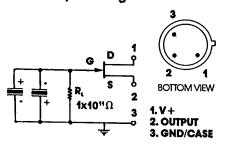


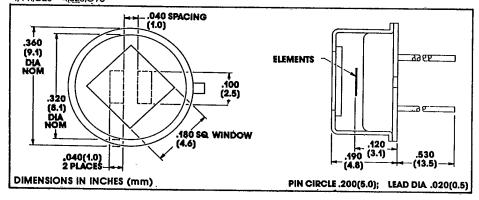
Model 4192 consists of two physically separate lithium tantalate sensing elements and a FET source follower sealed into a standard TO-5 housing with an optical filter.


The sensing elements are connected electrically in a parallel opposed dual (POD) configuration for common mode signal cancellation. Signals from radiation falling on both active areas simultaneously will be cancelled, whereas a defined beam passing from one element to the next will produce two pulses: one positive and one negative,

A source resistor is needed to set the drain current and consequently the operating parameters of the JFET, A 47 K Ω or greater value resistor is recommended for connection between output (source) and ground.

Model 5192 is a lower-cost afternative selected to a higher noise tolerance.

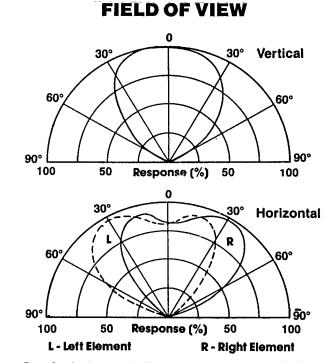
Applications


- Intrusion Detection
- Lighting Control
- Robotics
- Motion Sensing
- Automatic Door Control
- Safety Warning

4192/5192

Parallel Opposed Dual Pyroelectric IR Detector **Vith Source Follower**

Manufactured under one or more of the following U.S. patents: 3,839,640 - 4,218,620 - 4,326,663 - 4,384,207 - 4,437,003 -4,441,023 - 4,523,095


Characteristics		4192	5192	Unit	Test Conditions	ELTECdata Reference
Detector Type		POD	POD			
Element Size		1.0 x 2.5	1.0 x 2.5	mm	nominal, each	
Element Spacing		1.0	1.0	mm	nominal	
Responsivity (Each Element)	min typ max	2000 2700 3500	2000 2700 3500	V/W	8-14µm@1Hz	
Common Mode Rejection Ratio	min typ	5:1 15:1	5:1 15:1	_	8-14µm@1Hz	
Noise	typ max	13.5 27.0	20.0 54.0	μV/√ Hz	1.0Hz p-p (1 mlnute)	
NEP	typ max	1.3 x 10 ⁻⁹ 3.4 x 10 ⁻⁹	1.9 x 10 ⁻⁹ 6.8 x 10 ⁻⁹	W/√Hz	8-14µm @1Hz, BW 1Hz	100
D*	min typ	0.4 x 10 ⁸ 1.1 x 10 ⁸	0.2 x 10 ⁸ 0.7 x 10 ⁸	cm√Hz/W	8-14µm @1Hz, BW 1Hz	100
Operating Voltage	min max	3 15	3 15	VDC	V₀ to Gnd	104 (4.1.c)
Operating Current Limits ¹	min max	0.1 40	0.1 40	μΑ	Rs Dependent	104 (4.1.c)
Offset Voltage	min max	0.2 0.8	0.2 0.8	VDC	$R_s = 22K\Omega$	104 Flg. 4
Offset Voltage	min max	0.3 1.2	0,3 1.2	VDC	$R_8 = 100 \text{K}\Omega$	104 Flg. 4
Output Impedance		20	20	ΚΩ		
Thermal Breakpoint f _t	typ	0.2	0.2	Hz		102
Electrical Breakpoint fe	typ	0.05	0.05	Hz	$R_L = 1 \times 10^{11} \Omega$	102
Recommended Operating Temp.		-10+50	-10 + 50	℃		
Responsivity vs, Temperature	max	+ 0.2	0.2	%/°C	Unity Gain Circuit	104 (3,5)
Incident Power Limit	max	0.2	0.2	W		
Pressure Sensitivity	max	200	200	μV/mbar	Step Response	····
Microphony	max	50	50	μV/g	10-1000Hz	104 (3.9)
Package Sealing	max	10 ⁻⁸	10 ⁻⁸	cm ³ /sec	Helium	(4.7)
Storage Temperature		-55+125	-55+125	ů	ΔT<5°C/minute	

Characteristics at 25°C, with -3 Window, $V_D=5$ VDC, $R_S=100$ K Ω unless otherwise stated. Data is established on a sample basis and is believed to be representative.

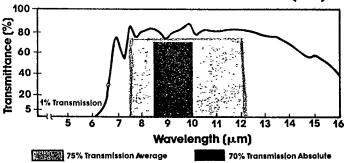
¹Actual current is given by offset voltage and external circuit.

01

ELTEC INSTRUMENTS INC

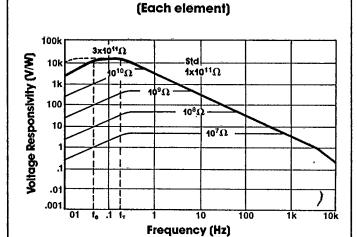
For -3 window only. For other windows, consider refractive index and thickness,

For best results, the following precautions and recommendations should be observed. (See ELTECdata 101):


Mounting: Avoid mechanical stresses on case and leads.

Soldering: Use minimum heat and heat sink between case and leads. Leave minimum lead length of .250 inch (6.0mm.) DO NOT MACHINE SOLDER,

Static Discharge: Protect detectors from electrostatic charges,


Thermal Shock: Temperature changes and rate of change must be kept to a minimum (<5°C/min.) to prevent damage.

Transmission Characteristics of -3 Window (HP7)

For Information on other standard windows available, refer to ELTECdata #101.

DE 13294041 0000412 0 1 ~ FREQUENCY RESPONSE

The voltage response of this detector is dependent on the pulse rate or equivalent frequency of input. The frequency response of the detector can be linearized by using a lower value resistor, but at the expense of lower responsivity and a lower D*. Load resistor values other than the standard 1X10¹¹ Ω can be specified.

Noise: As a resolution or lower information limit, noise is not established only the detector. Other noise sources are:

- Radiated and conducted RF signals
- Subsequent amplification or signal conditioning stages
- Power supply noise
- Components such as high value resistors and tantalum or electrolytic capacitors
- Mechanical contacts and weak solder joints
- Microphonics or vibration
- Outside thermal influences on the detector other than the desired infrared input, i.e. drafts

All these noise sources should be considered carefully when the information signal is <1mV.

Optical Design: Use of a detector with a window in an optical system may require consideration of the image displacement toward the window. This displacement (= s) caused by the insertion of a planoparallel plate (window thickness = t; refractive index = N) is given by s = (t/N) (N-1).

Optical Bandwidth: The detector is sensitive in a range from 1.5 to 1000 μ m depending on window used. For more information, see ELTEC data #101.

Light Leakage: Slight sensitivity to visible light leaking through the glass-to-metal seal on the base may be observed.

ELTEC INSTRUMENTS, INC. BOX 9610 DAYTONA BEACH, FLORIDA 32020 TWX 810 / 832 / 6294 (800) 874-7780

POSTFACH 564 CH-8304 WALLISELLEN-ZURICH SWITZERLAND TI

TELEX 826 205 elfc ch (01) 830 00 01

©ELTEC INSTRUMENTS, INC. 1/88 Printed in U.S.A.