’

2.2.5 Vector Processor

Each 970MP processing unit contains two vector units: the vector arithmetic logical unit (VALU) and the
vector permute unit (VPERM). The vector instructions and their implementation are described in Chapter 13
Vector Processing Unit.

Programming Model Version 2.3
Page 72 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.6 Load Store Processor

2.2.6.1 Floating-Point Load-and-Store Instructions

Most forms of unaligned floating-point storage accesses are executed entirely in hardware (see
Section 3.3.2.1 Storage Access Alignment Support on page 85).

2.2.6.2 Fixed-Point Load Instructions

Most forms of unaligned load operations are executed entirely in hardware. If a basic load operation crosses
a page boundary, and either page translation signals an exception condition, then when the interrupt occurs it
will appear as though none of the load instructions have executed. This is not always the case for load
multiple or load string instructions. For more information, see Section 2.2.6.4 Fixed-Point Load-and-Store
Multiple Instructions and Section 2.2.6.5 Fixed-Point Load-and-Store String Instructions on page 74.

The Load Algebraic, Load with Byte Reversal, and Load with Update instructions might have greater latency
than other load instructions. These instructions are implemented as a sequence of internal operations. Due to
the dynamic scheduling and out-of-order execution capability of the processor, these effects are somewhat
minimized. It should also be noted that, although these instructions are broken up in this manner, the effects
are never visible from a programming model perspective. For more information about the performance of
these instructions.

Any load from storage marked cache-inhibited that is not aligned will cause an alignment interrupt.

2.2.6.3 Fixed-Point Store Instructions

Most forms of unaligned store operations are executed entirely in hardware. If a store operation crosses a
page boundary, and the second page translation signals an exception condition, then after the interrupt is
taken it will appear as though none of the storage updates have occurred to either page. (This is not always
the case for store multiple or store string instructions. See Section 2.2.6.4 Fixed-Point Load-and-Store
Multiple Instructions and Section 2.2.6.5 Fixed-Point Load-and-Store String Instructions on page 74 for more
information.)

Any store to storage marked cache-inhibited that is not aligned will cause an alignment interrupt.

2.2.6.4 Fixed-Point Load-and-Store Multiple Instructions

The Load Multiple Word (Imw) instruction is executed so that up to two registers are loaded each cycle. Simi-
larly, the Store Multiple Word (stmw) instruction is executed so that up to two registers are stored each cycle.
The 32-entry store queue can accept up to two 8-byte stores per cycle; the cache can accept one 8-byte store
per cycle. Because these instructions are emulated through the use of microcoded templates, after a small
start-up penalty, they are processed at a rate of up to two registers per cycle.

Most forms of Imw and stmw instructions, even those that cross page and segment boundaries, are
executed entirely in hardware. These instructions and the individual storage accesses associated with the
instructions are not atomic. If an stmw crosses a page boundary, and the second page translation signals an
exception condition, then after the interrupt is taken it will appear as though none, some, or all of the
accesses to the first page have occurred. It will also appear as though none of the accesses to the second
page have occurred. However, for an Imw instruction that crosses a page boundary where the second page
translation signals an exception condition, all of the target registers will have an undefined value.

Version 2.3 Programming Model
March 7, 2008 Page 73 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

An attempt to execute a non-word aligned Imw or stmw will cause an alignment interrupt. An attempt to
execute an Imw or stmw to storage marked cache-inhibited will also cause an alignment interrupt.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). In these
cases, for the load multiple instructions, all of the registers that were to be updated will have an undefined
value. The instruction must be completely restarted to achieve the full effect (that is, no partial restart capa-
bility is supported). For the store multiple instructions, some of the storage locations referred to by the instruc-
tion might have been updated. However, to guarantee full completion of the store multiple instructions, they
must also be completely restarted.

2.2.6.5 Fixed-Point Load-and-Store String Instructions

The Load String Word (Isw) instruction is executed so that up to two registers are loaded each cycle. Simi-
larly, the Store String Word (stsw) instruction is executed so that up to two registers are stored each cycle.
The 32-entry store queue can accept up to two 8-byte stores per cycle; the cache itself can only accept one
8-byte store per cycle.

Because the immediate forms of these instructions are implemented using microcoded templates they incur a
small start-up penalty. The X-form of the instructions contains a dependency on bits in the fixed-point XER
Register. Therefore, depending on when the last update to these bits occurred, the instruction might be
subject to a more expensive runtime flush and emulate sequence. For more information about the perfor-
mance of these instructions.

Most Load String and Store String instructions that cross page or segment boundaries are executed entirely
in hardware. If a Store String crosses a page boundary, and the second page translation signals an exception
condition, then after the interrupt is taken it will appear as though none, some, or all of the accesses to the
first page have completed. It will also appear as though none of the accesses to the second page have
occurred. However, for Load String instructions that cross a page boundary where the second page transla-
tion signals an exception condition, all of the target registers will have an undefined value.

If the storage operand of a Load String Word Immediate (Iswi) instruction is word aligned, then the accesses
are performed in an optimal manner. If the operands are so aligned, the accesses are performed in an
optimal manner if the operand resides entirely within a 64-byte block that is resident in the L1 D-cache or
resides entirely within a 32-byte block. Although other unaligned string operations are supported in hardware,
they might cause machine flushes and require long sequences of microcode. As a result, these types of
unaligned string instructions can have significantly longer latencies.

An attempt to execute an Iswi, Load String Word Indexed (Iswx), Store Sting Word Immediate (stswi), or
Store String Word Indexed (stswx) instruction to storage marked cache-inhibited will cause an alignment
interrupt.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts). In these
cases, for the Load String instructions, all of the registers that were to be updated will have an undefined
value. The instruction must be completely restarted to achieve the full effect (that is, no partial restart capa-
bility is supported). For the store string instructions, some of the storage locations referred to by the instruc-
tion might have been updated.

The architecture describes some preferred forms for the use of load-and-store string instructions. In the
970MP microprocessor, these preferred forms have no effect on the performance of the instructions.

Programming Model Version 2.3
Page 74 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.6.6 Load/Store Invalid Forms and Undefined Conditions

The results of executing an invalid form of a load/store instruction for which the architecture specifies that
some results are undefined are described below for the cases in which executing an instruction does not
cause an exception. Only results that differ from those specified by the architecture are described.

¢ Load with Update Instructions (rA1 is setto ‘0’)
The storage operand addressed by the EA is placed into rD. The sum of that storage operand and rB is
placed in rA.

¢ Load with Update Instructions (rA equals rD)
The EA is placed into the rD. The storage operand addressed by the EA is accessed, but the data
returned by the load is discarded.

* Load Multiple Instructions (rA is in the range of registers to be loaded)
If an exception (for example, a data storage or external exception) causes the execution of the instruction
to be interrupted, the instruction is restarted, the rA has been altered by the previous partial execution of
the instruction, and the rA does not equal ‘0’, the new contents of the rA are used to compute the EA.

* Load Multiple Instructions (causing a misaligned access)
For a Load Multiple Word instruction, if the storage operand specified by the EA is not a multiple of four,
an alignment exception is taken. For a Load Multiple Double Word instruction, if the storage operand
specified by the EA is not a multiple of eight, an alignment exception is taken.

* Load String Instructions (zero length string)
The rD is not altered.

¢ Load String Instructions (rA, or rB2, or both are in the range of registers to be loaded)
If rA, or rB, or both are in the range of registers to be loaded, the results are as follows:

Indexed Form: If rA is set to ‘0’, let Rx be rB; otherwise let Rx be the register specified by the smaller of
the two values in instruction fields rA and rB. If the rD equals Rx, no registers are loaded. Otherwise, reg-
isters rD through RX-1 are loaded as specified in the architecture (that is, only part of the storage oper-
and is loaded).

Immediate Form: If rA is set to ‘0’, the instruction is executed as if it were a valid form. If rA equals rD, no
registers are loaded; otherwise, registers rD through rA-1 are loaded as if the instruction was a valid form
but specifying a shorter operand length.

¢ Store with Update Instructions (rA is set to ‘0’)
EA is placed into RO.

* Load or Store Floating-Point with Update Instructions (rA is set to ‘0’)
EA is placed into RO.

* Floating-Point Store Single Instructions (exponent less than 874 and FRS[09:31] not equal to ‘0’)
The value placed in storage is a ‘0’ with the same sign as the value in the register.

1. Field used to specify a GPR to be used as a source or as a target.
2. Field used to specify a GPR to be used as a source.

Version 2.3 Programming Model
March 7, 2008 Page 75 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.7 Branch Processor

2.2.7.1 Branch Processor Instructions

Support Processor Attention Instruction

The 970MP microprocessor supports a special, implementation-dependent instruction for signalling an atten-
tion to the support processor.

Figure 2-2. Processor Attention Instruction

attn

00 256 /
0 6 21 31

The immediate field (I) has no effect on the operation of this instruction in the 970MP microprocessor. If the
support processor attention enable bit is set (HIDO[31] = ‘1), this instruction will cause all preceding instruc-
tions to run to completion, the machine to quiesce, and the assertion of the support processor attention
signal. If the support processor attention enable is not set (HIDO[31] = ‘0’), this instruction will cause an illegal
instruction type of program interrupt.

2.2.7.2 Branch Processor Instructions with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which
the architecture specifies that some results are undefined are described below. Only results that differ from
those specified by the architecture are described.

* Instructions with Reserved Fields
Bits in reserved fields are ignored. The results of executing an instruction in which one or more of these
bits is ‘1" is the same as if the bits were ‘0’

¢ bcctr and becetrl Instructions
If branch-options (BO)[2] is set to ‘0’, the contents of the CTR before any update are used as the target
address and to test the contents of the CTR to resolve the branch. The contents of the CTR are then dec-
remented and written back to the CTR.

¢ System Call (sc) Instructions (opcode 17)
Bits 30:31 Description

‘00’ sc instruction
‘or illegal instruction exception
10’ sc instruction
11’ sc instruction
Programming Model Version 2.3

Page 76 of 415 March 7, 2008

2.2.7.3 Move To Condition Register Fields Instruction

User's Manual

IBM PowerPC 970MP RISC Microprocessor

The architecture warns that updating a subset of the CR fields on a Move to Condition Register Fields (mtcrf)
instruction can have worse performance than updating all of the fields. In the 970MP microprocessor, both
the mterf instruction and the Move from Condition Register (mfcr) instruction are emulated through the
microcode templates. For best performance, software should use the new, single-field variants of these
instructions as described in the architecture. For more information about the performance of these instruc-

tions.

The 970MP microprocessor supports the optional architecture extension that defines slight variations to the
mtcrf and mfcr instructions to indicate that the movement of a single field of the Condition Register is

preferred. Because the performance of these instructions is better than their multiple field counterparts, use
of these instructions is encouraged.

2.2.8 Storage Control Instructions

2.2.8.1 Key Aspects of Storage Control Instructions

In each 970MP processing unit, all cache control instructions operate on aligned 128-byte sections of

storage. Table 2-5 summarizes many of the key aspects of the storage control instructions.

Table 2-5. Storage Control Instructions

Aspect

Granularity

Semantic
checking

“r’ bit update

“c” bit update

L1 I-cache effect

L1 D-cache effect

L2 Cache effect

TLB effect

SLB effect

Version 2.3
March 7, 2008

icbi
128 bytes

Load (DSl on
storage
exception)

Yes
No

L1 I-cache and
prefetch buffer

None

None

Reload as
required

Reload as
required

dcbt
128 bytes
Load (no-op on
storage
exception)
Yes

No
None

See
Section 2.2.8.4

See
Section 2.2.8.4

Reload as
required

None (no-op if
miss)

Cache Instructions

dcbtst
128 bytes
Load (no-op on
storage
exception)
Yes

No
None

See
Section 2.2.8.4

See
Section 2.2.8.4

Reload as
required

None (no-op is
miss)

dcbz
32 or 128 bytes

Store (DSl on
storage
exception)

Yes

Yes

None

Invalidate

See
Section 2.2.8.5

Reload as
required

Reload as
required

dcbst
128 bytes

Load (DSl on
storage
exception)

Yes

No

None

No-op

See
Section 2.2.8.6

Reload as
required

Reload as
required

dcbf
128 bytes

Load (DSl on
storage
exception)

Yes

No

None

Invalidate

See
Section 2.2.8.7

Reload as
required

Reload as
required

Programming Model

Page 77 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.8.2 Instruction Cache Block Invalidate (icbi)
The instruction cache block size for icbi on the 970MP processing unit is 128 bytes.

Execution of this instruction occurs in multiple phases. First, the effective address is computed and translated
by the load/store execution pipeline. Next, the resulting real address is passed to the 970MP STS logic which
broadcasts it onto the system bus. When the 970MP STS snoops this type of command on the system bus, it
presents the command to the upstream instruction caches. As these invalidates are presented to the instruc-
tion cache, the associated real addresses are checked against all 16 possible locations in the effective-
addressed I-cache that could contain the particular real address. Only entries that actually match the real
address will be invalidated. In addition, all entries in the instruction prefetch queue will be invalidated (inde-
pendent of the address). As an aid for quickly flushing the entire contents of the I-cache, a special mode bit is
provided (HID1[9]) that forces each of these 16 entries to be invalidated on an icbi (even if their address does
not match the invalidate address). For more information about this instruction.

The icbi instruction has no effect on the L2 cache.

To ensure that the storage access caused by an icbi instruction has been performed with respect to the
processor executing the icbi instruction, an isync instruction must be executed on that processor.

2.2.8.3 Instruction Cache Synchronize (isync)

As a performance optimization, the 970MP microprocessor internally tracks and updates a scoreboard bit for
instructions that change instruction-cache-oriented context that are required to be synchronized by the isync
instruction. When the isync instruction is executed, this scoreboard bit is checked to see whether the
machine must flush and refetch the instructions following the isync. In addition, the isync instruction is often
used as a load barrier to prevent any subsequent load (or store) instructions from executing before previous
load instructions have been completed. In these cases, the scoreboard bit will typically not be set, and isync
can complete without causing a flush.

2.2.8.4 Data Cache Block Touch (dcbt and dcbist)
The data cache block size for debt and debtst on the 970MP processing unit is 128 bytes.

These instructions act as a touch for the D-cache hierarchy and the TLB. If data translation is enabled
(MSRI[DR] is set to ‘1’), and an SLB miss results, then the instruction will be treated as a no-op. If a TLB miss
results, then the instruction will reload the TLB (and set the reference bit). Once past translation, if the page
protection attributes prohibit access, or the page is marked cache-inhibited, or the page is marked guarded,
or the processors’ D-cache is disabled (using the bits in the HID4 Register), then the instruction will be
finished as a no-op and will not reload the cache. Otherwise, the instruction will check the state of the L1
D-cache, and, if the block is not present, it will then initiate a reload. Note that this might also reload the L2
cache with the addressed block if it is not already present. If the cache block is already present in the L1
D-cache, the cache content is not altered. Note that if the debt or debtst instruction does reload cache
blocks, it will affect the state of the cache replacement algorithm bits.

The 970MP microprocessor does implement the optional extension to the debt instruction that allows soft-
ware to directly engage a data stream prefetch from a particular address. For more information about data
stream prefetch, see Section 3.5.3 Data Prefetch on page 96.

Programming Model Version 2.3
Page 78 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.8.5 Data Cache Block Zero (dcbz)

The data cache block size for debz on the 970MP processing unit is 128 bytes. Support is also provided for a
dcbz of 32 bytes in order to accommodate coding that assumes a 32-byte block size. The dcbz actions are
listed in Table 2-6.

Note: The entire instruction cache must be flushed whenever HID5[56] or HID5[57] are changed.

Table 2-6. dcbz Actions

HID5[57] HID5[56] dcbz Instruction Bit 10 Action
1 X 0 lllegal instruction
X X 1 Cache block (128 bytes) zeroed
0 0 0 Cache block (128 bytes) zeroed
0 1 0 32-byte block zeroed

The function of debz is performed in the L2 cache. As a result, if the block addressed by the dcbz is present
in the L1 D-cache, then the block will be invalidated before the operation is sent to the L2 cache logic for
execution. The L2 cache will gain exclusive access to the block (without actually reading the old data), and
will perform the zeroing function. For the 32-byte decbz, the L2 cache might be required to read the line and
then zero the 32 bytes.

If the cache block specified by the debz instruction contains an error, even one that is not correctable with
error checking and correction (ECC), the contents of all locations within the block are set to zeros in the L2
cache. If the specified block in the L2 cache does not contain a hard fault, a subsequent load from any loca-
tion within the cache block will return zeros and not cause a machine check interrupt.

If the block addressed by the debz instruction is in a memory region marked cache-inhibited, or if the L1
D-cache or L2 cache is disabled (using the bits in HID registers), then the instruction will cause an alignment
interrupt to occur.

Implementation Note: In order to emulate the behavior of the obsolete dcba instruction, a mode bit is
provided that changes the behavior of dcbz as follows. When the mode bit is set to ‘1’, if the block addressed
by the dcbz instruction is in a memory region marked cache-inhibited, the instruction is treated as a no-op.
The dcba instruction was defined such that the referenced and changed bits need not be updated in this
case. However, the 970MP microprocessor will update these bits.

2.2.8.6 Data Cache Block Store (dcbst)

The data cache block size for debst on the 970MP processing unit is 128 bytes.

The dcbst instruction forces all preceding stores to the referenced block to become committed to the cache
hierarchy, and then forces a clean operation in the L2 cache.

The dcbst instruction has no direct effect on the L1 D-cache (because it is store-through, it never contains
modified data). The L2 cache updates and processor interconnect bus operations are performed as shown in
Table 3-5 970MP L2 Cache State Transitions Due to Processor Instructions on page 93 and Table 3-6
970MP L2 Cache State Transitions Due to Bus Operations on page 94.

Version 2.3 Programming Model
March 7, 2008 Page 79 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2.2.8.7 Data Cache Block Flush (dcbf)
The data cache block size for debf on the 970MP processing unit is 128 bytes.

The dcbf instruction forces all preceding stores to the referenced block to become committed to the cache
hierarchy. It then acts like an invalidate to the L1 D-cache (because it is store-through, it never contains modi-
fied data). The L2 cache updates and processor interconnect bus operations are performed as shown in
Table 3-5 970MP L2 Cache State Transitions Due to Processor Instructions on page 93 and Table 3-6
970MP L2 Cache State Transitions Due to Bus Operations on page 94.

2.2.8.8 Load and Reserve and Store Conditional Instructions (Ilwarx/Idarx, stwex/stdcx)

The reservation granularity for the 970MP processing unit is 128 bytes. The lwarx and ldarx instructions are
sometimes executed speculatively.

An attempt to execute a non-word aligned lwarx or stwex, or a non-double-word aligned Idarx or stdex will
cause an alignment interrupt. An attempt to execute an lwarx, Idarx, stwex, or stdcx instruction to storage
marked cache-inhibited will cause a data storage interrupt.

2.2.9 Memory Synchronization Instructions

The 970MP design achieves high performance by exploiting speculative out-of-order instruction execution.
The sync instruction, as defined in the architecture, acts as a serious barrier to this type of aggressive execu-
tion and therefore can have a dramatic effect on performance. Although the 970MP microprocessor has opti-
mized the performance of sync to some degree, care should be exercised in the use of this instruction. As a
performance consideration, software should attempt to use the lightweight version of sync (lwsync) when-
ever possible.

The 970MP microprocessor also supports the architected Page Table Entry Synchronization (ptesync)
instruction for use in synchronizing page table updates. The 970MP microprocessor implements the Enforce
In-Order Execution of I/O (eieio) instruction as described in the PowerPC Virtual Environment Architecture
(Book Il).

In the 970MP storage subsystem logic, the store queues above the L2 cache attempt to gather both cache-
able and cache-inhibited store operations sequentially to improve bandwidth. A mode bit exists in the BIU
Mode Register (at SCOM address x‘043000’) to disable store gathering of cache-inhibited stores. Alterna-
tively, if store gathering is not wanted, software must insert between successive stores either an eieio (prefer-
able for performance) or a sync to prevent it. The eieio instruction is broadcast onto the system bus to allow
ordering to be properly enforced throughout the cache hierarchy and memory system (when detected on the
system bus, these transactions have no direct effect on the processor).

Programming Model Version 2.3
Page 80 of 415 March 7, 2008

User's Manual
IBM PowerPC 970MP RISC Microprocessor
2.2.10 Recommended Simplified Mnemonics

To simplify assembly language coding, a set of alternative mnemonics is provided for some frequently used
operations (such as no-op, load immediate, load address, move register, and complement register).
Programs written to be portable across the various assemblers for the PowerPC Architecture should not
assume the existence of mnemonics not described in this document.

For a complete list of simplified mnemonics, see the PowerPC Architecture books.

Version 2.3 Programming Model
March 7, 2008 Page 81 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Programming Model Version 2.3
Page 82 of 415 March 7, 2008

3. Storage Subsystem

User's Manual

IBM PowerPC 970MP RISC Microprocessor

The storage subsystem (STS) of the 970MP processing unit encompasses the core interface unit (CIU), the
non-cacheable unit (NCU), the L2 cache control unit and the L2 cache, and the bus interface unit (BIU).

This section provides an overview and a high-level block diagram of the storage subsystem. It summarizes
key design fundamentals and the storage hierarchy. The functional units are described in detail.

The following key features are fundamental to the design:

e Store-through L1 data ¢

ache (D-cache)

¢ No castouts or snoop pushes by the core
* Non-blocking snoop invalidates to the core (both instruction and data invalidates)

* Integrated L2 controller

* L2 controller handling of cacheable instruction fetches, loads and stores, and dcbz instructions.
* Non-cacheable unit handling of other storage type instructions.

3.1 Storage Hierarchy

Table 3-1. Storage Hierarchy Characteristics

Characteristic
Data type
Size

Associativity
(replacement policy)

Line size (sector)
Operation granularity
Index

Tags

Number of ports

Inclusiveness

Hardware coherency

Store policy

Enable bit

Reliability, availability, service-
ability (RAS)

Version 2.3
March 7, 2008

L1 Instruction Cache
Instructions only

64 KB
Direct map

128 bytes (4 x 32 bytes)
128 bytes

Effective address
Physical address

1 read or 1 write
(directory has 2 reads or 1 write)

N/A

No

N/A

Yes

Parity with invalidate on error for
data and tags

L1 Data Cache
Data only
32 KB

2-way (least recently used
[LRU])

128 bytes
128 bytes
Effective address

Physical address

2 reads and 1 write

N/A

Yes

Store-through;
no allocate on store miss

Yes

Parity with invalidate on error for
data and tags

L2 Cache
Instructions and data

1 MB
8-way set associate (LRU)

128 bytes
128 bytes
Physical address

Physical address
1 read or 1 write

Inclusive of L1 D-cache;
Not inclusive of L1 instruction
cache (l-cache).

Yes;
separate snoop ports

Store back;
allocate on store miss

No

Error checking and correction
(ECC) on data; parity on tags
(recoverable with redundant
tags)

Storage Subsystem
Page 83 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

3.2 Caches

The 970MP processing unit contains two levels of cache hierarchy: L1 and L2. The coherence block size for
the 970MP processing unit is 128 bytes. For more information about cache characteristics of the 970MP
processor, see Table 3-1 Storage Hierarchy Characteristics on page 83.

The 970MP processing unit automatically maintains the coherency of all data cached in these caches.
Because some levels of the cache hierarchy contain both instructions and data, when the L2 cache services
an instruction cache reload request, it does this in a coherent manner. This avoids the scenario where a line
is reloaded into the L2 cache on behalf of a non-coherent instruction fetch, but then accessed by a load or
store instruction with an aliased address that calls for correct coherency. However, the processor does not
maintain instruction storage consistent with data storage and, as described in PowerPC Architecture,
synchronization code is required to make the two consistent.

The L1 I-cache is indexed with an effective address. As a result, multiple copies of a particular physical block
of memory can reside in multiple positions in the L1 I-cache (up to sixteen because four bits of the effective
address are used in indexing the cache). The tag comparison associated with lookups in this cache is done
using real addresses, so there are no ‘synonym’ or ‘alias’ hazards that must be explicitly handled by the
system software.

The L1 D-cache is indexed with an effective address. Only one copy of a particular real address block is kept
in the cache at a time. On each access, a tag comparison is done with the real address. On a cache miss, the
cache reload mechanism searches the other three related sets to determine if the required real address block
is located elsewhere in the cache. If so it will appropriately eliminate these copies.

In addition to maintaining caches, each 970MP processing unit also includes several types of queues that act
as logical predecessors and extensions to the caches. In particular, the machine contains store queues for
holding store data “above the caches,” cast-out queues for holding modified data that has been pushed out of
the caches (by the replacement algorithm, cache control instructions, and/or snoop requests), and others.
Hardware keeps all of these queues coherent, and in general neither software nor system hardware should
be able to observe their presence.

3.2.1 Store Gathering

The 970MP microprocessor performs gathering of cacheable stores in order to reduce the store traffic into the
L2 cache. The gathering occurs in L2 store queues that sit above the L2 cache. The store queue consists of
eight, 64-byte wide, fully-associative entries. Stores can be gathered while architecturally permitted (that is,
there is no intervening barrier operation) and the matching address is valid in the store queue. The conditions
for pushing the store queue data into the L2 cache are not visible to the programmer.

Gathering of cache-inhibited stores is also supported and can be disabled with a mode bit in the
Non-Cacheable Unit (NCU) Configuration Register.

Storage Subsystem Version 2.3
Page 84 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

3.3 Storage Model

3.3.1 Atomicity

The 970MP processing unit is fully compliant with the architectural requirement for single-copy atomicity on
naturally aligned storage accesses.

3.3.2 Storage Access Ordering

The architecture defines a weakly ordered storage model for most types of storage access scenarios. For
these cases, the 970MP microprocessor takes advantage of this relaxed requirement to achieve better
performance through out-of-order instruction execution and out-of-order bus transactions. As a result, if
strongly ordered storage accesses are required, software must use the appropriate synchronizing instruction
(Synchronize [sync], Page Table Entry Synchronize [ptesyn], Enforce In-Order Execution of 1/O [eieio], or
Lightweight Synchronize [lwsync]) to enforce order explicitly, or perform these accesses to regions marked
with attributes that require the hardware to enforce strong ordering (that is, stores to storage marked cache-
inhibited and guarded must occur in-order).

The 970MP processing unit performs load operations out-of-order internally to the processor; however, it also
keeps track of these loads in a way that lets it know when an external request for exclusivity might lead to the
appearance of non-sequential execution. For these cases, the 970MP processing unit can flush potentially
bad results, and re-execute the code starting from the suspect load instruction.

3.3.2.1 Storage Access Alignment Support

Most storage accesses are performed without software intervention (that is, without an alignment interrupt).
The relative performance of these accesses depends to some degree on their alignment. In many cases,
unaligned storage accesses are handled with a performance equivalent to aligned accesses. However, in
some cases the 970MP processing unit is forced to break unaligned accesses into multiple internal opera-
tions. Further, because effective-address alignment for storage references cannot be determined until execu-
tion time, and dataflow-oriented execution pipelines of the 970MP microprocessor do not support iteration,
some unaligned storage accesses actually cause a pipeline flush to allow a microcoded emulation of the
instruction.

The following list summarizes the cases in which the 970MP processing unit will engage a microcoded
emulation of unaligned storage references:
¢ Any fixed-point load operation that crosses a 64-byte boundary (note 1)
¢ Any fixed-point load operation that misses in the L1 D-cache and crosses a 32-byte boundary (note 1)
¢ Any fixed-point store operation that crosses a 4 KB boundary (note 2)
* Any floating-point load double operation that is word aligned and crosses a 64-byte boundary (note 1)

* Any floating-point load double operation that is word aligned, misses in the L1 D-cache, and crosses a
32-byte boundary (note 1)

* Any floating-point store operation that is word aligned and crosses a 4 KB boundary (note 1)

Notes:

1. If the instruction is not a multiple or string instruction, the access crosses a page boundary, and the
access to either page causes an exception, appearing as though the load instruction has not been exe-
cuted (that is, neither the frD' or rD? is modified).

Version 2.3 Storage Subsystem
March 7, 2008 Page 85 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

2. If the access to the first page causes an exception, storage is not modified. Otherwise, storage in the first
page is updated even if the access to the second page causes an exception.

As an aid for software identification of these cases, the 970MP microprocessor supports a debug-only mode,
controlled by bit 24 in Hardware Implementation Dependent Register 4 (HID4[24]), that will force an align-
ment interrupt in these scenarios. See Section 4.5.8 Alignment Exception on page 114 for a summary of
cases in which the 970MP processing unit will take an alignment interrupt.

3.3.3 Atomic Updates and Reservations

The coherency granule size in the 970MP processing unit is 128 bytes. The following events will affect the
state of the Reservation Register:

¢ Execution of a Load Word and Reserve Indexed (lwarx) or Load Doubleword and Reserve Indexed
(Idarx) instruction (sets new reservation)

¢ Execution of a Store Word Conditional Indexed (stwex) or Store Doubleword Conditional Indexed (stdex)
instruction (successful or not, address match or not, the reservation is cleared)

¢ Snooped Read with Intent to Modify (RWITM) bus operation that matches the reservation address (clears
the reservation)

¢ Snooped Data Line Claim (DCLAIM) bus operation that matches the reservation address (clears the res-
ervation)

¢ Snooped Write with FLUSH bus operation that matches the reservation address (clears the reservation)

¢ Snooped Write with KILL bus operation that matches the reservation address (clears the reservation)

When performing bus snooping, the 970MP processing unit checks the state of the internal caches and the
state of the Reservation Register to formulate a snoop response. If a particular coherency block is not in any
of the caches but the address is valid in the Reservation Register, then the processor and STS act as though
the coherency block is in the shared state for the snoop response (this prevents another processor from
taking the block as exclusive on a simple READ bus transaction).

1. Field used to specify a Floating-Point Register (FPR) to be used as a target.
2. Field used to specify a General Purpose Register (GPR) to be used as a target.

Storage Subsystem Version 2.3
Page 86 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

3.4 Cache Management

3.4.1 Flushing the L1 I-Cache

To help flush the entire contents of the I-cache efficiently, the 970MP microprocessor implements a special
mode of operation for the Instruction Cache Block Invalidate (icbi) instruction. This mode can be selected
using a bit in the HID1 register. In this mode, all directory lookups on behalf of an icbi act as though there was
a real address match. Therefore, all lines looked at by the icbi will in fact be invalidated. As a result, the entire
L1 I-cache can be invalidated by issuing a series of icbi instruction that step through each congruence class
of the I-cache

Note: Another way to clear the I-cache is to actually fill it with a set of known values by executing a piece of
code that effectively touches each line of the cache. One way to write this code is to have a series of 512
branches to branches whose effective addresses are sequentially separated by 128 bytes (the line size of the
I-cache). Many other possible code sequences can achieve the same effect.

3.4.2 Flushing the L1 D-Cache

The L1 D-cache is a store-through design, so it never holds modified data. As a result, to perform a flush of
the L1 D-cache, the only instruction required is a sync. The sync instruction forces any pending stores in the
store queue above the L1 cache to become globally coherent before the sync is allowed to complete.

To completely invalidate the L1 D-cache, use the I11dc_flsh mode bit located in the HID4 to cause a flash
invalidate of the D-cache. Software needs to set this bit and follow it with a sync instruction.
3.4.3 L2 Cache Disabling and Enabling

The L2 cache cannot be disabled.
3.4.4 L2 Cache Flushing

3.4.4.1 L2 Cache Flush in Direct-Mapped Mode

The BIU Mode Register (at SCOM address x‘043000’) is set to x'0000 0000 0000 8000’ to enter direct-
mapped mode. In direct-mapped mode, victims are selected based on a simple address decode. Table 3-2
shows the decode. The three tag address bits used for the mapping are real address bits 42 - 44.

Table 3-2. Simple Address Decode

Real Address (Bits 42:44) Selected Victim
000 A
001 B
010 C
011 D
100 E
Version 2.3 Storage Subsystem

March 7, 2008 Page 87 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 3-2. Simple Address Decode

Real Address (Bits 42:44) Selected Victim
101 F
110 G

111 H

3.4.5 L2 Cache Flush Algorithm

L2 Address Map
Hold Constant
3 >

o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21|22 23 24 25 26 27 28 29 30 31
c
3
[2]
c
[e]
O
Direct Map °

Hold Constant Bits £ Congruence Address 128-Byte Cache Line
) v v vY vov v v v

32 33 34 35 36 37 38 39 40 41[42 43 4445 46|47 48 49 50 51 52 53 54 55 56|57 58 59 60 61 62 63|

Before the L2 cache of one processing unit is flushed, the other processing unit must be quiesced. For
example, before flushing the L2 cache of processing unit 1, quiesce processing unit 0. Use an ATTN instruc-
tion or the service processor to quiesce the processing unit that is not being flushed (this step is not required
if only one of the processing units is functional). Then, load the cache flush routine into the processing unit
that is being flushed.
The following sequence will flush the entire L2 cache to memory via software:

1. Disable interrupts.
. Disable data address translation by setting MSR[DR] to ‘0.
Disable instruction cache (I-cache) prefetch by setting HID1[7:8] to ‘00’.
Disable data cache (D-cache) prefetch by setting HID4[25] to ‘1°.
Flash invalidate the D-cache by setting HID4[28] to ‘1.
Execute a sync instruction.
. Disable the D-cache (set HID4[37:38] to “11°). This will guarantee that all loads are visible to the L2.

Set the L2 to direct-mapped mode. This can be done by the service processor or through the SCOM con-
trol (SCOMC) and SCOM data (SCOMD) special purpose register (SPR) interface.

9. Execute a sync instruction.

©® N o o A~ N

10. Initialize a register with the starting address of a 4MB cacheable region of memory that is aligned on a
4-MB boundary (that is, bits 42 - 63 are all zeros).

11. Execute eight load instructions, incrementing the direct map field (bits 42 - 44) of the load address
between each load (see the L2 Address Map).

12. Increment the congruence address field (bits 47 - 56) of the load address, and repeat step 11 (see the L2
Address Map).

Storage Subsystem Version 2.3
Page 88 of 415 March 7, 2008

User's Manual
IBM PowerPC 970MP RISC Microprocessor
13. Repeat step 12 for all 1024 congruence address values.

To power down after performing this sequence, the processor executes an ATTN instruction to enter the
quiescent state. Once a processing unit has been flushed, it should be fenced if the intent is to power down
that processing unit. This helps avoid snooping and hang problems.

To return to normal processing after performing this sequence, set the L2 cache to set-associative mode.
Enable the D-cache, prefetching, data address translation, and interrupts, as required.

Version 2.3 Storage Subsystem
March 7, 2008 Page 89 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor
3.5 Functional Units

Table 3-3lists the functional units within the storage subsystem, and Figure 3-1 shows how they interact. The
non-cacheable unit (NCU) handles all communications to and from the core that are not handled by the L2
cache. The core interface unit (CIU) and L2 cache controller are described in detail in the following sections.

Table 3-3. Storage Subsystem Functional Units

Unit

Mnemonic
Core Interface Unit Clu
L2 Cache Controller L2C
Non-Cacheable Unit NCU
Bus Interface Unit BIU

Figure 3-1. 970MP Storage Subsystem

970MP Core

|

Core Interface Unit (CIU)

A 4 A

Non-Cacheable Unit L2 Cache Controller
(NCU) (L2C)

A

1MB L2 Cache

A

Bus Interface Unit (BIU)

Storage Subsystem

Version 2.3
Page 90 of 415

March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

3.5.1 Core Interface Unit

The core interface unit (CIU) is the interface block between the 970MP core and the rest of the storage
subsystem. It contains the necessary pipeline buffers and queues to maintain the required transfer rates to
and from the 970MP core. The interface block consists of interfaces to the 970MP core, L2 cache interfaces,
NCU interfaces, and reload interfaces.

The interfaces to the 970MP core include one instruction fetch unit (IFU) port, two load/store unit (LSU) ports,
and one data prefetch and translate port. The CIU performs request arbitration, queueing, and flow control. It
also maintains load/store ordering and provides prefetch support. In addition, the 970MP core interfaces
include one store interface with the LSU. The CIU performs request queueing and flow control for this inter-
face. It maintains store ordering and supports a 16-byte data path.

The CIU provides request flow control for the L2 cache interface. It dispatches operations to the L2 cache
interface based on storage mode and operation type. The CIU also provides request flow control for the NCU
interface. It dispatches operations to the NCU based on storage mode and operation type. It maintains cache-
inhibited store ordering.

The reload/invalidate address interfaces include one IFU port, one LSU port, and one translate port. The CIU
provides support for L1 cache invalidates. It also requests arbitration and flow control. The reload data bus is
a 32-byte data path running at the CPU speed (1:1).

3.5.2 L2 Cache Controller

As shown in Figure 3-1 on page 90, the L2 cache controller (L2C) resides between the CIU and the BIU and
also interfaces with the NCU. See Table 3-1 Storage Hierarchy Characteristics on page 83 for additional
details of the L2 cache features.

L2 Cache Features
* 1MB size, 8-way set associative
¢ Fully inclusive of the L1 data cache
Unified L2 cache controller (combines entities such as instructions, data, and PTESs)
* Store-in L2 cache (store-through L1 cache)
¢ Fully integrated cache, tags, and controller
* Five-state modified/exclusive/recent/shared/invalid (MERSI) coherency protocol

L2 Cache Controller Features
* Runs at core frequency (1:1)
* Handles all cacheable loads/stores (including Iwarx/stcwx)
» Critical 32-byte forwarding on data loads
» Critical 32-byte forwarding in instruction fetches
¢ Six read/claim queues (RCQs)
» Eight 64-byte wide store queues
» Store gathering supported
* Non-blocking L1 D-cache invalidates
* Recoverable single-bit directory errors (through redundant directory)

L2 Cache Snooper Features
* Separate directory for all system bus snoops
¢ Four snoop/intervention/push queues

Figure 3-2 on page 92 shows the data flow of the L2 cache controller, including the data queues.

Version 2.3 Storage Subsystem
March 7, 2008 Page 91 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 3-2. Data Flow in the TMB L2 Cache

Core Interfaces (CIU)

ID_DATA

4x64B

4X64BE

MUX

ABIST
ZEROS

|

32B

REG

|

64 B

1 MB

8x(1kx8x16B)

32B

32B

A

32B

MUX(S)

32B

32B

RC Reload
Queues

(6)

)

A A

SNP
Queues
4

32B

A4

Castout
Queues

(6)

MUX(S)

16 B

A4

A

16 B

INT/CO/PSH_DATA

Bus Interface (BIU)

Bus Data

Storage Subsystem
Page 92 of 415

A

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

3.5.2.1 Cache Coherency

The cache-coherency protocol used in the L2 cache is standard MERSI as defined in Table 3-4.

Table 3-4. Cache-Coherency Protocol

Status Bit Name Meaning
M Modified The cache block is modified with respect to the rest of the memory subsystem.
E Exclusive The cache block is not cached in any other cache.
R! Recent The cache block is shared and this processor is the most recent reader of the cache block.
S Shared The cache block was (and still might be) cached by multiple processors.
| Invalid The cache block is invalid.

1. Implementation Note: The 970MP microprocessor supports a cache-coherency mode in which the R state is not used. R is
replaced with shared-last (SL).

3.5.2.2 Cache-Coherency Paradoxes

In the 970MP processing unit, some parts of cache-inhibited operations are handled by a special section of
logic that does not access the caches as part of its normal operation. As a result, if data associated with
cache-inhibited operations is present in the caches (causing a cache-coherency paradox), the 970MP
processing unit will bypass some of the caches. This introduces the possibility of observing stale data (more
specifically, the 970MP processing unit will read from and write to the L1 D-cache if it hits, but it will bypass
the L2 cache completely).

3.5.2.3 Cache State Transition Tables

Table 3-5 and Table 3-6 on page 94 show the cache state transitions that occur as a result of processor
instructions and snooped bus operations.

