SILICON AM BAND SWITCHING DIODE FOR SURFACE MOUNTING

The BA423L is a switching diode intended for band switching in AM radio receivers.

This SM diode is a leadless diode in a hermetically sealed SOD-80 envelope with lead/tin plated metal discs at each end. It is suitable for "automatic placement" and as such it can withstand immersion soldering.

The diodes are delivered in "super 8" tape.

QUICK REFERENCE DATA

Continuous reverse voltage	V _R	max.	20 V
Forward current (DC)	١ _F	max.	50 mA
Junction temperature	T_{j}	max.	150 °C
Diode capacitance at f = 1 MHz V _R = 3 V	C _d	<	2.5 pF
Series resistance at f = 1 MHz I _F = 10 mA	r _s	<	1.2 Ω

MECHANICAL DATA

Dimensions in mm

The cathode is indicated by a red band.

Fig. 1 SOD-80.

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

_	, , ,			
Continuous reverse voltage	v_R	max.	20	٧
Forward current (DC)	1 _F	max.	50	mΑ
Storage temperature range	T_{stg}	-65 to +	150	οС
Junction temperature	Τį	max.	150	οС

THERMAL RESISTANCE

From junction to ambient on a ceramic substrate of 8 mm x 10 mm x 0.7 mm (see soldering recommendations SOD-80)

D		400	LZ /LAI
R _{th i-a}	max.	400	K/W

<

0.9 V

100 nA

CHARACTERISTICS

T_i = 25 °C unless otherwise specified

Forward voltage IF = 50 mA Reverse current $V_R = 20 V$ $V_R = 20 \text{ V}; T_i = 125 \text{ }^{\circ}\text{C}$ Diode capacitance at f = 1 MHz

5.0 µA C^{4} 2.5 pF

۷F

1_R

 $V_R = 3 V$ Series resistance at f = 1 MHz $I_F = 10 \text{ mA}$

1.2 Ω rs

Fig. 2 Diode capacitance as a function of continuous reverse voltage; f = 1 MHz; T; = 25 °C; typical values.

Fig. 3 Series resistance as a function of forward current; f = 1 MHz; T_i = 25 °C; typical values.