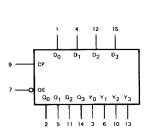
- Advanced Schottky technology
- Four D-type flip-flops
- Four standard totem-pole outputs

- Four three-state outputs
- 75 MHz clock frequency
- 100% reliability assurance testing in compliance with MIL-STD-883

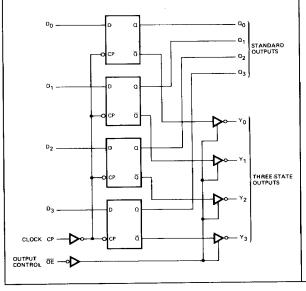
FUNCTIONAL DESCRIPTION

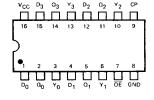
The Am54S/74S388 consists of four D-type flip-flops with a buffered common clock. Information meeting the set-up and hold requirements on the D inputs is transferred to the Q outputs on the LOW-to-HIGH transition of the clock.


The same data as on the Q outputs is enabled at the threestate Y outputs when the "output control" (OE) input is LOW. When the OE input is HIGH, the Y ouptuts are in the highimpedance state.

The Am54S/74S388 is a 4-bit, high-speed Schottky register intended for use in real-time signal processing systems where the standard outputs are used in a recursive algorithm and the three state outputs provide access to a data bus to dump the results after a number of iterations.

The device can also be used as an address register or status register in computers or computer peripherals.


Likewise, the Am54S/74S388 is also useful in certain display applications where the standard outputs can be decoded to drive LED's (or equivalent) and the three-state outputs are bus organized for occasional interrogation of the data as displayed.



V_{CC} = Pin 16 GND = Pin 8

LOGIC DIAGRAM

CONNECTION DIAGRAM Top View

Note: Pin 1 is marked for orientation.

Am54S/74S388

MAXIMUM RATINGS (Above which the useful life may be impaired)

Storage Temperature	65°C to +150°C
Temperature (Ambient) Under Bias	-55°C to +125°C
Supply Voltage to Ground Potential (Pin 16 to Pin 8) Continuous	-0.5V to +7\
DC Voltage Applied to Outputs for HIGH Output State	-0.5V to +V _{CC} max
DC Input Voltage	-0.5V to +5.5V
DC Output Current, Into Outputs	30mA
DC Input Current	-30mA to +5.0mA

-30mA to +5.0mA

ELECTRICAL CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (Unless Otherwise Noted)

SN74S388 SN54S388		$V_{CC} = 5.0V \pm 5\% (COM^{\circ}L)$ $V_{CC} = 5.0V \pm 10\% (MIL)$			AX. = 5.25V AX. = 5.5V			
Parameters	Description	Test Cond	litions (Note 1)		Min.	Typ. (Note 2)	Max.	Units
			Ω I _{OH} = -1mA	MIL	2.5	3.4		
v _{oH}	Output HIGH Voltage	VCC = MIN.		COMUL	2.7	3.4	1	L. Line
0		VIN = VIH or VIL	MIL, IOH = -	2mA	2.4	3.4		Volts
			COM'L, IOH	= −6.5mA	2.4	3.2	i	1
V _{OL}	Output LOW Voltage (Note 6)	V _{CC} = MIN., i _{OL} = 20mA V _{IN} = V _{IH} or V _{IL}					0.5	Volts
v _{IH}	Input HIGH Level	Guaranteed input logical HIGH voltage for all inputs			2.0			Volts
VIL	Input LOW Level	Guaranteed input logical LOW voltage for all inputs					0.8	Volts
v _i	Input Clamp Voltage	V _{CC} = MIN., I _{IN} = -18mA					-1.2	Volts
IIL	Input LOW Current	V _{CC} = MAX., V _{IN} = 0.5V			· · · · · · · · · · · · · · · · · · ·		-2.0	mA
ΉΗ	Input HIGH Current	V _{CC} = MAX., V _{IN} = 2.7V					50	μА
Ч	Input HIGH Current	V _{CC} = MAX., V _{IN} = 5.5V					1.0	mA
10	Y Output Off-State	V _{CC} = MAX.	V _O =	= 2.4V			50	
	Leakage Current	V _O = 0.4V		- 0.4V	·		-50	μА
sc	Output Short Circuit Current (Note 3)	V _{CC} = MAX.			-40		-100	mA
Icc	Power Supply Current	V _{CC} = MAX. (Note 4)			· · · · · · · · · · · · · · · · · · ·	80	130	mA

Notes: 1. For conditions shown as MIN, or MAX, use the appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical limits are at V_{CC} = 5.0V, T_A = 25°C ambient and maximum loading.

3. Not more than one output should be shorted at a time. Duration of the short circuit test should not exceed one second.

4. ICC is measured with all inputs at 4.5 V and all outputs open.

5. Measured on Q outputs with Y outputs open. Measured on Y outputs with Q outputs open.

Switching Characteristics ($T_A = +25^{\circ}C$, $V_{CC} = 5.0V$, $R_L = 280\Omega$)

Parameters	Description		Test Conditions	Min.	Тур.	Max.	Units
tPLH	Clock to Q Output				6.0	9.0	
tPHL.					8.5	13	ns
tpw	Clock Pulse Width HIGH LOW	HIGH		7.0	† · · · · · ·		nş
		LOW		9.0	 		
t _s	Data		$C_L = 15pF$	5.0	†		ns
th	Data			3.0			ns
tPLH	Clock to Y Output (OE LOW)				6.0	9.0	
tPHL					8.5	13	ns
^t ZH	Output Control to Output		C _L = 15pF		12.5	19	ns
tZL					12	18	
tHZ-			C _L = 5.0pF		4.0	6.0	
tLZ					7.0	10.5	
f _{max}	Maximum Clock Free	quency	C _L = 15pF	75	100		MHz