Table 3-5. 970MP L2 Cache State Transitions Due to Processor Instructions (Page 1 of 2)

Number Instruction Storage Mode Coherency State Bus Operation AResp In Comment
1 Id, dcb Ca M, E, SR
2 larx Ca M, E, SR
3 Id, dcbt, larx Ca |- 8" E Read Cache Line S, Null Atomic if LARX
4 Id, larx, NonCa Read Noncache Line Atomic if LARX
5 dcbt NonCa No-op
6 st, dcbtst, stex Ca M—-M
7 st, stcx Ca E—-M
8 dcbtst Ca E—>E
9 st, dcbtst, stex Ca S,R—>M DClaim Atomic if STCX
10 st, dcbtst, stex Ca |- M RWITM RTY Atomic if STCX
11 st, stcx NonCa Write with Flush Atomic if STCX
12 | Deallocate Ca Mol Write with Kil Copyback, W =0
Note: Ca: cacheable; | = ‘0’. NonCa: noncacheable; | = ‘1’. S* means R if enabled.
Version 2.3 Storage Subsystem

March 7, 2008 Page 93 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 3-5. 970MP L2 Cache State Transitions Due to Processor Instructions (Page 2 of 2)

Number Instruction Storage Mode Coherency State Bus Operation AResp In Comment
13 Deallocate Ca E,S -1
14 | dcbf Ca M- Write with Kill W=1 M=
15 | dcbf Ca E—I
16 | dcbf Ca LS, R—1 Flush Block
17 dcbst Ca M-S, E Write with Clean Cache > E
18 | dcbst Ca E,R,S—>ER,S —ER
19 dcbst Ca | Clean
20 dcbz Ca EM—>M
21 dcbz Ca ,S—M DClaim
22 | dcbz-32byte Ca 32 bytes, treated as
23 icbi IKill
Note: Ca: cacheable; | = ‘0’. NonCa: noncacheable; | = ‘1’. S* means R if enabled.
Table 3-6. 970MP L2 Cache State Transitions Due to Bus Operations (Page 1 of 2)
Number Bus Operation Sgct):t%er Rsrv State Agifp AF:ﬁSp Comments
1 N=1,8="0 M-S M M Causes C — M — C data-only
2 N=,8="1 M= E M M operation (Intervention).
Read Burst
3 N=1.8=C E,R—>S Shrl Shrl Causes C — C intervention.
4 N=1,8S="7 E,R—->ER Shrl Shrl Causes C — C intervention.
5 N=0,S=0 M= S Retry Retry ?Pe:jusshe).s Write with Clean
6 Read Non Burst N=0,S=1 M= E Retry Retry (CPELusShe).S Write with Clean
7 N=0,8S=0 E,R—>S S S Reader can go to R state.
8 N=‘0,8S="1 E,R—>ER S S Reader will go to S state.
9 S
Any Read R=0
10
R=1 S
N="1 M- M M Causes C — C intervention.
" N="1 E,R—I Shdl Shdl Causes C — C intervention.
12 RWITM N=0 M- Retry Retry Causes Write with Kill (Push).
13 N="0 E,R—I Null N says do not intervene.
14 IS — I
15 | Write-with-Kill, DKill, DClaim IESM — |
16 M= Retry Retry Causes Write with Kill (Push).
Write-with-Flush
17 ISE — |
Storage Subsystem Version 2.3

Page 94 of 415 March 7, 2008

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor

Table 3-6. 970MP L2 Cache State Transitions Due to Bus Operations (Page 2 of 2)

Snooper AResp | AResp

Number Bus Operation State Rsrv State out In Comments
18 M= M Causes Write with Kill (Push).
Flush
19 ISER — |
Causes Write with Clean.
20 Clean M-S, E M M="0
Cache - E
E,R, S—
21 Clean ERS S —ER
22 Clean I 1 Null
23 SYNC, TLBSYNC Retry Retry until done. Null when
Null done.
Version 2.3 Storage Subsystem

March 7, 2008 Page 95 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor
3.5.3 Data Prefetch

Software can manage the data prefetch hardware by using special forms of the debt instruction. Two forms of
dcbt variants are implemented in each 970MP processing unit.
3.5.3.1 Optional dcbt Variant

The architecture describes the first debt variant as optional. This version of the instruction includes a 2-bit
Touch Hint (TH) field (instruction bits 9 - 10), which permits a program to provide a hint regarding a sequence
of data cache blocks. Such a sequence is called a “data stream.” A dcbt instruction in which TH does not
equal ‘00’ is called a “data stream variant” of decbt.

Figure 3-3 shows the instruction format and interpretation of the TH field for this dcbt variant.

Figure 3-3. Data Cache Block Touch X-Form (Optional Variant)
dcbt RA,RB,TH

31 " TH RA RB 278 /
0 6 9 11 16 21 31

Let the effective address (EA) be the sum (RA | 0) + (RB).
TH Description
00 The program will probably soon load from the block containing the byte addressed by the EA.

01 The program will probably soon load from the data stream consisting of the block containing the
byte addressed by the EA and an unlimited number of sequentially following blocks (that is, con-
sisting of the blocks containing the bytes addressed by EA + n x block_size; where n equals 0, 1,

2,...).
10 Reserved
11 The program will probably soon load from the data stream consisting of the block containing the

byte addressed by the EA and an unlimited number of sequentially preceding blocks (that is, con-
sisting of the blocks containing the bytes addressed by EA - n x block_size; where n equals 0, 1,
2,...).

Restrictions

For the data stream variant cases (TH equals ‘01’ or TH equals ‘11°), prefetching the stream starts even if
the first block of the stream is already in the L1 data cache.

Storage Subsystem Version 2.3
Page 96 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

3.5.3.2 Enhanced dcbt Variant

An additional variant of the debt instruction is implemented in each 970MP processing unit. In this version,
the TH field is extended to four bits (instruction bits 7 - 10) to provide the additional variant of debt. Note that
the 2-bit optional variant of the software touch is a subset of the 4-bit extended version.

Figure 3-4 on page 97 provides a brief description of this variant.
Figure 3-4. Data Cache Block Touch X-Form (Enhanced Variant) (Page 1 of 2)

dcbt RARB,TH

31 / TH RA RB 278 /
0 6 7 11 16 21 31

Let the effective address (EA) be the sum (RA | 0) + (RB).
TH Description
0000 The program will probably soon load from the block containing the byte addressed by the EA.

0001 The program will probably soon load from the data stream consisting of the block containing the
byte addressed by the EA and an unlimited number of sequentially following blocks (that is, con-
sisting of the blocks containing the bytes addressed by EA + n x block_size, where nequals 0, 1,
2,...).

0011 The program will probably soon load from the data stream consisting of the block containing the
byte addressed by EA and an unlimited number of sequentially preceding blocks (that is, consist-
ing of the blocks containing the bytes addressed by EA - n x block_size, where nequals 0, 1, 2,...).

1000 The dcbt instruction provides a hint that describes certain attributes of a data stream, and option-
ally indicates that the program will probably soon load from the stream. The EA, in this case, is
interpreted as follows:

EA_TRUNC D UG / ID
0 56 57 58 59 60 63

Bits Field Name | Description

High-order 57 bits of the effective address of the first unit of the data stream. The low-order seven

R EA_TRUNC bits of that effective address are zero.

Direction
57 D 0 Subsequent units are the sequentially following units.
1 Subsequent units are the sequentially preceding units.
0 No information is provided by the UG field.
58 UG 1 The number of units in the data stream is unlimited, the program’s need for each block of
the stream is not likely to be transient, and the program will probably soon load from the
stream.
59 — Reserved
60:63 ID Stream ID to use for this data stream.
Version 2.3 Storage Subsystem

March 7, 2008 Page 97 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 3-4. Data Cache Block Touch X-Form (Enhanced Variant) (Page 2 of 2)

1010 The dcbt instruction provides a hint that describes certain attributes of a data stream, or indi-
cates that the program will probably soon load from data streams that have been described
using dctb instructions in which TH[0] equals ‘1°, or will probably no longer load from such data
streams.

The EA is interpreted as follows. If GO equals ‘1’ and S # ‘00’ the hint provided by the instruction
is undefined; the remainder of this instruction description assumes that this combination is not

used. A completely described stream is one that has been described with both a ‘1000’ TH val-
ues (specifying starting address and direction of the stream) and a ‘1010’ TH value (specifying
the length and transience of the stream).

Bits Field Name Description
0:31 — Reserved.
0 No information is provided by this field.
32 GO 1 The program will probably soon load from all completely described streams, and will probably
no longer load from any partially defined streams. All other fields of the EA are ignored.
00 No information is provided by this field.
01 Reserved
33:34 S 10 The program will probably no longer load from the data stream (if any) associated with the
' specified stream ID. All other fields of the EA except ID are ignored.
11 The program will probably no longer load from the data streams associated with all stream
IDs. All other fields of the EA are ignored.
35:46 — Reserved.
47:56 Unit_cnt Number of (aligned 128 B) units in the data stream.
57 T 0 No information is provided by this field.
1 The program’s need for each unit of the data stream is likely to be transient.
58 U 0 No information is provided by this field.
1 The number of units in the data stream is unlimited. The unit_cnt field is ignored.
59 — Reserved.
60:63 ID Stream ID.

All other TH decodes are reserved.
Restrictions

The TH equals ‘1000’ version of the debt instruction is not recognized when MSR[DR] equals ‘0’.

Storage Subsystem Version 2.3
Page 98 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

4. Exceptions

The operating environment architecture (OEA) portion of the PowerPC Architecture defines the mechanism
by which PowerPC processors implement exceptions (referred to as interrupts in the architecture specifica-
tion). Exception conditions can be defined at other levels of the architecture. For example, the user instruction
set architecture (UISA) defines conditions that can cause floating-point exceptions; the OEA defines the
mechanism by which the exception is taken.

The PowerPC exception mechanism allows the processor to change to supervisor state as a result of unusual
conditions arising in the execution of instructions and from external signals, bus errors, or various internal
conditions. When exceptions occur, information about the state of the processor is saved to certain registers
and the processor begins execution at an address (exception vector) predetermined for each exception.
Processing of exceptions begins in supervisor mode.

Although multiple exception conditions can map to a single exception vector, often a more specific condition
can be determined by examining a register associated with the exception—for example, the Data Storage
Interrupt Status Register (DSISR) and the Floating-Point Status and Control Register (FPSCR). The high-
order bits of the Machine State Register (MSR) are also set for some exceptions. Software can explicitly
enable or disable some exception conditions.

The PowerPC Architecture requires that exceptions be taken in program order. Therefore, although a partic-
ular implementation can recognize exception conditions out-of-order, they are handled strictly in-order with
respect to the instruction stream. When an instruction-caused exception is recognized, any unexecuted
instructions that appear earlier in the instruction stream, including any that have not yet entered the execute
state, are required to complete before the exception is taken. For example, if a single instruction encounters
multiple exception conditions, those exceptions are taken and handled based on the priority of the exception.
Likewise, exceptions that are asynchronous and precise are recognized when they occur, but are not handled
until all instructions currently in the execute stage successfully complete execution and report their results.

To prevent loss of state information, exception handlers must save the information stored in the Machine
Status Save/Restore Registers, SRR0O and SRR1, soon after the exception is taken to prevent this informa-
tion from being lost due to another exception being taken. Because exceptions can occur while an exception
handler routine is executing, multiple exceptions can become nested. It is up to the exception handler to save
the necessary state information if control is to return to the excepting program.

In many cases, after the exception handler returns, there is an attempt to execute the instruction that caused
the exception (such as a page fault). Instruction execution continues until the next exception condition is
encountered. Recognizing and handling exception conditions sequentially guarantees that the machine state
is recoverable and processing can resume without losing instruction results.

In this book, the following terms are used to describe the stages of exception processing.

Recognition Exception recognition occurs when the condition that can cause an exception is identified by
the processor.

Taken An exception is said to be taken when control of instruction execution is passed to the excep-
tion handler. That is, the context is saved and the instruction at the appropriate vector offset
is fetched and the exception handler routine is begun in supervisor mode.

Handling Exception handling is performed by the software linked to the appropriate vector offset.
Exception handling is begun in supervisor mode (referred to as privileged state in the archi-
tecture specification).

Version 2.3 Exceptions
March 7, 2008 Page 99 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Note: The PowerPC Architecture documentation refers to exceptions as interrupts. In this book, the term
“‘interrupt” is reserved to refer to asynchronous exceptions and sometimes to the event that causes the
exception. The PowerPC Architecture also uses the word “exception” to refer to IEEE-defined floating-point
exception conditions that might cause a program exception to be taken (see the PowerPC Microprocessor
Family: The Programming Environments manual for more information). The occurrence of these IEEE excep-
tions might not cause an exception to be taken. IEEE-defined exceptions are referred to as IEEE floating-
point exceptions or floating-point exceptions.

Note: Previous PowerPC microprocessors supported specifying the base real address by using the excep-
tion prefix field, MSR[IP]. The 970MP microprocessor does not support this.

4.1 970MP Microprocessor Exceptions

As specified by the PowerPC Architecture, exceptions can be either precise or imprecise and either synchro-
nous or asynchronous. Asynchronous exceptions are caused by events external to the processor’s execu-
tion; synchronous exceptions are caused by instructions. The types of exceptions are shown in Table 4-1.

Note: All exceptions except for the maintenance exception and performance monitor exception are defined,
at least to some extent, by the PowerPC Architecture.

Table 4-1. 970MP Microprocessor Exception Classifications

Synchronous/Asynchronous Precise/Imprecise Exception Types
Asynchronous, nonmaskable Imprecise Machine check, system reset
Asynchronous, maskable Precise External interrupt, decrementer, maintenance exception, performance

monitor exception

Synchronous Precise Instruction-caused exceptions

These classifications are discussed in greater detail in Section 4.2 on page 103. For a better understanding
of precise exceptions, see Chapter 6, “Exceptions” of the PowerPC Microprocessor Family: The Program-
ming Environments manual. Exceptions implemented in the 970MP microprocessor, and conditions that
cause them, are listed in Table 4-2 Exceptions and Conditions on page 101.

Exceptions Version 2.3
Page 100 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 4-2. Exceptions and Conditions (Page 1 of 2)

Exception Type

System reset

Machine check

Data storage

Data segment

Instruction storage

Instruction segment

External interrupt

Alignment

Program

Floating-point
unavailable

Decrementer

Hypervisor
decrementer

System call

Trace

Performance monitor

VPU unavailable

Version 2.3
March 7, 2008

Vector Offset
(hexadecimal)

00100

00200

00300

00380

00400

00480

00500

00600

00700

00800

00900

00980

00C00

00D00

00F00

00F20

Causing Conditions

Either the assertion of the soft reset input pin or an SCOM command sequence for “soft
reset.” See Section 4.5.1 System Reset Exception on page 110.

There are many causes of a machine check exception. See Section 4.5.2 Machine Check
Exceptions on page 111.

Page fault, as defined in the PowerPC Architecture. See Section 4.5.3 Data Storage
Exception on page 113.

Data segment fault, as defined in the PowerPC Architecture. See Section 4.5.4 Data Seg-
ment Exception on page 113.

Page fault, as defined in the PowerPC Architecture. See Section 4.5.5 Instruction Storage
Exception on page 113.

Instruction segment fault, as defined in the PowerPC Architecture. See Section 4.5.6
Instruction Segment Exception on page 113.

Assertion of the external interrupt input signal. See Section 4.5.7 External Interrupt
Exception on page 114.

There are many causes of an alignment exception. See Section 4.5.8 Alignment Excep-
tion on page 114.

As defined by the PowerPC Architecture (for example, an instruction opcode error). See
Section 4.5.9 Program Exception on page 114.

As defined by the PowerPC Architecture. See Section 4.5.10 Floating-Point Unavailable
Exception on page 115.

As defined by the PowerPC Architecture. When the most-significant bit of the Decre-
menter Register (DEC) changes to ‘1’ and MSR[EE] equals ‘1’, it is the responsibility of
the service routine for the decrementer exception to clear DEC[0]. See Section 4.5.11
Decrementer Exception on page 115.

The Hypervisor Decrementer is similar to the decrementer and is used to return control to
the hypervisor. This interrupt is activated when no higher priority interrupt is active and
MSRI[EE]="1’ or MSR[HV]="0" and the Hypervisor Decrementer is negative (HDEC[0]="1").
This is a level sensitive interrupt and as such it is the responsibility of the interrupt service
routine to clear HDECJ[O0].

Execution of the System Call (sc) instruction. See Section 4.5.12 System Call Exception
on page 115.

MSR[SE] equals ‘1’ or MSR[BE] equals ‘1’, and a trace-marked instruction successfully
completes. See Section 4.5.13 Trace Exception on page 115.

The MSR[EE] bit is set, the MMCRO[PMXE] bit is set, and any of the performance monitor
counters overflow. The performance monitor exception can also be triggered by the ‘0’ to
‘1’ transition of a particular time-base bit. See Section 4.5.14 Performance Monitor
Exception on page 116.

No higher priority exception exists, an attempt is made to execute a vector instruction,
and MSRI[VP] equals ‘0. See Section 4.5.15 VPU Unavailable Exception on page 117.

Exceptions
Page 101 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 4-2. Exceptions and Conditions (Page 2 of 2)

Exception Type (\P:eef(g)dr e(():if:‘r?glt) Causing Conditions

PowerPC 970MP microprocessor does not support a visible form of the instruction
Instruction address 01300 address breakpoint facility. The instruction address breakpoint feature is accessible
breakpoint through the support processor interface. See Section 4.5.16 Instruction Address Break-

point Exception on page 117.

This exception can be signaled by a number of internal events, as well as by explicit com-
Maintenance 01600 mands from the support processor. See Section 4.5.17 Maintenance Exception on

page 117.

This exception occurs when operating in Java mode and the input operands or the result
VPU assist 01700 of an operation are denormalized. See Section 4.5.18 VPU Assist Exception on

page 118.

Exceptions Version 2.3
Page 102 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

4.2 Exception Recognition and Priorities

Exceptions are roughly prioritized by exception class, as follows.

* Nonmaskable, asynchronous exceptions have priority over all other exceptions. These are system reset
and machine check exceptions. These exceptions cannot be delayed and do not wait for completion of
any precise exception handling. (However, the machine check exception condition can be disabled so the
condition causes the processor to go directly into the checkstop1 state).

* Synchronous, precise exceptions are caused by instructions and are taken in strict program order.

* Imprecise exceptions (imprecise mode floating-point enabled exceptions) are caused by instructions, and
they are delayed until higher priority exceptions are taken.

Note: The 970MP microprocessor does not implement an exception of this type.

¢ Maskable asynchronous exceptions (external, decrementer, maintenance, performance monitor, and
exceptions) are delayed if higher priority exceptions are taken.

Section 4.3 Exception Processing on page 105 describes how the 970MP microprocessor handles excep-
tions up to the point of signalling the appropriate interrupt to occur. Note that a recoverable state is reached if
the completed store queue is empty (drained, not cancelled) and any instruction that is next in program order
and has been signaled to complete has completed. If MSR[RI] equals ‘0’, the 970MP processing unit is in a
nonrecoverable state. Also, instruction completion is defined as updating all architectural registers associated
with that instruction, and then removing that instruction from the completion buffer.

4.2.1 Exception Priorities

The following list is a summary of the exception priorities for the 970MP microprocessor:
1. System reset exception
2. Machine check exception
3. Instruction dependent (as follows)

* Fixed-point loads and stores
— Mode dependent loads and stores
(1) Hlegal instruction type of program exception
(2) Privileged type of program exception (for example, MSR[PR] set to‘1’)
Data segment exception
Data storage exception
Alignment exception
Trace exception

¢ Floating-point loads and stores

— Floating-point unavailable exception
Data segment exception
Data storage exception (DSI)
Alignment exception
Trace exception

* Other floating-point instructions
— Floating-point unavailable exception

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.

Version 2.3 Exceptions
March 7, 2008 Page 103 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

— Precise-mode, floating-point-enabled, exceptions type of program exception
— Trace exception

¢ Vector instructions
— VPU unavailable exception
— Trace exception

Return from Exception Doubleword (rfid) instruction, Move to Machine State Register (mtmsr), Move
to Machine State Register Doubleword (mtmsrd)

— Precise-mode, floating-point-enabled, exceptions type of program exception

— Trace exception (for mtmsr or mtmsrd only)

Other instructions

— Exceptions that are mutually exclusive and the same priority:
(1) Trap type of program exception
(2) System call
(3) Privileged instruction type of program exception
(4) lllegal instruction type of program exception

— Trace exception

— VPU assist exception

¢ Instruction segment exception
¢ Instruction storage exception
4. Maintenance exception
5. External interrupt
6. Performance monitor exception

7. Decrementer exception

Exceptions Version 2.3
Page 104 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

4.3 Exception Processing

When an exception is taken, the processor uses SRR0 and SRR1 to save the contents of the MSR for the
current context, and to identify where instruction execution should resume after the exception is handled.

4.3.1 Machine Status Save/Restore Register 0 (SRRO0)

When an exception occurs, the address saved in SRRO determines where instruction processing should
resume when the exception handler returns control to the interrupted process. Depending on the exception,
this might be the address in SRRO or at the next address in the program flow. All instructions in the program
flow preceding this one will have completed execution and no subsequent instruction will have begun execu-
tion. This might be the address of the instruction that caused the exception or the next one (as in the case of
a system call, trace, or trap exception). The SRRO Register is shown below.

SRRO
¢ >
|O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T T
[0 (9]
c 2
[0} (0]
(] (%]
SRRO e &
N vy v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61|62‘63|
Bits Field Name Description
0:61 SRRO Holds the effective address (EA) for the instruction in the interrupted program flow.
62 — Reserved. Returns a zero when read.
63 — Reserved. Returns a zero when read.

4.3.2 Machine Status Save/Restore Register 1 (SRR1)

SRR1 is used to save machine status (selected MSR bits and possibly other status bits as well) on excep-
tions and to restore those values when an rfid instruction is executed. SRR1 is shown below.

SRR1
; >
(01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
SRR1

<
<

v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description

Exception-Specific Information and MSR Bit Values

0:63 SRR1 For most exceptions, bits 33 - 36 and 42 - 47 of SRR1 are loaded with exception-specific informa-
' tion. Bits 0 - 32, 37 - 41, and 48 - 63 of SRR1 are loaded with a copy of the corresponding bits of the
MSR (before taking the exception).

Note: The function of the SRR1 is to save the current state of the machine (that is, the MSR) before a tempo-
rary state is invoked to service exceptions. After the servicing of the exception, the contents of SRR1 are
returned to the MSR and the code stream can continue.

Version 2.3 Exceptions
March 7, 2008 Page 105 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

4.3.3 Machine State Register (MSR)

The format of the 970MP processing unit's MSR is below.

e °
(]]
2 2
[0] (0]
[} (7]
SF & & Reserved
2R 2R 2 g
(01 2[3[4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
el T T el °
[[0] [0)]
2 e 2 2 2
= 3 o -~ & & 3 2 3
Reserved % Reserved 8 & EEPRFPME Y SEBEY £ &£ RDR & E Rl &
N vov ¥ VY Y Y Y Y YN Y Y Y YYYY Y Yoy oVoY
32 33 34 35 36 37[38]39 40 41 42 43 44[4546 47]48[49[50[51 525354]55]56]57 58|59 60 61]62]63]

Bits Name Description

64-bit mode.
0 SF 0 Processor runs in 32-bit mode.
1 Default mode. Processor runs in 64-bit mode.

1:2 — Reserved. Returns zeros when read.

Hypervisor mode. Set when running on a non-partitioned system or when “hypervisor code” is exe-
3 HV cuting on a partitioned system. MSR[HV] can be set to ‘1’ only by the system call instruction and
some interrupts. It can be set to ‘0’ only by the rfid and hrfid instructions.

4:37 — Reserved. Returns zeros when read.

Vector processor available.
0 The processor prevents execution of all vector instructions, including loads, stores, and

38 VP moves. If such execution is attempted, a VPU unavailable exception is raised.

1 The processor can execute all vector instructions.
The Vector Save/Restore Register (VRSAVE) is not protected by MSR[VP]. None of the data
streaming family of instructions (dst, dstt, dstst, dststt, dss, and dssall) are affected by MSR[VP].
39:44 — Reserved. Returns zeros when read.
Power-management enable
45 POW 0 Power management disabled (normal operation mode).
1 Power management enabled (reduced power mode).
46:47 — Reserved. Returns zeros when read.
External exception enable.
0 The processor delays recognition of external exceptions and decrementer exception condi-
tions.

48 EE 1 The processor is enabled to take an external exception or the decrementer exception.
Note: Setting MSR[EE] masks not only the architecture-defined external exception and decre-
menter exceptions, but also the 970MP-specific debug and performance monitor exceptions.
Problem state (user mode).

49 PR 0 The processor is privileged to execute any instruction.

1 The processor can only execute nonprivileged instructions.
Floating-point available.
0 The processor prevents dispatch of floating-point instructions, including floating-point

50 FP loads, stores, and moves.

1 The processor can execute floating-point instructions and can take floating-point enabled
program exceptions.
Exceptions Version 2.3

Page 106 of 415

March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Bits Name Description

Machine check enable.

0 Machine check exceptions are disabled. If one occurs, the system enters checkstop.
1 Machine check exceptions are enabled.

Only rfid instructions can alter MSR[ME].

52 FEO |EEE floating-point exception mode 0.

Single-step trace enable.
0 The processor executes instructions normally.

53 SE 1 The processor generates a single-step trace exception upon the successful execution of
every instruction except rfid, Instruction Cache Synchronize (isync), and sc. Successful
execution means that the instruction caused no other exception.

Branch trace enable.
0 The processor executes branch instructions normally.

1 The processor generates a branch type of trace exception when a branch instruction exe-
cutes successfully.

54 BE

55 FE1 |EEE floating-point exception mode 1.
56 — Reserved. Returns a zero when read.
57 — Reserved. Returns a zero when read.

Instruction address translation.
58 IR 0 Instruction address translation is disabled.
1 Instruction address translation is enabled.

Data address translation

0 Data address translation is disabled. If data stream touch (dst) and data stream touch for
store (dstst) instructions are executed when DR equals ‘0’, the results are boundedly
undefined.

1 Data address translation is enabled. Data stream touch (dst) and data stream touch for
store (dstst) instructions are supported when DR equals ‘1.

59 DR

60 — Reserved. Returns a zero when read.

Performance monitor mode. This register bit is used to enable and disable performance monitor

61 PMM activity controlled by the process mark bit.

Indicates whether a system reset or machine check exception is recoverable.
0 Exception is not recoverable.
62 RI 1 Exception is recoverable.

The Rl bit indicates whether, from the perspective of the processor, it is safe to continue (that is,
processor state data such as that saved to SRRO is valid), but it does not guarantee that the inter-
rupted process is recoverable. Exception handlers must look at SRR1[RI] to determine this.

63 — Reserved. Returns a zero when read.

The 970MP microprocessor provides precise floating-point exceptions whenever either of the floating-point
enabled exception mode bits (MSR[FEOQ] and MSR[FE1]) are set. Table 4-3 IEEE Floating-Point Exception
Mode Bits on page 108 explains how the bits are used to set the mode. In all cases, the 970MP processing
unit aggressively executes the floating-point instructions (even out-of-order as required), and sorts out any
resulting exceptions at completion time. In some cases, due to the group-oriented instruction tracking scheme
used by the 970MP microprocessor, when an exception is detected, the hardware will flush the pipeline and
re-dispatch the instructions individually in order to provide the precise exception. Since this only happens if an
exception is to be taken, it does not represent a measurable decrease in performance.

Version 2.3 Exceptions
March 7, 2008 Page 107 of 415

Us

er's Manual

IBM PowerPC 970MP RISC Microprocessor

Ta

ble 4-3. IEEE Floating-Point Exception Mode Bits
FEO FET Mode
0 0 Floating-point exceptions disabled.
0 1 Imprecise nonrecoverable. For this setting, the 970MP microprocessor operates in floating-point precise mode.
1 0 Imprecise recoverable. For this setting, the 970MP microprocessor operates in floating-point precise mode.
1 1 Floating-point precise mode.

4.3.4 Enabling and Disabling Exceptions

When a condition exists that might cause an exception to be generated, it must be determined whether the

ex

ception is enabled for that condition.

IEEE floating-point enabled exceptions (a type of program exception) are ignored when both MSR[FEO]
and MSR[FE1] are cleared. If either bit is set, all IEEE enabled floating-point exceptions are taken and
cause a program exception.

Asynchronous, maskable exceptions (external, decrementer, performance monitor, and maintenance
exceptions) are enabled by setting MSR[EE]. When MSR[EE] equals ‘0’, recognition of these exception
conditions is delayed. MSR[EE] is cleared automatically when an exception is taken to delay recognition
of conditions causing those exceptions.

A machine check exception can occur only if the machine check enable bit, MSR[ME], is set. If MSR[ME]
is cleared, the processor goes directly into checkstop state when a machine check exception condition
occurs.

System reset exceptions cannot be masked.

4.3.5 Exception Processing Steps

After it is determined that the exception can be taken (by confirming that any instruction-caused exceptions

oC

curring earlier in the instruction stream have been handled, and by confirming that the exception is enabled

for the exception condition), the processor does the following steps:

1

. Loads SRRO with an instruction address that depends on the type of exception. Normally, this is the
instruction that would have completed next had the exception not been taken. See the individual excep-
tion description (Section 4.5 beginning on page 110) for details about how this register is used for specific
exceptions.

2. Loads SRR1[33:36, 42:47] with information specific to the exception type.
3. Loads SRR1[0:32, 37:41, 48:63] with a copy of the corresponding MSR bits (prior to the exception).
4. Sets the MSR as described in Section 4.5 Exception Definitions on page 110. The new values take effect

as the first instruction of the exception-handler routine is fetched.

Note: MSR[IR] and MSR[DR] are cleared for all exception types. Therefore, address translation is dis-
abled for both instruction fetches and data accesses beginning with the first instruction of the exception-
handler routine.

Exceptions Version 2.3
Page 108 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Instruction fetch and execution resumes, using the new MSR value, at a location specific to the exception
type. The location is determined by adding the exception’s vector offset (see Table 4-2 on page 101) to the
value in the Hardware Interrupt Offset Register (HIOR). For a machine check exception that occurs when
MSR[ME] equals ‘0’ (machine check exceptions are disabled), the checkstop state is entered (the machine
stops executing instructions).

4.3.6 Setting the Recoverable Exception in the MSR

The recoverable exception (RI) bit in the MSR was designed to indicate to the exception handler whether the
exception is recoverable. When an exception occurs, the Rl bit is copied from the MSR to SRR1 and cleared
in the MSR. All exceptions are disabled except machine check. If a machine check exception occurs while
MSRI[RI] is clear, a ‘0’ value is found in SRR1[RI] to indicate that the machine state is definitely not recover-
able. When MSRJ[RI] equals ‘1’, the exception is recoverable as far as the current state of the machine and all
programs concerned including noncritical machine checks. Thus, in all exceptions, if SRR1[RI] is cleared, the
machine state is not recoverable. If it is set, the exception is recoverable with respect to the processor and all
programs. An operating system can handle MSR[RI] as follows:

* Use the Special Purpose Registers (SPRG0-SPRG3) to aid in saving the machine state. IBM suggests
pointing SPRGO to a stack save area in memory and saving three General Purpose Registers (GPRs) in
SPRG1-3. Move SPRGO into one of the GPRs that was saved. This GPR now points to the save area in
memory. Move the GPRs, SRR0, SRR1, SPRG1-3, and other registers to be used by the exception rou-
tine into the stack save area. Update SPGRO to point to a new save area. Set MSR[RI] to indicate that
machine state has been saved. Also set MSR[EE] if you want to re-enable external exceptions.

* When exception processing is complete, clear MSR[EE] and MSR[RI]. Adjust SPRGO to point to the stack
saved area, restore the GPRs, SRR0 and SRR1, and any other register that you might have saved, exe-
cute rfid. This returns the processor to the interrupted program.

4.3.7 Returning from an Exception Handler

The rfid instruction performs context synchronization by allowing previously-issued instructions to complete
before returning to the interrupted process. In general, execution of the rfid instruction ensures the following:

¢ All previous instructions have completed to a point where they can no longer cause an exception.

* Previous instructions complete execution in the context (privilege, protection, and address translation)
under which they were issued.

¢ The rfid instruction copies SRR1 bits back into the MSR, and resets the MSR[POW] bit.
* Instructions fetched after this instruction execute in the context established by this instruction.
* Program execution resumes at the instruction indicated by SRRO.

For a complete description of context synchronization, see Chapter 6, “Exceptions” of the PowerPC Micropro-
cessor Family: The Programming Environments manual.

Version 2.3 Exceptions
March 7, 2008 Page 109 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

4.4 Process Switching

The following instructions are useful for restoring proper context during process switching:

* The Synchronize (sync) instruction orders the effects of instruction execution. All instructions previously
initiated appear to have completed before the sync instruction completes, and no subsequent instruc-
tions appear to be initiated until the sync instruction completes.

* The Instruction Cache Synchronize (isync) instruction waits for all previous instructions to complete and
then discards any fetched instructions, causing subsequent instructions to be fetched (or refetched) from
memory and to execute in the context (privilege, translation, and protection) established by the previous
instructions.

¢ The Store Word Conditional Indexed/Store Doubleword Conditional Indexed (stwex./stdcx.) instruction
clears any outstanding reservations, ensuring that a Load Word and Reserve Indexed/Load Double Word
and Reserve Indexed (lwarx/ldarx) instruction in an old process is not paired with an stwex./stdex.
instruction in a new one.

The operating system should set MSR[RI] as described in Section 4.3.6 Setting the Recoverable Exception in
the MSR on page 109.

4.5 Exception Definitions

When an exception/interrupt is taken, all bits in the MSR are set to ‘0’, with the following exceptions:
* Exceptions always set MSR[SF] to ‘1".
¢ Only the machine check exception sets MSR[ME] to ‘0’. All other exceptions leave MSR[ME] unchanged.

The following sections describe the implementation-dependent aspects of the exceptions.

Note: If a description is not provided, the 970MP microprocessor behaves as described in the PowerPC
Architecture books.

4.5.1 System Reset Exception

The system reset exception is a non-maskable, asynchronous exception that is caused by the assertion of
either the soft reset input pin, or by the SCOM command sequence for soft reset.

The Not Hard Reset bit in HIDO[15] can be used to help software distinguish between a hard reset and a soft
reset. To use this capability, software should initially set this bit to a ‘1’. Later, when a system reset exception
is taken, software can check the state of this bit to determine which type of reset occurred. If the bit is still set,
then the reset was a soft reset, and if the bit is a zero, the reset was a hard reset.

Exceptions Version 2.3
Page 110 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

4.5.2 Machine Check Exceptions

The are several possible causes of machine check exceptions in the 970MP microprocessor, some of which
are generally recoverable, and some of which are non-recoverable.

The following causes of machine check exceptions are precise and synchronous with the instruction that
caused the operation that encountered the error (that is, SRRO contains the address of the instruction that
caused the operation).

¢ The detection of a parity error in the L1 data cache (D-cache), the L1 D-cache tag, the data effective-to-
real-address translation (D-ERAT), the translation lookaside buffer (TLB), or the segment lookaside buffer
(SLB) during the execution of a load or store instruction. If the exception is caused by a soft error, then
executing the appropriate sequence of instructions in the machine check handler program will clear the
error condition without causing any loss of state, permitting the interrupted program to resume if MSR[RI]
was a ‘1’ when the instruction that encountered the error was executed.

Note: The L1 D-cache and the L1 D-cache tag parity errors are recovered by hardware in the 970MP
processing unit (default mode), without a machine check interrupt.

* The detection of an uncorrectable error checking and correction (ECC) error in the L2 cache when a load
instruction is executed.

* The detection of an uncorrectable ECC error in the L2 cache while the page table is being searched in the
process of translating an address.

* The detection of erroneous data that is being returned to satisfy a load instruction for which the effective
address specified a location in caching inhibited memory.

For hard errors, these characteristics cannot be reliably provided on a machine check, because it is likely that
the failure will prevent reliable execution. Additionally, a machine check exception that occurs when MSR[ME]
equals ‘0’ results in a checkstop.

In addition, there are a few possible sources for asynchronous machine check exceptions. A machine check
exception is taken when the machine check input pin is asserted, if enabled by setting HIDO[32] to ‘1. The
Fault Isolation Register (FIR), debug logic, and hang recovery logic can also be programmed to induce
machine check exceptions for various error conditions. Since these signals are asynchronous with respect to
the executing program, asynchronous machine checks might or might not be recoverable. Software can use
the MSR[RI] bit to help identify the cases where the machine check exception is recoverable.

Information about the suspected source of the error condition is logged into either the SRR1 Register, the
DSISR Register, or both as defined in Table 4-4 on page 112 for synchronous machine checks.

Version 2.3 Exceptions
March 7, 2008 Page 111 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 4-4. Register Settings for Machine Check Exception

Register Bits

SRRO 0:63

0:41
42
43

SRR1 44:45

46:61
62
63
0:5

7:15
16
17
18
DSISR 19
20
21
22

23

24:31

DAR 0:63

Setting

Effective address of the next instruction that would have executed if the machine check exception
was not taken. When this is a recoverable machine check due to a load that has surfaced an error,
this will be the address of the load instruction itself (the 970MP microprocessor allows the instruction
to execute to surface the error, but inhibits the commitment of the results). When this is a recover-
able machine check due to an instruction fetch surfacing an error, this will be the address of an
instruction that initiated the memory/cache access.

Loaded from MSR.
Exception caused by instruction fetch unit (IFU) detection of a hardware uncorrectable error (UE).
Exception caused by load or store detection of error (see DSISR below).

Exception cause indicated by the following encoding:

00 No error encoded.

01 Exception caused by an SLB parity error detected while translating an instruction fetch
address.

10 Exception caused by a TLB parity error detected while translating an instruction fetch
address.

11 Exception caused by a hardware uncorrectable error (UE) detected while doing a reload of

an instruction-fetch TLB tablewalk.
Loaded from MSR.
Loaded from MSR[62] if recoverable. Otherwise, set to zero.
Loaded from MSR.
All zeros.
Set to ‘1’ for a store or dcbz instruction; otherwise, set to ‘0’.
All zeros.
Exception caused by a UE deferred error (the Data Address Register [DAR] is undefined).
Exception caused by a UE deferred error during a tablewalk (D-side).
Exception was caused by a software-recoverable parity error in the L1 D-cache.
Exception was caused by a software-recoverable parity error in the L1 D-cache tag.
Exception was caused by a software-recoverable parity error in the D-ERAT.
Exception was caused by a software-recoverable parity error in the TLB.
Zero.

Exception was caused by an SLB parity error (might not be recoverable). This condition could occur
if the effective segment ID (ESID) fields of two or more SLB entries contain the same value.

All zeros.

Effective address computed by a load or store instruction that caused the operation that encoun-
tered a parity error in the D-ERAT, TLB, or SLB, or that encountered an uncorrectable error while
attempting to reload a TLB entry. Effective address computed by the load instruction that caused the
operation that encountered a parity error in the L1 D-cache or L1 D-cache tag arrays For all other
types of machine check exceptions, the DAR is undefined (including when the operand of the load
instruction contains a UE).

Note: As mentioned previously, the machine check exception handler is expected to help hardware recover
from certain types of D-cache, D-cache directory, D-ERAT, and TLB errors detected by the hardware. In gen-
eral terms, the exception handler should:

Exceptions
Page 112 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

* Check whether the machine check exception is recoverable by looking at the state of the RI bit in SRR1.

» Determine the type of error that caused the machine check by looking at the state of the SRR1 and
DSISR Registers.

¢ Flush the contents of the array that reported the detected error (this process is slightly different for each
of the possible arrays).

¢ Return to the interrupted process.

If no error is encoded in SRR1[44:45], then the exception is likely caused by an asynchronous machine
check, in which case the exception handler should access the Asynchronous Machine Check Register
through the SCOMC facility.

4.5.3 Data Storage Exception

The 970MP microprocessor implements the data storage exception as described in the PowerPC Architec-
ture (OEA). A DSI exception occurs when no higher priority exception exists and an error condition related to
a data memory access occurs. In case of a TLB miss for a load, store, or cache operation, a DSI exception is
taken if the resulting hardware table search causes a page fault.

When this exception is taken, execution resumes at effective address x‘00300’.

4.5.4 Data Segment Exception

The 970MP microprocessor implements the data segment exception as described in the PowerPC Architec-
ture (OEA). A data segment exception occurs when no higher priority exception exists and a data access
cannot be performed because data address translation is enabled (MSR[DR] is ‘1’) and the effective address
of any byte of the storage location specified by a Load, Store, Instruction Cache Block Invalidate (icbi), Data
Cache Block Set to Zero (dcbz), Data Cache Block Store (debst), Data Cache Block Flush (dcbf), External
Control In Word Indexed (eciwx), or External Control Out Word Indexed (ecowx) instruction cannot be trans-
lated to a virtual address.

When this exception is taken, execution resumes at effective address x‘00380'.

4.5.5 Instruction Storage Exception

The 970MP microprocessor implements the instruction storage exception as described in the PowerPC
Architecture (OEA). An instruction storage interrupt (ISI) exception occurs when no higher priority exception
exists and an attempt to fetch the next instruction fails.

When this exception is taken, execution resumes at effective address x‘00400’.

4.5.6 Instruction Segment Exception

The 970MP microprocessor implements the instruction segment exception as described in the PowerPC
Architecture (OEA). An instruction segment exception occurs when no higher priority exception exists and
next instruction to be executed cannot be fetched because instruction address translation is enabled
(MSR[IR] is ‘1) and the effective address cannot be translated to a virtual address.

When this exception is taken, execution resumes at effective address x‘00480’.

Version 2.3 Exceptions
March 7, 2008 Page 113 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

4.5.7 External Interrupt Exception

In the 970MP microprocessor, an external interrupt is signaled by the assertion of the external interrupt input
signal. The external interrupt signal is expected to remain asserted until the processor has actually taken the
interrupt (failure to meet this requirement might lead the processor to not recognize the interrupt request).

4.5.8 Alignment Exception

An alignment exception is taken if any of the following conditions are detected:

* lwarx, stwex, Load Multiple Word (Imw), Store Multiple Word (stmw) instructions with non-word aligned
addresses

¢ Idarx and stdcx instructions with non-double word aligned addresses
* Imw and stmw instructions to storage marked cache-inhibited

* Load String Word Immediate (Iswi), Load String Word Indexed (Iswx), Store Sting Word Immediate
(stswi), and Store String Word Indexed (stswx) instructions to storage marked cache-inhibited

¢ dcbz to storage marked cache-inhibited (a dcbz to cache-inhibited space is treated as a no-op instead of
causing an alignment interrupt if the dcbz_ieq1_align bit in the mode ring is set to a ‘0’)

* Any load or store to storage marked cache-inhibited that is not naturally aligned
* Floating-point load single instructions that are not word aligned and cross a 32-byte boundary
* Floating-point store instructions that are not word aligned and cross a 4 KB boundary

* When HIDA4[24] is set, some forms of unaligned storage accesses that are normally handled by the hard-
ware are forced to take an alignment exception (to assist in debugging).

Table 4-5. Register Settings for Alignment Exception

Register Bits Setting
0:5 |Unchanged.

DSISR 6 Set to ‘1’ for a store or dcbz instruction; otherwise, set to ‘0’.
7:31 |Unchanged.

Set to the effective address computed by the load or store instruction that caused the alignment
DAR 0:63 | exception.When the exception is caused by an unsupported access to cache-inhibited space, the
DAR will be set to the effective address of the first access into the cache-inhibited space.

4.5.9 Program Exception

The 970MP microprocessor implements the program exception as it is defined by the PowerPC Architecture
(OEA). A program exception occurs when no higher priority exception exists and one or more of the excep-
tion conditions defined in the OEA occur.

The 970MP microprocessor invokes the program exception for a system illegal instruction when it detects any
instruction from the illegal instruction class. The 970MP processing unit fully decodes the special purpose
register (SPR) field of the instruction. If an undefined SPR is specified, a program exception is taken.

When this exception is taken, execution resumes at effective address x‘00700’.

Exceptions Version 2.3
Page 114 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

4.5.10 Floating-Point Unavailable Exception

The floating-point unavailable exception is implemented as defined in the PowerPC Architecture. When a
floating-point unavailable exception is taken, instruction fetching resumes at the location determined by
adding the offset x'00800’ to the HIOR value.

4.5.11 Decrementer Exception

The decrementer exception is implemented as defined in the PowerPC Architecture. A decrementer excep-
tion occurs when no higher priority exception exists, the decrementer is negative (DEC[0] equals ‘1’), and
MSRIEE] equals ‘1’. The decrementer exception is level sensitive. It is the responsibility of the interrupt
service routine to clear DEC[0].

When this exception is taken, execution resumes at effective address x‘0000_0000_0000_0900’.

4.5.12 System Call Exception

The 970MP microprocessor implements the system call exception as described in the PowerPC Architecture
(OEA). A system call exception occurs when a system call (s¢) instruction is executed.

When this exception is taken, execution resumes at effective address x‘00C00’.

4.5.13 Trace Exception

The trace exception is taken when the single-step trace enable bit (MSR[SE]) or the branch trace enable bit
(MSRI[BE]) is set and an instruction successfully completes. After a trace exception is taken, SRR0, SRR1,
Sampled Instruction Address Register (SIAR), and Sampled Data Address Register (SDAR) are set as shown
in Table 4-6.

Table 4-6. Register Settings for Trace Exception

Register Bits Setting
SRRO 0:63 | Set as specified in the architecture.
0:32 |Loaded from the MSR.
33:34 |10’
35 Set for a load instruction; otherwise, cleared. Not set for a zero-length Iswx instruction.
36 Set for a store instruction; otherwise, cleared. Not set for a zero-length stswx instruction.

37:41 | Loaded from the MSR.

SRR 42 Set for a lwarx/ldarx or stwex/stdex instruction; otherwise, cleared.
43 Set to ‘1.
44 Set to ‘0.
45:47 | Setto ‘0.
48:63 | Loaded from the MSR.
SIAR 0:63 |Set to the effective address of the traced instruction.

If the instruction that took the trace interrupt was a storage access instruction, the SDAR is set to
SDAR 0:63 |the effective address of the storage access. SDAR is not set if an X-form Load String or Store String
instruction specifies an operand length of zero.

Version 2.3 Exceptions
March 7, 2008 Page 115 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

If either MSR bits SE or BE is set to ‘1’ by a Return from Interrupt or Move to MSR instruction, the contents of
SIAR and SDAR are undefined until a trace interrupt occurs.

4.5.14 Performance Monitor Exception

The performance monitor exception is signalled when the MSR[EE] bit is set, and a performance monitor
exception condition occurs. See Chapter 10 970MP Performance Monitor for a description of performance
monitor exception conditions.

The following registers are set when a performance monitor exception occurs.

Table 4-7. Register Settings for the Performance Monitor Exception

Register

SRRO

SRR1

SIAR

SDAR

Exceptions
Page 116 of 415

Bits

0:63

0:32
33
34:63

0:63

0:63

Setting

Set to the effective address of the instruction that the processor would have attempted to execute
next if no exception conditions were present.

Loaded from the MSR.
Set to ‘1’ if the contents of the SDAR and the SIAR are associated with the same instruction.
Loaded from the MSR.

Set to the effective address of the marked instruction, where the marked instruction is an instruction
that was executing, possibly out-of-order, at or around the time that the performance monitor excep-
tion occurred. The contents of the SIAR can be altered by the processor if and only if
MMCRO[PMEE] equals ‘1’. Thus, after a performance monitor exception occurs, the contents of
SIAR are not altered by the processor until software sets MMCRO[PMEE] to ‘1°. After software sets
MMCRO[PMEE] to ‘1’, the contents of SIAR are undefined until the next performance monitor
exception occurs.

Set to the effective address of the storage operand of an instruction that was executing, possibly
out-of-order, at or around the time that the performance monitor exception occurred. This storage
operand is called the marked data and might be, but need not be, the storage operand (if any) of the
marked instruction. If the performance monitor exception causes a performance monitor interrupt,
SRR1 indicates whether the marked data is in fact the storage operand of the marked instruction.
The contents of the SDAR can be altered by the processor if and only if MMCRO[PMEE] equals ‘1’.
Thus, after a performance monitor exception occurs, the contents of SDAR are not altered by the
processor until software sets MMCRO[PMEE to ‘1’. After software sets MMCRO[PMEE] to ‘1’, the
contents of SDAR are undefined until the next performance monitor exception occurs.

Version 2.3
March 7, 2008

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor
4.5.15 VPU Unavailable Exception

This exception occurs if there is an attempt to execute any vector instruction, including a vector load or store,
with MSR[VP] negated. After this interrupt, execution resumes at offset x‘0000_0000_0000_0F20’. The
register settings for this interrupt are shown in Table 4-8.

Note: A mtspr or mfspr instruction that references the VRSAVE Register will not cause this interrupt.

Table 4-8. Register Settings for VPU Unavailable Interrupt

Register Bits Setting
SRRO 0:63 | Set to the effective address of the instruction that caused the interrupt.
0:32 |Loaded from the MSR.
33:36 | Set to zeros.
SRR1 37:41 | Loaded from the MSR.
42:47 | Set to zeros.

48:63 | Loaded from the MSR.

4.5.16 Instruction Address Breakpoint Exception

The 970MP microprocessor does not support a visible form of the instruction address breakpoint facility. The
instruction address breakpoint feature is accessible through the support processor interface.

When this exception is taken, execution resumes at effective address x‘01300'.

4.5.17 Maintenance Exception

The 970MP microprocessor provides support for an implementation-dependent maintenance exception. This

exception can be signaled by a number of internal events, as well as by explicit commands from the support
processor.

When this exception is taken, execution resumes at effective address x‘0000_0000_0000_1600’.

This exception is controlled by the MSR[EE] bit in a manner similar to external interrupts. The register
settings for this exception are shown in Table 4-9 on page 117.

Table 4-9. Register Settings for Maintenance Exception
Register Bits Setting

. Set to the effective address of the next instruction that would have executed had the exception not
SRRO 0:63 been taken

0:32 |Loaded from the MSR.
33:36 | Set to zeros.
SRR1 37:41 | Loaded from the MSR.
42:47 |Set to zeros (can be used later to distinguish various causes of exception).

48:63 | Loaded from the MSR.

Version 2.3 Exceptions

March 7, 2008 Page 117 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

4.5.18 VPU Assist Exception

This exception occurs when operating in Java mode and the input operands or the result of an operation are

denormalized.

When this exception is taken, execution resumes at offset x‘0000_0000_0000_1700’.

The register settings for this exception are shown in Table 4-10.

Table 4-10. Register Settings for VPU Assist Exception

Register Bits
SRRO 0:63
0:32
33:36
SRR1 37:41
42:47
48:63
Exceptions

Page 118 of 415

Setting
Set to the effective address of the instruction that caused the exception.
Loaded from the MSR.
Set to zeros.
Loaded from the MSR.
Set to zeros.

Loaded from the MSR.

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

5. Memory Management

This chapter describes the 970MP implementation of the memory management unit (MMU) specifications
provided by the operating environment architecture (OEA) for PowerPC processors. The primary function of
the MMU in a PowerPC processor is the translation of logical (effective) addresses to physical addresses
(referred to as real addresses in the architecture specification) for memory accesses and I/O accesses (I/O
accesses are assumed to be memory-mapped). In addition, the MMU provides access protection on a
segment or page basis. This chapter describes the specific hardware used to implement the MMU model of
the OEA in each of the 970MP processing units. See the PowerPC Operating Environment Architecture
(Book Ill) for a conceptual overview of the memory management model.

Two general types of memory accesses generated by PowerPC processors require address translation—
instruction accesses and data accesses that are generated by load-and-store instructions. Generally, the
address translation mechanism is defined in terms of the segment descriptors and page tables that the
PowerPC processors use to locate the effective-to-physical address mapping for memory accesses. The
segment information translates the effective address to an interim virtual address, and the page table infor-
mation translates the interim virtual address to a physical address.

The segment descriptors, used to generate the interim virtual addresses, reside as segment table entries
(STEs) in memory. Each 970MP processing unit uses a segment lookaside buffer (SLB) on-chip that caches
recently used segment table entries. In addition, a translation lookaside buffer (TLB) is implemented on each
970MP processing unit to keep recently-used page address translations on-chip.

The MMU, together with the exception processing mechanism, provides the necessary support for the oper-
ating system to implement a paged virtual memory environment and to enforce protection of designated
memory areas. Exception processing is described in Chapter 4 Exceptions. Specifically, Section 4.3 Excep-
tion Processing on page 105 describes the Machine State Register (MSR), which controls some of the critical
functions of the MMUs.

5.1 MMU Overview

The 970MP microprocessor implements the memory management specification of the PowerPC operating
environment architecture for 64-bit implementations. The 970MP microprocessor supports a 65-bit virtual
address and a 42-bit physical (real) address.

Basic features of the MMU implementation in the 970MP processing unit as defined by the OEA are:

e Support for real addressing mode—Effective-to-physical address translation can be disabled separately
for data and instruction accesses.

* Segmented address translation—The 64-bit effective address is translated to a 65-bit virtual address.
This 65-bit virtual address space is divided into 4KB or 16 MB pages, each of which can be mapped to a
physical page.

The 970MP microprocessor also provides the following features that are not required by the PowerPC Archi-
tecture:

¢ Unified translation lookaside buffer (TLB)—The 1024-entry, 4-way, set-associative TLB supports:

A new large page architecture (16 MB large pages supported).

Hardware-based reload (from the L2 cache interface in order to ensure no L1 D-cache impact).
Hardware-based update of the reference (R) and change (C) bits in a page table entry (PTE).
Parity protection; precise machine-check interrupt on parity error (software fix-up).

Version 2.3 Memory Management
March 7, 2008 Page 119 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

— Recently-used page address translations cached on-chip.

* Segment lookaside buffer (SLB)—The 64-entry, fully associative SLB supports:
— Software reload of the SLB. An SLB miss results in an interrupt.
— Loaded by the 32-bit PowerPC Segment Register instructions.

¢ TLB invalidation—The 970MP microprocessor implements the optional TLB Invalidate Entry (tlbie) and
TLB Synchronize (tlbsync) instructions, which can be used to invalidate TLB entries. For more informa-
tion about the tlbie and tlbsync instructions.

e Little-endian mode is not supported.

Table 5-1 summarizes the MMU features of the 970MP microprocessor, including those defined by the
PowerPC Architecture (OEA) for 64-bit processors and those specific to the 970MP microprocessor.

Table 5-1. MMU Feature Summary

Architecturally Defined/

970MP-Specific Feature

Feature Category

264

Architecturally defined bytes of effective address

Address ranges 265 pytes of virtual address
970MP-specific
242 bytes of physical address

Architecturally defined 4 KB
Page size
970MP-specific 16 MB
Segment size Architecturally defined 256 MB
Segments selectable as no-execute
Memory protection Architecturally defined
Pages selectable as user or supervisor and read-only or guarded
Page history Architecturally defined Referenced and changed bits defined and maintained
Translations stored as PTEs in hashed page tables in memory
Page address translation Architecturally defined
Page table size determined by a mask in SDR1
.) Instructions for maintaining TLBs (tlbie and tlbsync instructions in the
Architecturally defined 970MP microprocessor)
TLB

970MP-specific <1jgt2a4)-entry, 4-way, set-associative TLB (combined for both instruction and

Page table search support 970MP-specific The 970MP microprocessor performs the table search operation in hard-

ware.
Architecturally defined Stored as STEs in hashed segment tables in memory
Segment descriptors
970MP-specific 64-entry fully associative SLB

Segment table search
support

The 970MP microprocessor provides support for software reload of the

970MP-specific SLB.

5.1.1 Speculative Storage Accesses

The 970MP processing unit is capable of speculatively executing load instructions to non-guarded, cacheable
storage. This can occur when a load instruction is encountered on a predicted branch path, or when a logi-
cally preceding instruction causes an interrupt. As a result, it is possible for a speculative load that misses in
the on-chip cache hierarchy to initiate an external storage request, even if that load instruction is not actually
executed as part of the true instruction stream.

Memory Management Version 2.3
Page 120 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

5.1.2 Storage Protection

When address translation is enabled, the protection mechanism is controlled by the following bits:
* MSR[PR], which distinguishes between supervisor (privileged) state and user (problem) state

* Kg and Kp which are the supervisor (privileged) state and user (problem) state storage key bits in the
SLB entry, used to translate the effective address

» For instruction fetches only:
— the N (no-execute) value used for the access
— the G (guarded) bit in the page table entry used to translate the effective address.
Thus, for an instruction fetch, access is not permitted if the N value is ‘1’ or if G equals ‘1’.

5.1.3 Storage Access Modes

Storage access modes are controlled by the write-through/caching-inhibited/memory-coherency
enforced/guarded bits (WIMG) bits. The 970MP microprocessor does not support the optional W bit or the
optional M bit. All accesses are treated as though W equals ‘0’ and M equals ‘1’ independent of the value of
these bits in the page table. Furthermore, when the hardware is performing a change bit update, it will write
the W bit as ‘0’ and the M bit as ‘1°.

Table 5-2 summarizes the treatment of the WIMG bits in the 970MP processing unit:

Table 5-2. Treatment of WIMG Bits in the 970MP Microprocessor

WIMG Description
Treated as WIMG equals ‘0111, for loads
X Treated as WIMG equals ‘011x’, for stores
x0x1 Treated as WIMG equals ‘0011’
x0x0 Treated as WIMG equals ‘0010’

5.1.4 Support for 32-Bit Operating Systems

The 970MP microprocessor supports most of the optional bridge facilities and instructions for 64-bit imple-
mentations.

The bridge facility can be used to ease the transition to the PowerPC software-managed segment lookaside
buffer (SLB) architecture, from either the Segment Register architecture provided by the 32-bit PowerPC
implementation or the hardware-accessed segment table architecture provided by the 64-bit PowerPC imple-
mentations. The bridge facility permits the operating system to continue to use the 32-bit PowerPC imple-
mentation’s Segment Register manipulation instructions and to continue to use the Address Space Register
(ASR).

Associated with this support, the following optional instructions are supported:

¢ mtsr - Move to Segment Register

e mtsrin - Move to Segment Register Indirect

* mfsr - Move from Segment Register

* mfsrin - Move from Segment Register Indirect

* mtmsr - Move to Machine State Register (32-bit)

Version 2.3 Memory Management
March 7, 2008 Page 121 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

These instructions allow software to associate effective segments 0 through 15 with any of the virtual
segments 0 through 2371, SLB entries 0 - 15 serve as virtual Segment Registers, with SLB entry j used to
emulate Segment Register i. The mtsr and mtsrin instructions move 32 bits from a selected general purpose
register (GPR) to a selected SLB entry. The mfsr and mfsrin instructions move 32 bits from a selected SLB
entry to a selected GPR.

5.2 Real Addressing Mode

If address translation is disabled (MSRJ[IR] equals ‘0’ or MSR[DR] equals ‘0’) for a particular access, the effec-
tive address is treated as the physical address and is passed directly to the memory subsystem. These MSR
bits are forced to ‘1’ when running in user mode.

The WIMG bits for storage access in real addressing mode are determined as follows. The W and M bits are
not supported in the 970MP microprocessor, and are considered to always have values of W equals ‘0’ and M
equals ‘1’. The G bit is always asserted in real addressing mode. For data accesses, bit 23 of Hardware
Implementation-Dependent Register 4 (HID4[23]) determines the value of the | bit in real addressing mode.
For instruction accesses, HID1[10] can be used to force the value of the | bit to '1', although this value applies
to address translation mode as well as to real addressing mode.

Memory Management Version 2.3
Page 122 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

6. Software Optimization Guidelines

This section highlights some 970MP microprocessor characteristics and conditions that should be considered
when developing software.

6.1 Design Characteristics

The 970MP microprocessor has long pipelines with the following characteristics:
* There are six cycles from the instruction fetch to dispatch (dispatch is the sixth cycle).
* Complex instructions are broken down into sequences of simple internal operations.
¢ Some instructions stall in dispatch until certain interlocks are released.
— The primary interlock is called the “non-rename scoreboard” bit.
— Only one scoreboard bit exists for all scoreboarded resources.

— Instructions that write a non-renamed resource set the non-rename scoreboard bit when dispatched
and reset this bit when complete.

— All SPRs are scoreboarded except: LR, CTR, and the following bits in XER: CA, OV.

— Instructions that use or read from the non-renamed registers stall in the dispatch unit until the flag
clears.

¢ Instructions that set the scoreboard also typically end a dispatch group and are completion serialized
(wait until next-to-complete before eligible for execution).

* Dispatch receives groups, which are a unit of tracking.
— Up to 20 groups active after dispatch (80 - 100 PowerPC instructions).

— Four to seven cycles from dispatch to finish.

The 970MP microprocessor has multiple execution units:
¢ Two load/store units (LSU)
¢ Two floating-point units (FPU)
» Two fixed-point units (FXU) (that are symmetric except that FX1 does divides and FX0 does SPR access)
* One branch unit (BRU)

* One condition register unit (CRU)

The 970MP microprocessor utilizes out-of-order execution:
¢ Execution is in-order until dispatch has placed instructions into issue queues.
¢ Instructions issued from queues to execution units are out-of-order.

¢ Instructions complete in order.

Version 2.3 Software Optimization Guidelines
March 7, 2008 Page 123 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

The 970MP microprocessor has the following load/store unit characteristics:
¢ Complicated loads and stores are broken up by decode unit.

— Imw and stmw are converted to a stream of single-register loads and stores. String instructions gen-
erate a similar stream, except that X-form string instructions cause generation of internal operations
to read the byte count field from the XER, causing a dispatch stall if the XER setting instruction has
not executed.

* Problems are handled by flush, refetch group, or dispatch as single-instruction groups.

* Loads that are dependent on a store in the same group cause a flush if forwarding is not possible. This is
because the load must wait until the store has updated the cache, but the cache update must be non-
speculative and can only be done after the store completes. Completion is done on a group basis, and
can only be done when all internal operations (IOPs) in the group have finished. Therefore, the entire
group is flushed. When decoded, the load is forced into a separate group.

¢ Any load with data that crosses a 64-byte boundary (32-byte boundary if a load misses in the L1 cache)
causes flush and microcode expansion. If the offending load is an IOP generated by the microcode
expansion of a string instruction, the entire PowerPC instruction is flushed and re-expanded such that
each register’s data is processed by two loads/stores and a merge.

* Loads dependent upon a store, but executed early (load executes before store), cause a flush.

* Flush and refetch costs about 20 cycles. Misaligned loads usually are flushed twice; once to get the load
isolated in a dispatch group, and the second time to generate the microcoded sequence of IOPs to fetch
the data and splice it together.

* The data prefetch engine can prefetch eight active streams.

The 970MP microprocessor uses the following memory hierarchy for data:
e The L1 data cache is a 32 Kb, 128-byte line with a 2-cycle latency.
— The L1 D-cache is store-through.
— A store miss in the L1 data cache does not establish a line in the L1 D-cache.
— Cache reloads are 32 bytes per cycle.
e The L2 cache is a 1 Mb, 128-byte line.

The 970MP microprocessor decode unit has the following features:
* Processes a stream of PowerPC instructions and forms dispatch groups.
— Branches always force an end of current group.
— Some instructions are forced to be first in a group. For example: divw, CR logical.

» Cracking generates two IOPs from one PowerPC instruction. For example:

All update forms (load/store + add(i) to update register)

X-form fixed-point stores (add + store)

Load algebraic (load + extend sign)

Many record forms (basic arithmetic + compare immediate)

Fixed-point divides

All CR-logicals except destructive forms (rD = rB)

Software Optimization Guidelines Version 2.3
Page 124 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

— Both IOPs of the cracked instruction must be in the same group. This forces the cracked pair to start
a new group if the original instruction was last in the previous group (and there was no room for the
second IOP).

* Microcode: generate three or more IOPs from a single PowerPC instruction.

— Microcoded instructions generate one or more groups, thus forcing an end of the previous group.
For example:

¢ Imw and Iswi (all multiples and string instructions)
e mtcrf (more than one target field)
* mtxer and mfxer
* Some instructions are forced to be first in a group. For example:
— Fixed-point divide (also cracked)
— addc/subfc (also cracked)
— mtspr/mfspr (to satisfy FX0/LSUO/CRU execution requirement)

— CR-logicals (can also be cracked)

The instruction fetch unit (IFU) has the following characteristics:
¢ Fetches are aligned on 8-word blocks

* |t takes three cycles to redirect a fetch from Next-Sequential. For example, there are two dead cycles
between the last fetch of a block containing a branch and fetching the branch target.

* The fetcher cannot handle a new fetch block until all branches in the current block have been recorded in
the branch instruction queue (BIQ) for future resolution. Only branches between the branch target
address and the end of the block are significant. These branches are recorded two per cycle, so the max-
imum time required is four cycles.

Branch prediction has the following characteristics:
¢ Predicts both direction (conditional) and address (to Link or Count).
¢ Highly accurate (95%) for most codes.
¢ Accuracy can be improved with hint bits.
* About 11 cycles are needed to correct a wrong guess.
* Replacing conditional branches with alternative code is likely to be a win (some fixed-point maximum,
minimum, select).
Dispatch, issue, and issue queues have the following characteristics:

* Dispatch performs register renaming (mapping), scoreboard dependency checking, and distribution to
correct the issue queue.

¢ Six instruction queues

FPQO (10 IOPs) feeding FPUO

FPQ1 (10 IOPs) feeding FPU1

FXQO (18 IOPs) feeding FXUO and LSUO
FXQ1 (18 IOPs) feeding FXU1 and LSU1
BRQ (12 IOPs)

CRQ (10 10Ps)

Version 2.3 Software Optimization Guidelines
March 7, 2008 Page 125 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

* There is a fixed relationship between the dispatch group slot and the target instruction queue.

Slot 0: FPQO, FXQO0, CRQ
Slot 1: FPQ1, FXQ1, CRQ
Slot 2: FPQ1, FXQ1

Slot 3: FPQO, FXQO0

Slot 4: BRQ

* In addition, the FX, FP, and CR queues are subdivided into even and odd subqueues. The attached exe-
cution units can obtain IOPs from either subqueue, but IOPs always stay in the subqueue to which they
were initially dispatched. Each subqueue has half the total capacity of the queue. Thus:

Slot 0: FXQO0-O or FPQO0-O or CRQ-O
Slot 1: FXQ1-O or FPQ1-0O or CRQ-E
Slot 2: FXQ1-E or FPQ1-E
Slot 3: FXQO-E or FPQO-E

¢ |OPs are issued from the queues when all operands are ready, and there is an execution unit available;
IOPs can be issued the next cycle after dispatch.

¢ Dependent IOPs cannot be issued back-to-back. That is, dependent instructions can be issued only
every other cycle (assuming that they execute in one cycle)

¢ |OPs can be artificially serialized by being dispatched to the same FX queue. Thus, suboptimal schedul-
ing might cause underutilization of one of two symmetric execution units.

6.2 Software Considerations for the 970MP Microprocessor

Software for the 970MP microprocessor needs to consider the following conditions:
* XER has non-renamed fields.
* X-form string instructions are slowed down; therefore, it is best to avoid these instructions.
e mtxer drains the functional units.

¢ SPRs are not renamed except for CTR, LR, and some XER fields. Referencing non-renamed SPRs
causes pipeline drain.

¢ There is a scoreboard interlock between an mtspr and the next subsequent mfspr such that the mfspr is
held in the dispatch until the scoreboard goes off (when the last mtspr completes).

¢ The mtsr instruction is not recommended, because it is scoreboarded and forces execution serialization.

e The L1 data cache is write-through, and stores the miss in the L1 cache that does not establish the line in
the L1 cache, but establishes only the line in the L2 cache.

* Loads dependent upon previous stores can be slow, and can trigger a flush and refetch. They should be
scheduled, so that they are dispatched in separate groups.

e Store forwarding: If the store data is in the store-reorder queue (SRQ), then the data can be forwarded to
the load (as if the load hit the L1 cache).
This is possible only when the data loaded is completely contained in the data from the store.
For example:
— lw following an stw to the same address

— Ih following an stw to the same address

Software Optimization Guidelines Version 2.3
Page 126 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

— Ibz from any byte in the word stored by an stw

— Iw from one of the words stored by an stfd
If the bytes loaded overlap the bytes stored, then no forwarding can be done, and the load appears to
stall until the store data has been written to the cache. For example:

— Ifd following an stw

— Iw following an sth to the same address

If the store and load are in the same dispatch group, then a flush and refetch is done so that they will be
in different groups to permit completion of the store.

If the load executes before the store address is computed, a flush and refetch occurs. The first
re-executed instruction is the “load/next” after the store. To prevent this, schedule the dependent load
four instructions (or more) after the store.

¢ Because instructions are tracked internally in groups, dependent instructions must be arranged so that
they are in separate groups. This minimizes the length of time the individual instructions are in the execu-
tion section of the machine.

* Use instructions that minimize cracking or microcode expansion. This maximizes utilization of the dis-
patch buffer. For example:

— Use update forms, which are always cracked, if the cracked pair does not cause early group termina-
tion. Using update forms helps to reduce the code footprint in the instruction cache.

— Do not use X-form fixed-point stores (always cracked and sometimes microcoded)
* The granularity of reservations (lwarx/stwex.) is the data cache line, which is 128 bytes.
— Any store by another processor to the same cache line causes the reservation to be lost.

— Atomically updated variables should be carefully placed, because the atomic-update sequences treat
the variable as a reservation cell.

— Lock cells and atomically updated variables must be the sole occupant of a cache line. Read-only
data in same line is refetched from other L2 if any datum has been modified.

¢ Instructions are fetched from the I-cache in aligned 8-word blocks.

— Branch targets must be aligned on 8-word (32-byte) boundaries, where feasible. At a minimum, they
must be aligned on a 4-word (16-byte) boundary, to maximize fetch and decode efficiency.

¢ Use mfspr(sprg0) as a high performance method to validate privileged mode.

Version 2.3 Software Optimization Guidelines
March 7, 2008 Page 127 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Software Optimization Guidelines Version 2.3
Page 128 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

7. Signal Description

This chapter describes the external signals of the 970MP microprocessor. It contains a concise description of
individual signals, showing behavior when the signal is asserted and negated and when the signal is an input
and an output.

Note: A bar over a signal name indicates that the signal is active low. For example, CHKSTOP (checkstop

in/out) and BYPASS (PLL bypass). Active-low signals are referred to as asserted (active) when they are low
and negated when they are high. Signals that are not active low, such as ADIN[0:43] (address bus signals)

are referred to as asserted when they are high and negated when they are low.

The 970MP microprocessor signals are grouped as follows:

Processor interface—These signals are used to transfer address, data, and control information between
the 970MP microprocessor and a companion chip to provide coherent access to memory and access to
memory-mapped I/O.

Processor status and control—These signals are used to monitor and provide external control of various
processor facilities, including the external bus and power management.

Clock control—These signals determine the system clock frequency. They can also be used to synchro-
nize multiprocessor systems.

Interrupts/resets—These signals include the external interrupt signal, checkstop1 signals, and both soft
reset and hard reset signals. They are used to interrupt and to reset the processor under various condi-
tions.

Debug/test interface—The debug/test interface provides a serial interface to the system for performing
debug, bring-up, and manufacturing tests. The JTAG (IEEE 1149.1a-1993) interface and the inter-inte-
grated circuit (IZC) interface provide a serial interface to the system for performing board-level boundary-
scan interconnect tests.

1. Hardware has detected a condition that it cannot resolve and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.

Version 2.3 Signal Description
March 7, 2008 Page 129 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

7.1 Signal Configuration

Figure 7-1 illustrates the configuration of the 970MP microprocessor signals, showing how the signals are
grouped. A pinout showing pin numbers is included in the IBM PowerPC 970MP RISC Microprocessor

Datasheet.

Figure 7-1. 970MP Microprocessor Signal Groups

Processor
Interface

Processor
Status/
Control

Clock
Control

Signal Description
Page 130 of 415

ADIN[0:43] > | 44
< ADOUT[0:43] 44
SRIN[0:1] |2
SRIN[0:1] 2
< SROUTI0:1] 5
< SROUTJ[0:1] 5
CLKIN/CLKIN P
< CLKOUT/CLKOUT 5
< CPO_QREQ 1
< CP1_QREQ 1
CP0O_QACK E
CPT_QACK > [1
TBEN |1
PROCID[0:1] 3
__BUSCFG[0:2] s
< PLL_LOCK 1
CKTERM_DIS >l 1
SYSCLK/SYSCLK >l
PSYNC 11
BYPASS > |1
PLL_MULT > 11
PLL_RANGE[0:] |,

970MP

28

A

CPO_INT

CP1_INT

A

MCP

A

CHKSTOP

A

CPO_HRESET

v

A

CP1_HRESET

A

A

CPO_SRESET

A

CP1_SRESET

ATTENTION

EI_DISABLE

v

A

TRIGGEROUT

JTAG

\4

A

12C

\4

A

DEBUG/TEST

\4

OVppAVpp VO V1

\4

Interrupts/

Reset

Debug/Test
Interface

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

7.2 Signal Descriptions

This section describes individual signals on the 970MP microprocessor, which are grouped as shown in
Figure 7-1 970MP Microprocessor Signal Groups on page 130. In the following section, “cycle” or “clock”
refers to a single bus clock period, which can correspond to one or more internal processor clocks depending
on the clock mode programmed for the 970MP microprocessor.

Note: In PLL-bypass mode, the SYSCLK input signal clocks the internal processor directly, the PLL is dis-
abled, and the bus mode is set to whatever bus mode is selected. This mode is intended for factory use only.

7.2.1 Processor Interface

The processor interface provides a high-speed, source-synchronous, point-to-point connection between the
970MP microprocessor and a companion chip. It consists of two unidirectional sets of signals, one to carry
outgoing information from the 970MP microprocessor, the other to carry incoming information to the 970MP
microprocessor. Each of these two sets of signals consists of a 44-bit bus to transfer logical data with redun-
dancy, a differential clock (two signals), and a 2-bit differential snoop response (four signals).

Chapter 8 provides detailed information about the format and timing of these signals as they are used in the
processor interconnect protocol implemented in the 970MP microprocessor.

7.2.1.1 Address/Data In (ADIN[0:43])-Input

The address/data input signals carry address, data, and control information from the companion chip to the
970MP microprocessor. The 44 bits of ADIN carry 36 bits of address/data (AD) and transfer-handshake (TH)
information plus 8 bits of redundancy.

There are two defined formats for encoding the 36 AD and TH signal lines onto the 44 source-synchronous
bus (SSB) signal lines (see Figure 7-2 Encoding and Selection Logic for the Drive Side of a 970MP Intercon-
nect SSB on page 132). The first format exploits a balanced coding method (BCM) to maintain an equal
number of zeros and ones on the signal lines. During any valid state of the bus, exactly 22 of the signals lines
are high and 22 are low. The BCM advantage is that it dramatically improves the signal-to-noise robustness
of the bus for high-speed operation at the cost of a few extra signal lines. The BCM can inherently detect a
single bit error from any of the 44 signal lines.

The second mode uses 36 of the 44 SSB signal lines for the data transfer. The remaining eight SSB signal
lines are used to encode an 8-bit parity value that has sufficient redundancy to detect up to two bit errors
across any of the 44 SSB signal lines and correctly identify the bit position of any single bit error.

Version 2.3 Signal Description
March 7, 2008 Page 131 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 7-2. Encoding and Selection Logic for the Drive Side of a 970MP Interconnect SSB

|18:22 ,
18 | BC 22
AD —35 .
44 7
THS —3 >
18:22 R
18 BC 22
745 "
_}
. SGL 36 a
7 CHK T 4/

APsel

In BCM mode, the 36 inputs are partitioned between two 18-bit balanced code (BC) encoders. In the alternate mode, the 36
bits pass straight through and 8 parity bits are added to the output. A select signal line, called APsel, is programmed through
the 12C interface to select which mode is used.

Timing: The processor interface is source synchronous, meaning that the same clock that launches data on
the sending end is transferred with the data and used at the receiving end to capture the data. The interface
is run in double data rate (DDR) fashion, with a data transfer on every rising and falling edge of the clock.
Because there is no arbitration on this interface, valid data can be transferred on any clock edge. ADIN uses
CLKIN as its reference.

7.2.1.2 Snoop Response In (SRIN[0:1], SRIN[0:1])—-Input

The snoop-response input signals carry a 2-bit code from the companion chip to the 970MP microprocessor,
indicating the coherency response of the system to an earlier command sent on the ADOUT bus. SRIN and
SRIN represent a differential pair, such that SRIN carries the snoop response in an asserted high signal level
at the same time that SRIN carries the same snoop response in an asserted low signal level.

Timing: Same as ADIN.

7.2.1.3 Clock In (CLKIN/CLKIN)-Input

The CLKIN signal originates in the companion chip and is sent synchronously with the data (ADIN and SRIN)
for use in data capture at the receivers in the 970MP microprocessor. This clock is transmitted as a differen-
tial pair.

Timing: The clock in signal is derived from the on-chip PLL on the companion chip and synchronized to the
psync signal, which provides a periodic global reference event. During the initial alignment procedure (IAP)
for the processor interface, a rising edge of the clock in signal is identified as corresponding to time zero.
Every other rising edge thereafter is a time zero, delimiting the basic unit of time on the bus, in which four
beats of data can be transferred.

Signal Description Version 2.3
Page 132 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

7.2.1.4 Address Data Out (ADOUT[0:43])-Output

The address/data output signals carry address, data, and control information from the 970MP microprocessor
to the companion chip. The 44 bits of ADOUT carry 36 bits of address/data (AD) and transfer-handshake
(TH) information plus 8 bits of redundancy, similarly to ADIN.

Timing: Same as ADIN, except that ADOUT uses CLKOUT as its reference.

7.2.1.5 Snoop Response Out (SROUT/[0:1], SROUT[0:1])-Output

The snoop-response output signals carry a 2-bit code from the 970MP microprocessor to the companion
chip, indicating the coherency response of the processor to an earlier reflected command sent on the ADIN
bus. SROUT and SROUT represent a differential pair, such that SROUT carries the snoop response in an
asserted high signal level at the same time that SROUT carries the same snoop response in an asserted low
signal level.

Timing: Same as ADOUT.

7.2.1.6 Clock Out (CLKOUT/CLKOUT)-Output

The clock out signal originates in the 970MP microprocessor and is sent synchronously with the data
(ADOUT and SROUT) for use in data capture at the receivers in the companion chip. This clock is transmitted
as a differential pair.

Timing: The clock out signal is derived from the on-chip PLL on the 970MP microprocessor and synchronized
to the psync signal, which provides a periodic global reference event. During the IAP for the processor inter-
face, a rising edge of the clock out signal is identified as corresponding to time zero. Every other rising edge
thereafter is a time zero, delimiting the basic unit of time on the bus, in which four beats of data can be trans-
ferred.

7.2.2 Processor Status and Control

7.2.2.1 Quiescent Request (CPO_QREQ and CP1_QREQ)-Output

The CPO_QREQ and CP1_QREQ signals, along with CP0_QACK and CP1_QACK, are used for power
management on the 970MP microprocessor. The QREQ signals have two distinct uses. When a frequency
shift procedure in the power tuning facility is not in progress, assertion of CP0_QREQ for PUO (CP1_QREQ
for PU1) indicates that the 970MP processing unit has entered Doze mode, and is prepared to go into Nap (or
Deep Nap) mode. This signal remains asserted until the 970MP processing unit returns to Run mode.

When a frequency shift procedure in the power tuning facility is in progress, assertion of CPO_QREQ for PUO
(CP1_QREQ for PU1) indicates that the 970MP processing unit is prepared to perform the frequency shift
itself. This signal remains asserted until the 970MP processing unit has completed the frequency shift proce-
dure. See Chapter 9 for more information about frequency shifting in the power tuning facility.

Timing: The CPO_QREQ and CP1_QREQ signals can be asserted or negated by the processor at any time.

Version 2.3 Signal Description
March 7, 2008 Page 133 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

7.2.2.2 Quiescent Acknowledgment (CPO_QACK and CP1_QACK)-Input

The CPO_QACK and CP1_QACK signals, along with CPO_QREQ and CP1_QREQ, are used for power
management on the 970MP microprocessor. The QACK signals have two distinct uses. When a frequency
shift procedure in the power tuning facility is not in progress, assertion of CP0_QACK for PUO (CP1_QACK
for PU1) indicates that all bus activity that requires snooping has stopped, and that the 970MP processing
unit can enter Nap (or Deep Nap) mode. This signal must be negated whenever bus activity requiring
snooping is resumed, or the 970MP processing unit negates QREQ.

When a frequency shift procedure in the power tuning facility is in progress, assertion of CP0_QACK and
CP1_QACK indicates that the rest of the system is prepared to perform the frequency shift itself. This signal
remains asserted until the companion chip has completed the frequency shift procedure. See Chapter 9 for
more information about frequency shifting in the power tuning facility.

Timing: The CPO_QACK signal for PUO (CP1_QACK signal for PU1) is asserted in response to assertion of
the CPO_QREQ signal by PUO (CP1_QREQ signal by PU1). It can be asserted any time QREQ is asserted,
and can be negated at any time.

7.2.2.3 Time-Base Enable (TBEN)-Input

The TBEN input signal can be used in one of two ways, as determined by the value of HIDO[19]. When
HIDO[19] equals ‘0’, the Time-Base Register is incremented and the Decrementer Register is decremented at
1/16th of the full processor frequency whenever TBEN is asserted. These two timer registers maintain their
value when TBEN is negated in this mode.

When HIDO[19] equals ‘1’, the Time-Base Register is incremented and the Decrementer Register decre-
mented on every rising edge of the TBEN input signal. In this externally clocked mode, the TBEN frequency
must not exceed 1/16th the full processor frequency in order to guarantee sufficient sampling of this external
signal.

Timing: The TBEN input is asynchronous to the SYSCLK and processor clocks, and can change at any time,
subject to the previously stated frequency restriction.

7.2.2.4 Processor ID (PROCID[0:1])-Input

The 2-bit processor ID is used to assign unique IDs to the two 970MP processing units in a system that can
have up to eight processors. The PROCID signals are sampled during power-on reset, and the 2-bit value is
placed in the second and third lowest-order bits of the Processor ID Register (PIR) of each processing unit.

The lowest-order PIR bit is hardwired to a '0' for PUO and to '1' for PU1.

Timing: These signals should be permanently tied to Vpp or GND, as appropriate for the required ID value.

7.2.2.5 Bus Configuration Select (BUSCFG[0:2])-Input

The 3-bit BUSCFG input encodes the processor clock to bus clock ratio. It is used to select the appropriate
clock dividers in the 970MP microprocessor in order to generate the required bus clock frequency. Note that
not all encodes work with the power tuning facility (see Chapter 9 for more information). The interpretation of
the BUSCFG values can be found in the IBM PowerPC 970MP RISC Microprocessor Datasheet.

Timing: These signals should be permanently tied to Vpp or GND, as appropriate for the required bus config-
uration value.

Signal Description Version 2.3
Page 134 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

7.2.2.6 PLL Locked (PLL_LOCK)-Output

The PLL_LOCK signal is asserted when the PLL has achieved lock, or when running in bypass mode. The
signal is negated otherwise.

Timing: The PLL_LOCK signal can change at any time. The initial maximum latency for the PLL to achieve
lock is specified in the IBM PowerPC 970MP RISC Microprocessor Datasheet.
7.2.2.7 Clock Receiver Termination (CKTERM_DIS)-Input

The CKTERM_DIS signal allows the internal termination on the SYSCLK and SYSCLK signals to be
disabled. When CKTERM_DIS is negated, the clock in signals are terminated. When the CKTERM_DIS
signal is asserted, the termination of the clock in signals is removed from the receiver circuit.

Timing: This signal should be permanently tied to Vpp or GND, as appropriate for the required clock configu-
ration.

7.2.3 Clock Control

7.2.3.1 System Clock (SYSCLK/SYSCLK)-Input

The SYSCLK inputs provide the reference clock from which the on-chip PLL develops the processor mesh
clock, as well as the bus clock. The system clock is provided to the processor as a differential pair. The mesh
clock frequency is determined by this reference clock and the value of the PLL_MULT input. The bus clock
frequency is determined by the mesh clock frequency and the value of the BUSCFG input. See the IBM
PowerPC 970MP RISC Microprocessor Datasheet for the correspondence between these inputs and the
clock frequency ratios.

Timing: See the IBM PowerPC 970MP RISC Microprocessor Datasheet for clock specifications.

7.2.3.2 Phase Synchronization (psync)-Input

The psync signal provides a synchronization pulse to all processors and companion chips in the system,
providing the basis for identifying a periodic time zero event in each chip.

Timing: See the IBM PowerPC 970MP RISC Microprocessor Datasheet for clock specifications.

7.2.3.3 PLL Bypass (BYPASS)-Input

The BYPASS signal indicates to the processor that the system clock input should be fed directly to the PLL
output, bypassing the PLL. This mode of clocking the processor can be used for debugging.

Timing: To bypass during debug, this signal should be tied to GND.

Version 2.3 Signal Description
March 7, 2008 Page 135 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

7.2.3.4 PLL Multiplier (PLL_MULT)~Input

The PLL_MULT signal is used to specify the ratio of the full processor mesh frequency to the system clock
frequency. See the IBM PowerPC 970MP RISC Microprocessor Datasheet for the correspondence between
the value of this signal and the clock ratio.

Timing: This signal should be permanently tied to Vpp or GND, as appropriate to the required clock configura-
tion.
7.2.3.5 PLL Range Select (PLL_RANGE][0:1])-Input

The PLL_RANGE signal is used to identify the required frequency range of the processor mesh clock. See
the IBM PowerPC 970MP RISC Microprocessor Datasheet for the correspondence between the value of this
signal and the required frequency range.

Timing: This signal should be permanently tied to Vpp or GND, as appropriate to the required clock configura-
tion.
7.2.4 Interrupts and Resets

Most system status signals are input signals that indicate when exceptions are received, when checkstop
conditions have occurred, and when the 970MP microprocessor must be reset.

7.2.4.1 Interrupt (CPO_INT and CP1_INT)-Input

The CPO_INT and CP1_INT signals provide a means for raising an external interrupt. This exception can be
masked by the MSRIEE] bit. When MSR[EE] equals ‘0’, the processing unit will not respond to the assertion
of INT.

7.2.4.2 Machine Check Interrupt (MCP)-Input

The MCP signal provides a means for raising a machine check exception. This exception can be masked by
two control bits. If HIDO[32] equals ‘0, the assertion of MCP is ignored. If HIDO[32] equals ‘1’, and MSR[ME]
equals ‘1’, machine checks are enabled, and the assertion of MCP will result in a machine check exception
being taken. If HIDO[32] equals ‘1’, and MSR[ME] equals ‘0’, machine checks are disabled, and the assertion
of MCP will cause the processor to enter the checkstop state.

Timing: This signal can be asserted at any time, asynchronously to the system clock. Once asserted, the
MCP signal must remain asserted for at least two bus clock cycles to ensure that it is recognized.

7.2.4.3 Checkstop (CHKSTOP) —Bidirectional

The checkstop signal is both an input and an output signal on the 970MP microprocessor.

Checkstop (CHKSTOP) —Input
The checkstop input signal provides a means for external initiation of a checkstop.

Timing: This signal can be asserted at any time, asynchronously to the system clock.

Signal Description Version 2.3
Page 136 of 415 March 7, 2008

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor
Checkstop (CHKSTOP) —Output

The checkstop output signal indicates that the processor has entered the checkstop state.

Timing: This signal can be asserted at any time.

7.2.4.4 Hard Reset (CPO_HRESET and CP1_HRESET)-Input

The CPO_HRESET signal provides a means for resetting PUO and initiating the power-on-reset sequence for
PUO. The CP1_HRESET signal provides a means for resetting PU1 and initiating the power-on-reset
sequence for PU1.

Timing: This signal can be asserted at any time, asynchronously to the system clock.

7.2.4.5 Soft Reset (CPO_SRESET and CP1_SRESET)-Input

The CPO_SRESET and CP1_SRESET signals provide a means for external initiation of the soft (or warm)
reset. When CPO_SRESET is asserted, the PUO responds by taking a system reset exception. When
CP1_SRESET is asserted, the PU1 responds by taking a system reset exception.

Timing: This signal can be asserted at any time, asynchronously to the system clock.
7.2.5 Debug/Test Interface

7.2.5.1 Attention (ATTENTION)-Output

ATTENTION is an output signal from the 970MP microprocessor to the JTAG debugger, used in debug
mode. 1°C SCOM commands are sent directly to PSCOM and do not go through the JTAG TAP engine.
Therefore, when Attention is active, a SCOM read/write command will not be acknowledged with the standard
1°C acknowledgment (ACK) pulse because it is not a primitive test access port (TAP) command.’

7.2.5.2 Processor Interface Disable (EI_DISABLE)-Input

Turns off elasticity in the processor interface bus.

7.2.5.3 Trigger Out (TRIGGEROUT)-Output

TRIGGEROUT is an output signal used to indicate that internal trace collection has begun.

7.2.5.4 JTAG Signals

The IEEE 1149.1 defines a five-wire interface called a test access port (TAP) for communicating with the
boundary scan architecture. The five JTAG signals are: TDI, TDO, TMS, TCK, and TRST.

1. Primitive TAP commands are those that scan the IR or DR in the JTAG engine.

Version 2.3 Signal Description
March 7, 2008 Page 137 of 415

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor

Test Clock (TCK)—Input

TCK is a JTAG test clock, which is separate from the system mesh clock. The TCK only controls the test
access port functions (20 or 30 latches). SYSCLK must always be active to control the interfaces. The rising
edge causes TMS and TDI to be sampled by the Access macro.

Test Data In (TDI)-Input

TDI is a JTAG serial input used to feed test data and test access port instructions.

Test Data Out (TDO)—-Output

TDO is a JTAG serial output used to extract data from the chip under test control.

Test Mode Select (TMS)—-Input

TMS is a JTAG select signal used to control the operation of the JTAG state machine. The value of TMS
during a rising edge of TCK causes a state transition in the TAP controller.

Test Logic Reset (TRST)—Input

TRST is an asynchronous JTAG signal used to reset the JTAG state machine. The TRST signal ensures that
the JTAG logic does not interfere with the normal operation of the chip. The HRESET signal performs the
function of TRST internally.

7.2.5.5 PC Signals
The 970MP I1°C bus conforms to the standard-mode timing specification and does not support high-speed or
fast-mode timing. The 970MP microprocessor has the following 1’C signals:

* 12C Signal Clock (I2CCK)-I°C signal clock is both an input and output signal pin.

* I2C Interface Data (I2CDT)—I20 interface data is both an input and output signal pin.

* I2C Interface Go (I2CGO)-12CGO is an asynchronous, open-drain output signal used to prevent access
collisions between JTAG and I°C. If the level of the interface is low, only JTAG should access the 970MP.
I°C can use the interface if the level is high.

* 12C Select (I2CSEL)-I2CSEL controls the use of the mutually exclusive 1°C or JTAG bus. When asserted,
the I°C bus can be used. Otherwise, the JTAG bus can be used.

7.2.6 Voltage and Ground

The 970MP microprocessor provides the following connections for power and ground:
* OVpp—The OVpp signal provides the supply voltage connection for the drivers and receivers.

* AVpp—AVpp is a power signal that drives the analog sections of the PLL. See the IBM PowerPC 970MP
RISC Microprocessor Datasheet for information about how to use this signal.

* V0—The VO (Vpp) signal provides the supply voltage connection for processor core 0 and the common
logic.

* V1—The V1 (Vpp) signal provides the supply voltage connection for processor core 1.

Signal Description Version 2.3
Page 138 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8. Processor Interconnect Bus

The IBM PowerPC 970MP RISC Microprocessor Processor Interconnect is a bus architecture providing high-
speed, high-performance interconnections for processors, I/O devices, memory subsystems, and bridge
chips. This bus architecture provides a forward-looking, general use, yet cost-effective solution for designing
high-performance IBM PowerPC systems.

At the heart of the processor interconnect bus is a set of unidirectional, point-to-point bus segments, a new
design selected to achieve maximum data transfer rates. The bus segments include two 35-bit address/data
segments (one in each direction), two 1-bit transfer-handshake segments, and two 2-bit snoop-response
segments. New features include:

* Pipelined transactions for reading and writing data and maintaining cache coherency
» Packet protocols for data sharing, data synchronization, and cache snooping

* True split transactions, enabling the master and slave to simultaneously conduct different transactions
with each other

* Wave pipelining to exploit maximum data bandwidth at the electrical interface
The unidirectional segments are the basis for supporting the features previously listed. These buses are

point-to-point connections, carry their own local clock signal (source synchronous), and require no arbitration.
Error detection mechanisms exist for all bus segments.

There are many possible configurations that incorporate different numbers of processors, 1/0O interfaces, and
memory bandwidth, and meet different speed, cost, and power requirements. Figure 8-1 shows an example
of a configuration with two 970MP microprocessors.

Figure 8-1. Processor Interconnect Bus Configuration with Two 970MP Microprocessors

970MP 970MP
1 2
A A
PI1 Pl 2
A 4 Y
L L
North Bridge

The remainder of this section specifies the processor interconnect architecture targeting a dual processor,
dual-ported North Bridge configuration, as shown in Figure 8-1. Using two processor interconnect ports on
the North Bridge enables direct connection of two 970MP microprocessors.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 139 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.1 Overview

The processor interconnect bus consists of a set of unidirectional, point-to-point bus segments for maximum
data transfer rates. No bus-level arbitration is required. An address/data (AD) bus segment, a transfer-hand-
shake (TH) bus segment, and a snoop-response (SR) bus segment exist in each direction, outbound and
inbound. Figure 8-2 shows two 970MP microprocessors connected to a North Bridge using two processor
interconnect buses.

This section frequently uses the terms “packet,” “beat,” “master,” and “slave.” The usage conventions of these
terms are as follows:

¢ Data is transferred across a bus in beats from master to slave. A beat is a timing event relative to the ris-
ing or falling edge of the clock signal. Nominally there are two beats per clock cycle (one for the rising
edge and one for the falling edge).

¢ A packet is the fundamental protocol data unit for the processor interconnect bus. A non-null packet con-
sists of an even number of data elements that are sequentially transferred across a source-synchronous
bus at the rate of one element per bus beat. The number of bits in each data element equals the width of
the bus. Packets are used for sending commands, reading and writing data, maintaining distributed cache
coherency, and transfer-protocol handshaking.

¢ A sender or source of packets for a bus segment is called a master and a receiver or recipient is called a
slave. For example, on an outbound processor bus segment, the North Bridge is the slave and the pro-
cessor is the master. On an inbound processor bus segment, the North Bridge is the master and the pro-
cessor is the slave.

Figure 8-2. Two Microprocessors Connected to a North Bridge

970MP 970MP
1 2
A A A A A A
35 /11 35 [1 2 2 35 11 3511 2 2
ADO THI ADI THO SRO SRI ADO THI ADI THO SRO SRI
\4 v \4 \4 \4 \4

North Bridge (includes Memory Controller and 1/O Interfaces)

Processor Interconnect Bus Version 2.3
Page 140 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.1.1 Packets

Four basic packet types are defined: null packets, command packets, data packets, and transfer-handshake
packets. Non-null packet lengths are always an even number of beats.

Null packets are sent across the address/data bus. For the null packet, all bits are zero. Null packets are
ignored by slave devices.

Command packets are sent across the address/data bus. There are three types of command packets: read-
command packets, write-command packets, and coherency-control packets.

Data packets are also sent across the address/data bus. There are two types of data packets: read-data
packets and write-data packets. A write-data packet immediately follows a write-command packet. A read-
data packet is sent in response to a read-command packet or a cache-coherency snoop operation. A data
read header contains the address of the command, the command type, and transfer details.

Transfer-handshake packets are sent across the transfer-handshake bus. This packet is issued to confirm
receipt and indicate the condition of the received command packet or data packet. Condition encoding
includes Acknowledgment, Retry, Parity Error, or Null/ldle. A transfer-handshake packet is two beats in
length.

See Section 8.2 Packet Transfer Protocol on page 147 for a detailed description of these four packet types.

8.1.2 Bus Segments

An AD bus segment, a TH bus segment, and an SR bus segment exist in each direction, outbound and
inbound. Table 8-1 and the following subsections further describe these signals.

Table 8-1. Processor Interconnect Signal Description

Signal Names Signal Lines ' Mnemonic Description
Address/Data Out 35 ADO Address or data and control information
Transfer Handshake Out 1 THO Acknowledgm_ent packet for command and data packets received on the
address/data in bus
Snoop Response Out 2 SRO Snoop coherency response from the processor
Address/Data In 35 ADI Address or data, and control information
Transfer Handshake In 1 THI Acknowledgment packet for command and data packets received on the

address/data out bus

Snoop Response In 2 SRI Accumulated snoop coherency response from the North Bridge

8.1.2.1 Address/Data Bus Segment

The address/data bus is used to transfer both command packets (containing control information) and data
packets (containing the data to be transferred). The address/data bus consists of one 35-bit outbound
address/data (ADO) bus segment and one 35-bit inbound address/data (ADI) bus segment.

Commands are issued to the bus as 2-beat packets. A read-data packet consists of a 2-beat header followed
by the data payload. The number of beats issued with a data transfer depends on the size of the total
transfer. Data payload is issued to the bus in even multiples of 4-byte wide data beats. Included in the packet
is a bit for special system support and a data error bit.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 141 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.1.2.2 Transfer-Handshake Bus Segment

The transfer-handshake bus sends transfer-handshake packets, which confirm that command or data
packets were received on the address/data bus. The transfer-handshake bus consists of one 1-bit outbound
transfer-handshake (THO) bus segment and one 1-bit inbound transfer-handshake (THI) bus segment. Every
device issuing a command packet, data packet, or reflected command packet to the address/data bus
receives a transfer-handshake packet through the transfer-handshake bus some fixed number of beats after
issuing the command or data packet.

Each transfer-handshake bus segment sends transfer packets for command and data packets transferred in
the opposite direction. That is, the outbound transfer-handshake bus sends acknowledgment packets for the
command and data packets received on the inbound AD bus. There is no dependency or relationship
between packets on the outbound address/data bus and the outbound transfer-handshake bus.

A transfer-handshake packet might result in a command packet being reissued to the bus because a data
buffer in the command queue is full. IBM suggests that the North Bridge implement queues that are deep
enough to minimize the impact of command packet retries on system performance.

A transaction remains active until it has passed all response windows. For write transactions, this includes the
last beat of the data payload. Since commands might be retried for queue or buffer full conditions, transac-
tions that must be ordered cannot be simultaneously in the active state.

A write transaction issued by the processor can be retried. The slave issues two transfer-handshake packets
for a write transaction. The first packet is for the write-command packet and the second for the write-data
packet.

For read transactions, the processor will not retry inbound (memory to processor) transfers. Reflected
commands (that is, snoop requests inbound from the North Bridge to the processor) cannot be retried. This is
necessary to ensure a fixed snoop window is maintained.

8.1.2.3 Snoop-Response Bus Segment

The snoop-response bus supports global snooping activities to maintain cache coherency. A processor uses
this bus to respond to a reflected command packet received on the ADI bus. The snoop-response bus
consists of one 2-bit, outbound snoop-response (SRO) bus segment and one 2-bit, inbound snoop-response
(SRI) bus segment. The bus segments can detect single bit errors.

A snoop response begins when a processor receives a reflected command packet on the ADI bus. The
processor provides a snoop response reporting the coherency status of the request received on the ADI bus
segment. The North Bridge gathers snoop responses from all processors and sends the accumulated snoop
response on the SRI bus segments concurrently to all processors.

8.1.3 Transactions

Three transaction types are defined: read, write, and command-only. Section 8.4 Bus Transactions on
page 163 describes the transactions in detail. The following subsections show the sequence of operations for
these transaction types.

Processor Interconnect Bus Version 2.3
Page 142 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.1.3.1 Read Transaction

Figure 8-3 shows the sequence of operations for a read transaction.

1. The master (requesting processor) issues a read-command packet on the ADO bus segment to request a
full or partial cache line of data from the slave (North Bridge).

2. The slave sends a transfer-handshake packet to the master on the THI bus segment.

3. For cache-coherency purposes, the slave reflects the read-command packet on the ADI bus segment to
all processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment to the slave in response to
the reflected read-command packet.

5. The slave sends the read-data packet on the ADI bus segment to the master.

6. The master sends a transfer-handshake packet on the THO bus segment to the North Bridge in response
to the read-data packet.

The read-data packet transfer ranges from 4 to 34 beats. The first two beats transferred are a header
containing the master’s tag and data packet size. The data payload portion must be transmitted in sequence
with the critical word first. A command packet might then be interjected into the data payload portion on an
even-beat boundary.

Figure 8-3. Read Transaction Timing Diagram

Beat 0 1 2 3
| |
| |
| |

Addr/Data Bus Out I
,a

§ 7 8 9 1‘0 11 1‘2 13 14 15 1§ 1|7 1.8 1‘9 2|0 21 2|2 23 24 25 26
			I I			I						
			I I			I	I					
			I I			I	I					
				I I			I	I				
OmgReadP °ke\} I T	T T N T T @											
.	I I	I I I /am! I		I	I	I N						
Transfer Handshall(e .u Q RN o	_/\Q o											
[T T T [N	Reflected ReadCmd ACK							Note3	DataACKI			
	I	I I			I I						I	I
	I	I I			I I						I	I
	I	I				I I						I
	I	I NI ,				I I						I
	I	I ote I I I	I		I	I	I	I I				
	L Noted \\) @ I					I						
	I I		v		I							
Addr/Data BusIn	———————; XA AT QQQQQ T											
					@ Reflected Read Packet	Read Response Up to128-byte data packet 32 data beats plus two header beats						
T fer Handsh k Bi I‘	I >	I	I						I	I		
ransier Handshake bBus T 1 \(T T T T T T T T T T T T T T T T T T												
	I	I	Cmd ACK		I	I						I

Note 1: Time from the read-command packet to the transfer-handshake packet response is system-dependent and might be different than shown.
Note 2: Time from the read-command to the reflected read request or to read-data packet response is not a fixed value.
Note 3: Time from inbound data packet to outbound transfer-handshake packet response is system-dependent and might be different than shown.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 143 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.1.3.2 Write Transaction

A processor initiates a write transaction to store either a full or partial cache line of data to memory or to an
I/O device. A write transaction consists of a command packet immediately followed by a data packet on the
master's ADO bus segment. The data must be issued to the address/data bus segment in consecutive beats,
but can be paused on an even beat to issue a command packet for a read operation. A write-command
packet cannot be interjected into a write-data packet transfer. Figure 8-4 shows the sequence of operations
for a write transaction.

1. The master (requesting processor) issues a write-command packet on the ADO bus segment to write a
full or partial cache line of data. The write-command packet is immediately followed by a write-data
packet.

2. The slave (North Bridge) sends a transfer-handshake packet on the THI bus segment in response to the
write-command packet.

3. For cache-coherency purposes, the slave reflects the write-command packet on the ADI bus segment to
all processors.

4. Each processor sends a transfer-handshake packet on the THO bus segment to the slave in response to
the reflected write-command packet.

5. The slave sends an acknowledgment packet on the THI bus segment to the master in response to the
write-data packet.

Figure 8-4. Write Transaction Timing Diagram

Beat 01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
| |
| | | | | | | | | | | | | | | | | | |
\ Write Command Packet | Up to128-Byte Write Data Packet |
| | | | | | |

Transfer Handshake Bus Out
Lo

| Cmd ACK

I
ol '
I
Addr/Data Bus Out W‘ (a0 (o X0 X o Ko 0)0)Xo X o =5 0)0 (o X0 X o 0 (o X0 >\|
I
f f .
I I !
@ |
I I I !
I I [

I I

I I

I I

|
|
|
|
|
\ @ 'Reﬂec'ted Wr'ite Cor'-nmand Packet !
| | | | | | | |
| | | | |
| |
|

	CmdACK				

Addr/Data Bus In |
Lo
o

Transfer Handshake Bus In
o
o

SNCEE

| | Data ACK|

Note 1: Time from the outbound write-command f packet to the inbound transfer-handshake packet response is system- dependent and
might be different than shown.

Processor Interconnect Bus Version 2.3
Page 144 of 415 March 7, 2008

Addr/Data Bus In

March 7, 2008

0
I
I

Addr/Data Bus Out:

8.1.3.3 Command-Only Transaction

Figure 8-5 shows the sequence of operations for a command-only transaction.

. The master (requesting processor) issues a command packet to the slave (North Bridge) on the ADO bus

. The slave sends a transfer-handshake packet to the master on the THI bus segment in response to the
command packet.

. For cache-coherency purposes, the slave reflects the command packet on the THI bus segment to all
processors.

. Each processor sends a transfer-handshake packet on the THO bus segment in response to the reflected
command packet.

Figure 8-5. Command-Only Transaction Timing Diagram

1

Transfer Handshake Bus Out

| |
Transfer Handshake Bus In

Note: Time from the coherency-command packet to inbound transfer-handshake packet is system-dependent and
might be different than shown.

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

L—

N
I cmd AcK | I
U

Processor Interconnect Bus
Page 145 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.1.4 Memory and Cache Coherency

8.1.4.1 Physical Memory Size

The PowerPC Architecture supports a maximum physical address bus of 64 bits. The processor interconnect
specification limits the memory addressing to 42 bits. This allows for a maximum address space of
4 terabytes (TBytes).

8.1.4.2 Coherency Protocol

Coherency is maintained using global snoops of all command packets by reflecting command packets from
the North Bridge to the processor. The snoop-response bus is used exclusively for this purpose. This bus
consists of two unidirectional 2-bit bus segments per processor port, and is used to source response out and
receive response in. Responses are sourced at a configurable time after the global snoop. The response in is
sampled at a later time, also configurable. The snooping protocol is detailed in Section 8.3 Snoop Responses
on page 158.

8.1.4.3 Coherency Block Size

The cache line is the smallest increment of memory over which coherency information is maintained. This bus
can support 32-byte, 64-byte, and 128-byte coherency block sizes. The coherency block size is determined
by the target processor. All bus attachments must support this coherency block size for uniform operation.
The I/O must be capable of transferring less than or equal to, but not greater than, the coherency block size
during direct memory access (DMA) transfers to and from coherent memory.

Processor Interconnect Bus Version 2.3
Page 146 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.2 Packet Transfer Protocol

This section defines packet protocols for data sharing, data synchronization, and cache snooping. The
processor interconnect defines four basic packet types: null packets, command packets, data packets, and
transfer-handshake packets.

8.2.1 Command Packet Definition

The command packet transfer protocol specifies how addresses are passed between bus devices. Due to the
narrow width of the bus, this transfer takes two bus beats to complete, thereby allowing one command packet
every two beats.

The command packet consists of a memory address, command type, command size, and command tag. The
command packet is identified on the address/data bus by the detection of the packet start signal and a
packet-type encoding for a command packet. Table 8-2 shows the bit definitions for the address/data bus
during a command-packet transfer.

Table 8-2. Command Packet Description

Beat Bits Description
1 0:1 ‘10’ (Address valid decode).
1 2:6 | Transfer Type (0:4).
1 7:15 | Transfer Tag (0:8).
1 16:17 | Address Modifiers I/S, M (1:2).
1 18:34 | Address (42:58). 17 bits of the 42-bit address.
2 0:1 ‘10’ (Address valid decode).
2 2 Address Modifier W/N (0).
2 3:6 | Transfer Size (0:3).
2 7:26 | Address (22:41). Most-significant 20 bits of the 42 address bits.
2 27:29 | Address Modifiers G, R, P (3:5).
2 30:34 | Address (59:63). Least-significant 5 bits of the 42 address bits.

W: write through, M: memory coherent, N: intervention, A: atomic, R: rerunning, |: cache inhibited, S: noncacheing coherent read,
P: pipelined snoops, G: guarded read.

8.2.1.1 Address Modifiers

Bits 16:17 of beat one, and bit 2 and bits 27:29 of beat two of a command packet contain the address modifier
bits. These bits further describe the type of command packet. In some cases, they must be decoded along
with the Transfer Type bits to determine the operation.

Table 8-3 Transfer Type Encoding on page 149 shows when these bits are used to modify transactions, what
the modification is, and what the values are when they are hard coded. Under certain conditions, some bits
might be sourced from the page table WIM bits (“W” stands for write through, “I” for cache inhibit, “M” for
memory coherence).

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 147 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Address Modifier[0]

The AM[O] bit, when indicated as a W, means that write through is wanted. When the bit is ‘1’, it means that
the data for a write transaction is to be forwarded all the way to system memory or a memory-mapped device.
When the bit is ‘0’, the data must be forwarded at least one cache level toward memory. This bit is normally,
but not always, sourced from the page table.

On a read operation, when indicated as an N, this bit defines whether the master can support intervention on
this request. If intervention is enabled (N equals ‘1°), then the transfer size must be the coherency block size.
(A snooper might not intervene if this bit is reset, and might intervene if it is asserted.)

Address Modifier[1]

The AM[1] bit, when indicated as an I, indicates Cache-Inhibit status. If the bit is ‘1’ in a write-command
packet, it means that the data should not be cached downstream from this processor. When indicated as an
S and the bitis a ‘1’ in a read-command packet, it means that the requesting processor will not cache the data
when received, and memory (or an intervening cache) might still retain the current coherency status.

Address Modifier[2]

The AM[2] bit, when indicated as an M, is always used as the memory coherent indicator or snoop request
signal. If this bit is ‘0’, the horizontal coherency snoopers ignore this transaction, meaning memory is not
coherent or this is a transaction that snoopers do not need to look at (vertical caches need to snoop all snoop-
response [SResp] enabled transactions regardless of the M bit).

Note: This bit should be defined consistently for future transactions that might be architected, as snoopers
will not see any transaction where M equals ‘0’. This bit is frequently sourced from the page table WIM bits

when indicated as an M, but at other times it is hard coded so snoopers see the transaction. For example, it
might be set by an 1/O adapter for coherent I/O.

Address Modifier{3]
The AM[3] bit is used to further define operations. For example, it is used to indicate a write-with-kill versus a
write-with-clean. When indicated as a G, it is used to indicate a guarded read.

Address Modifier[4]

The AM[4] bit, when indicated as an R, means that this transaction has already been issued to the bus once,
and is now being reissued.

Implementation Note: The bit should be set to zero in current implementations of the architecture, to remain
compatible with potential architecture extensions.
Address Modifier[5]

The AM[5] bit, when indicated as a P, means that this transaction can be pipelined for snoop requests and
responses. If P is ‘0’, then command packets are reflected one at a time after the snoop response for
previous command packets are seen by all processors.

Processor Interconnect Bus Version 2.3
Page 148 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.1.2 Transfer Type Field

The transfer type (TType) field indicates the type of command packet that was issued to the bus. The valid
transfer types defined by the processor interconnect bus are shown in Table 8-3. Both the processor and the
North Bridge must support all commands listed in Table 8-3. I/O devices support only a limited subset of the
commands.

Table 8-3. Transfer Type Encoding

Address

(th/?“ii(f;i‘eRr;) Bin ;I;;Il'ypeH ex Bus Operation Code '?:%drﬁzts Pe?yal‘éz d Comments
XXMXRP 00000 00 |Clean CL Mem N M = ‘1’ normally
WIMXRP 00010 02 | Write with Flush WNB Mem Y M = ‘1" normally
XXMXRP 00100 04 |Flush FL Mem N M = ‘1" normally
WXMORP 00110 06 | Write with Kill WBK Mem Y W = X" if from a I/O bridge
WXM1RP 00110 06 | Write with Clean WBC Mem Y W= 1=X,M="0
XXMXRP 01000 08 | SYNC SY Tag N
NSMGRP A1010 | 0OA,1A |Read RD Mem N S = ‘1" means RWNITC
XXMXRP 01100 0C | DKill DK Mem N M=
NXMXRP A1110 | OE,1E [RWITM RWITM Mem N I =X, normally M = ‘1’
XXMX0P 10000 10 | EIEIO El Tag N M="‘0
XXMXXX 10100 14 | Reserved M=0
XXMX0P 11000 18 | TLBIE TI Tag N M='0,P="C
XXMXXX 11100 1C |Reserved M=0
XXMXRP 00001 01 |LARX-Reserve LR Mem N M="‘0
XXMXRP A0011 | 03,13 |DClaim DC Mem N M=1
XXMXXX 001X1 | 05,07 Reserved M="0
XXMXRP 01001 09 | TLBSYNC TS Tag N M=
XXMXXX 01X11 | OB,0F Reserved M="0
XXMXO0P 01101 oD IKill IK Mem N M = ‘1" normally, P = ‘0’
XXMXXX 10001 11 Reserved A M=C
XXMXXX 10010 12 | Reserved N M=
XXMXRP 10101 15 | Deallocate Dir Tag DDT Mem A M=C
XXMXXX 1011X 16,17 | Reserved for customers M=0
XXMXXX 110X1 |19,1B |Reserved M=0
XXMXO0P 11111 |1F Null NUL None N M=
Note:

W: write through, M: memory coherent, N: intervention, A: atomic, R: rerunning, |: cache inhibited, S: noncacheing coherent read,
P: pipelined snoops, G: guarded read, X: drive ‘0’ when driving signal and don’t care when receiving the signal.

Address Field

The address field contains the address associated with the command packet. This field is defined to be 42
bits wide.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 149 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Transfer Size Field

The transfer size field indicates the size of the data packet associated with the command packet. For
command packets that do not have a data packet associated with them, this field is undefined. Table 8-4
defines the encoding for the transfer size field for the commands that require a data packet.

Table 8-4. Transfer Size Encoding

Transfer Size Description Number of Data Beats
0000 8 Bytes 2
0001 1 Byte 2
0010 2 Bytes 2
0011 3 Bytes 2
0100 4 Bytes 2
0101 5 Bytes 2
0110 6 Bytes 2
0111 7 Bytes 2
1000 128 Bytes 32
1001 16 Bytes 4
1010 32 Bytes 8
1011 Reserved
1100 64 Bytes 16
1101 Reserved
1110 Reserved
1111 Reserved

Transfer Tag

Command packets contain a 9-bit transfer tag used to link a command with data. This field is valid for all
transactions to the bus and contains a number (generated by the processor) to identify the read-data packet
on a read transaction and the write-data packet for a write transaction. Explicit tagging of command and data
packets allows a bus device to have multiple concurrent outstanding transactions that require a data packet.
This means that read-data packets can appear out-of-order on the bus so that transactions can complete
when data is available as opposed to returning all data packets in the order the commands were issued. In
addition, the tag can be used to reference the response back to a command in an internal queue of a bus
device. There must only be one outstanding transaction referred to by a tag at any time.

Tag Deallocation For Read Operations

Read transactions use the tag field to identify incoming read-data packets that are associated with the trans-
action. Once a tag is assigned to a read transaction, it cannot be reissued until all the read data has been
received.

Tag Deallocation For Store, Castout, and Push Operations

Address/data command tags remain active until a clean global snoop response is received.

Processor Interconnect Bus Version 2.3
Page 150 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.1.3 Tag Definition

Table 8-5 defines the 9-bit tag that is sent with a command or read-data packet.

Table 8-5. Tag Definition

Bits Field Name Description
0:3 Master number |Master number (one must be reserved for the North Bridge)
4:8 Master tag Tag (one of 32) assigned to the master’s requesting resource

Interjecting Command Packets

Data transfers on the bus are either write-data packets issued with a write-command packet, or read-data
packets. These transfers consist of multiple data beats. When a transfer contains multiple beats of data
payload transfer, a command packet might be interjected on an even-beat boundary. This feature allows new
transactions to be started without having to wait for a long multi-beat data transfer to complete. This protocol
allows read-command packets and coherency-control packets to be interjected. Write, castout, push, partial
write operations, or other data packets cannot be interjected into a multiple-beat data transfer.

8.2.1.4 Command Pacing

It is possible for the processor to issue command packets at a rate faster than the slave can accept. The
slave must then retry the packets so the commands are not lost. This is undesirable because of the additional
bus bandwidth consumed for the retried commands. The North Bridge should implement queues that are
sufficiently deep to minimize the impact of command packet retries on system performance. This scenario
assumes the slaves can handle consecutive data packets, which requires the data buffering to be run at least
at the bus clock speed. To avoid this situation, a command pipeline delay parameter, COMPACE, is defined
for the bus.

The command pipeline delay parameter is a 4-bit field that is programmed into each bus master to indicate
the number of bus beats of delay that must be placed between each command packet on the bus. The delay
is in bus beats (assumed to be even). The allowable range of values for COMPACE and related processor
delay parameters can be found in Table 11-1 Programmable Delay Parameters on page 281. Table 11-1 also
lists North Bridge delay parameters and typical values that these parameters might take on. See

Section 11.2.2 Configurable Parameters on page 279 for additional information about these configurable
delay parameters.

Note: This does not restrict the use of intervening bus beats for data packets.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 151 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.2 Data Packet Definition

The data packet transfer protocol specifies how data is passed between bus devices. A data packet is
defined as an even-numbered beat transfer on the address/data bus. A write-data packet immediately follows
a write-command packet. It is identified on the bus by the data valid decode. A read-data packet has a 2-beat
header that includes the tag and the data size. Typically, read-data packets are sent from the North Bridge to
a processor. However, during intervention, a processor can send a read-data packet to the North Bridge.

A data packet of the minimum size consists of 8 bytes of data and the data error signal (DERR) to validate the
data. Up to 16 pairs of data beats are used to transfer a cache line. Table 8-6 shows the bit definitions for the
read-data packet header on the address/data bus. Table 8-7 shows the bit definitions for the address/data

bus during a data transfer.

Table 8-6. Read-Data Packet Header Description

Beat Bits
1 0:1
1 2:6
1 7:15
1 16:18
1 19:22
1 23:34
2 0:1
2 2
2 3:6
2 7:34

Description
‘11’ (Data and Address valid decode).
Reserved.
Transfer Tag (0:8).
Reserved.
Responder or Intervener ID.
Reserved.
‘11’ (Data and Address valid decode).
Reserved.
Transfer Size (0:3).

Reserved.

Table 8-7. Data Beat Description

Beat Bits
1 0:1
1 2:33
1 34
2 0:1
2 2:33
2 34

Description
‘01’ (Data valid decode).

Next consecutive four bytes of the data packet.

Data error signal (DERR) indicates an off-bus data error; full data transfer is invalid.

‘01’ (Data valid decode).
Next consecutive four bytes of the data packet.

Reserved.

Processor Interconnect Bus

Page 152 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.2.1 Two-Beat Transfers

The processor interconnect supports data transfers of varying lengths. Since the payload portion of all data
packets must be at least two beats, a transfer of less than 8 bytes must be padded with additional data to fill
the 8-byte minimum transfer size. The data on the bus must be address aligned so a request must be sepa-
rated into two requests if an 8-byte address boundary is crossed. A master can transfer from 1 to 8 bytes of
data during this operation. Data is returned in the original memory order. Table 8-8 shows the address restric-
tions for transfers of 1 to 8 bytes.

Table 8-8. Two-Beat Data Transfers

Starting Byte Lanes Data Size
Address[61:63] 00 01 02 03 04 05 06 07
000 - 111 X X X X X X X X 1 Byte
000, 010, 100, 110 X X X X 2 Byte
000 X 3 Byte
000, 100 X X 4 Byte
000 X 8 Byte

Note:

1. ‘X’ is a valid starting position.
2. The operand may not cross a double word boundary.

8.2.2.2 Multi-Beat Transfers

The processor interconnect supports multiple-beat data transfers that are 16, 32, 64, and 128 bytes in length.
All such requests for writes and reads that are less than a full coherency block (128 bytes) must be aligned to
an address boundary equal to the size of the transfer. For read-data transfers that are a full coherency block,
data is returned with the critical 16 bytes first, followed by the remaining data in an interleaved burst order.
The resulting data transfer is a block of data that is aligned to the size of the request.

Data Transfer Format

On read data packet transfers that are a full coherency block, the order of the returned data words depends
on the address that was specified inside the command packet. Each block of the read data packet is trans-
ferred in a sequence of 32-byte data beats. Data ordering is based on the block size. Within a word, data is
always transferred in-order starting with the most-significant byte and ending with the least-significant byte.

Partial write commands with transfer sizes less than 8 bytes cannot cross an 8-byte boundary. All write
commands (including write, castout, push, and partial write) with transfer sizes of 8 bytes or more must be
aligned on an address boundary equal to the size of the transfer.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 153 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 8-9. Packet Ordering for 128-Byte Interleaved Packets on 32-Byte Boundaries

Address (57:59) 128-Byte 16.byte Read Data Transfer 32-byts Foad Data Trandor

000 01234567 0123

001 (Not Valid) 10325476
010 23016745 1032

011 (Not Valid) 32107654
100 45670123 2301

101 (Not Valid) 54761032
110 67452301 3210

111 (Not Valid) 76543210

Table 8-10. Packet Ordering for 32-Byte Interleaved Packets

Address (59:60) Packet Order for 4-Word Read-Data Transfer
00 0123
01 1023
10 2301
11 3210

Interjecting Command Packets

Data transfers on the bus are either write-data packets issued with a write-command packet, or read-data
packets. These transfers consist of multiple data beats. When a transfer contains multiple beats of data
payload, a command packet can be interjected on an even-beat boundary. This feature allows new transac-
tions to be started without having to wait for a long multi-beat data transfer to complete. This specification
allows read-command packets and coherency-control packets to be interjected. Write, castout, push, and
partial write operations, or other data packets cannot be interjected into a multiple-beat data transfer.

Processor Interconnect Bus Version 2.3
Page 154 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.3 Transfer-Handshake Packets

The transfer-handshake bus is used to acknowledge command or data packets that were received on the
inbound bus. Every command and data packet that is received on the inbound bus is acknowledged by a
transfer-handshake packet on the associated outbound transfer-handshake bus. The transfer-handshake
packet occurs a fixed number of beats later. Each transfer-handshake packet is two beats in length.
Table 8-11 shows the handshake encoding for the bus.

Table 8-11. Transfer-Handshake Definition

BeF;?%F,)CI)an:; 1 Description
0 o Null/Idle
1 0 Acknowledge (command/data accepted)
0o 1 Retry (command/data rejected, reissue command)
1 1 Parity error (parity error detected on bus)

The slave sends this acknowledgment packet to the bus n beats after receipt of the last beat of the command
or data packet (n is the minimum number of beats necessary for the slave to receive the data from the bus,
check the command and address, and generate the response). This time is implementation-dependent and
can vary from one device to the next. The master samples the response STATLAT beats after the last beat of
the command or data packet. STATLAT is the number of bus beats between the last beat of the command or
data packet and the first beat of the acknowledgment packet. For example, if the last beat of a command
packet was on beat j and the first beat of the acknowledgment packet occurred on beat k, then the value for
STATLAT would be k-j-1 (see Figure 11-1 on page 280). The STATLAT beat count includes the time required
by the slave to generate the response plus the time that it takes for the packet to be sent and the acknowledg-
ment to be returned. For consistency in design of the processors that attach to this bus, an upper limit is
defined for the time between the master issuing the last beat of the command or data packet to the bus to
when it receives the first beat of the acknowledgment packet (see Table 11-1 on page 281 and the /IBM
PowerPC 970MP RISC Microprocessor Datasheet). This time should be minimized to eliminate unnecessary
delays on commands in the pipeline that have ordering requirements with the current command. The
STATLAT parameter is configured by the inter-integrated circuit (IQC) interface during the bus initialization
phase.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 155 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.3.1 Null Transfer Handshake

The null transfer handshake is the default response from a slave device. If the slave does not drive the
transfer handshake with either an acknowledgment, retry, or parity error, then the response is, by default,
null. The null response can occur due to a slave device timeout or a terminated transaction under certain,
special conditions defined below.

Master:

For the master, this transfer-handshake response from the slave indicates that the command or data packet
that the master sent was not accepted by the slave. Based on the address/data packet type, the master
actions are as follows:

Command packet: The processor responds by going into checkstop.1 If the command was a write
command and the master detects this response before it has completed the full data transfer of the
write-data packet, it can either complete the full data transfer or discard the remaining even-num-
bered data beats for the transfer.

Read-data packet: The processor responds by going into checkstop. A master always transmits full
packets on the bus. The handshake is received after the end of the read-data packet (see Figure 8-3
on page 143).

Note: The error might also result from a timeout while waiting for data or from an incorrect transfer
size by the slave.

Write-data packet: The processor responds by going into checkstop, if the write-command packet
associated with this packet received an acknowledgment transfer handshake from the slave. Other-
wise, the null response is ignored. If the write command is retried by the slave, then the null response
is the correct response for the data packet associated with that write command.

Slave:

The slave issues the null transfer handshake response for the following non-error conditional data packet for
a write command that was retried. The command or data packet is discarded, and status is logged in the
slave for the error case.

8.2.3.2 Transfer-Handshake Acknowledgment

The acknowledgment response indicates that the addressed slave accepted this command or data packet. If
a bus agent2 accepts (acknowledges) a command packet to send to a remote bus, it is responsible for
completing the transaction back to the bus master if the remote bus does not accept the command packet.
For a read transaction, this implies returning data to the master with the data error signal activated. The data
error is signalled by asserting the 35th bit (DERR signal) of the even data beats. For writes, the command
and data packets are discarded. The device must also have a mechanism to signal a machine check indi-
cating that the error occurred.

Master:
For the master, the acknowledgment response indicates that the command or data packet was accepted and
that it might complete execution of the packet transfer. Based on the packet type, the master acts as follows:

1. Hardware has detected a condition that it cannot resolve, and which prevents normal operation. It stops executing instruc-
tions, responding to interrupts, and so on.
2. Bus agents are devices such as the North Bridge, but not switches that might be used to relay command and data packets.

Processor Interconnect Bus Version 2.3
Page 156 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Command packet: For a command packet that results in data being returned by the slave, the
acknowledgment response indicates that the command has been accepted and need not be reissued
to the bus. Inbound data packets to complete the transaction can be received starting in the beat fol-
lowing the response. For a write-data packet, the acknowledgment response indicates that the com-
mand has been accepted. The slave cannot retry the data packet after it accepts the command. That
is, an acknowledgment response for the command packet indicates that the slave has set aside
buffer space for the write-data packet. For command packets, this response indicates that the com-
mand is complete.

Data packets: This response indicates to the master that the data being sent was accepted by the
slave without errors.

Slave:

The slave issues this acknowledgment response when:
¢ The slave received the command packet with a valid transfer type, transfer size, and address.
¢ For write transactions, there is queue space for the command and data.

The slave stores command packets in a command queue and stores data packets in data buffers.

8.2.3.3 Transfer-Handshake Retry

A handshake retry can be issued to flow control the command packets when the slave does not have space
for the command packet or the data packet associated with the command. Any command packet can be
retried by the slave, except for reflected command packets. Data packets may not be retried.

Master:
For the master, the retry response indicates that the command was rejected by the slave for lack of space in
the command queue or the data buffers. Based on the packet type, the master acts as follows:

Command packet: When the master receives a retry response for a command packet, it reissues
the packet to the AD bus. If the command was a write command and the master detects this
response before it has completed the full data transfer, then it can either complete the full data trans-
fer, or discard the remaining even-numbered data beats for the transfer before reissuing the com-
mand packet.

Data packet: Retry responses are not valid for write-data packets and read-data packets.

Slave:
The slave issues this response when:
* The slave received the command packet but the command queue was full.

* If the packet was a write-command packet, there is no space for the command or the data.

To properly detect termination of a partial write-data packet, the slave must examine the Address Valid
decode bits (see Table 8-2 Command Packet Description on page 147) on a per even-beat basis.

Note: The retry transfer handshake cannot be issued for write-data packets.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 157 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.2.3.4 Transfer-Handshake Parity Error

This response is optionally issued whenever a single bit error is detected during any bus beat. It is an unre-
coverable error that results in a machine check to the processor with all command and data packets in the
pipeline being discarded.

Master:
For the master, the response is a hard error indicating that the bus is no longer functional. The processor
responds by going into checkstop.

Command packet: When the master receives a parity error response for a command packet, it
reports the failure back to the system. The bus must be reinitialized before it can be used again.

Data packet: Same as command packet errors.

Slave:

If the slave issues this response (optional), it should be within the normal packet response timings. (This
packet error might make this timing determination imprecise.) For the slave, this condition is a hard error and
the bus is no longer functional. The slave logs the error and reports it to the system. The error reporting
mechanism is system-dependent.

8.3 Snoop Responses

Cache coherency is maintained using a global snoop method, where a memory controller device (the North
Bridge) reflects command packets to all processors at the same time. Snooping is supported by dedicated
snoop-response bus segments, consisting of one 2-bit SRO and one 2-bit SRI.

A snoop response begins when a processor receives a reflected command packet on the ADI bus. The
processor starts a programmable timing chain that determines when the processor’s SRO is driven and when
the processor’s SRI will be sampled.

The snoop response from each processor is transmitted on the SRO response bus in two beats (see
Table 8-12). The North Bridge gathers the snoop responses from all processors and performs a logical OR
operation on the accumulated responses. The North Bridge sends the logical OR of the snoop responses
back to all processors on the SRI bus.

Table 8-12. Snoop-Response Bit Definition

Beat Bits Description
1 SR[0] |Intervention
1 SR[1] | Modified
2 SRI[0] |Retry
2 SR[1] |Shared
Processor Interconnect Bus Version 2.3

Page 158 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 8-13. Allowed Snoop Responses

Retry Intervention Modified Shared Description
0 0 0 0 Null (exclusive for reads)
0 0 0 1 Shared
0 0 1 X Modified
0 1 0 0 Invalid
0 1 0 1 Shared intervention
0 1 1 X Modified intervention
1 X X X Retry

8.3.1 Snoop-Response Bus Implementation

Each snoop-response bus is controlled by two configurable parameters: SNOOPLAT and SNOOPACC. For
all parameters, time is measured in bus beats from the final locally clocked flip-flop or latch output to the first
locally clocked input.

The processor SNOOPLAT parameter defines the number of bus beats between receiving the last beat of the
reflected command packet and driving the first beat of the snoop response. SNOOPLAT does not need to be
programmed for the processors, since the processors are assumed to be identical. The North Bridge
SNOOPLAT value is the sum of the transfer time of the reflected command packet from the North Bridge to
the processor, the processor SNOOPLAT value, and the transfer time of the snoop-response bus from the
processor to the North Bridge (see Figure 11-2 North Bridge Configurable Timing Parameters on page 280).

On the North Bridge, the SNOOPACC parameter defines the delay between the time a processor sends the
last beat of an individual snoop response to the time it receives the first beat of the accumulated snoop
response from the North Bridge (see Figure 11-3 Processor Configurable Timing Parameters on page 281).
SNOOPACC includes the time required by the North Bridge to gather the responses from all of the proces-
sors. The North Bridge reflects all incoming command packets at a pace determined by the SNOOPWIN
parameter. SNOOPWIN sets the snoop window, which is the minimum distance between two consecutive
snoop requests (see Figure 11-3 Processor Configurable Timing Parameters on page 281).

An address collision occurs if the current address is the same as a requested address for a previously
received snoop. If this occurs, the current snoop request is delayed until the conflicting previous request is
concluded. This condition is called previous adjacent address match (PAAM). The PAAMWIN parameter indi-
cates the number of bus beats a request is active during which a conflicting snoop request cannot be issued.
An unrelated snoop request can be sent during the PAAM window. Figure 11-2 North Bridge Configurable
Timing Parameters on page 280 shows the timing of the PAAMWIN parameter.

For a snoop request to be issued, the following conditions must be satisfied:

1. Atleast SNOOPWIN beats have transpired since the previous snoop request was issued.
2. There is at least one non-active PAAM address slot available.
3. No active PAAM address conflicts with the request.

The number of PAAM address slots on the North Bridge is implementation-dependent, but ranges from two to
four. A snoop request activates a PAAM address slot when it is issued. After PAAMWIN beats, the slot is
deactivated and can be reassigned to another request. The number of address bits used to detect conflict is
also implementation-dependent.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 159 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

There is no requirement that all snoop requests fall in exact modulo SNOOPWIN beats. Even-numbered idle
bus beats can be used beyond SNOOPWIN between two subsequent snoop requests. The PAAMWIN value
is not required to be a multiple of the SNOOPWIN value.

The I2C interface is used to program all programmable delay parameters (see Section 11.1 I2C Interface on
page 279).

8.3.2 Snoop-Response Descriptions

8.3.2.1 SResp Retry Response Code (Priority 1 - highest)

SResp Retry is issued for the following reasons:

Lost reservation: A master that has a reservation will retry an atomic write/flush itself if the reservation
has been lost since the write was issued.

Push condition: A snooper will retry a transaction if a push is needed for a read or write-with-flush.

Resource conflict: A snooper will retry a transaction due to collision with a resource that has ownership of
the line.

Memory and intervention buffer full: A North Bridge can retry a read transaction that might cause inter-
vention, if it determines it temporarily cannot receive the intervention data. It is typically more efficient to
use the transfer-handshake retry on the intervening data packet for this case.

SResp Retry ramifications:

Processor Interconnect Bus
Page 160 of 415

Master: Can reissue this operation and use a different tag, or can reissue a different operation instead of
or before this operation is reissued. Any data transfer aborted by this retry can be terminated prior to the
data packet completion.

Target: Any operation that has completed an SResp Retry can take a variable amount of time to clean up
resources and, therefore, can cause future retries due to resources being tied up by this operation.
Guarded cache-inhibited write operations need to be ordered with respect to each other. The processor
cannot proceed and cannot issue the next operation until the SResp window with the null response has
passed.

Snooper: Any operation that has completed an SResp Retry is aborted by the snooper and leaves the

cache state unmodified, except when Intervention is disabled on a read request and the snooper has
modified data. The snooper will then push the data back to memory and clean or invalidate the line.

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.3.2.2 SResp Modified-Intervention Response Code (Priority 2)

The Modified coding is activated when a snooper detects the address of a cache line on a read operation that
is contained in its own cache and is modified (dirty). The snooper then provides the data by using interven-
tion.

SResp Modified-Intervention is asserted if a snooper asserts SResp Modified-Intervention on a Read or Read
with Intent to Modify (RWITM) when bus intervention is enabled (N equals ‘1’), snooping is enabled

(M equals ‘1’) and a cache line is snooped modified. If SResp Retry is sampled instead of SResp Modified-
Intervention, then the snooper can either push the block to memory or leave the cache state unmodified.

The ramifications of an SResp Modified - Intervention for bus devices are:

¢ Master and Read or RWITM:
This tells the master that its request is satisfied by the cache holding the modified data.

* Memory and Read or RWITM:
This tells the North Bridge to cancel its read request. If the command was read, the North Bridge looks for
the tagged data and copies the block to memory.

8.3.2.3 SResp Shared-Intervention Response Code (Priority 3)

The Shared-Intervention coding is activated when a snooper detects the address of a cache line on a
reflected read-command packet that is contained in the snooper’s own cache and is the owner (most recent
recipient) of the data. This signal can only be asserted by one bus device, since there is only one owner of
data. Since SResp Retry is higher priority than SResp Shared, the snooper must wait until the snoop
response is received before beginning the intervention push.

A snooper using this code must accommodate the option on burst reads whereby the requester indicates
intervention is not wanted. In these cases, the response must be SResp Shared.
The ramifications of an SResp Shared-Intervention are:

* A master receiving this SResp code looks for intervention data.

* The North Bridge treats SResp Shared - Intervention as SRespRetry.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 161 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.3.2.4 SResp Modified Response Code (Priority 4)

The Shared-Intervention coding is activated when a snooper detects the address of a cache line on a
reflected read-command packet that is contained in the snooper’s own cache and is the owner (most recent
recipient) of the data. This signal can only be asserted by one bus device, since there is only one owner of
data. Since SResp Retry is higher priority than SResp Shared, the snooper must wait until the snoop
response is received before beginning the intervention push.

A snooper using this code must accommodate the option on burst reads whereby the requester indicates
intervention is not wanted. In these cases, the response must be SResp Shared.

SResp Modified is asserted for the following reasons:

¢ A snooper asserts SResp Modified on a Read or RWITM when bus intervention is not enabled
(N equals ‘0’), snooping is enabled (M equals ‘1’), and a cache line is snooped modified. If SResp Retry
is sampled instead of SResp Modified, then the snooper can either push the block to memory or leave the
cache state unmodified.

* A snooper asserts SResp Modified for flush or clean bus operations if the addressed block is modified. If
SResp Modified is sampled in this case, the snooper pushes the block to memory and marks the cache
Invalid (flush), or Shared/Exclusive (clean). If SResp Retry is sampled instead of SResp Modified, the
snhooper can either push the block to memory or leave the cache state unchanged.

8.3.2.5 SResp Shared Response Code (Priority 5)

Snooper:

The Shared response is encoded when a snooper inspects the address of a cache line on a read transaction
that is contained in its own cache and has not been modified, marking the block shared if the block was
marked exclusive. This signal can be asserted by more than one snooper, and the snooper will retain a copy
of the block.

I/O Snooper:
I/O devices that do not cache data Exclusive or Modified (shared only) are allowed to assert without having
the block cached (for example, they might snoop at a larger granularity than the block address).

Master:
This tells the bus master that the data on a read, when returned, must be marked shared and not exclusive.

8.3.2.6 SResp Null or Clean Response Code (Priority 6 - lowest)

The null or clean response is encoded to indicate one of the following:
e There is no local (or remote) device presently caching this line.

¢ A synchronize type of transaction (for example, sync or translation lookaside buffer sync [tibsync]) has
been completed by all snoopers.

¢ The line is cached, but the null response is allowed (for example, the null for a clean transaction that hits
on an exclusive line).

Processor Interconnect Bus Version 2.3
Page 162 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.4 Bus Transactions

This section provides details of the following processor interconnect bus transactions:

* Memory read transactions (general)
¢ Memory write transactions (general)
¢ Command only transactions

8.4.1 Terms

Each of the transactions in this section uses the following terms to define the parameters of the transaction:

Reservation

Snooper

Memory

I/O Bridge

Version 2.3
March 7, 2008

A reservation is an address location held by the processor. It is used to emulate
atomic operations using the PowerPC load reserve indexed (larx) and store condi-
tional (stex) types of instructions. A processor has at most one reservation at any
time. A reservation is established by executing a Load Word and Reserve Indexed
(lwarx) or Load Double Word and Reserve Indexed (ldarx) instruction. It is
normally lost when the corresponding Store Word Conditional Indexed (stwex.) or
Store Double Word Conditional Indexed (stdcx.) instruction is performed. A reser-
vation might also be lost if the data at the address is modified by another processor
or bus device.

A bus device that inspects inbound reflected command packets and uses the
shoop-response bus to keep cached data coherent with other system caches. A
bus adapter or I/O bridge might contain a cache and, if so, will act like a snooper.

The bus device that responds to a memory read or write and handles positive
acknowledgment for coherent operations. If some portion of memory is attached to
a remote bus, the bus adapter also acts like memory for memory accesses to that
remote memory space.

An I/O bridge device is a gateway to an I/O bus that cannot cache data in the
Exclusive or Modified state. The bridge does not forward snoops to the 1/O bus. If
an I/O device has shared cache data, it is necessary to implement a directory for
the cached data in the shared state.

Processor Interconnect Bus
Page 163 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.2 Memory Read Transactions (General)

A master (processor) reads I/O or memory data by sending a read command to the memory controller of the
North Bridge. The processor drives the ADO bus, provided it was not in the midst of sending another
command packet, and there was no higher priority transaction ready to be sent. After a programmable
number of beats (STATLAT), the master reads the transfer handshake from the THI bus to ascertain the
status of the transfer. The slave (North Bridge) sends a positive acknowledgment on the THI bus if no parity
error was detected and there was a slot to queue the read request. If no queuing space is available, a retry
status is returned.

The North Bridge dequeues the request after internal arbitration and decodes the command packet. It issues
a read request to the North Bridge for the indicated block size and reflects the command packet to all proces-
sors for snooping purposes. The North Bridge paces new snoop requests based on the programmable
parameter, SNOOPWIN. The North Bridge will detect address collisions (transactions to the same cache line)
and will delay the second conflicting transaction until PAAMWIN bus beats have transpired since the original
conflicting transaction was issued for snooping. In addition, processors can request that transactions be
handled one at a time, by setting the pipelined snoop (P) address modifier bit low.

Each processor drives their SRO bus during the snoop window that is seen by all processors and by the
North Bridge at the same time. The processor can request that the transaction be retried with a retry snoop
response. Otherwise, if a processor has a clean copy in its cache, the shared response code is returned. If
the requested cache line is modified inside a processor cache, that processor signals the intervention snoop
response, which is a promise to send to the North Bridge the modified copy in the form of a processor-to-
memory read-data packet. The North Bridge accumulates the combined (logical-OR) snoop responses from
all of the attached processors. Depending upon the combined response, the North Bridge might abort, delay,
or send the memory data or the intervened data to the original requester. The intervened data is also written
to memory for regular read transactions (no intention to modify).

When the North Bridge responds with the read data, it sends a read-data packet, which consists of a 2-beat
header and 2 to 32 beats of payload data. The header contains the original tag and the data size. The
payload data is sent immediately after the header. The DERR bit is asserted if the data contains an error.

8.4.2.1 Read Transaction

A read command is issued to get data that is not immediately going to be modified. The modifier bits that are
valid are N (intervention) and S (non-caching). The M and | modifiers are sourced from the page table entry,
hardwired, or set by the I/O.

Master:

A read burst is issued by the processor to satisfy a load, tablewalk access, Data Cache Block Touch (dcbt) or
other data prefetch, or instruction fetch (I-fetch) to a cacheable page that misses the cache. A read non-burst
is caused by a non-cacheable load or I-fetch.

Atomic:
The Atomic modifier (TType [0]) is set along with the M bit when the read is to satisfy a lwarx or Idarx.

S Bit:

The S bit is set along with the M bit when the master will not cache the data but wants the latest copy. If S is
set, a snooper is allowed to clean up dirty data in its cache by pushing it to memory, but keeping it marked
exclusive afterwards.

Processor Interconnect Bus Version 2.3
Page 164 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

The N bit is set when the master and memory are capable of intervention, intervention is wanted, and the
read-data size is the coherency block size for the system. All non-block size reads must have the N bit set to
zero. In addition, the processor is capable of setting N to ‘0’ for all reads in case it is attached to memory that
does not support intervention.

G Bit:
The G bit is set when the read is the result of a load to cache-inhibited guarded storage. When set, the
system implementation knows this read might only complete once.

P Bit:

The P bit is set when snoop pipelining is allowed (default for reads). This bit can be cleared for reads if the
processor requires the transaction snoop response to be resolved before another independent transaction is
issued. When an address collision is detected, the North Bridge automatically delays the colliding transaction
until the previous transaction is resolved.

Snooper:
If the address contained in the reflected command packet is in the cache and marked Modified, the snooper
performs a push or intervention.

Memory:

Memory can provide the addressed data no earlier than the end of the snoop window for that transaction. The
North Bridge examines the snoop-response bus, and, if it was SResp Retry or SResp Intervention, the North
Bridge will terminate the operation and deallocate the tag. If the SResp response is Modified, because the
North Bridge supports intervention, the North Bridge captures the line as it is transferred to the requester and
stores the line to memory.

I/O Bridge:

If the G bit is set, an I/O bridge can not issue the read to any memory-mapped I/O devices more than once.
This means waiting until the previous guarded read is committed (no retry from the transfer handshake)
before sending the next request.

8.4.2.2 Read with No Intent to Cache Transaction

Read with no Intent to Cache (RWNITC) is another name for a read transaction with the S bit and M bit set
(see above). It is a coherent read; that is, the master wants the latest data, but does not cache it. Therefore,
the snooper can keep caching the data as Exclusive after it provides the data by a push or an intervention.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 165 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.2.3 Read with Intent to Modify Burst Transaction

Master:

The RWITM transaction is issued by a master to bring an entire block into a cache for the purpose of writing
to it. It is always a block-sized read. It is triggered by a store, stwex., stdex., or Data Cache Block Touch for
Store (dcbtst) to a cacheable page that misses in the cache. The master should mark its cache Exclusive if
the SResp is not Retry.

Snooper:

The snooper invalidates any line cached at the same physical block address and asserts SResp Null if
marked Invalid, Shared, or Exclusive. If the request hits its cache, and it is marked Modified, the snooper per-
forms either a push or an intervention. If the system supports Shared-Intervention and the request was
marked with N set to ‘1°, then the snooper can respond Shared-Intervention and push the data.

Memory:

The memory can provide the addressed data no earlier than after SNOOPACC. The North Bridge must
examine the snoop-response code, and if it was Retry or Intervention, the North Bridge should terminate the
operation and deallocate the tag.

Atomic:

The Atomic modifier (TType [0]) is set along with the M bit when the read is to satisfy a cacheable copy-back
stwex. or stdex. The master SResp retries its own RWITM-A if the reservation is subsequently cleared after
issuing the RWITM but before SResp and does not reissue the RWITM-A. If a processor does not support
any cache levels below it (that is, it sees all the system coherency traffic), then the A bit need not be set on
RWITM.

N Bit:

The N bit is set when the master and memory are capable of intervention, intervention is wanted, and the
read-data size is the coherency block size for the system. All non-block size reads must have the N bit set to
zero. In addition, the processor is capable of setting N to ‘0’ for all reads, in case the memory does not sup-
port intervention.

G and S Bits:
These bits are not defined for RWITM.

8.4.2.4 LARX-Reserve Transaction

Master:

The LARX-Reserve transaction is an address-only transaction that sets the reservation for every cache level
below the level serviced by a read atomic operation. If the reservation at one level is already set to the same
address as the LARX or the LARX-Reserve being propagated, then it should not be propagated further
because this causes a bus operation each time the LARX is executed and might be part of a program loop.

Snooper:
Does not see the LARX-Reserve for M equals ‘0’.

Memory:
Ignores this operation.

Processor Interconnect Bus Version 2.3
Page 166 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.3 Memory Write Transactions (General)

A master sends a write command to write data to memory or to an I/O device. The write-command packet is
immediately followed by a write-data packet. The slave (North Bridge) checks the command to see if there is
buffer space to store the write-data packet. The slave responds with a retry transfer-handshake packet if
there is insufficient buffer space. The master can then terminate sending the write-data packet on an even
beat. It can then try again to send the write-command packet and write-data packet at a later time.

The North Bridge reflects every command packet to all processors. The snoopers ignore the reflected
command packet if M equals ‘0’. Only the original processor needs to see the address inside the command
packet to deallocate the tag after the transaction is completed. At that time, the North Bridge takes responsi-
bility for snooping for the pushed (castout) data. The transaction must be propagated all the way to memory if
the W bit is asserted.

8.4.3.1 Write-With-Kill Transaction

Master:
The write-with-kill transaction is a burst operation used to tell all snoopers to invalidate any copies of this line
in their caches, while also storing the line to memory.

Table 8-14. Write-With-Kill Types Supported

WIM Bits for Write-With-Kill W Bit M Bit
Copy back due to load, store, or Data Cache Block Set to Zero (dcbz) 0 0
I/0 Write' Oort 1
Flush due to Data Cache Block Flush (dcbf) 1 0
Push due to snoop 1 0

1. An I/O write is a full cache line write from a memory address.

Snooper:

If M equals ‘0’, the snooper ignores this operation. If M equals ‘1’, the snooper treats this operation as a Data
Line Kill (DKILL) to the same address block, marking it Invalid (this includes any store buffers) and the opera-
tion is passed to any higher level cache.

Memory:
Memory must not update storage if the transfer-handshake packet indicates Retry or the SResp value (if
applicable) is Retry.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 167 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.3.2 Write-With-Clean Transaction

Master:

A write-with-clean transaction is a burst operation caused by a processor executing a Data Cache Block
Store (dcbst) instruction or a bus snoop read or clean to a modified block. It is used to tell all lower level
caches that a copy still remains in this level, while updating memory (or I/O). Since no snooper has the line, it
sets M to ‘0’ so horizontal snooping is avoided. The block is written all the way to memory.

Snooper:
Snoopers should not see this operation since M equals ‘0’.

Memory:
Memory must not update storage if the SResp is Retry.

8.4.3.3 Write-With-Flush Transaction

Master:

A write-with-flush transaction is a partial-block write to memory and might be a sub-block burst operation from
the I/O. It is used for cache-inhibited or write-through writes from a processor (sub-block writes). The proces-
sor sources the M bit from the page table entry. /O masters can also use this for DMA writes to a cache block
without getting ownership first. The processor will set M to ‘1’ for this transaction.

Snooper:

If M equals ‘1’ and the line is cached Modified, this operation is SResp Retried. The line is pushed back to
memory with a write-with-kill, then invalidated (this includes any store back buffers [SBBs]). The only appro-
priate SResp response is Retry by a snooper (other than SResp Null, which is the default response).

Memory:

Memory must not update storage if the transfer handshake indicates retry or the SResp value (if applicable) is
Retry. A bus agent cannot pass a write-with-flush to an 1/0 bus that might contain memory-mapped devices
or memory that can be reserved without first successfully passing the response window on the processor
interconnect bus.

8.4.4 Command-Only Transactions

8.4.4.1 DCLAIM Transaction (Invalidate Others)

Master:

A master issues a data line claim (DCLAIM) transaction to service a debtst, dcbz, or store instruction. The
DCLAIM is used to attempt to take a coherent block from the shared (or, with dcbz, invalid) state to the mod-
ified state and all other horizontal caches to the invalid state. It differs from DKILL in that the DClaim does not
invalidate the master’s copy in a lower level (higher number) cache.

Snooper:
Snoopers must invalidate their data cache blocks if there is a hit on this address.

Memory:
Ignores this operation.

Processor Interconnect Bus Version 2.3
Page 168 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.4.2 Flush Transaction

Master:
A flush transaction is caused by a dcbf that hits on a memory coherent cache block and is marked shared or
invalid. It is sent to other snoopers that might have a copy of the line.

Snooper:

If M equals “1’, snoopers snoop their caches, and, if the line is cached, it is marked invalid. If the line was
marked as modified, it is pushed back to memory. A snooper might respond modified, or might respond Null.
An SResp Retry response should only be used if the command cannot be accepted or a pipeline address col-
lision occurs.

Memory:

Memory might ignore this operation, even if a snooper responds SResp Modified, since intervention is not
supported on the flush operation itself. The flushed data is sent to memory on a separate write-with-kill oper-
ation.

8.4.4.3 Clean Transaction

Master:
A clean transaction is caused by a dcbst that hits on a memory coherent cache block and is marked shared
or invalid. It is sent to other snoopers that might have a modified copy of the line.

Snooper:

If the line is cached, then it is marked shared (or exclusive if it is the lowest cache in the hierarchy). If it was
marked modified, the line is pushed back to memory. A snooper might respond modified, or might respond
Null. An SResp Retry response should only be used if the command cannot be accepted or a pipeline
address collision occurs.

Memory:

Memory might ignore this operation, even if a snooper responds SResp Modified, since intervention is not
supported on the clean operation itself. The cleaned data is sent to memory on a separate write-with-clean
operation.

8.4.4.4 IKill Transaction

Master:

The intent of the Instruction Line Kill (IKILL) transaction is to invalidate entries in any instruction-only caches
in the system. Data only or combined caches are invalidated with other coherency operations. An IKILL block
is caused by an ICBI instruction that hits on an instruction cache block that is marked as memory coherent. In
order to prevent bus livelocks, this command should be issued with the P bit set to ‘0’.

Snooper:

Snoopers must invalidate their instruction cache blocks if there is a hit on this address. Any unified data or
data only cache does not need to be snooped. A snooper might respond Retry, or might respond Null. An

SResp Retry response should only be used if the command cannot be accepted due to resource conflicts.

Memory:
Memory can ignore this operation.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 169 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.4.5 TLBIE Transaction

Master:
TLBIE is caused by a processor executing a TLB Invalidate Entry (tlbie) instruction.

Snooper:
Snoopers accept this transaction regardless of the M bit and invalidate any TLBs in the congruence class.

Memory:
Memory can ignore this operation.

8.4.4.6 TLBSYNC Transaction

The intent of the TLBSYNC transaction is to act as a barrier that forces all previous operations using invali-
dated TLBs to complete before the TLBSYNC completes.

Master:
The master issues the TLBSYNC transaction in response to a processor tlbsync instruction.

Snooper:

Snoopers must SResp Retry the TLBSYNC until all previous loads or stores and I-fetches that used any TLBs
have been flushed or performed and any snooped TLBIEs are completed. A snooped TLBSYNC has the
same effect on a processor that a sync would have if it were executed on that processor.

Memory:
Memory can ignore this operation.

8.4.4.7 SYNC Transaction

Master

A master issues a SYNC when a processor executes a sync instruction. The master stops processing all
future instructions until all previous instructions have been completed. Then the SYNC transaction is issued
to the bus, and the sync instruction is not completed until the SYNC transaction completes on the bus.
SResp Retry will cause the operation to be repeated; SResp Null signals completion. To prevent bus live-
locks, this command should be issued with the P bit set to ‘0’, if the snooper implementation would cause
resource conflict retries.

Snooper:
A snooper drives SResp Retry if there are any snoop operations pending, or cache pushes or snoop opera-
tions pending from previously snooped bus operations. Otherwise, it responds SResp Null.

Memory:
Memory signals SResp Retry until stores are performed if they can be reordered within the memory unit. Oth-
erwise, it responds SResp Null. Memory can also respond SResp Null. The SYNC is used as a store barrier.

Processor Interconnect Bus Version 2.3
Page 170 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

8.4.4.8 EIEIO Transaction

Master:

The intent of the Enforce In-Order Execution of I/O (EIEIO) transaction is to act as a barrier for all non-cache-
able loads or stores that follow it. It forces all previous non-cacheable operations to complete before any non-
cacheable operation issued after the EIEIO. EIEIO is caused by a processor executing an eieio instruction.

Snooper or Memory:
Ignore this operation.

I/O Bridge or Bus Adapter:
Accept and propagate toward memory-mapped I/O storage and do not allow any cache-inhibited storage
access to bypass (if they can be reordered).

8.4.4.9 Null Transaction

Master:
A Null transaction is used by the processor to break cyclic deadlocks or prescheduled transactions that are
no longer needed.

Snooper, Bus Adapter, or Memory:
Ignore.

Version 2.3 Processor Interconnect Bus
March 7, 2008 Page 171 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Processor Interconnect Bus Version 2.3
Page 172 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9. Power and Thermal Management

The power-management design of the 970MP microprocessor has two primary objectives: to achieve high
performance whenever it is needed and to minimize the operating power during both active and idle periods.
Power-management support includes frequency and voltage scaling, dynamic power management, and
power down of one core while the second core continues to operate.

9.1 Definitions

9.1.1 Full Power Mode

Full Power (Full Run mode) is the default power mode of the processor. After initialization or reset, the
processor will always be in this mode. All internal units are clocked at full clock speed and are fully opera-
tional.

9.1.2 Doze Mode

This mode is entered from Full Power mode after the processing core has been quiesced, and instruction
fetch and data prefetch have ceased. This mode is a power saving mode, because only the circuitry needed
to provide bus snooping capability and maintain memory coherency is active.

To enter Doze mode, set HIDO[DOZE] to ‘1’, and then set MSR[POW] to ‘1’. When Doze mode is entered this
way, it will stay in this mode until interrupted out, rather than try to transition further into Nap mode. An inter-
rupt condition such as an external interrupt, decrementer, hard reset (hreset), soft reset (sreset), or machine
check is required to return to full power.

9.1.3 Nap Mode

Nap mode provides additional power savings beyond Doze mode. In general, clocks to all internal units are
switched off. Only the timer/decrementer facility, the I/O circuitry, and part of the pervasive unit are clocked
and operating. The phase-locked loop (PLL) is running and stays locked to the global system clock
(SYSCLK). The clock mesh is operating, as is the bus clock.

To enter Nap mode, first the Nap bit in Hardware Implementation Dependent Register 0 (HIDO[9]) must be
set. Then the power-management bit in the Machine State Register (MSR[45]) must be set. The processor
will then gate its core clocks and enter Doze mode. In Doze mode, the processor will continue to snoop.
However, it asserts its quiescent request (QREQ) signal to indicate to the chip set that it is prepared to go into
Nap mode if snooping is not required. If the chip set determines that no memory activity requires the
processor to snoop, it asserts a quiescent acknowledgment (QACK). Once the processor detects the asser-
tion of QACK, it transitions to Nap mode. While in Nap mode, QACK is monitored constantly. If it is dropped,
the processor transitions back to Doze mode.

If the processor has to act upon an incoming snoop, the bus interface unit (BIU) becomes active, and QREQ
is deasserted. However, the processor stays in Doze mode and waits for the BIU to become idle again. As
soon as the BIU is idle, QREQ is issued again. QACK can be reactivated when the snoop is completed (after
the snoop-response time). The processor switches back to Nap mode after QACK is received.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 173 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

If QACK is received without QREQ being sent (for example, the BIU is not idle), the processor will enter an
error state. If QACK is deactivated while the processor is switching to Nap mode, the transfer to Nap mode
completes before the processor is brought back to Doze mode. Any external interrupt, reset, or check condi-
tion transfers from Nap mode back to Full Power mode.

9.1.4 Deep Nap Mode

In Deep Nap mode, the chip is in the same state as Nap, except that the clock frequency in the chip is
reduced to 1/64th of the nominal frequency. If this state is enabled, it is entered immediately after entering
Nap mode and exited immediately before exiting Nap mode.

9.1.5 Dynamic Power Management

Dynamic power management (DPM) refers to the cycle-by-cycle control of clocks, as hardware facilities are
used for computation and then go idle for some cycles. This gating of clocks while circuits are idle saves
power with no reduction in performance. On a cycle-by-cycle basis, DPM enables stopping a logical function
based on the need for the function. DPM also enables stopping a pipeline stage in a unit based on a change
in the content of the pipeline stage.

9.2 Power-Management Support

System software manages power dissipation in a number of ways, using a number of hardware facilities.

9.2.1 Power-Management Control Bits

Dynamic power management (DPM) refers to the cycle-by-cycle control of clocks as hardware facilities are
used for computation, and then go idle for some cycles. This gating of clocks while circuits are idle saves
power with no reduction in performance. In normal operation, DPM should be enabled. It can be disabled,
however, by negating HIDO[11]. To enter an idle state, software must first set a bit in HIDO to identify which
idle mode is wanted, and then set MSR[45] to trigger the transition to that mode. Setting HIDO[9] selects Nap
mode; setting HIDO[8] selects Doze mode; setting HIDO[7] selects Deep Nap mode. Table 9-1 summarizes
these power-management control bits.

Table 9-1. Power-Management Control Bits

Bit Bit Name Power Saving Mode
HIDO[7] deep nap Deep nap
HIDO[8] doze Doze
HIDO[9] nap Nap
HIDO[11] dpm Dynamic power management enable
MSR[45] POW Power management enable
MSR[48] EE Enable exception (interrupt)

Power and Thermal Management
Page 174 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9.2.2 Interrupts

The only way to get from a power saving mode back into the Full Power mode is by asserting one of the
following interrupts:

e External interrupt
* Decrementer interrupt

Before entering a power saving mode, the MSR[EE] bit must be set to enable these interrupts. After an inter-
rupt is taken, the return from interrupt (rfid) or the hypervisor return from interrupt (hrfid) automatically resets
the MSR[POW] bit, therefore, software must set it once again to reenter a power-saving mode.

9.2.3 Bus Snooping

The processor interconnect participates in the system power management through two asynchronous control
signals called QREQ and QACK. QREQ is a processor output signal that is asynchronously sampled by the
local clock of the North Bridge. QACK is a North Bridge output signal that is asynchronously sampled by the
local clock of the processor and other bus masters.

Figure 9-1 on page 176 is a flowchart of the sequence of steps for the processor to enter Doze or Nap mode.
Figure 9-2 on page 177 is a flowchart of the sequence of complementary steps taken by the North Bridge in
response to the assertion or negation of QREQ by a processor. In Doze mode, the processor must be
capable of snooping all reflected command packets from the North Bridge. In Nap mode, the processor is not
required to snoop transactions, although it must be capable of returning to Doze mode for the purpose of
snooping if QACK is negated.

In the normal (or preferred) sequence of events, the processor and North Bridge observe a 4-phase hand-
shake for QREQ and QACK. The processor first asserts QREQ after the processor has quiesced, the
snhoopers are idle, and all outstanding processor interconnect bus transactions have completed. The
processor then waits for the North Bridge to assert QACK. While the processor is waiting for the assertion of
QACK, itis in an intermediate mode called Doze. Once the North Bridge asserts QACK, the processor enters
Nap mode. To exit Nap mode, the processor negates QREQ and then waits for the North Bridge to negate
QACK before returning to the Run state.

There are a few scenarios in which the 4-phase handshake is preempted.

1. While in Doze mode, the North Bridge reflects command packet snooping. The action taken by the pro-
cessor is to negate QREQ while snooping the reflected command packet and while staying in Doze
mode.

2. While in Doze mode, the processor receives an interrupt. The action taken by the processor is to negate
QREQ and return to the Run state.

3. While in Nap mode, the North Bridge negates QACK while the processor has QREQ asserted. The pro-
cessor must then return to Doze mode within 64 bus clocks so that it can return to snooping reflected
command packets from the North Bridge.

As shown in Figure 9-1 on page 176, the North Bridge normally negates QACK when QREQ is negated by
any of the attached processors. However, it might also negate QACK if there is bus activity from any of the
other attached bus devices that can be a bus master.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 175 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 9-1. Processor QREQ/QACK Signalling

Note: Processor ignores QACK

during this period and whenever -
QREQ is negated. BleeEssa < Processor waits for QACK
R negated.
un
i \ A
Software readies Processor negates QREQ.
HIDO(nap) = 1. system/processor
Snoop Idle and bus interface for Nap. T
drained of all transactions: Interrupt awakens processor
* RWITM i core.
¢ DClaim
* Speculative loads Move To MSR(POW).

North Bridge issues snoop
processor, not Snoop Idle.

v /
Processor

Processor asserts QREQ. ———»

Doze
/ i \ Processor negates QREQ.
Processor Wake Up Processor sees
(50 - 100 processor clocks) QACK asserted. Processor negates QREQ.
[| f
Processor Shut Down Processor Wake Up
(50 - 100 processor clocks) (50 - 100 Processor Clocks)
i A
Processor sees Processor > K
QACK negated. «—— Nap nterrupt awakens processor core.
Power and Thermal Management Version 2.3

Page 176 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 9-2. North Bridge QREQ/QACK Signalling

North Bridge issues snoop. Bus North Bridge waits for
Active program delay.

l (8 - 64 bus clocks)

- North Bridge sees QREQ
Bus activity from any master. | <— fromgall ports.

T~ |

A

North Bridge drains all trans- North Bridge negates
actions: QACK.
* 1/0O cycles
¢ Snoop cycles (both
address and data)
Y QREQ negated from North Bridge TH
North Bridge waits for program delay. any master. RETRY to master.
(16 - 256 bus clocks)

i A A

North Bridge asserts QACK

v

North Bridge waits for program delay.
(8 - 64 bus clocks)

l / Bus activity from any
Bus — master.

Idle

Note: North Bridge will TH RETRY to any bus cycle
received during this period.

After the HIDO[nap] bit is set and then the MSR[POW] bit is set, the processor enters Doze mode and asserts
its QREQ signal. In this mode, core clocks are gated to reduce power, but clocks in the storage subsystem
(STS) are still active to support bus snooping. The PLL, timers, and interrupt logic are also active in all the idle
modes. The processor must remain in this Doze mode for as long as the system determines that snooping is
required. The assertion of QREQ indicates to the system the processor's readiness to go into Nap mode.
Once the system determines that snooping is not currently required, it can assert QACK. When the processor
receives this signal, it completes the transition to Nap mode.

If snooping is required again, the system can negate QACK, signalling to the processor that it must transition
back to Doze mode and begin snooping the bus. The general requirement is that the system must deassert
QACK at least 64 bus cycles before it initiates bus activity to allow the processor to complete the transition
back to Doze mode. However, the calculations below can be used to fine tune this delay. If this bus activity
once again ceases, the system can assert QACK and the processor will go back into Nap mode.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 177 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

The two pairs of QREQ/QACK signals in the 970MP design allow the two processors to independently Nap. It
is possible to use the 970MP microprocessor with a North Bridge chip that supplies only a single
QREQ/QACK pair. In this case, the two processors will be forced to go into and come out of Nap mode
together. Figure 9-3 shows the external logic and connectivity required to support the 970MP microprocessor
with such a North Bridge.

Figure 9-3. Using a 970MP Microprocessor with a Single QREQ/QACK Pair

CPO_QREQ \
QREQ
CP1_QREQ /
CPO_QACK
QACK
CP1_QACK
970MP North Bridge

Because the QREQ signal is active low, an external OR gate is used to combine the two QREQ signals from
the two processing units. Thus, QREQ is asserted to the North Bridge only if both processing units are
asserting their QREQ signals. Once the North Bridge receives the asserted QREQ signal, its QACK signal is
broadcast to both processing units by driving both QACK inputs from the single QACK on the North Bridge.

9.2.3.1 Delay Calculation

The requirement for the worst case QAckMinLowTime does not account for the case where the processor
has not yet reached Nap or Deep Nap before QACK is negated. This additional delay can be accounted for
by either increasing the required QAckldleDelay or by imposing a requirement on QAckMinLowTime.
Through Table 9-2 and Table 9-3, below, we present the requirement as a minimum QAckldleDelay, and a
minimum combined QAckldleDelay and QAckMinLowTime.

Table 9-2 provides the minimum QAckldleDelay required for three different bus ratios and three different
mesh clock frequencies. The required delay is 24 full frequency (f) processor clocks plus 195 mesh frequency
(f, /2 or f/4) processor clocks. Since the bus clock frequency scales with the mesh clock, the relation between
these is a function of the bus ratio, but independent of frequency scaling. At 2:1, there are 4 bus clocks per
mesh clock, at 3:1 there are 6 bus clocks per mesh clock, and at 4:1 there are 8 bus clocks per mesh clock.
Since the 24 full frequency clocks do not scale with the mesh and bus clocks, the relation between these full
frequency clocks and the bus clocks depends on both the bus ratio and the scaled frequency. At 2:1, there
are 4 bus clocks per full frequency clock at f, 8 at f/2, and 16 at f/4. At 3:1, these values are 6 bus clocks per
full frequency clock at f, 12 at /2, and 24 at f/4. At 4:1, these values are 8 at f, 16 at f/2, and 32 at f/4.

Power and Thermal Management Version 2.3
Page 178 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 9-2. Minimum QAckldleDelay requirement in bus clocks for 970MP

2:1 3:1 4:1

f 55 37 28
f/l2 52 35 26
/4 51 34 26

Table 9-3 provides the minimum (QAckldleDelay + QAckMinLowTime) required for three different bus ratios
and three different mesh clock frequencies. The required delay is 48 full frequency (f) processor clocks plus
309 mesh frequency (1, f/2, or f/4) processor clocks.

Table 9-3. Minimum (QAckldleDelay + QAckMinLowTime) requirement in bus clocks for 970MP

2:1 3:1 4:1

f 90 60 45
f/2 84 56 42
fl4 81 42 41

Note: The default values for these two parameters are QAckldleDelay = 50, and QAckMinLowTime = 6. This
combination satisfies both of the requirements in the two tables shown for 3:1 mode at f/2, and therefore this
combination is appropriate for use at this bus ratio and frequency configuration.

9.2.4 Thermal Diodes

Thermal diodes are placed near the hot spot on each core and brought off chip separately. External logic can
be used to monitor the diode temperature of the two cores independently for managing power based on
thermal limits.

9.2.5 Bus States while in Power Saving Modes

When serving snoops, the BIU is active and drives the outputs as required. When in Nap mode, there is no
shooping.

¢ Data Out Bus, Transfer Handshake Out, and Coherence Response are driven to an idle mode.
¢ Clock Out is always driven with the proper clock signal.
* Clock In expects to receive a clock signal.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 179 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.3 Software Considerations for Power Management

9.3.1 Entering Power Saving Mode

The following code sequence should be used to enter a power save mode

.......

.......
.......

ooooooo

Toop: dssall (VPU prefetching stop)
sync

mtmsr (POW)

isync

br Toop

The Data Stream Stop All (dssall) instruction is needed to stop those prefetch engines started in behalf of the
vector processing unit (VPU) prefetches. Only the previous sequence will bring the processor into the power
save mode. Switching the Move To HIDO (mthid0) instruction and the Move To Machine Status Register
(mtmsr) instruction in the previous sequence does not result in a switch to a power saving mode. When an
interrupt is taken, it resets the MSR[POW] bit.

9.3.2 External Interrupt Enable

Only an external interrupt or timer interrupt will bring the processor back from the power save mode. There-
fore, note that MSR[EE] must be set before entering the above loop. Failing to set MSR[EE] and applying an
external interrupt or a timer interrupt will result in unpredictable behavior by the processor.

Power and Thermal Management Version 2.3
Page 180 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9.4 Power Tuning Facility Overview

The power tuning facility is the heart of the power management for the 970MP microprocessor. It controls the
power-management modes, on-chip and off-chip clock frequency, and supports voltage scaling for the
970MP microprocessor. Table 9-4 lists the Power tuning modes supported by the 970MP microprocessor.

Table 9-4. Power-Management Modes

Static Power-Management Modes Frequency Scaling
Full, Doze, Nap f
Full, Doze, Nap f/2
Full, Doze, Nap fl4
Deep Nap /64

Note:
1. See the IBM PowerPC 970MP RISC Microprocessor Datasheet for actual power dissipation specifications.

In the system, all processing units and the processing unit interfaces in the North Bridge change the power
tuning mode (except for Deep Nap mode) concurrently. Any processing unit can request the mode change.
This information is then transmitted to the North Bridge through the processor interface bus as a special
request. The North Bridge grants the requests and mirrors this special request to all processing units. The
North Bridge then waits for all processing units to signal that they have quiesced the bus and are ready to
switch modes. The North Bridge then triggers the mode switch. It completes within 200 ns for bus ratios of
2:1, 3:1, 4:1, 6:1; and within 300 ns for a bus ratio of 12:1.

Frequency scaling on the processor interface bus requires changing the RoundTripDelay and TargetTime
parameters in all the processing units and in the North Bridge. Because the I/O voltage is not changed, an
initial alignment pattern (IAP) procedure is not required. The new parameters are sent along with the power
tuning command; they overwrite the old parameters when the frequency switch occurs. No parameter change
is required for the deep nap frequency, because there is no bus activity in this mode.

When switching power tuning modes, consideration must be given to the following items:

» Switching from high to low frequency will result in loss of accuracy and resolution in the decrementer
counter and will slow reaction on interrupts. The operating system has to set the decrementer counter in
order to prevent event and interrupt misses or queue overflow on external devices.

* Some interfaces must be running at a constant speed and voltage independent of the internal frequency
and voltage (for example, the inter-integrated circuit [I°C] interface, SDRAM interface, and PCl interface).

9.4.1 Power Tuning Facility Definitions

Bus clock (Bclk) The external bus clock has half the frequency of the data clock because of the
double data rate transmission mode on the processor interconnect.

Data clock (Dclk) The bus data clock has a frequency of 1/nth of the mesh clock, where n s the
bus ratio. Valid values for the bus ratio are 2, 3, 4, 6, and 12; with 8 and 16
supported only for test purposes.

Local clock (Iclk) The full frequency clock as delivered by the PLL, but with the same analog delay
as the mesh. Every rising edge on the mesh clock has a concurrent rising edge
on Iclk with a small skew.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 181 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Mesh clock (mclk)

Pl

PLL/full frequency clock

psync

psync edge

SYSCLK
TimeO

Power and Thermal Management

Page 182 of 415

The logic behind the PLL generates full, half, or quarter frequency of the PLL
clock and sends it on the mesh. The PLL also guarantees that some rising edge
of the mesh clock at a latch is aligned to some rising edge of the SYSCLK when
using full frequency.

Processor interconnect bus (processor interface).
Frequency is either 8 or 12 times the SYSCLK.

A signal provided by the North Bridge that is active for one rising edge of
SYSCLK every 24 SYSCLK cycles.

A special mesh clock rising edge, aligned with a rising edge of the SYSCLK
while the external psync is active.

This is the system clock as provided on the board.

Time0 mark. A special rising edge on the bus clock, which is either concurrent to
the psync edge or removed by two external bus clock phases (4 * x bus clocks
edges).

Note: Not all bus ratios are valid for all frequency modes (full, half, and quarter),
considering that the external psyncis a 24:1 SYSCLK signal, and taking the PLL
multiplication factors and the Time0 definition into account.

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9.4.2 Power Modes

Figure 9-4 is a state diagram showing the various power modes supported in the 970MP microprocessor and
the transitions between them. Table 9-5 on page 184 identifies the power states in that diagram, and
Table 9-6 on page 185 identifies the transitions labeled in the diagram.

Note: While the frequency associated with Deep Nap is 1/64 of full frequency in all cases, the three Deep
Nap states are distinguished by the frequency of the processor that they transition from and to. When the pro-
cessor goes into Deep Nap from full frequency, it will return to full frequency when it leaves Deep Nap. Simi-
larly, it returns to half frequency if it came from half frequency or returns to quarter frequency if it came from
quarter frequency. In order for these transitions between Run and Deep Nap to be fast, the voltage applied to
the processor in Deep Nap will be the frequency required by the state it will return to. The power dissipation
associated with the three different Deep Nap states will therefore not be the same, in general.

Figure 9-4. 970MP Power Mode States

Deep

Run Doze Nap Nap

High
Speed

Medium

Speed L21/R21

L14/R14

L15/R15

Low
Speed

There are 12 transitions that lower power dissipation, indicated as Lx, corresponding to left-to-right or top-to-
bottom transitions in the diagram. Corresponding to nine of these is a reciprocal transition that raises power
dissipation, indicated as Rx, and corresponding to the right-to-left or bottom-to-top direction in the diagram. In
addition, there are three lower (L4, L11, and L18) and nine raise transitions (R3, R5, R6, R10, R12, R13, R17,
R19 and R20) that do not have corresponding reciprocal transitions.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 183 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 9-5 describes the 12 power mode states.

Table 9-5. Power Mode States

State Description
S1 Full Run, high speed
S2 Doze, high speed
S3 Nap, high speed
S4 Deep Nap, high speed
S5 Full Run, medium speed
S6 Doze, medium speed
S7 Nap, medium speed
S8 Deep Nap, medium speed
S9 Full Run, low speed

S10 Doze, low speed

S11 Nap, low speed

S12 Deep Nap, low speed

The three Full Run modes (S1, S5, S9), one each for high, medium, and low speed, correspond to all oper-
ating processor functions. The three Doze modes (S2, S6, S10) involve limited functionality, which include
bus snooping, but not instruction execution. The timers, both decrementer and time base, continue to run
during Doze modes, as does the logic for responding to interrupts. The three Nap modes (S3, S7, S11) corre-
spond to a level of functionality below Doze, in which snooping is not supported. However, timer and interrupt
logic are still active. The Deep Nap modes (S4, S8, S12) corresponds to the same functionality as Nap mode,
but with the clocks running at 1/64 of full speed.

The state transitions between Run, Doze, and Nap at a given frequency are triggered as in the PowerPC
970MP microprocessor. Transitions associated with scaling the power tuning frequency are L7, R7, L14, R14,
L21, and R21. These are triggered by the execution of a power tuning command, which is initiated by a write
to the Power Control Register. These transitions are all summarized in Table 9-6 on page 185 and briefly
described below.

Power and Thermal Management Version 2.3
Page 184 of 415 March 7, 2008

Table 9-6. Transitions between Power Modes

Transition
L1
R1
L2
R2
R3
L4
R5
R6
L7
R7
L8
R8
L9
R9

R10
L11

R12
R13
L14
R14
L15
R15
L16
R16
R17
L18
R19
R20
L21

R21

From
Run, High
Doze, High
Doze, High
Nap, High
Nap, High
Nap, High
Deep Nap, High
Deep Nap, High
Run, High
Run, Medium
Run, Medium
Doze, Medium
Doze, Medium
Nap, Medium
Nap, Medium
Nap, Medium

Deep Nap, Medium
Deep Nap, Medium

Run, Medium
Run, Low
Run, Low
Doze, Low
Doze, Low
Nap, Low
Nap, Low
Nap, Low
Deep Nap
Deep Nap
Run, High

Run, Low

To
Doze, High
Run, High
Nap, High
Doze, High
Run, High

Deep Nap, High
Doze, High
Run, High

Run, Medium
Run, High
Doze, Medium
Run, Medium
Nap, Medium
Doze, Medium

Run, Medium

Deep Nap, Medium

Doze, Medium
Run, Medium
Run, Low
Run, Medium
Doze, Low
Run, Low
Nap, Low
Doze, Low
Run, Low
Deep Nap
Doze, Low
Run, Low
Run, Low

Run, High

Trigger

User's Manual

IBM PowerPC 970MP RISC Microprocessor

MSR[POW] with HIDO[nap] = ‘1’

Interrupt
QACK asserted
QACK negated
Interrupt
HIDO[deep nap]
QACK negated

Interrupt

=

Power tuning command

Power tuning command

MSR[POW] with HIDO[nap] equal to ‘1’

Interrupt
QACK asserted
QACK negated

Interrupt

HIDO[deep nap] equal to ‘1’

QACK negated

Interrupt

Power tuning command

Power tuning command

MSR[POW] with HIDO[nap] equal to ‘1’

Interrupt
QACK asserted
QACK negated

Interrupt

HIDO[deep nap] equal to ‘1’

QACK negated

Interrupt

Power tuning command

Power tuning command

Software initiates the transition from a Full Run mode to a corresponding Doze mode by setting the
MSR[POWI] bit to a ‘1’, when the HIDO[nap] bit is a ‘1’. This triggers the normal idle mode sequence:

¢ Instruction fetch quiesces.
e The BIU quiesces.

¢ The clocks to the core are gated.

¢ QREQ is asserted.

At this point, the processor is in Doze mode. If or when QACK is asserted, the clocks driving the snoop logic
are gated, and the processor enters Nap mode. Once in Nap mode, if QACK is negated, the snoop logic is
reactivated and the processor returns to Doze mode. From either Doze mode or Nap mode, an interrupt

Version 2.3
March 7, 2008

Power and Thermal Management
Page 185 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

(External, Decrementer, System Management, Performance Monitor, or Reset) will reactivate all the clocks.
This returns the processor to Full Run mode, where it will execute instructions starting at the corresponding
interrupt vector. This brief description of the transitions among corresponding Full Run, Doze, and Nap
modes applies to all three processing speeds (high, medium, and low).

The transition to Deep Nap (L4, L11, and L18) occurs immediately after the transition to Nap, if the Deep Nap
enable bit (HIDO[deep nap]) is set. In this state, the processor frequency is lowered to 1/64 of its full-speed
frequency. Otherwise, the processor behavior is the same as in Nap state. In particular, if QACK is negated
during Deep Nap, the processor transitions into Doze mode. If an interrupt occurs while in Deep Nap mode,
the processor transitions to Run mode at the previous frequency.

Under normal operation, in which both cores are powered and participating (or prepared to participate) in
program execution, system software controls the power mode of each processing unit. Table 9-7 lists valid
combinations of power modes for the two processors.

Table 9-7. Valid Combinations of Power Modes

Processor 0 Processor 1
Run Run
Run Doze
Doze Run
Doze Doze
Nap Nap

Deep Nap Deep Nap

In all these cases, both processors are clocked at the same frequency (there is a single PLL on chip) and are
powered at the same voltage. Table 9-7 shows that both processing units can be in the same power mode, or
one can be dozing while the other is running. Because the two processing units have separate QREQ and
QACK signals, it is also possible for one processor to nap while the other is running (or dozing). However, this
would require the napping processor to first flush its L2 cache so that it would no longer have to snoop the
bus.

9.4.3 Power Transition Latencies

Each of the transitions in Table 9-6 on page 185 has a change in power dissipation associated with it, as well
as a latency for the state change. The 970MP design incorporates several mechanisms to control these tran-
sition latencies in order to reduce the induced voltage spike that would otherwise occur.

There are three situations in which the power requirements of the processor can change drastically. One
occurs during Run mode, when the instruction stream being executed changes from a low activity application
to a high activity application. Because the hardware cannot detect this case, the system must be designed
with sufficient decoupling capacitance to control the rate of current change (di/dt) associated with this type of
power transition.

The second situation is that in which the processor transitions between Run and idle (Doze, Nap, Deep Nap)
modes, at a given voltage and at constant (or Deep Nap) frequency. For this case, the 970MP micropro-
cessor implements a programmable delay, which is inserted at several points in the transition sequence when
coming out of idle modes back to the Run mode. This facility is described in detail in Section 9.4.3.1.

Power and Thermal Management Version 2.3
Page 186 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

The third type of power transition is that associated with frequency changes in the power tuning facility. In this
case, the dithering mechanism introduced in the 970FX microprocessor is expanded to handle the higher
frequency design points of the 970MP microprocessor, as well as the quarter to full frequency transition in the
power tuning facility. Clock dithering in the 970MP microprocessor is described in Section 9.8.3 Clock Dith-
ering on page 200.

9.4.3.1 Idle to Run Transitions

In order to reduce di/dt, the transition from Deep Nap to Run mode is partitioned into several phases, with a
programmable delay incorporated within phases. In the Clock Ramping Configuration Register, a 6-bit value
(ranging from 0 to 63) specifies the programmable delay. It specifies the number of cycles the processor will
spend at six different stages in the transition from Deep Nap to Run mode. To make these delays nearly
equal for full, half, and quarter frequency transitions, the following approach is used:

* The full six bits are used to specify the number of full frequency delay cycles.
¢ The high-order five bits are used to specify the number of half-frequency delay cycles.
¢ The high-order four bits are used to specify the number of quarter-frequency delay cycles.

For example, a value of 12 placed in the register would result in 12 full frequency, 6 half frequency or 3
quarter frequency cycles of delay. All three correspond to the same 4 ns delay on a 3.0 GHz processor. A
value of 27 placed in the register would result in 27 full frequency, 13 half frequency, or 6 quarter frequency
cycles of delay. These correspond to 9 ns (full frequency), 8.7 ns (half frequency), and 8 ns (quarter
frequency) delays on a 3.0 GHz processor.

Note: The delay is specified in core clocks, so the absolute delay stays constant when scaling the frequency.

Table 9-8 on page 188 provides the number of full frequency clock cycles of latency in the four phases in the
Deep-Nap-to-Run mode transition for each of the three mesh frequency settings.

Note that the transition from Deep-Nap-to-Run passes through the Nap and Doze states as power is gradu-
ally increased to support Run mode. The four phases are:

* Phase 1: Interrupt during Deep Nap to Nap

* Phase 2: Nap to Doze

¢ Phase 3: Doze to Run

* Phase 4: Interrupt presented to running processor

The parameters Cy, Cy,, and Cq represent the number of full frequency cycles in the programmable delay
when in full, half, and quarter frequency, respectively. These delays occur in both the Nap-to-Doze and the
Doze-to-Run phases of the transition, just after (i) C2' clocks are issued every other cycle, (i) C2 clocks are
fully enabled, and (iii) C12 clocks are (fully) enabled.

1. C2 s the clock for the slave latch.
2. C1 is the clock for the master latch.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 187 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 9-8. Latency of Deep-Nap-to-Run Transitions in Full Frequency Cycles

Full Frequency

Half Frequency

Quarter Frequency

Phase 1 44 70 122
Phase 2 40 + 3C; 80 + 3Cp, 160 + 3C,,
Phase 3 24 + 3G 48 + 3Cy, 96 + 3C,
Phase 4 15 30 60

Total 123 + 6C; 228 + 6Cy, 438 + 6C,

For example, if the 6-bit programmable delay value is set to 12, then C; = Cy, = C4 = 12. The latency for the
Deep-Nap-to-Run transition for full, half, or quarter frequency would be 195, 300, or 510 full frequency cycles,
corresponding to 65, 100, or 170 ns at 3.0 GHz, respectively. For a programmable delay value of 27, C; = 27,
Cp =26, and G, = 24. This yields latencies for full, half, or quarter frequency of 285, 384 or 582 full frequency
cycles, corresponding to 95, 128 or 194 ns at 3.0 GHz, respectively.

9.4.3.2 Exiting Deep Nap Using a Decrementer Interrupt

The timer registers (Time Base and Decrementer) are updated at a rate that depends on the mesh frequency.
When the mesh frequency is sufficiently low, the timers are adjusted by more than one tick on each update in
order to maintain accuracy. At such a frequency, the precision of the timers is reduced. In particular, during
Deep Nap the mesh frequency will fall below that required to maintain the precision of the timers set by the
time-base enable (tben) frequency (or the PLL frequency, in the case of internally clocked timers). The
resulting loss of precision has no effect on the accuracy of the timers. It also has no visible effect on the time-
base precision, because the Time-Base Register is not accessed during Deep Nap. This loss of precision can
affect the latency of the processor in detecting the interrupt signal when the decrementer value goes nega-
tive.

However, the incremental latency resulting from this loss of precision in the decrementer is quite low in the
970MP microprocessor. To reduce the latency associated with exiting Deep Nap because of a decrementer
interrupt, the timers are updated once every mesh cycle on the 970MP microprocessor. The additional
latency for exiting Deep Nap because of the lower precision of the decrementer is the mesh clock period
minus the target timer period. For example, if the tben input is driven at 66 MHz to clock the timers, and the
full frequency processor clock is running at 1.5 GHz, the added latency is computed as follows. The mesh
clock frequency in Deep Nap is 1.5 GHz / 64 or 23.4 MHz, so the mesh clock period is 43 ns. The period of
the tben input is 15 ns. So, the added latency to exit Deep Nap because of a decrementer interrupt is

43 - 15 = 28 ns. For higher frequency processors, this latency is less.

9.4.3.3 Frequency Transitions in the Power Tuning Facility

Transitions in the power tuning facility involve changing the mesh frequency while in Run mode. The
frequency is changed from frequency one (F1), either full, half or quarter mode, to frequency two (F2), either
full, half or quarter mode (but not the same as frequency one). These transitions are initiated by software
changing the Power Control Register (PCR) in one of the processors, which causes a special bus transaction
to the North Bridge. This transaction is reflected by the North Bridge to all processors in the system, which
causes those processors to begin the transition process. Processors indicate their readiness to make the
frequency switch itself by asserting QREQ to the North Bridge, and the North Bridge responds when it is
ready and after it has received all the QREQs from the processors by asserting QACK to all processors. The

Power and Thermal Management Version 2.3
Page 188 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

time it takes to get to this point in the procedure varies. It depends on activity levels in the processors and
North Bridge. A typical implementation might achieve a 200 ns to 300 ns latency for this sequence when
transitioning from full to half frequency on a 2.0 GHz processor.

From the time the processor receives QACK, it takes 20 additional F1 mesh clocks, plus eight full frequency
clocks, to prepare for the frequency change. The frequency change itself occurs over the course of 24 or 48
cycles (selectable by a mode bit—the previous design supported only a 24-cycle dither). The frequency is
dithered between F1 and F2, so that the frequency changes gradually from one to the other. These 24 or 48
cycles are always at the lower of F1 and F2. Once the frequency switch is finished, it takes 49 additional F2
mesh clocks (assuming a 3:1 bus) before the processor negates QREQ, signaling the end of the transition.

In the case of the full-to-quarter or quarter-to-full transition, the dithering described previously is between F1
and half frequency. After the 32-cycle pause at half frequency, a second dithering sequence between half
frequency and F2 takes place. The rest of these transitions are the same as described previously.

The latency of the transition of the power tuning facility from QACK assertion to QREQ negation in cycles is:

e 8full + 20 F1 + 24 minimum (F1, F2) + 49 F2
* Plus an additional 24 minimum (F1, F2) when using a 48-cycle dither
* Plus an additional (32 + 24) Fy,5 when executing full-to-quarter or quarter-to-full

9.5 PLL Design

The PLL is designed to support the frequency scaling capability of the 970MP microprocessor. A single PLL
drives the clock mesh, with the circuitry of the power tuning facility from PUO controlling the mesh frequency.
Both the processor clock and the bus clock are derived from the reference clock input to the chip in the
970MP design. For frequency scaling, it is assumed that the reference clock, SYSCLK, and the related
synchronizing clock, psync, run at a constant frequency.

The PLL uses a fixed divider in the feedback path, but a variable, seamlessly switched divider in the forward
path. The fixed feedback path allows the PLL to constantly run at a fixed frequency, avoiding the need to
relock when switching frequencies. The processor clock (mclk) and bus clock (Bclk) frequencies can be
changed seamlessly, while maintaining the ratio between these two clocks at a fixed value. Figure 9-5 on
page 190 shows this design. Note that the processor interface supports a double data rate bus. Therefore,
the data rate clock (Dclk) is twice the Bclk frequency, and is constrained by the processor design to be no
more than half the mclk frequency.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 189 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Figure 9-5. PLL Design

— 1ofn Dclk
1ofn < 2,3,4,6,12
1-32 Lelk
mesh
delay
Divider Belk
—>
Ly /n] 4,6,8,12,24
2-8
SYSCLK ——————> PLL
1k
L,/ Seamless Divider me >
1,2,4,64
lost synchronization
—> 24/48 counter >
psync compare

The PLL is designed to allow a feedback divider value ranging from 1 to 32, in series with an additional divide
by 2 to 8 in the feedback path. The forward divider is also in series with the divide by 2 to 8. To generate mclk
from the PLL output frequency, it has selectable values of 1, 2, and 4, plus a divide by 64 for use during Nap
and Deep Nap modes. The forward divider can then generate the data rate clock from mclk with selectable
values of 2, 3, 4, 6, and 12 (values of 8 and 24 are also available for debug, but are not supported on the
processor interface bus, nor by the frequency scaling facility). Despite these many possible configurations,
one constraint that limits the combinations of frequencies that can be used in the 970MP microprocessor is
imposed by the psync counter.

The psync counter in the 970MP microprocessor continuously counts 24 mclks and then resets to zero,
except when Dclk values of 4 and 12 are used. In these cases, the counter counts to 48. This psync counter
is used to generate processor interconnect control signals that are synchronized with the North Bridge drivers
and receivers, as mediated by the psync signal. Whenever a psync pulse is detected, the psync counter
value is checked to be sure that synchronization is maintained. Because the psync pulse occurs once every
24 SYSCLK cycles, the mclk frequency is constrained to be a multiple of the SYSCLK frequency (an even
multiple in the case of a Dclk divider of 4 or 12). The frequency scaling capability on the 970MP micropro-
cessor further constrains the clock configuration values, because this psync counter constraint applies to the
reduced-frequency, as well as the high-frequency, clock rates.

To meet the psync counter constraint at high, medium, and low frequencies, the only allowable divider values
in the feedback path are multiples of four. With a feedback value of eight, for example, using a forward divider
value of one yields the high-frequency mclk that is eight times the SYSCLK. Using a divider value of two then
yields the medium-frequency mclk that is four times the SYSCLK. Using a divider value of four yields the low-
frequency mclk that is two times the SYSCLK.

There are several constraints on frequency configurations for the 970MP microprocessor besides that
imposed by the psync counter (see the Power Management for the PowerPC 970FX RISC Microprocessor
Application Note for details).

Power and Thermal Management Version 2.3
Page 190 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9.6 Time-Base and Decrementer Registers

The Time-Base and Decrementer Registers run at a constant frequency, independent of changes to the
processor and bus frequencies. The default operation of these timers is to run at 1/16 of the full processor
frequency, even when the processor itself is running at a lower frequency. When tben is configured to clock
these timers (HIDO[19] equals ‘1’), the timers will run at the tben frequency. When the external clock input
mode is used, the tben input frequency must not exceed the value specified in the IBM PowerPC 970MP
RISC Microprocessor Datasheet.

Because the mesh clock frequency can be lowered to 1/64 of the full-speed, the time base and decrementer
can be increased or decreased by more than one at a time. Therefore, testing that the decrementer has
reached the value of zero in order to generate an internal interrupt is not sufficient. The logic detects that the
counter has wrapped around. Additionally, the time resolution of the counters cannot exceed the mesh clock
frequency.

9.7 I12C Bus Interface

The I2C bus interface operates at a constant speed independent of the current processor frequency.

Note: No I°C operations are supported during Deep Nap.

9.8 Frequency and Voltage Scaling

9.8.1 Frequency Scaling

Whenever an application requires less than the maximum performance available from the processor,
reducing the processor clock frequency can reduce active power linearly. Furthermore, a reduction in
frequency allows a reduction in voltage, resulting in an additional quadratic reduction in active power, plus a
reduction in leakage.

Frequency scaling on the 970MP microprocessor involves changing the bus frequency along with the
processor frequency, because of the high speed of the processor interconnect bus, and the constraint that
the processor frequency be at least twice the bit rate of the bus. In order to support frequency scaling in a
multiprocessor system, the North Bridge must be involved in initiating the sequence (see the Power Manage-
ment for the PowerPC 970FX RISC Microprocessor Application Note for details).

9.8.1.1 Initiating a Frequency Change

Software initiates a frequency change by writing to the PCR. The value written to the PCR frequency field
determines the target frequency being switched to. The values in the parameter fields must correspond to this
new frequency. Similarly, if the voltage field is used, the voltage requested must correspond to the frequency
requested. The North Bridge is responsible for changing the voltage before the frequency change when
raising voltage. It is also responsible for changing the voltage after the frequency change when lowering the
voltage.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 191 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

The QREQ and QACK signals have been overloaded to provide handshaking during the frequency change
procedure. Therefore, these signals are not available for their normal use (handshaking for Nap mode) during
the procedure. System hardware or software must enforce the negation of these signals at the beginning of
the procedure. If a processor puts itself into Nap mode during the frequency change procedure, the processor
blocks assertion of the QREQ signal for Nap signalling until after the frequency change is complete.

The waveforms in Figure 9-6 on page 193 show the ordering of events on the CPU-to-North Bridge interface
during a frequency change in which the clocks are slowed to half speed. The time shown at the bottom of the
figure is in CPU processor clocks at the original frequency. However, this figure is intended to show the
ordering of events, and not actual latencies between events. Latencies are discussed in Section 9.8.5
Frequency and Voltage Scaling Latencies on page 202.

The sequence in Figure 9-6 on page 193 starts at the point after a CPU has sent the change request to the
North Bridge, and the North Bridge has reflected that request to all the processors. Each CPU then completes
any bus transactions in progress, and reach a quiescent state. The CPU quiesce signal shown in Figure 9-6
indicates that the quiescent state is reached at cycle 6. Two cycles later, the CPU asserts its internal sts_stop
signal. At this point, the core no longer has access to the L2 cache or bus. Two cycles later, the CPU asserts
QREAQ. During this time, the North Bridge has also been progressing toward a quiescent state. The North
Bridge quiesce signal indicates that this state is reached at cycle 12, though it might occur before QREQ is
asserted.

The combination of QREQ asserted and North Bridge quiescent causes the North Bridge to stop its bus
clocks on a Time0 boundary, which occurs at cycle 16. Next, the North Bridge asserts QACK, shown at cycle
18. Once QACK is asserted, the CPU stops its bus clocks on the next internal psync boundary (psyncnt),
shown at cycle 24. With its bus clocks stopped, the CPU changes the frequency of its processor (and there-
fore bus) clock, shown at cycle 38. Once the frequency change occurs, the CPU will start its bus clocks on the
next psync boundary, shown at cycle 48. After starting its bus clocks, the CPU will negate QREQ, shown at
cycle 56. The North Bridge then starts its bus clocks on a Time0 boundary (cycle 64), after which it negates
QACK (cycle 68). Internal to the CPU, the negation of QACK leads to the negation of sts_stop (cycle 76). This
enables allowing core access to the L2 cache and activity to proceed on the bus.

Power and Thermal Management Version 2.3
Page 192 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

psync 1 1

SE T S I e O e O T e O O et Y e O Bt A e A
CPUguiesce [3 3 3 3 3 3 -
sts_stop 3 3 3 3 3 3 3 3
QREQ | 3 3 3 3 | | |
North Bridge 1 1 1 1 1 1 | 1

quiesce ‘ ! ! ! ! ! ‘ ‘
North Brid | | | | | [

R R AN RN SR A ; ; ; ; LI L
Timeo || 1 . J T | [S I L
QACK | L | | | | - |

EPsyncnt [1 .1 1 1 [1 l 1
psynent [] } ‘ ‘ ‘ [] l l ‘
CPU Dclk ‘ 1 ! ! - ‘ | |
melk LU rrryrU Uy Ty
(‘) 1’0 2‘0 3‘0 4|0 5‘0 6’0 7|0 8‘0
Time is in CPU processor clocks at original frequency
Version 2.3 Power and Thermal Management

March 7, 2008 Page 193 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.8.1.2 Power Control Register

Software writes the PCR bits to indicate that a frequency change is wanted, and to pass the information
corresponding to that frequency change to all the processors in the system. Writing to the PCR initiates the
frequency change process, by generating a special bus transaction that is sent to the North Bridge and even-
tually reflected to all the processors. The address bits of this special transaction are copied from
PCRH[22:31] and PCRJ[0:31] (see Section 9.8.1.3 Power Control Register High (PCRH) on page 196).

Note: The special bus transaction is generated when the PCR Register is written, so the Power Control Reg-
ister High (PCRH) must be updated as needed before writing the PCR.

The PCR is implemented as a scan communications (SCOM) register; the odd-parity address for JTAG
access is X'0AA0 0100°. The PCRH is also implemented as an SCOM register, at the same address as the
PCR. The high-order bit in the register indicates which register is being written. The PCR high-order bit
equals ‘1’; the PCRH high-order bit equals ‘0’. The 32-bit PCR and PCRH are written using Move To Special
Purpose Register (mtspr) instructions that target the SCOM data (SCOMD) and SCOM control (SCOMC)
special purpose registers (SPRs). Thus, the low-order 32 bits (bits 32:63) of the source register are moved to
the target PCR or PCRH.

For example, before initiating a frequency change, set the following registers:

* Appropriate values in the low-order bits of gpr3 to indicate the required settings for the PCR (including
bit 32 equals ‘1)

* Appropriate values for PCRH in gpr4 (including bit 32 equals ‘0’)
e The SCOM address of these registers in gpr5 (to x'0000 0000 0AA0 0100)

The following sequence, where “gpr” stands for General Purpose Register, initiates a frequency change:

.set SCOMD 277 # SPRN for SCOMD
.set SCOMC 276 # SPRN for SCOMC
mtspr SCOMD, gpr4

isync

mtspr SCOMC, gprb

isync

mtspr SCOMD, gpr3

isync

mtspr SCOMC, gprb

Note: For the 970MP microprocessor, each frequency change should be preceded by a write to the PCR in
which Gd contains all zeros. Not clearing the PCR will prevent further frequency scale commands from being
issued by the bus even though the instruction sequence will complete within the processor.

Power and Thermal Management Version 2.3
Page 194 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Address x‘0AAQ01’
)
< c T o
g 3 c g
5 § § %
8 Voltage Reserved T r 2 Target STATLAT SNOOPLAT SNOOPACC
Vv vy VY Y LV vy v ¥ v
(0]1 2 3 4 5 6 7]8 9 10 11 12[13 14[15[16[17 18[19 20 21 22 23[24 25 26 27|28 29 30 31]
GPR PCR . -
Bits Bits Field Name Description
0 32 Constant Must be “1°.
1:7 33:39 Voltage Voltage field.
8:12 40:44 Reserved Spare field.
Frequency field.
00 Full frequency
13:14 45:46 Frequency 01 Half frequency
10 Quarter frequency
11 lllegal
15 47 FreqReq Frequency request valid.
16 48 VoltReq Voltage request valid.
17:18 49:50 Target Target time.
19:23 51:55 STATLAT' STATLAT is the number of bus beats between the last beat of the address/data (AD)

packet and the first beat of the transfer-handshake (TH) packet.

SNOOPLAT is the number of bus beats between the last beat of a reflected command
24:27 56:59 SNOOPLAT! packet to the first beat of the individual snoop responses from each of the processors
received at the North Bridge.

SNOOPACC is the number of bus beats between the last beat of the individual snoop
response sent from a processor to the first beat of the accumulated snoop response
)) 1 received from the North Bridge.
28:31 | 60:63 SNOOPACC Note: SNOOPACC is a 4-bit field. When coded with a value of 1 - 15, the actual value is
x + 8. For example, a one in the SNOOPACC field is actually a nine. When a zero is
coded in this field, the actual value is 24.

1. See Table 11-1 on page 281 for information about programmable delay parameters.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 195 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.8.1.3 Power Control Register High (PCRH)

The Power Control Register High (PCRH) contains the high-order address field.

Address x‘0AAQO0T’

5

(_g) Reserved High-Order Address

vy vy v
Lol

2 3 4 5 6 7 8 9 10 11 12131415161718192021|22232425262728293031|

Bits Field Name Description

0 Constant Must be ‘0'.
1:21 Reserved Reserved.

22:31 High-Order Address | High-order address field.

Power and Thermal Management

Version 2.3
Page 196 of 415

March 7, 2008

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor

9.8.1.4 Power Status Register

The status of the power tuning facility is available in the Power Status Register (PSR). This register consists
of read-only bits, indicating the current voltage (if supported by software) and the current frequency. This
frequency value is valid when there is no frequency change in progress, as indicated when PSR[2] equals ‘0’.

When the processor receives the power adjustment special transaction reflected from the North Bridge, it
sets PSR[2] to indicate that a frequency change is in progress. Shortly after the North Bridge has asserted

QACK to start the frequency scale, the new frequency field is reflected in PSR[6:7]. Once the frequency
scaling has completed PSR[3] is also set to ‘1°.

An SCOM read of the PSR once bit 2 and 3 are set will automatically clear both bits.

Address x‘4080071’
° L °
S pgE £ 8
) o 35 @ L
3 3 E & 5
g 85 & 3 Reserved
VY v v VY e ”
(0 1]2[3[4 5[6 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved
N v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|
Bit Field Name Description
0:1 Reserved Reserved.
2 RcvPTE Power tuning command has been received.
3 CmplPTE Power tuning command has completed.
4:5 Reserved Reserved.
6:7 CurrFreq Current frequency.
8:63 Reserved Reserved.
Version 2.3

Power and Thermal Management

March 7, 2008 Page 197 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.8.2 Power Adjustment Bus Transaction

The processor sends a power adjustment transaction to the North Bridge to initiate the frequency and voltage
scaling sequence in the system. This is a command-only transaction. It contains information that is encoded
in a subset of the address bits to indicate the required target frequency, and the corresponding parameter
information. Table 9-9 shows the transaction type and related bus signals for this transaction.

Table 9-9. Power Adjustment Transaction

Bus Operation Power Adjustment
Transaction type 00101 (x'05’)
Address modifiers (WIMGRP)1 00 1000
Tag field 11011

1. W = write through, | = cache inhibited, M = memory coherent, G = guarded read, R = rerunning, P = pipelined snoop

The encoding of the address bits for this transaction is as follows:

Reserved High-Order Address

v vov v
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21[22 23 24 25 26 27 28 29 30 31]

Frequency

[on
e g
g <
Voltage Reserved r £ Target STATLAT SNOOPLAT SNOOPACC

v vy Vv v vy v Vo v oy v
(32 33 34 35 36 37 38 39|40 41 42 43 4445 46|47[48[49 5051 52 53 54 55[56 57 58 59|60 61 62 63]

Bits Field Name Description
0:21 Reserved Not implemented.
22:31 High-Order Address | High-order address bits.
32:39 Voltage Voltage field. The 970MP microprocessor does not use this field.
40:44 Reserved Spare field.

Frequency field.
00 Full frequency

45:46 Frequency 01 Half frequency
10 Quarter frequency
11 llegal
47 FreqReq Frequency request valid.
48 VoltReq Voltage request valid.
49:50 Target Target time.

1. See Table 11-1 on page 281 for information about programmable delay parameters.

Power and Thermal Management Version 2.3
Page 198 of 415 March 7, 2008

== User's Manual

IBM PowerPC 970MP RISC Microprocessor

Bits Field Name Description

STATLAT is the number of bus beats between the last beat of the AD packet and the first beat of

. 1
51:55 STATLAT the TH packet.

SNOOPLAT is the number of bus beats between the last beat of a reflected command packet to the
56:59 SNOOPLAT! first beat of the individual snoop responses from each of the processors received at the North
Bridge.

SNOOPACC is the number of bus beats between the last beat of the individual snoop response
sent from a processor to the first beat of the accumulated snoop response received from the North
Bridge.

Note: SNOOPACC is a 4-bit field. When coded with a value of 1 - 15, the actual value is x + 8. For
example, a one in the SNOOPACC field is actually a nine. When a zero is coded in this field, the
actual value is 24.

60:63 SNOOPACC!

1. See Table 11-1 on page 281 for information about programmable delay parameters.

These 42 low-order address bits are copied from the corresponding fields in the Power Control Register. Soft-
ware can set bits 22 to 31 to any desired value to make the address fall within some desired range. Further-
more, if the voltage field is unused (voltage request valid is negated), bits 32 to 39 and the spare bits (40 to
44) can also be set to any desired value by software.

The North Bridge uses the frequency field to determine what new frequency is being requested. The
frequency-request valid bit must be asserted if a frequency change is being requested. The presence of this
bit allows the option of a voltage-change-only request. If the frequency request valid bit is negated, the North
Bridge will not reflect this transaction to the processors. It is illegal to issue a frequency scale request to ‘171’
or to the same frequency scale factor (that is, to issue a frequency scale command to full when it is already
full). The North Bridge will not reflect these transactions to the processors.

Once the transaction is reflected to the processors, each processor responds as follows:
* [f the frequency field indicates no change, the processor does nothing.

* [f the frequency field indicates a change to the current frequency, or a change to a new frequency, then
the processor must execute the frequency change procedure.

In addition to the four parameters passed in the power adjustment transaction, the processor interconnect
also depends on the values of the programmable bit line and clock delays that are determined during the IAP
at power-on. To support frequency scaling, this IAP must be run at the high-frequency, high-voltage setting
for the processor. Then, the effect of running at lower frequencies is to widen the signal eye. However, the
effect of lowering the core voltage while the I/O voltage remains constant is to increase all the bit and clock
delays. Thus, once the IAP establishes the minimal bit skew and clock centering required for the interface to
run at high frequency and high voltage, these same settings should also support the lower frequencies and
voltage. Therefore, there is no facility for changing these delay values during a frequency or voltage change.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 199 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.8.3 Clock Dithering

Input current to the processor can change significantly during transitions of the power tuning frequency.
These current changes must be controlled to avoid over and under voltages that a high di/dt might cause
because of the inductance in the power distribution network. A clock-dithering mechanism included in the
power tuning facility enables gradually transitioning between frequencies.

The power tuning facility supports frequency scaling with a constant-frequency PLL that feeds multiple
frequency dividers. The outputs of these dividers are fed to a frequency multiplexer, from which one divider
output is selected as the processor mesh clock at any given time. Toggling this multiplexer-selection signal
during a transition from frequency A to frequency B accomplishes clock dithering. Thus, most clocks are at
frequency A at the beginning of the transition. Gradually, more and more frequency-B clocks are introduced in
the dithering pattern.

Figure 9-7. Clock Dithering Block Diagram

48-bit Pattern Register on the Mode Chain

_ —

disable_dither

Shift Register

OR
\ 4
muxsel_prev
» Latch
Dithering Multiplexer
muxsel
Y
Latch EEEEN
—>
—> —> mclk
—>

Frequency Multiplexer

Figure 9-7 shows the components controlling the dithering of the clock. Two dithering patterns, selectable as
either 24 or 48 bits in length, are provided in the mode ring. They support distinct dithering patterns for transi-
tions between the high and medium frequencies and the transitions between the medium and low frequen-
cies. When a frequency shift is initiated, the appropriate mode ring pattern is selected using a multiplexer for
transfer to a 24-bit shift register. At the same time, the multiplexer select pattern for the previous frequency is
saved in the muxsel_prev latch, while the new frequency is loaded into the muxsel latch.

Clock dithering involves a 2-level multiplexer selection process. The Shift Register is clocked at the lower of
the previous and new frequencies. Starting on the rising edge of the mclk/4, it shifts the pattern one bit to the
right every cycle. Then it applies the right-most bit to the dithering multiplexer to select a multiplexer-selection

Power and Thermal Management Version 2.3
Page 200 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

pattern. That pattern is then applied to the frequency multiplexer to select the mesh clock frequency. A '1' bit
in the shift pattern selects the new frequency; a '0' bit selects the old frequency. At the end of the shift pattern,
a '1' bit is forced to continuously select the new frequency. A separate mode-ring bit can be used to disable
clock dithering by forcing this control bit to always be a '1' through the OR circuit shown in Figure 9-7.

As an example of a shift pattern for achieving a gradual transition from high to medium frequency might be
1110 1011 0110 1010 0100 1000’ (see Figure 9-8 on page 201). These bits are shifted at the medium
frequency. Each '1' corresponds to one cycle of medium frequency. Each '0' corresponds to two cycles of
high frequency (because the Shift Register is clocked at medium frequency). Thus, reading the pattern from
right to left, the pattern specifies six fast clocks, followed by one medium clock, followed by four fast clocks,
followed by one medium clock, and so on, as indicated in the Figure 9-8.

Figure 9-8. Sample Shift Pattern

o U A A A A
v (Ui irduut
diherpaten 000100100101 011011010111

9.8.4 Voltage Scaling

To take the greatest advantage of frequency scaling, it is desirable to vary the voltage to match processing
requirements. In operational modes, when the frequency is reduced, the voltage can also be reduced to
realize a quadratic reduction in active power. When the voltage is changed with frequency, the voltage
change must precede frequency increases, and must follow frequency decreases.

The processor supports the integration of voltage and frequency scaling as currently described. However, the
software and system designers might choose to control the processor voltage independently of the power
tuning facility. In that case, the software and system will be responsible for the sequencing and timing of
voltage changes with respect to frequency changes (see the Power Management for the PowerPC 970FX
RISC Microprocessor Application Note for details).

Version 2.3 Power and Thermal Management
March 7, 2008 Page 201 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.8.5 Frequency and Voltage Scaling Latencies

The sequence for raising the voltage and frequency has a latency from the time the operating system writes
the configuration value in the PCR to the time when the status bit in the PSR indicates that the change is
complete. That latency has the following components:

* Time to signal North Bridge

¢ Time to raise voltage

¢ Time to signal processors

¢ Time for North Bridge and processors to quiesce

» Time for North Bridge and processors to handshake
e Time for one psync (1:24) cycle

¢ Time to handshake and reset the status bit

The latency for lowering the frequency and voltage is similar. However, the voltage is lowered after the
frequency, and processing does not need to wait for that to occur.

While the processor signals the frequency change to the North Bridge, and until the North Bridge reflects the
power adjustment command to the processor, it proceeds normally. Once the processor begins to quiesce
the bus, the processor core will no longer be able to access data and instructions from the L2 or bus interface.
As long as the processor is able to execute with data and instructions in the L1 caches, it can continue to run.
In the best case, the processor will only stall for about a cycle when the mesh clock frequency itself is
switched. More specifically, the processor will be unable to respond to interrupts while the bus interface is in
a quiescent state, unless the instructions and data needed to handle the interrupt are in the L1 caches before
the frequency change. This means the interrupt response might be delayed because of a frequency switch
(see the IBM PowerPC 970MP RISC Microprocessor Datasheet for latency values).

Power and Thermal Management Version 2.3
Page 202 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

9.9 Reducing Clock Mesh Power

There are two power saving modes defined for the 970MP microprocessor, Nap and Doze. In Nap mode, the
clocks to the core are turned off, while the timers, PLL, and part of the pervasive unit continue to operate.
Doze mode is similar, except that snoop logic is also active. Doze mode is entered from Full Power (Full Run)
mode by setting HIDO[nap], and then the MSR[POW] bit. This also causes the QREQ signal to be asserted,
requesting that the North Bridge put the bus in a quiescent state. When the North Bridge complies, it asserts
QACK, causing the processor to transition into Nap mode. Whenever QACK is negated, the processor must
return to Doze mode to process snoop transactions.

9.9.1 Power Saving in Deep Nap

When the processor is in Nap mode, the core is inactive, and clocks are gated at local clock buffers (LCBs).
However, the clock distribution mesh itself continues to be clocked, dissipating significant power. To reduce
the active power during Deep Nap mode, the processor clock is divided down to a very low frequency. The
frequency is then be brought back up to its functional level as the processor transitions out of Deep Nap
mode.

The frequency switching for Nap mode is completely under hardware control. When enabled, the frequency
switch takes place after the clocks have been gated and subsequent to detecting that QACK has been
asserted. Entering low-frequency, Deep Nap mode takes only one cycle longer than entering Nap mode
without changing frequency. During low-frequency Nap mode, the bus clocks are disabled, and the bus
signals are driven with the null transaction pattern.

As with normal Nap mode, negation of QACK or detection of an external (or decrementer, hreset, sreset, or
machine check) interrupt causes the processor to leave low-frequency Nap mode. The time required to exit
low-frequency Nap mode is longer than the time to exit normal Nap mode, because of the frequency change
and corresponding synchronization required. Latencies for the transitions from Deep Nap to Doze and Full
Run modes can be found in the IBM PowerPC 970MP RISC Microprocessor Datasheet.

HIDO[deep nap] controls whether the clock frequency is reduced during Nap mode. When the bit is asserted,
the processor will transition to Deep Nap mode immediately after entering Nap mode.

Version 2.3 Power and Thermal Management
March 7, 2008 Page 203 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

9.10 Additional Dynamic Power Management

The 970MP microprocessor implements dynamic power management—the gating of clocks to idle circuits
while in an operational mode—in a number of functional units. For example, there are two levels of clock
control for the VPU, a coarse level and a fine level. The coarse control is essentially a static form of clock
gating control, making use of the vector processor available bit (MSR[VP]). When this bit is a zero, the latches
in all VPU stages from issue to writeback are gated off. The fine level control is much more dynamic. It occurs
on a stage-by-stage basis within each execution pipeline, starting with the latches following stage 2 of the
Vector Register File (RF2). When this fine level of control is enabled, all clocks in all of the VPU stages from
the register access to the write back are gated off at all times. The only exceptions are cycles during a stage

that has active instructions.

Clock gating has been implemented in the VPU, IDU, STS, ISU, FXU, FPU and pervasive units. Because
DPM has no negative impact on performance, it should always be enabled. For test purposes, DPM can be

disabled as follows:
¢ For the VPU, IDU, and STS units, DPM is disabled by negating HIDO[DPM].

* For the ISU, FXU, FPU, and pervasive units, setting bit 0 in the Dynamic Power-Management Options

Register (x'000800’) to a '1' disables DPM.

Power and Thermal Management

Page 204 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10. 970MP Performance Monitor

The 970MP microprocessor has a complex, speculative, out-of-order execution core coupled with an equally
complex multilevel storage hierarchy. Users concerned with performance analysis and system optimization
have access to performance monitoring features, which support a wide range of tasks which include:

¢ Profiling memory hierarchy behavior and tuning system algorithms to optimize scheduling, partitioning,
and structuring for tasks and data

¢ Tuning applications for the target system

* Debugging, analyzing, and optimizing processor architecture features

The performance monitor facility provides information for a wide variety of activities and is part of the facilities
that are collectively referred to as instrumentation facilities. Instrumentation facilities include
matching/sampling, tracing, and thresholding.

Note: The 970MP performance monitor should only be used as a debug facility until characterization of its
features and functions is complete.

10.1 Instrumentation Facilities Overview

The 970MP performance monitoring facility is an extension to that of earlier PowerPC processors. There are
eight Performance Monitor Counter Registers (PMC1-8). They can count a variety of events, many of which
are relevant to performance analysis. As before, the counters support user or supervisor and marked or
unmarked filtering of events. A marked instruction is one that is eligible for sampling as determined by the
instruction fetch unit (IFU) and instruction dispatch unit (IDU) instruction matching facilities.

The most-significant change introduced by the 970MP performance monitor is the concept of indirect events.
A subset of the normally selected direct Performance Monitor Counter (PMC) events are multiplexed so that
there is a larger number of total available events. Unlike event selection on previous PowerPC processors
(which had only direct events), indirect events cannot be configured entirely independently (setting a multi-
plexer affects the indirect events on more than one PMC). Some indirect events can also be summed
together by the hardware. This feature is most often used to sum the performance event counts of a func-
tional unit pair (for example, floating-point unit 0 [FPUOQ] and floating-point unit 1 [FPU1]).

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 205 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.1.1 Performance Monitor Facilities
The instrumentation performance monitor (perfmon) on the 970MP microprocessor includes the following
functions:

» Counts up to eight concurrent software selected events in individual 32-bit counters. The counting of
events can be enabled by software under several conditions such as user (problem) or supervisor
(privileged) state, and Run or Wait state.

* Generates a maskable exception when an event counter overflows (triggering).

* Freezes the contents of the event counters until a selected trigger occurs and then begin counting
(triggering).

¢ Increments the event counters until a selected trigger occurs and then freezes counting (triggering).

* Monitors classes of instructions selected by the instruction matching facility.

* Randomly chooses an instruction for detailed monitoring (sampling).

¢ Counts start/stop event pairs that exceed a selected timeout value (thresholding).

10.1.2 Performance Monitor Event Selection

One event per counter can be selected for monitoring at a given time. The event to be monitored is selected
by setting the appropriate value in the Monitor Mode Control Register (MMCR) bit field for that counter. The
events counted might be the number of cycles that the event occurs or the number of occurrences of the
event depending on the particular event selected.

10.1.3 Machine States and Enabling the Performance Monitor Counters

Performance monitor counting can be enabled or disabled under several machine states, which are selected
using the counting control bit fields in the MMCRs and the state bits in other Special Purpose Registers
(SPRs).

10.1.4 Trigger Events and Enabling the Performance Monitor Counters

Certain kinds of conditions and events, called trigger events, can be used to control performance monitor
activities such as starting or stopping the counters and causing performance monitor exceptions. These
scenarios are selected using the condition/event enable bits fields and the exception enable bits of the
MMCRs in conjunction with control bits in other SPRs.

10.1.5 Performance Monitor Exceptions

Trigger events can cause performance monitor exceptions to occur based on the values of the exception
enable bits in the MMCRs. An enabled exception might cause a performance monitor exception to occur if the
exception is enabled in other SPRs.

970MP Performance Monitor Version 2.3
Page 206 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.1.6 Sampling

The 970MP microprocessor can be configured to sample instructions for detailed monitoring. The 970MP
microprocessor instrumentation facilities support setting mask values for matching particular instructions or
kinds of instructions that are then eligible to be sampled (that is, they are marked for sampling). The perfor-
mance monitor includes events for counting marked instructions at each stage of the pipeline and in certain
other situations. Instruction sampling is a useful facility for gathering both detailed and statistical information
for particular instructions.

Note: Instruction marking is entirely separate from thread marking with the performance monitor mode bit in
the Machine State Register (MSR[PMM]).The state of the MSR[PMM] bit is only relevant for event counting in
order to determine when counters should be frozen (MMCRO[FCM1, FCMO] fields).

10.1.7 Thresholding

Unlike previous PowerPC processors, which implemented thresholding only on load instructions, the 970MP
processing unit monitors the pipeline stage progression of sampled instructions and can detect when the
stage-to-stage cycle count for a selected start/stop pair of pipeline stages exceeds a specified threshold
value.

10.1.8 Trace Support Facilities

The 970MP microprocessor supports both the single step and the branch trace modes as defined by the
PowerPC Architecture.

10.2 Instruction Sampling Facilities

10.2.1 Special Purpose Registers and Fields Associated with Instrumentation

The 970MP microprocessor instrumentation facilities and associated 970MP microprocessor components
include several SPRs used for or associated with performance monitoring, matching, sampling, and tracing.
Unless otherwise noted, the Special Purpose Registers described below and listed in Table 10-1 on page 209
can be read in user (problem) and supervisor (privileged) state by using the Move From Special Purpose
Register (mfspr) and written in supervisor state by using the Move To Special Purpose Register (mtspr)
instructions. The MSR Register is read and written by the Move From Machine State Register (mfmsr) and
Move To Machine State Register (mtmsr) instructions.

The 970MP microprocessor instrumentation facilities include the following Special Purpose Registers and
register bit fields (also listed in Table 10-1 on page 209):

¢ Performance Monitor Mode Control Registers (MMCRX)
These registers include both counting control and event select bit fields.

* Performance Monitor Counter Registers (PMCx)
These registers increment each time (or cycle, depending on the selected event) that an event occurs
while the counter is enabled. These registers also have the control function for the counter overflow con-
dition.

¢ Machine State Register [EE] (MSR[EE])
This register bit is used to enable or disable external interrupts. The performance monitor exception is
considered an external interrupt.

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 207 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

* Machine State Register [PMM] (MSR[PMM])
This register bit is used to enable or disable performance monitor activity controlled by the process
mark bit.

¢ Machine State Register [PR] (MSR[PR])
This register bit is used to establish user (problem) or privileged (supervisor) mode and the performance
monitor counting activity controlled by this bit.

¢ Machine State Register [SE] (MSR[SE])
This register bit is used to enable or disable the trace exception after each instruction is completed.

¢ Machine State Register [BE] (MSR[BE])
This register bit is used to enable or disable the branch trace exception and after a branch instruction is
completed.

¢ Hardware Implementation-Dependent Register0[13] (HIDO[TG])
This register bit is used to determine the granularity the thresholder uses for counting cycles.

e Control Register[31] (CNTL[31])
This register bit is used to determine the Wait or Run state and the performance monitor activity con-
trolled by this bit.

¢ Scan Communication Register x'240’ [0:15] (SCOM x‘240’ [0:15])
These register bits are used to establish the timeout and resume delays used by the performance monitor
to coordinate the matching and sampling facility.

e Scan Communication Register x‘340’ [11:12] (SCOM x‘340’ [11:12])
These register bits are used to establish the matching and sampling filter mode used by the matching and
sampling facility to produce marked instructions that can be counted by the performance monitor.

¢ Instruction Match Content-Addressable Memory (CAM) Registers (IMC)
The IMC SPRs are used to access the IMC array that contains the mask values used for instruction
matching. The Move To IMC (mtimc¢) and Move From IMC (mfime) instructions can be executed only in
supervisor mode.

* Time-Base Register [47, 51, 55, 63] (TB[47, 51, 55, 63])
These register bits are used to enable or disable the time-base events that can be used to enable or dis-
able performance monitor counting.

e Sample Address Registers (SxAR)
The Sampled Instruction Address Register (SIAR) contains the address and the Sampled Data Address
Register (SDAR) contains the data relating to a marked instruction. The registers can be read in supervi-
sor (privileged) or user (problem) state, but are modified only by the hardware. The values written to
these registers by the hardware depend on the processing state and on the kind of instruction that is
being marked for sampling.

* Machine Status Save/Restore Register (SRR0, SRR1)
These registers are used to save machine status during exception handling. In addition, SRR1[33] is
used to determine when the contents of the SIAR and SDAR Registers are synchronized, so that they
refer to the same marked instruction.

970MP Performance Monitor Version 2.3
Page 208 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-1. 970MP Performance Monitor and Trace-Related Special Purpose Registers

SPR Address Bits’

Register Name Function
5:9 0:42

MMCRO ‘11000’ ‘n1011’ Performance Monitor Mode Control Register O
MMCR1 ‘11000’ ‘n1110’ Performance Monitor Mode Control Register 1
MMCRA ‘11000’ ‘n0010’° Performance Monitor Mode Control Register A

PMCA ‘11000’ ‘n0011’ Performance Monitor Counter Register 1

PMC2 ‘11000’ ‘n0100’ Performance Monitor Counter Register 2

PMC3 ‘11000’ ‘n0101’ Performance Monitor Counter Register 3

PMC4 ‘11000’ ‘n0110’ Performance Monitor Counter Register 4

PMC5 ‘11000’ ‘n0111’ Performance Monitor Counter Register 5

PMC6 ‘11000’ ‘n1000’ Performance Monitor Counter Register 6

PMC7 ‘11000’ ‘n1001’ Performance Monitor Counter Register 7

PMC8 ‘11000’ ‘n1010’ Performance Monitor Counter Register 8
MSR[61] Machine State Register [Performance Monitor Mark]
MSR[48] Use mtmsr, mfmsr Machine State Register [External Interrupt]
MSR[49] instructions Machine State Register [User (Problem)/Supervisor (Privileged) State]
MSR[53] (eupervisor [([))r:il\)//i)leged] mode Machine State Register [Single-Step Trace Enable]
MSR[54] Machine State Register [Branch Trace Enable]
HIDO[13] 111171’ ‘10000’ Hardware Implementation-Dependent Register 0 [Threshold Granularity]
CTRL[31] ‘00100° ‘n1000° Control Register [Run Bit]
SCOMC Scan Communication Control

Use mtscomc/d and

SCOMD mfscome/d instructions Scan Communication Data

Use mtime, mfime

IMC ins;:il:gfiagzr(zt:]%eglﬁg:v@g?e Instruction Match CAM Register
mode read)
TBL [47,51,55,63] ‘01000’ ‘n1100° Time-base bits used for performance monitor time-base events
SIAR ‘11000’ ‘n1100° Sampled Instruction Address Register
SDAR ‘11000’ ‘n1101’ Sampled Data Address Register
SRR1 ‘00000’ ‘n1011’ Machine Status Save/Restore Register 1
Note:
1. In a mtspr/mfspr instruction, the instruction SPR field of bits 11:15 hold SPR address bits 0:4 and bits 16:20 hold SPR field
bits 5:9.

2. When nis set to ‘1’, it indicates an SPR address value for a supervisor mode mtspr or mfspr instruction.
When n is set to ‘0’, it indicates an SPR address value for a user mode mfspr instructions.
For mfspr, the instruction is supervisor mode if and only if SPR[0] is set to ‘1°.

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 209 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.3 Performance Monitor Components

A schematic overview of the components that make up the 970MP performance monitor is shown in

Figure 10-1. These components and their use are described in the following sections.

Figure 10-1. Performance Monitor Architecture

IDU

SPR Interface

I

Control Registers
Threshold (MMCRx)
Logic
I A,
F Counters

PMU
> Exception

Part of Trace Logic

PMC1
Event Selection Muxes
PMC2
> PMC3 2
> Event PMC4 Exception
: | Generation
N Logic MG ;‘ > o
PMC6
PMC7
PMC8
Time Base
—>|
Select
Y

Instruction
Marking

Tl 14

Logic

Control
Logic

1

Counter
Defaults

970MP Performance Monitor
Page 210 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.4 Performance Monitor Control Registers

The Performance Monitor Control Registers, MMCRO, MMCR1, and MMCRA, are used in conjunction with
the MSR and other SPRs to set up the performance monitor enable states, exception conditions, threshold
values, match criteria, and selection of the events counted in each of the Counter Registers, PMC1 - PMCS.

The MMCRXx Register bit assignments are shown in Section 10.4.1 Performance Monitor Control Register
MMCRO on page 211, Section 10.4.2 Performance Monitor Control Register MMCR1 on page 214, and
Section 10.4.3 Performance Monitor Control Register MMCRA on page 217. The MSR bits that relate to
performance monitor functions are shown in Table 10.4.5 Performance Monitor and Trace Related Bits in the
Machine State Register (MSR) on page 220.

For all of the Performance Monitor Control Register fields, it is always understood that the counter is incre-
mented if that action is not prohibited by some other control condition. All of the MMCRx and PMCx Registers
flush to zero unless otherwise noted in the following MMCRx and PMCx tables.

10.4.1 Performance Monitor Control Register MMCRO

Reserved
v
|012345678910111213141516171819202122232425262728293031|
o
w T O
w O Wy e 2
- o w O w - = [-

o == ZW w g Q % § % T
PR Qs @ TBSELR THRESHOLD E g E PMC1SEL £ & PMC2SEL R
BEEEEEEEEE R R v

132]33]34[35(36[3738|39 40[41[42 43 44 45 46 47]48[49[50[51 52 53 54 55[56[57 58 59 60 61 62]63]
Bits Field Name Description
0:31 — Reserved.

Freeze counters.
0 The PMCs are incremented.

32 FC 1 The PMCs are not incremented.
The processor sets this bit to ‘1’ when an enabled condition or event occurs and the “freeze counters on
enabled condition or event” bit is ‘1’ (MMCRO[FCECE] = ‘1").
Freeze counters when in supervisor state.

33 FCS 0 The PMCs are incremented.
1 The PMCs are not incremented in supervisor state (MSR[PR] = ‘0’).
Freeze counters when in user (problem) state.

34 FCP 0 The PMCs are incremented.
1 The PMCs are not incremented in user (problem) state (MSR[PR] ='1’).
Freeze counters when performance monitor mark bit (MSR[PMM)]) is set to ‘1°.

35 FCM1 0 The PMCs are incremented.
1 The PMCs are not incremented when the MSR mark bit is ‘1’ (MSR[PMM] = ‘1°).
Freeze counters when performance monitor mark bit (MSR[PMM)]) is set to ‘0’.

36 FCMO 0 The PMCs are incremented.
1 The PMCs are not incremented when the MSR mark bit is ‘0’ (MSR[PMM] = ‘0’).

Version 2.3 970MP Performance Monitor

March 7, 2008 Page 211 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Bits Field Name
37 PMXE
38 FCECE

39:40 TBSEL

41 TBEE

42:47 THRESHOLD

48 PMC1CE

49 PMCjCE

50 TRIGGER
51:55 PMC1SEL

56 —

57 —

970MP Performance Monitor
Page 212 of 415

Description

Performance monitor exception enable.

0 Performance monitor exceptions are disabled.
Performance monitor exceptions are enabled until a performance monitor exception occurs, at
which time the hardware disables the performance monitor exception (MMRCO[PXME] is set to
‘0).

For implementations that do not provide a performance monitor exception, software can set PXME to ‘1’

and then poll the bit to determine whether an enabled condition or event has occurred.

Freeze counters on enabled condition or event.

0 The PMCs are incremented.

1 The PMCs are incremented until detection of an enabled counter negative condition or detection
of an enabled time-base transition event occurs and the trigger bit enables the detected event
(MMCRO[TRIGGER] equals ‘0’). At that time the counters are frozen (MMCRO[FC] is set to ‘1’)
until the condition is reset by software.

If the enabled condition or event occurs when MMCRO[TRIGGER] equals ‘1’, then the FCECE bit is

treated as if it were ‘0’.

Time-base selector.

00 Time-base bit 63 is selected.
01 Time-base bit 55 is selected.
10 Time-base bit 51 is selected.
11 Time-base bit 47 is selected.

When the selected time base transitions from ‘0’ to ‘1’ and the time-base event is enabled
(MMCRO[TBEE] equals ‘1’) and the performance monitor exception is enabled, a performance monitor
exception occurs and the performance monitor exception is disabled (MMRCO[PXME] is set to ‘0’).

In multiprocessor systems with the Time-Base Registers synchronized among the processors, time-base
transition events can be used to correlate the performance monitor data obtained by the several proces-
sors provided that software has specified the same TBSEL value for all of the processors in the system.

The frequency of the time base is implementation dependent, and a system service routine should be
invoked to obtain the frequency before a value for TBSEL is chosen.

Time-base exception enable.
0 Disable time-base transition events.
1 Enable time-base transition events.

Threshold value.

When a threshold event is selected, counting occurs only for those of the selected event occurrences
whose duration in number of cycles exceeds the value in the THRESHOLD field.

PMC1 count enable.

This bit determines whether the counter negative condition because of a negative value in PMC1 is
enabled.

0 Disable PMC1 counter negative condition.
1 Enable PMC1 counter negative condition.

PMC;j count enable (where j represents any counter from 2 to 8).

This bit determines whether the counter negative condition because of a negative value in PMCj
(2 <j<8)is enabled.

0 Disable PMC;j (2 <j < 8) counter negative condition.

1 Enable PMCj (2 <j < 8) counter negative condition.

Trigger enable.
0 The PMCs are incremented.

1 PMC1 is incremented. The PMCjs (2 <j < 8) are not incremented until PMC1 is negative or an
enabled condition or event occurs. At that time, the PMCj counters (2 < j < 8) resume counting
and the trigger is disabled (MMCRO[TRIGGER] set equal to ‘0’).

PMC1 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC1.

Reserved.

Reserved.

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Bits Field Name Description
PMC2 event selector.
58:62 PMC2SEL The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC2.
63 FCH Freeze counters in hypervisor mode.
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 213 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.2 Performance Monitor Control Register MMCR1

= - = F -
O 0O 0O 0O 0O 0O 0 o
0 W W W W W w wm
0 0 0 0o oo
m m m m D D DD BB DD
Q @ f a3 rf oo ecoe e T
0] o 0] 0] w w w w w w w w
e 2 2 3 8888883828
g o g o g o g o 2‘ 2‘ 2‘ 2‘ RERE IR IR
e ¢ 9 a Q - N © 1 0 N M <
S 8 5 5 £ 8 2 8 9 9 9 9 Q0o gCogo g
F F E F E E E E © a a a) Reseved = = = = = = = 2
[— — [[[[[~ ~ ~ ~ O oo oo o a o
B EEEEEEEEEEEEEAEEER EEEEEEER
(0 1]2]3 4]5][6 7[8]9 10[11][12 13]14 15]16 17[18 19|20 21 22 23[24[25]26|27|28]29[30[31]
-
|
3
PMCS3SEL PMC4SEL PMC5SEL PMC6SEL PMC7SEL PMC8SEL %
v v v v v v v v v v v vov v
(32 33 34 35 36[37 38 39 40 41[42 43 44 45 46|47 48 49 50 51|52 53 54 55 56|57 58 59 60 61]62 63]
Bits Field Name Description
FPU/ISU/IFU/VPU unit select.
00 FPU
0:1 TTMOSEL 01 Instruction sequencer unit (ISU)
10 IFU
11 Vector processing unit (VPU)
2 TTCOSEL Reserved.
IDU/ISU/STS unit select.
00 IDU
3:4 TTM1SEL 01 Undefined
10 ISU
11 Storage subsystem (STS)
5 TTC1SEL Reserved.
6:7 TTM2SEL Reserved.
8 TTC2SEL Reserved.
Load/store unit 1 (LSU1) select.
[0 Lane 2 is LSU1 upper
9:10 TTM3SEL 1x Lane 2 is LSU1 lower
x0 Lane 3 is LSU1 upper
x1 Lane 3 is LSU1 lower
11 TTC3SEL Reserved.

12:13 | TD_CP_DBGOSEL 01

14:15 |TD_CP_DBG1SEL 01

Byte lane 0 unit select.
00 Unit from TTMO
Unit from TTM1
10 LSUO, byte 0
11 LSUT1, byte 0

Byte lane 1 unit select.
00 Unit from TTMO
Unit from TTM1
10 LSUO, byte 1

11 LSUT1, byte 1

970MP Performance Monitor
Page 214 of 415

Version 2.3
March 7, 2008

Bits

16:17 |TD_CP_DBG2SEL

18:19 |TD_CP_DBGS3SEL

20:23

24

25

26

27

28

29

30

31

32:36

37:41

42:46

47:51

52:56

57:61

Version 2.3

Field Name

PMC1_ADDER
_SELECT

PMC2_ADDER
_SELECT

PMC6_ADDER
_SELECT

PMC5_ADDER
_SELECT

PMC8_ADDER
_SELECT

PMC7_ADDER
_SELECT

PMC3_ADDER
_SELECT

PMC4_ADDER
_SELECT

PMC3SEL

PMC4SEL

PMC5SEL

PMC6SEL

PMC7SEL

PMCS8SEL

March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Description
Byte lane 2 unit select.
00 Unit from TTMO
01 Unit from TTM1
10 LSUO, byte 2
11 LSUT1, byte 2 or byte 6 (controlled by TTM3SEL[0])
Byte lane 3 unit select.
00 Unit from TTMO
01 Unit from TTM1
10 LSUO, byte 3
11 LSUT1, byte 3 or byte 7 (controlled by TTM3SEL[1])
Reserved.

PMC1 event adder lane select.

0 Byte lane 0: Add 0 + 4
1 Byte lane 2: Add 0 + 4
PMC2 event adder lane select.
0 Byte lane 0: Add 1 + 5
1 Byte lane 2: Add 1 + 5
PMCS6 event adder lane select.
0 Byte lane 0: Add 2 + 6
1 Byte lane 2: Add 2 + 6
PMCS5 event adder lane select.
0 Byte lane 0: Add 3 + 7
1 Byte lane 2: Add 3 + 7
PMC8 event adder lane select.
0 Byte lane 1: Add 0 + 4
1 Byte lane 3: Add 0 + 4
PMC?7 event adder lane select.
0 Byte lane 1: Add 1 +5
1 Byte lane 3: Add 1 +5
PMCS3 event adder lane select.
0 Byte lane 1: Add 2 + 6
1 Byte lane 3: Add 2 + 6

PMC4 event adder lane select.
0 Byte lane 1: Add 3 + 7
1 Byte lane 3: Add 3 + 7

PMC3 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC3.

PMC4 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC4.

PMCS5 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC5.

PMCS6 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC6.

PMC?7 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC7.

PMCS8 event selector.
The value in this bit field combined with MMCR1[0:31] determines which event will be counted by PMC8.

970MP Performance Monitor
Page 215 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Bits Field Name Description

Speculative count event selector.
00 Reserved

01 Event A1x
62:63 SPCSEL 10 Event A2x
11 Event A3x
See Table 10-6 on page 233 for definitions of the events.
970MP Performance Monitor Version 2.3

Page 216 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.3 Performance Monitor Control Register MMCRA

Reserved
v v
|012345678910111213141516171819202122232425262728293031|
w
—
m
<
pd
w
N |
E g g R g ey
S Y ® 5 5 o = - 5 5L
O - W O O o o = @ =
2 Q2 Q & 2 Reserved THRSTRT THREND Reserved = = IMRMASK IMBMATCH Q2 & 2 &
A v oy vy v oy VIV vy vl
132]33[34[35[36[37 38 39|40 41 42[43 44 45]46 47 48[49[50 51|52 53 54 55[56 57 58 59|60 |61]62]63]
Bits Field Name Description
0:31 — Reserved.
32 — Reserved.
Freeze counters 1 - 4.
33 FC1-4 0 PMC1 - 4 are incremented.
1 PMC1 - 4 are not incremented.
Freeze counters 5 - 8.
34 FC5-8 0 PMCS5 - 8 are incremented.
1 PMCS5 - 8 are not incremented.
35 — Reserved.
36 — Reserved.
37:39 — Reserved.
40:42 THRSTRT Threshold start event.
43:45 THREND Threshold end event.
46:48 — Reserved.

Instruction mark (IMR) select.
IMR select interacts with IMR mark to determine stage 1 eligibility as described in Section 10.11 IDU
Instruction Sampling Facility on page 254.
49 IMRSEL 0 Stage 1 eligible instructions are determined through predecode bits from the IFU combined with
the IMRMATCH and IMRMASK fields as described in Section 10.11 on page 254. This is useful
if the IMR mark equals ‘00’.

1 The instruction mark bit (IMR bit) from the IFU IMC match array is used to determine Stage 1 eli-
gibility.
IMR Mark.
Chooses the mark mode for which instructions are Stage 2 eligible.
. 00 All Stage 1 eligible internal operations (IOPs).

50:51 IMRMARK 01 Only Stage 1 eligible IOPs that resulted from microcode expansion.
10 Only one IOP per eligible PowerPC instruction.
11 First IOP that goes to the LSU for every eligible PowerPC load/store (Id/st) instruction.
IMR Mask.

52: IMRMASK A mask ANDed with the predecode bits before using the IMRMATCH field.

Version 2.3 970MP Performance Monitor

March 7, 2008 Page 217 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Bits

56:59

60

61

62

63

970MP Performance Monitor

Field Name

IMRMATCH

FCTI

FCWAIT

SAMPLE_
ENABLE

Page 218 of 415

Description

IMR Match.

The value that the result of the IMRMASK ANDed with the predecode bits must match to be Stage 2 eligi-
ble. All 4 bits of the result must match the IMRMATCH exactly.

To match ALL IOPs (that is, the match will always succeed) set IMRSEL equals ‘0’, IMRMASK equals
‘0000’, and IMRMATCH equals ‘0000’

Freeze Counters.

0 The PMCs are incremented.
1 The PMCs are not incremented.
Reserved

Freeze Counters in Wait State (implies that CNTL[31] equals ‘0’).

0 The PMCs are incremented.

1 The PMCs (except those counting cycles) are not incremented when CNTL[31] equals ‘0’.
0 Sampling is disabled.

1 Sampling is enabled.

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.4 Performance Monitor Count Registers PMC1 - 8

(O]
L
Z|
o
5 CTRDATA
Iy v
|0‘12345678910111213141516171819202122232425262728293031|
Bits Field Name Description
0 CTR_NEG Counter negative bit.
1:31 CTRDATA Count data.
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 219 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.5 Performance Monitor and Trace Related Bits in the Machine State Register (MSR)

N/A
J >
|O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
=
N/A EE PR N/A SE BE N/A E N/A
) Vev b vy vy v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47|48[49|50 51 5253|5455 56 57 58 59 60|61[62 63|
Bits Field Name Description
0:47 N/A Not applicable.
External interrupt enable.
48 EE 0 The processor is disabled for external, decrementer, and performance monitor exceptions.
1 The processor is enabled for external, decrementer, and performance monitor exceptions.
Problem (user) state.
49 PR 0 The processor is privileged to execute any instruction.
1 The processor can execute only non-privileged instructions.
50:52 N/A Not applicable.
Single step trace enable.
0 The processor does not generate a trace exception after instruction completion.

53 SE 1 The processor generates a trace exception after successfully completing the execution of the
next instruction unless that instruction is an Return from Exception Doubleword (rfid), which is
never traced.

Branch trace enable.
54 BE 0 The processor does not generate a trace exception after branch instruction completion.
1 The processor generates a trace exception after successfully completing the execution of a
branch instruction whether the branch is taken.
55:60 N/A Not applicable.
Performance monitor mode enable.
0 The currently executing process is not marked.
1 The currently executing process is marked.
This bit is used to mark a process for the performance monitor. Several performance monitor MMCRO

61 PMM control bits can then be set to enable counting based on the value of the PMM bit.

When an exception occurs, this bit is saved, set to ‘0’ for the duration of the exception processing, and
then restored when the rfid instruction is executed.
If this bit is changed with an mtmsr or Move to Machine State Register Doubleword (mtmsrd) instruction,
the change is not guaranteed to have taken effect until after a subsequent context-synchronizing instruc-
tion has completed execution.

62:63 N/A Not applicable.

970MP Performance Monitor

Page 220 of 415

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.6 Performance Monitor Related Bits in Hardware Implementation-Dependent Register 0 (HIDO)

N/A TG N/A
v vy g
|0 1 2 3 4 5 6 7 8 9 10 11 12‘13|14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
N/A
) v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|
Bits Field Name Description
0:12 N/A Not applicable.
Performance monitor threshold granularity.
13 TG 0 The thresholder counts every processor cycle.
1 The thresholder counts every 32 processor cycles.
14:63 N/A Not applicable.

10.4.7 Performance Monitor Related Bits in the Control Register (CTRL)

=z

N/A Z

v vl

(01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30|31
N/A

v v

|32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description
0:30 N/A Not applicable.
31 RUN Wait state bit.
32:63 N/A Not applicable.
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 221 of 415

User’'s Manual
IBM PowerPC 970MP RISC Microprocessor

10.4.8 Performance Monitor Related Bits in the SCOM0240, 1240 Register (SCOM x‘240’)

IDLE COMPLN N/A

v v v v v
01 2 3 4 5 6 7|8 9 10 11 12 13 14 15[16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

»
»

N/A

< v

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description
0:7 IDLE Sampling logic idle delay.
8:15 COMPLN Sampling logic completion delay.
16:63 N/A Not applicable.
970MP Performance Monitor Version 2.3
March 7, 2008

Page 222 of 415

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.9 Performance Monitor Related Bits in the SCOMO0360,1360 Register (SCOM x‘360’)

2 ()
| =
c E
o o
© X <! 5
% 3 '§| Ql
U)l El E g_
E E imr_mask imr_match FILTER § o Reserved
v v vy BEEER g
(01 2[3 4 5 6|7 8 9 10[11 12[13[14[15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Reserved
) v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|
Bits Field Name Description
0 imr_select Same as MMCRA[imr_sel].
1:2 imr_mark Same as MMCRA[imr_mark] and overrides MMCRA if bit 13 equals ‘1°.
3:6 imr_mask Same as MMCRA[imr_mask] and overrides MMCRA if bit 13 equals ‘1°.
7:10 imr_match Same as MMCRA[imr_match] and overrides MMCRA if bit 13 equals ‘1’

IMR filter random/all and first/all.

These two bits form a 2-step filtering operation on the eligible bits associated with the instructions in the
group.

Bit 11 first determines whether instruction eligibility bits pass the first filter step based on either a random
pass/nopass (bit 11 equals ‘1’) choice or an all pass (bit 11 equals ‘0’) choice for each instruction.

Bit 12 determines how microcoded instructions are sampled (and has no effect on non-microcoded

instructions):
00 No filtering (OR).
01 No filtering (AND).
11:12 FILTER 10 Use Good_Address mode of sampling microcode expansions.
11 Use More_Hits mode of sampling microcode expansions.

In Good_Address mode, there is at most one IOP in any microcode expansion that is eligible for sam-
pling. This is (a) the first load/store IOP if there are any load/store IOPs in the expansion, or (b) the first
IOP in the final group of the expansion. If the random filter suppresses marking this IOP, then no IOP will
be marked for the microcode expansion.

In More_Hits mode, multiple IOPs in a microcode expansion are eligible for sampling. These are (a) the
first load/store IOP in any group, or (b) the first IOP of the final group. If the random filter suppresses
marking the first of these IOPs, a subsequent one might still be sampled. (However, at most one will be
marked in a single microcode expansion.)

Performance monitor fields are used for mark, mask, match.

13 scom_imr_enable SCOM fields are used for mark, mask, match.
) 0 Performance monitor “ok_to_sample” indication is used.
14 sample_override . o S
1 Overrides performance monitor “ok_to_sample” indication.
15:63 — Reserved.
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 223 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.10 Performance Monitor Related Bits in the IMC Array (IMC)

Match Row 0:5

3
>

v
|012345678910111213141516171819202122232425262728293031
Match Row 0:5 Match Row 76
‘ v © v
32 33 34 35 36 37 38 39|40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|
Bits Field Name Bit Description
0:39 Match Row 0 | Opcode/extended opcode match.
0:39 Match Row 1 Opcode/extended opcode match.
0:39 Match Row 2 Opcode/extended opcode match.
0:39 Match Row 3 | Opcode/extended opcode match.
0:39 Match Row 4 Opcode/extended opcode match.
0:39 Match Row 5 Opcode/extended opcode match.
0:63 Match Row 76 | Full instruction match.

10.4.11 Performance Monitor Related Bits in the Sampled Instruction Address Register (SIAR)

SamplA
J >
|O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SamplA

<
<

v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description

0:63 SamplA Sampled instruction address.

10.4.12 Performance Monitor Related Bits in the Sampled Data Address Register (SDAR)

SampDA
v >
|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

SampDA
) v
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63|

Bits Field Name Description

0:63 SampDA Sampled data address.

970MP Performance Monitor Version 2.3
Page 224 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.13 Performance Monitor Related Bits in the SRR1 (SRR1)

N/A
v v
|0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22232425262728293031|
o
c
>
%
i
<
a
@0
< £
> o N/A
v vy }
132]33[34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63]
Bits Field Name Description
0:32 N/A Not applicable.
33 SIAR/SDAR_Sync |SIAR and SDAR contents synchronized.
34:63 N/A Not applicable.
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 225 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.4.14 Performance Monitor Related Bits in the Time-Base Register (TB)

N/A
J >
|O12345678910111213141516171819202122232425262728293031
= 5 3 3
N/A @ N/A @ N/A @ N/A M
) AR v o
32 33 34 35 36 37 38 39 40 41 42 43 44 45 4647 (48 49 50|51 52 53 54|55[56 57 58 59 60 61 62]63]
Bits Field Name Description
0:46 N/A Not applicable.
47 TB_47 Time-Base Register bit 47.
48:50 N/A Not applicable.
51 TB_51 Time-Base Register bit 51.
52:54 N/A Not applicable.
55 TB_55 Time-Base Register bit 55.
56:62 N/A Not applicable.
63 TB_63 Time-Base Register bit 63.

970MP Performance Monitor Version 2.3
Page 226 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.5 Performance Monitor Event Selection

Event signals are routed from the functional units through the processor performance monitor buses. These
signals are multiplexed and divided into byte lanes 0 - 3. A smaller number of events are routed directly to the
performance monitor unit (PMU); these events are referred to as direct events. Each PMC can be configured
to count a subset of the direct events or one of two possible byte lanes. Counters 1, 2, 5, and 6 can be config-
ured to count events on byte lane 0 or 2, counters 3, 4, 7, and 8 can be configured to count events on byte
lane 1 or 3. The selection of event source (direct, byte lane) is controlled by the PMCxSEL field in MMCR1
(where x is the PMC number). Figure 10-2 shows this selection. Table 10-2 shows how the PMCXSEL field is
used to select which events are monitored.

Performance monitor events fall into three categories:

¢ Direct: All the information is hardwired to the PMU.
e Bus: All the information is routed over the hierarchical event bus.
¢ Combined: Some information comes from the event bus; the PMU does additional processing on it.

Figure 10-2. Event Selection

8

Direct / 7 00
Events 8
\ﬁ; 01

8
Upper Lane (0 or 1) —< 110 8 PMCx
Lower Lane (2 or 3) ﬁL 11 8:1 pass
gate mux
3:1 static
logic mux
PMCSEL(0:1) PMCSEL(2:4)

Table 10-2. Performance Monitor Internal Multiplexer PMCxSEL[0:4] Bit Values

PMCSELJ[0:1] PMCSEL[2:4] Counted Event
00 000-111 Direct Events.
None. When count_en is ‘0, turn off
10 000 counter.
10 111 Cycles.
01 000-111 Direct Events.
10 000-111 Select smaller byte lane.
11 000-111 Select larger byte lane.
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 227 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.5.1 Direct Events

As shown in Table 10-2 on page 227, direct events are selected with PMCxSEL[0:1] set to ‘Ox’. When
PMCXxSEL[0:1] equals ‘10’ and PMCxSEL[2:4] equals ‘111, the counter is configured to count cycles. When
PMCxSEL[0:1] equals ‘10"’ and PMCxSEL[2:4] is ‘000, the counter is off (counts nothing). The direct events
that can be counted are shown in Table 10-5 on page 230.

Some direct events, such as events that add two other events or interpret the memory source encodes for
data or instruction fetches, also require data from the performance monitor events. Although they are listed in
Table 10-5 Direct Events, they rely on a meaningful configuration of the performance monitor event selec-
tions to produce meaningful results.

10.5.1.1 Combined Events

Each PMC can add similar events to produce a single, combined count. For example, each load store unit
provides a data cache miss event, which can be added to produce the total data cache miss count. The
added events are considered direct events, but they rely on the performance monitor bus being configured
properly to produce meaningful results. Because each PMC can receive event signals from two byte lanes on
the performance monitor bus, the added events can be configured to add events on one of the two byte
lanes. Events cannot be added from different byte lanes. The PMCx_ADDER_SELECT fields in MMCRH1
control which byte lanes are used.

10.5.1.2 Source-Encoded Events

Source-encoded events (direct event 7 [PMCxSEL equals ‘00111°] for data and event 6 [SEL equals ‘00110’]
for instructions) are combined events that count events from a specific source as shown in Table 10-3 and
Table 10-4 on page 229.

Note: Intervention event sources are only meaningful on multiprocessor systems.

Table 10-3. Event Data Source Encodings

Encoding (0:3) Event Source
0000 L2 cache
0001 Memory
0100 Shared Intervention (another L2 cache)
0101 Modified Intervention (another L2 cache)

All Others Reserved

To count data source-encoded events, the performance monitor event bus must be configured as follows:

1. Route LSU1 byte 3 data to the PMU (the “L1 reload data source” LSU1 indirect event) by setting the
TD_CP_DBGS3SEL field in MMCR1 to ‘11’

2. Select the direct event that decodes the required data source. To count L1 data reloads from the L2, for
example, PMC1, direct event 7 (the PMC1SEL field in MMCRO set to ‘00111’) should be used.

970MP Performance Monitor Version 2.3
Page 228 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-4. Event Instruction Source Encodings

Encoding (0:3) Event Source
1001 I-cache
1010 Prefetch buffer
0000 L2 cache
0001 Memory

1111 or 1011 No instructions on bus

To count instruction source-encoded events, the performance monitor event bus should be similarly config-
ured:

1. Route IFU byte 2 data to the PMU (the “iL1 cache data source” IFU indirect event) by setting the
TD_CP_DBG2SEL field in MMCR1 to ‘00’ and TTMOSEL to ‘10'.

2. Select the direct event that decodes the required data source. To count L1 instruction reloads from mem-
ory, for example, PMCS, direct event 6 (the PMC3SEL field in MMCRO set to ‘00110’) should be used.

10.5.1.3 Instruction Counts

Two types of instruction and IOP counting are available with the 970MP performance monitor:

¢ Direct event 1 (SEL equals ‘00001’) on PMC1, PMC4, PMC6, PMC7, and PMC8 counts instructions
according to the IMRMARK field of the MMCRA Register:

- 00 All stage 1 eligible IOPs

- 01 Stage 1 eligible IOPs from microcode expansion

- 10 One IOP per eligible PowerPC instruction

-1 First IOP to LSU per eligible PowerPC load/store instruction

¢ Direct event 9 (SEL equals ‘01001’) on PMC1 - PMC8 always counts PowerPC instructions independent
of the IMRMARK field of the MMCRA Register (see Table 10-5 on page 230).

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 229 of 415

S1¥ Jo 0gg 9bed

Jojuopy 8ouewlopad dINO.L6

8002 ‘/ Yose
©°2 UOISIaN

Table 10-5. Direct Events (Page 1 of 2)

SEL(0:4)
00 000 plus

MMCR1(24:31)
2o

00 001

00010

00011

00 100

00 101

00 110

00 111

01 000

01 001

01010

01011

PMCH1
Add 0 + 4

MMCR1[24] = ‘0’
byte lane 0

MMCR1[24] = ‘1’
byte lane 2

number of instruc-
tions complete

marked group
dispatch

marked store
complete

global completion
table (GCT) empty

run_cycles; thatis,
cycles when
CNTL[31] =1’

Instruction source
encode 0000

Data source
encode
0000

Counter OFF

number of instruc-
tions complete

Overflow from
counter 8

Reserved

PMC2
Add1+5

MMCR1[25] = ‘0’
byte lane 0

MMCR1[25] = ‘1’
byte lane 2

work held

LSU empty (load
miss queue [LMQ]
and store reorder
queue [SRQ]
empty)

threshold timeout
event

group dispatch

branch unit (BRU)
marked instruc-
tion finish

Instruction source
encode
0001

Data source
encode
0001

Counter OFF

number of instruc-
tions complete

Overflow from
counter 1

GCT empty by
SRQ full

PMC3
Add 2 +6

MMCR1[30] = ‘0’
byte lane 1

MMCR1[30] = ‘1’
byte lane 3

stop completion

LSU empty (LMQ
and SRQ empty)

marked store with
interrupt complete

cycles in
supervisor mode

VPU marked
instruction finish

Instruction source
encode
0010

Data source
encode
0010

Counter OFF

number of instruc-
tions complete

Overflow from
counter 2

Reserved

PMC4
Add 3 +7

MMCR1[31] = ‘0’
byte lane 1

MMCR1[31] =1’
byte lane 3

number of instruc-
tions complete

Fixed-point unit 0
(FXUO) idle and
FXU1 busy

SRQ empty

marked group
complete

condition register
unit (CRU) marked
instruction finish

Instruction source
encode
0011

Data source
encode
0011

Counter OFF

number of instruc-
tions complete

Overflow from
counter 3

Reserved

PMC5
Add 3 +7

MMCR1[27] = ‘0’
byte lane 0

MMCR1[27] = ‘1°
byte lane 2

dispatch_success

FXUO idle and
FXU1 idle

one or more
PowerPC instruc-
tions completed

group marked in
IDU

marked group
complete time out

Instruction source
encode
0100

Data source
encode
0100

Counter OFF

number of instruc-
tions complete

Overflow from
counter 4

—/A1a/A2a/A3a
(*1) (See
Table 10-6 on
page 233)

PMC6
Add 2 + 6

MMCR1[26] = ‘O’
byte lane 0

MMCR1[26] = ‘1’
byte lane 2

number of instruc-
tions complete

FXUO busy and
FXU1 busy

marked store sent
to STS

FXU marked
instruction finish

marked group
issued

Instruction source
encode
0101

Data source
encode
0101

Counter OFF

number of instruc-
tions complete)

Overflow from
counter 5

Reserved

PMC7
Add1+5

MMCR1[29] = ‘0’
byte lane 1

MMCR1[29] = ‘1’
byte lane 3

number of instruc-
tions complete

FXUO busy and
FXU1 idle

group completed

FPU marked
instruction finish

marked instruc-
tion finish any unit

Instruction source
encode
0110

Data source
encode
0110

Counter OFF

number of instruc-
tions complete

Overflow from
counter 6

—/A1b/A2b/A3b
(*1) (See
Table 10-6 on
page 233)

PMC8
Add 0 + 4

MMCR1[28] = ‘0’
byte lane 1

MMCR1[28] = ‘1’
byte lane 3

number of instruc-
tions complete

external interrupt

group
dispatch reject

LSU marked
instruction finish

time base event

Instruction source
encode
0111

Data source
encode
0111

Counter OFF

number of instruc-
tions complete

Overflow from
counter 7

Reserved

lossadoido.dlIy OSIH dINOL6 DdIamod gl

[enuep sJasn

8002 ‘. yoteiN

Sl Jo Leg obed

€2 Uoisiop

lojuoy eouewlopad dINOLE

Table 10-5. Direct Events (Page 2 of 2)

SEL(0:4) PMC1 PMC2 PMC3 PMC4 PMC5 PMC6 PMC7 PMC8
00 000 plus Add 0 + 4 Add1+5 Add 2 + 6 Add3+7 Add 3+7 Add 2 +6 Add1+5 Add 0 + 4
—/A1c/A2c/—(*1) —/A1d/A2d/—(*1)
01100 Reserved Reserved Reserved Reserved (See Table 10-6 Reserved (See Table 10-6 Reserved
on page 233) on page 233)
01 101 Instruction source | Instruction source | Instruction source | Instruction source | Instruction source | Instruction source | Instruction source | Instruction source
decode 1000 encode 1001 encode 1010 encode 1011 encode 1100 encode 1101 encode 1110 encode 1111
01110 Byte 3 decode Data source Data source Data source Data source Data source Data source Data source
1000 encode 1001 encode 1010 encode 1011 encode 1100 encode 1101 encode 1110 encode 1111
01 111 Cycles Cycles Cycles Cycles Cycles Cycles Cycles Cycles

10ss3204d0J2IN OSIH dIN0L6 Ddiamod gl

[enuepy sJesn

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.5.2 Over 32-Bit Count

The 970MP PMU can chain together multiple 32-bit PMCs to create up to a 256-bit wide PMC Register when
used in conjunction with overflow counting. This is useful for performance measurement on high clock-rate
machines. The maximum count value depends on the following settings:

* PMCn can count over 32-bits when PMCn+1SEL(0:4)(where nis 1 - 7) is set to ‘01010’.
¢ PMCS8 can count over 32-bits when PMC1SEL(0:4) is set to ‘01010’.

* When PMCn+1 uses this overflow counting function, PMCn is prohibited from asserting an exception sig-
nal when a negative condition occurs (PMC1CE(PMCjCE) equals ‘1’ and PMCn[0] is ‘1°).

10.5.2.1 Examples of Over Bit Count

Example 1

When PMC1 is set to ‘00100’ (GCT empty) and PMC2 is set to ‘01010’ (overflow function), then PMC2 works
as the upper 32 bits of PMC1. In this case, the overflow exception is only asserted by PMC2 (never by PMC1)
when PMCjCE equals ‘1’ (don't care PMC1CE) and PMC2[0] is '1".

Example 2

When PMCS8 is set to ‘00001’ (number of instructions complete) and PMC1 are set to ‘01010’ (overflow func-
tion), then PMC1 functions as the upper 32 bits of PMC8. In this case, the overflow exception is only asserted
by PMC1 (never by PMC8) when PMC1CE equals ‘1’ (don't care PMCjCE) and PMC1[0] is '1".

Example 3

When PMC1 is set to ‘00100’ (GCT empty) and PMC2, PMC3, and PMC4 is set to ‘01010’ (overflow function),
then PMC4, PMCS3, and PMC2 function as the upper 96 bits of PMC1. In this case, the overflow exception is
only asserted by PMC4 (never by PMC1, PMC2, or PMC3) when PMCjCE equals ‘1’ (don't care PMC1CE)
and PMC4[0] is '1".

10.5.3 Speculative Count

PMC5 and PMC7 support the speculative count function with a backup register. This is enabled when
MMCR1[62:63] is set to ‘017, ‘107, or ‘11’ and a speculative event is selected (PMC[5,7]SEL equals ‘01011’ or
‘01100’). The PMC starts counting speculatively whenever a next-to-complete (NTC) group completion stops
(or GCT empty happens). The PMC then stores the counts to itself and its backup register if the last finished
event matches what the PMC initially set up. If there is no match, the PMC restores the old count value from
the backup register. This allows the PMU to establish a cycles per instruction (CPI) breakdown for various
categories (CPI contribution because of an instruction-cache [I-cache] miss, data cache [D-cache] miss, LSU,
FXU, FPU, and so on).

A negative condition exception only occurs when the count value is not speculative and a negative condition
occurs. (When PMC1CE[PMCjCE] is set to ‘1’ and the backup register's negative bit is ‘1°.)

Table 10-6 on page 233 lists the speculative count events.

970MP Performance Monitor Version 2.3
Page 232 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-6. Speculative Count Events

MMCR1 Condition

PMC Number SEL(0:4) - - Count Events I\?st?e
Bit 62 Bit 63

57 01011 0 0 Reserved

Ala 5 01011 0 1 Completion stall by LSU instruction

A2a 5 01011 1 0 Completion stall by FXU instruction

A3a 5 01011 1 1 Completion stall by D-cache miss

Alb 7 01011 0 1 Completion stall by FPU instruction

A2b 7 01011 1 0 Completion stall by FXU long instruction

A3b 7 01011 1 1 Completion stall by reject
57 01100 0 0 Reserved

Alc 5 01100 0 1 Completion stall by FPU long instruction

A2c 5 01100 1 0 GCT empty by I-cache miss 1

Ald 7 01100 0 1 Completion stall by reject (ERAT miss)

A2d 7 01100 1 0 GCT empty by branch miss predict 1
57 01100 1 1 Reserved

1. This count event also requires MMCR1 bits. They should be set as follows:
Bit 1 =1’ and bits 0, 16, and 17 = ‘0’ or
Bits 3 and 17 = ‘1’ and bits 4 and 16 = ‘0’

Speculative events are also able to count in the over 32-bit count mode. In this case, the overflow value is
carried to the upper PMC only when the counting value is not speculative. For this reason, the upper PMC
does not require a backup register to copy and restore the count value.

10.6 Configuring the Performance Monitor Bus

The 970MP performance monitor bus is configured through a series of hierarchal multiplexers, as shown in
Figure 10-3 on page 234. This diagram also shows that all unit event buses are 32 bits, except for the LSU1
that sources an extra 16 bits, denoted as LSU1[48:63]. The LSUO and LSU1 event buses are multiplexed into
a single 32-bit LSU event bus, using the multiplexers shown at the left of Figure 10-3. Basically, the multi-
plexers, on a byte basis, select either the LSUO or the LSU1 events. The extra LSU1 events are selected
using MMCR1[9:10], the TTM3SEL select signals.

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 233 of 415

S1¥ Jo peg abed

Jojuopy 8ouewlopad dINO.L6

8002 ‘/ Yose
©°2 UOISIBN

Figure 10-3. 970MP Performance Monitor Bus Configuration

ISU

TTMOSEL(0:1)

FPU —
IsSU —
IFU —
VMX]

IDU — |
IsSU —

=

[0,
01
10
11

TTM1SEL(3:4)

u

32

PMU

©:7) [

{TD,CP,DBGOSELU 2:13)

oo] 8

[enuep sJasn

01
1-

GPS —

32

\[TD_CP_DBG1SEL(14:15)

(8:15) |oq 8

PMC1

PMC2

PMC3

01

LSU
TD_CP_DBGOSEL(13)
LSU0(0:31)
(0:7)
LSU1(0:31)
(0:7)
TD_CP_DBG1SEL(15)
(8:15)
(8:15)
TTM3SEL(9)
TD_CP_DBG2SEL(17)
(16:23)
(16:23) |77 8
LSU1(48:63) (48:55) |11
TTM3SEL(10)
TD_CP_DBGS3SEL(19)
(24:31) L
(24:31) |0-] 8
10 7
(56:63) |11

(16:23

_008|

1-

\[TD_CP_DBGZSELU 6:17)

lossadoido.dlIy OSIH dINOL6 DdIamod gl

Olol= olel= oo 19(vio

PMC4

01
1

TD_CP_DBGS3SEL(18:19)

PMC5

IEINE

PMC6

PMC7

[Olwl=

008|

01
1-

(24:31)

PMC8

Olol=

T

Direct Events

User's Manual

IBM PowerPC 970MP RISC Microprocessor

The rest of the first level of selection is controlled by the TTMO0 and TTM1 multiplexers. These control from
which unit the non-LSU event signals are selected. The ISU can be selected by more than one multiplexer
(TTMO and TTM1). The TTM multiplexers are controlled by the TTMxSEL fields in MMCR1. MMCR1[0:1]
control TTMO and MMCR1[3:4] control TTM1.

The three 32-bit outputs of the LSU, TTMO, and TTM1 multiplexers are sent to the TM_DEBUG multiplexers,
which are controlled by the 2-bit TD_CP_DBGXSEL fields in the MMCR1; bits 12:13 control TM_DEBUGDO,
bits 14:15 control TM_DEBUGH1, bits 16:17 control TM_DEBUG2, and bits 18:19 control TM_DEBUGS.

After the performance monitor bus is configured, individual events can be selected, as described at the begin-
ning of this section. Table 10-7 shows the events available through the performance monitor bus and the
TTM and TM_DEBUG multiplexer used to select them.

Table 10-7. Performance Monitor Bus Assignments (Page 1 of 8)

Bits Byte
[0:31] Lane

Bits [0:7] Event Description
FPU: TTMO = ‘00", TD_CP_DBGXSEL = ‘00’

0 0 FPUO divide
1 1 FPUO mult-add
FPUO square root
FPUO add, mult, sub, compare, fsel
FPU1 divide
FPU1 mult-add

FPU1 square root

N oo~ WD
O O o/lo o oo o
N oo~ WD

FPU1 add, mult, sub, compare, fsel

8 1 0 FPUO move, estimate

9 1 1 FPUO round, convert

FPUO estimate

FPUO finished and produced a result
FPU1 move, estimate

FPU1 round, convert

FPU1 estimate

N oo~ WD

FPU1 finished and produced a result

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 235 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-7. Performance Monitor Bus Assignments (Page 2 of 8)

Bits Byte
[0:31] Lane

16 2
17
18
19
20
21
22

[ACTREN \C TR \C R \C R \C IR \O U \V]

23

24
25
26
27
28
29
30
31

W W W W W W w w

Bits [0:7]

o o b~ W N

7

Event Description

FPUO denormalized operand
FPUO stall 3

FPUO store

FPUO single precision

FPU1 denormalized operand
FPU1 stall 3

FPU1 store

FPU1 single precision

Floating-Point Status and Control Register (FPSCR)
FPUO multiply

FPUO compare

FPUO select

FPU1 multiply

FPU1 compare

FPU1 select

Floating-point stall store

IFU: TTMO =“10’, TD_CP_DBGXSEL = ‘00’

0:15 0:1

16:19 2
20 2
21 2
22 2
23 2

24
25
26
27
28
29:31

970MP Performance Monitor

Page 236 of 415

0:7

N o o M

Nothing

L1 I-cache data source

Valid instruction available

Cycles IFU is held by pipeline hold

Instruction prefetch installed in prefetch buffer

L2 prefetch request

I-ERAT write

Branch execution issue valid

Branch miss predict because of Condition Register (CR) value
Branch miss predict because ofbecause of a target address predict
Cycles L1 I-cache write active

Nothing

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-7. Performance Monitor Bus Assignments (Page 3 of 8)

Bits Byte
[0:31] Lane

IDU: TTM1 ='00", TD_CP_DBGXSEL = ‘01’

Bits [0:7] Event Description

0 0 0 Instruction queue has three slots full
1 0 1 Instruction queue has one slot full

2 0 2 Instruction queue has six slots full

3 0 3 Instruction queue has zero slots full
4 0 4 Instruction queue has four slots full

5 0 5 Instruction queue has two slots full

6 0 6 Instruction queue has seven slots full
7 0 7 Instruction queue has eight slots full

8 1 0 Instruction queue has five slots full
9:15 1 1:7 |Instruction queue full
16:31 2:3 0:7 Nothing

LSUO: (See Figure 10-3 970MP Performance Monitor Bus Configuration on page 234) TD_CP_DBGXSEL = “1x’

0 0 0 Instruction translation lookaside buffer (TLB) miss
1 0 1 Instruction segment lookaside buffer (SLB) miss
2 0 2 Data ERAT (D-ERAT) miss side 0

3 0 3 Snoop TLB Invalidate Entry (tlbie)

4 0 4 Data TLB miss

5 0 5 Data SLB miss

6 0 6 D-ERAT miss side 1

7 0 7 Tablewalk duration

8 1 0 Marked flush unaligned load side 0
9 1 1 Marked flush unaligned store side 0
10 1 2 Marked flush from load reorder queue (LRQ) store-hit-load (SHL), load-hit-load (LHL) side 0
11 1 3 Marked flush SRQ load-hit-store (LHS) side 0
12 1 4 Marked flush unaligned load side 1
13 1 5 Marked flush unaligned store side 1
14 1 6 Marked flush from LRQ store-hit-load (shl), load-hit-load (lhl) side 1
15 1 7 Marked flush SRQ LHS side 1
Version 2.3 970MP Performance Monitor

March 7, 2008 Page 237 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-7. Performance Monitor Bus Assignments (Page 4 of 8)

Bits
[0:31]

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

Byte
Lane

2

[ACTREN \C TR \C R \C RN \C R \C U \V]

W W W W W W w

3

Bits [0:7]

o g b~ W N

7

Event Description

Marked L1 D-cache load miss side 0
Store conditional (stcx) failed
Marked IMR reload

Marked L1 D-cache store miss
Marked L1 D-cache load miss side 1
stex passed

Marked stcx fail

Load and reserve indexed (larx) executed 0

Floating-point load side 0

L1 cache prefetch request

Out of streams

L2 cache prefetch

Floating-point load side 1

VPU type L2 prefetch

Data stream touch (dst) stream start

New stream allocated

LSU1: (See Figure 10-3 970MP Performance Monitor Bus Configuration on page 234) TD_CP_DBGXSEL = ‘“1x’

0

N o oA~ WD

10
11
12
13
14
15

970MP Performance Monitor

Page 238 of 415

0

O O o o o o o

0

N o oA~ WD

N o o~ WD

Flush unaligned load side 0
Flush unaligned store side 0
Flush from LRQ SHL, LHL side 0
Flush SRQ LHS side 0

Flush unaligned load side 1
Flush unaligned store side 1
Flush from LRQ SHL, LHL side 1
Flush SRQ LHS side 1

L1 D-cache load side 0

L1 D-cache store side 0

L1 D-cache load miss side 0
L1 D-cache store miss

L1 D-cache load side 1

L1 D-cache store side 1

L1 D-cache load miss side 1

L1 D-cache entries invalidated from L2

Version 2.3
March 7, 2008

Table 10-7. Performance Monitor Bus Assignments (Page 5 of 8)

Bits
[0:31]

16
17
18
19
20
21
22
23

24:27
28
29
30
31

32:47
48
49
50
51
52
53
54
55

56:58
60
61
62
63

Version 2.3
March 7, 2008

Byte
Lane

2

[ACTREN \C TR \C R \C RN \C IR \o U \V]

0:1

W W W w W/ N D DN DD DD DNdDDN

Bits [0:7]

N oo~ 0N

N o g s

SRQ store forwarding side 0
SRQ slot 0 valid

LRQ slot 0 valid

LSUO reject

SRQ store forwarding side 1
SRQ slot 0 allocated

LRQ slot 0 allocated

LSU1 reject

L1 cache reload data source
L1 cache reload data valid
LMQ slot 0 valid

LMQ slot 0 allocated

LMQ full

Nothing
SRQ reject 0 - load hit store

LMQ reject 0 - LMQ full or missed data coming

Event Description

User's Manual

IBM PowerPC 970MP RISC Microprocessor

LSUO reject - reload critical data forward (CDF) or tag update collision

LSUO reject - ERAT miss
SRQ reject 1- load hit store

LMQ reject 1- LMQ full or missed data coming

LSU1 reject - reload CDF or tag update collision

LSU1 reject - ERAT miss

L1 cache reload data source

Marked L1 cache reload data source valid

LMQ load-hit-reload merge
Marked SRQ valid
Nothing

970MP Performance Monitor
Page 239 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-7. Performance Monitor Bus Assignments (Page 6 of 8)

Bits Byte
[0:31] Lane

ISU: TTMO = ‘01", TD_CP_DBGXSEL = ‘00’
TTM1 ='10’, TD_CP_DBGXSEL = ‘01’

Bits [0:7] Event Description

0 0 0 Completion table full

1 0 1 Floating-Point Register (FPR) mapper full

2 0 2 Integer Exception Register (XER) mapper full

3 0 3 FPUO issue queue full

4 0 4 CR mapper full

5 0 5 Branch (BR) issue queue full

6 0 6 Link Register/ Counter Register (LR/CTR) mapper full

7 0 7 FPU1 issue queue full

8 1 0 FXUO/LSUO issue queue full

9 1 1 CR issue queue full

10 1 2 LRQ full

11 1 3 SRQ full

12 1 4 FXU1/LSU1 issue queue full

13 1 5 Flush originated by LSU

14 1 6 Flush originated by branch miss predict

15 1 7 Flush (includes LSU, branch miss predict)
16:18 2 0:2 Instructions dispatched count

19 2 3 Dispatch valid

20 2 4 Dispatch reject

21 2 5 Nothing

22 2 6 Group experienced a branch redirect

23 2 7 Group experienced a branch miss predict

24 3 0 Nothing

25 3 1 Dispatch blocked by scoreboard

26 3 2 FXUO produced a result

27 3 3 Duration of the external interrupt enable in the Machine State Register (MSR[EE] = ‘0’)

28 3 4 Nothing

29 3 5 General Purpose Register (GPR) mapper full

30 3 6 FXU1 produced a result

31 3 7 MSR(EE) equals ‘0’ and interrupt pending

970MP Performance Monitor Version 2.3

Page 240 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-7. Performance Monitor Bus Assignments (Page 7 of 8)

Bits Byte
[0:31] Lane

Vector: TTMO = ‘11", TD_CP_DBGXSEL = ‘01’

Bits [0:7] Event Description

0 0 0 Arithmetic logic unit (ALU) issue queue full
1 0 1 Vector permute (VPERM) issue queue full
2 0 2 ALU issue marked instruction

3 0 3 VPERM issue marked instruction

4 0 4 Saturation zero to one

5 0 5 VPU mapper full

6 0 6 Store issue marked instruction

7 0 7 Nothing

8:15 below selected by OVMA.USADEC2.CHICKEN1.10.L2(7) = ‘0’ (default)

8 1 0 Finish with IMR

9 1 1 Generic forward

10 1 2 Vector ALU issue count
11 1 3 Denormalized traps

12 1 4 Saturation bit set

13 1 5 Finish contention cycle
14 1 6 Nothing

15 1 7 Nothing

16:19 below selected by OVMP.RPRPM.MODE_PMON_MISC.IO.L2 = ‘0’ (default)

16 2 0 Instruction finish with IMR

17 2 1 Forwarding occurred from VPERM or ALU or load
17 2 2 Issue valid

19 2 3 Saturation count for valid instruction

STS: TTM1 =11, TD_CP_DBGXSEL = ‘01’
0
1

0 L2 cache access collision with L2 prefetch (Data Stream Touch [DST])
1 L2 cache access collision with L2 prefetch (non-DST)

L2 cache access for store

L2 cache miss on store access (recent [R], shared [S], or invalid [I])
L2 cache miss; bus response is modified intervention

L2 cache miss; bus response is shared intervention

| = 1" store operation (before gathering)

N oo~ W DN
O OoOolo o o o o o
N oo A~ W DN

| = 1’ store operation completed on bus

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 241 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-7. Performance Monitor Bus Assignments (Page 8 of 8)

Bits Byte
[0:31] Lane

8 1
9 1
10 1
11 1
12 1
13 1
14 1
15 1

16
17
17
19
20
21
22

[\STRE \C R \C RN \C R \C R\ R \C B \G]

23

24
25
26
27
28
29
30
31

W W W w W ww w

970MP Performance Monitor

Page 242 of 415

Bits [0:7]

N o o b~ w0

Event Description

| = 1" load operation completed on bus

Cacheable store operation (before gathering)

Master bus transactions completed

Master bus transactions retried

Master L2 cache store transaction on bus was retried
Master L2 cache read transaction on bus was retried
Master SYNC operation competed

Master SYNC operation retried

Load or store dispatch retries because of castout (CO) conflicts
Load or store dispatch retries because of snoop conflicts

Load or store dispatch retries

All read/claim state machines busy

All CO state machines busy

All snoop state machines busy

Cacheable store queue full

| = 1" store queue full

Snoop (external)

Snoop state machine dispatched

Snoop retried due to any conflict

Snoop retried because all snoop state machines busy

Snoop caused cache transition from modified (M) to exclusive (E) or shared (S)
Snoop caused cache transition from E to S

Snoop caused cache transition from E or S to recent (R) or invalid (I)

Snoop caused cache transition from M to |

Version 2.3
March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

10.7 Enabling the Performance Monitor Counters

10.7.1 Machine States

The eight counters in the 970MP performance monitor can be enabled to count events as a result of a
number of machine state conditions and triggering events. The machine state conditions and triggering
events are enabled by the settings of the MMCRO, MMCR1, and MMCRA Register control fields, combined
with the values of the performance monitor-related bits in the MSR and other SPRs. While machine states
and triggering events are closely related in their effect on performance monitor behavior, it is easier to under-
stand them if the two are first considered separately, as described in this section for the machine states and
in Section 10.7.2 on page 244 for the triggering events.
The term machine state condition as it is used here includes:

e Supervisor versus user (problem) state (MSR[PR], MMCRO[FCS, FCP])

e Marked versus unmarked process state (MSR[PMM], MMCRO[FCM1, FCMO])

¢ Conditional versus unconditional counting state (MMCRO[FC], MMCRA[FC1:4], FC[5:8], CTRL[31],
MMCRA[FCWAIT))

¢ Wait state versus non-wait state (CTRL[31], MMCRA[FCWAIT])

By combining the state of the machine with the events selected for counting, many different aspects of perfor-
mance can be obtained for a given program.

For example, a programmer might want to gather statistics on only a particular process. This can be done by
doing the following steps:
1. Set the appropriate bits in MMCRO that enable counting only for a marked process.

2. Before each run of the selected process begins, set the performance monitor mode bit in the Machine
State Register (MSR[PMM]) to the value that marks that process.

3. After each run of the selected process ends, set the performance monitor mode bit to the value that
unmarks that process.

Another example follows:

The performance monitor can be set up to count only when the machine is in the supervisor state by ensuring
that the MMCRO bits that specify counting are enabled only when the machine is in the supervisor (privileged)
state and are disabled when the machine is in the user (problem) state.

Table 10-8 on page 244 illustrates several different counting scenarios.

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 243 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

Table 10-8. Examples of Event Counter Enabling States

Counting State MMCRO[Bit] = Value MSR[Bit] = Value

Disable all counting FC =1’ Does not count for all values of PR,
PMM

Enable all counting FC='0 Counts for all values of PR, PMM
Enable counting in supervisor state only FCP =1, FCS=‘0’ Counts when PR = ‘0’
Disable counting in supervisor state only FCS =1, FCP =0’ Counts when PR = ‘1’
Enable counting in user (problem) state only FCS=1,FCP =0 Counts when PR = ‘1’
Disable counting in user (problem) state only FCS=‘0, FCP =1’ Counts when PR = ‘0’
Enable counting for marked processes only FCMO = ‘1", FCM1 = ‘0’ Counts when PMM = ‘1’
Disable counting for marked processes only FCMO0 =‘0’, FCM1 =1’ Does not count when PMM = ‘1’
Enable counting for unmarked processes only FCMO =‘0’, FCM1 = ‘1’ Counts when PMM = ‘0’
Disable counting for unmarked processes only FCMO = ‘1", FCM1 = ‘0’ Does not count when PMM = ‘0’
Enable counting for marked processes in supervi- |[FCP =‘1’, FCS =‘0’, FCMO = ‘1", _ iy _
sor state only FCM1 = ‘O’ Counts when PR = ‘0’ and PMM = “1
Enable counting for unmarked processes in super- |[FCP =‘1’, FCS =‘0’, FCMO0 = ‘0", iy iy
visor state only FCM1 = 1’ Counts when PR = ‘0’ and PMM = ‘0
Enable counting for marked processes in user FCP ='0’, FCS = ‘1", FCMO = ‘1", o o
(problem) state only FCM1 = ‘0’ Counts when PR = ‘1" and PMM = 1
Enable counting for unmarked processes inuser |[FCP =‘0’, FCS = ‘1", FCMO = ‘0", o iy
(problem) state only FOM1 = ‘1’ Counts when PR = ‘1" and PMM = ‘0
Note:

1. All enables are based on whether the other MMCRx and/or MSR bits permit this action.

10.7.2 Trigger Events

Machine states that determine counter activity have been presented in Section 10.7.1 on page 243. Several
examples of states and their corresponding counter behaviors were shown in order to illustrate some of the
more common uses. In addition to counting enable/disable for various machine states, there are certain kinds
of performance monitor conditions and events that can affect performance monitor counting activity. The
occurrence of these conditions and events, which together are called trigger events, combined with the
controls that enable the trigger events, can be used together with machine states to further control perfor-
mance monitor activity.

The term trigger event as it is used for the 970MP performance monitor includes the following conditions:

* The time-base transition event can occur when a selected time-base bit changes from ‘0’ to ‘1’. The time-
base event setup uses the following fields: TB_REG[47, 51, 55, 63], HIDO[13], MMCRO[TBSEL]. The
time-base event enable uses the following field: MMCRO[TBEE]. The possibility of side effects when an
enabled time-base event occurs uses the following fields: MMCRO[FCECE, TRIGGER].

* The counter negative condition for PMC1 can occur when the value in PMC1 is negative. The PMC1
counter negative condition setup uses the following field: PMC1[0]. The PMC1 counter negative condition
enable uses the following field: MMCRO[PMC1CE]. The possibility of side effects when the PMC1 counter
negative condition occurs uses the following fields: MMCRO[FCECE, TRIGGER].

* The counter negative condition for PMCj (2 <j < 8) occurs when the value in any PMCj is negative. The
PMCj counter negative condition setup uses the following field: PMCj[0]. The PMC;j counter negative con-

970MP Performance Monitor Version 2.3
Page 244 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

dition enable uses the following field: MMCRO[PMC;jCE]. The possibility of side effects when the PMCj
counter negative condition occurs uses the following fields: MMCRO[FCECE, TRIGGER)].

Note: The three kinds of trigger events can occur independently of each other and independently of whether
the condition or event is enabled. For example, a counter can go negative regardless of whether the counter
negative condition for that counter is enabled. However, the side effects of that counter going negative will be
seen only if the counter goes negative, the counter negative condition for that counter is enabled, and the
side effects are also enabled.

By combining the trigger events and their respective enables with the time-related values obtained in the
counters, performance profiles of different kinds of events can be obtained for a given program.

10.7.2.1 Time-Base Transition Events

Time-base events occur when the selected time-base bit (TB_REG[47, 51, 55, 63], HIDO[13],
MMCRO[TBSEL]) changes value from ‘0’ to ‘1’. If the time-base transition event is enabled (MMCRO[TBEE]),
then any performance monitor action that is started by the occurrence of a trigger event (MMCRO[TRIGGER])
will be initiated. Any performance monitor action that is stopped by the occurrence of a trigger event
(MMCRO[FCECE]) will be terminated. In multiprocessor systems with the Time-Base Registers synchronized
among the processors, time-base transition events can be used to correlate the performance monitor data
obtained by the several processors provided that software has specified the same TBSEL value for all of the
processors in the system.

The frequency of the time base is implementation dependent, and a system service routine should be invoked
to obtain the frequency before a value for TBSEL is chosen.

10.7.2.2 PMC1 Counter Negative Condition Events

The PMC1 counter negative condition occurs when PMC1[0] equals ‘1’, which can occur either through
counting from ‘0’, counting from a positive value greater than ‘0’, or through setting the PMC1[0] bit to ‘1’ in an
interrupt or service routine. If the PMC1 negative count condition is enabled (MMCRO[PMC1CE]), any perfor-
mance monitor action that is started by the occurrence of a trigger event (MMCRO[TRIGGERY]) will be initi-
ated, and any performance monitor action that is stopped by the occurrence of a trigger event
(MMCRO[FCECE]) will be terminated when PMC1[0] becomes negative.

For example, if the PMC1 negative count condition is to be used to start the other PMCj counters after a
designated number of cycles has elapsed, the set up would be as follows:

1. PMC1 is set to the value (x'8000 0000’ - <number of cycles>).

2. PMC1SEL is set up to count cycles.

3. MMCRO[PMC1CE] is set to enable the PMC1 negative counter condition.

4. TRIGGER is enabled.

In this case, it is not necessary to enable the PMC1 counter negative condition because the TRIGGER uses
either PMC1 negative or an enabled trigger event to start the enabled PMCjs counting.

Version 2.3 970MP Performance Monitor
March 7, 2008 Page 245 of 415

User’'s Manual

IBM PowerPC 970MP RISC Microprocessor

10.7.2.3 PMCj (2 <j < 8) Counter Negative Condition Events

The PMC;j (2 <j < 8) counter negative condition event occurs when PMC;j[0] equals 1’ (2 <j < 8), which can
occur through counting from ‘0’, counting from a positive value greater than ‘0, or through setting the PMC;j[0]
(2 £j<8) bitto ‘1" in an interrupt or service routine. If the PMCj (2 < < 8) counter negative condition event is
enabled (MMCRO[PMCjCE]), any performance monitor action that is started by the occurrence of a trigger
event (MMCRO[TRIGGERY]) will be initiated, and any performance monitor action that is stopped by the occur-
rence of a trigger event (MMCRO[FCECE]) will be terminated, when any of the PMC;j (2 <j < 8) counters
become negative.

10.7.3 Method for Enabling or Disabling Performance Monitor Counting

This section describes the fundamental mechanism that should be used to place the selected values into the
Performance Monitor Registers and other SPRs to initiate and terminate counting.

Once all of the control and event selection choices have been made, there are 32-bit and 64-bit values that
must be placed into each of the registers associated with performance monitor counting. These values are
placed in the registers with the mtspr instruction, which can be executed only in supervisor mode.

Note: If the Performance Monitor Counter Register values are changed while the performance monitor is
enabled for counting, then the resulting performance monitor state is undefined.

The basic steps for enabling the performance monitor counting activity are as follows:
1. Enter supervisor mode.

2. Execute a synchronizing instruction.

w

Execute all mtspr instructions that place values to enable counting into the performance monitor and
other Special Purpose Registers except for MMCRO.

Execute all mtspr instructions to initialize the performance monitor counters to the appropriate values.
Execute the mtspr instructions that place the value to enable counting into MMCRO.
Execute a synchronizing instruction.

. Exit supervisor mode.

© N o o &

Start the program for which counting is to be done.

When the program being counted completes, the following steps are used to disable performance
monitor counting:

1. Enter supervisor mode.
Execute a synchronizing instruction.
Execute the mtspr instructions that places the value to disable counting into MMCRO.

Execute all mfspr instructions to read the values from the performance monitor counters.

o > 0D

Execute a synchronizing instruction.
6. Exit supervisor mode.
The performance monitor counters contain either the number of times the selected event has occurred or the

number of cycles during which the monitored event occurred after the performance monitor was enabled for
counting.

970MP Performance Monitor Version 2.3
Page 246 of 415 March 7, 2008

User's Manual

IBM PowerPC 970MP RISC Microprocessor

Note: In either case, any counted events that occur after the performance monitor counting is enabled in
supervisor mode, but before the program under study is entered, will be included in the overall count value. In
the same way, any counter events that occur after the program under study is exited, but before the perfor-
mance monitor counting is disabled, will also be included in the overall count value.

10.8 Performance Monitor Exceptions

The three trigger events described in Section 10.7.2 beginning on page 244 can cause a performance
monitor exception to occur and the subsequent performance monitor exception to be generated if the
following sequence of actions occurs:

1. The trigger event occurs.
2. The trigger event is enabled.
3. The performance monitor exception is enabled.

4. External interrupts are enabled.
Note: This is the highest priority interrupt.

A performance monitor exception can be disabled for a given trigger event by disabling that trigger event
(MMCRO[TBEE, PMC1CE, PMCjCE]). Performance monitor exceptions can be disabled for all of the trigger
events collectively by disabling the performance monitor exception (MMCRO[PMXE]). The performance
monitor exception, which is classified as an external interrupt, can be disabled either by disabling the perfor-
mance monitor exception (MMCRO[PMXE]) or by disabling the external interrupts (MSR[EE]).

When an enabled condition or event occurs and a performance monitor exception is taken, the performance
monitor exception is disabled by the hardware so that the SIAR and SDAR will contain the address and data
information for an instruction that was executing at or around the time of the exception. Because the contents
of the SIAR and SDAR can be altered if and only if MMCRO[PMXE] equals ‘1’, the contents of those registers
can change only if software re-enables the performance monitor exception. If such a re-enable is done and
multiple performance monitor exceptions occur before the performance monitor exception is taken, then the
exception reflects the most recently occurring such exception. Data from the previous exceptions are lost.

If a performance monitor exception is pending and the value of MSR[EE] is changed from ‘0’ to ‘1’, then the
performance monitor exception will occur before the next instruction is executed provided no higher priority
exception exists. The occurrence of the performance monitor exception cancels the performance monitor
exception.

In summary, the following registers are set when a performance monitor exception occurs:

¢ SRRO0[0:63] is set to the effective address of the instruction that the processor would have attempted to
execute next if no interrupt conditions were present.

¢ SRR1[33] is set to ‘1’ if the