VIDEO CONTROL COMBINATION

The TDA3501 is a monolithic integrated circuit performing the control functions in a PAL/SECAM decoder which additionally comprises the integrated circuits TDA3510 (PAL decoder) and/or TDA3520 (SECAM decoder).

The required input signals are: luminance and colour difference \(-(R-Y)\) and \(-(B-Y)\), while linear RGB signals can be inserted from an external source.

RGB signals are provided at the output to drive the video output stages.

The TDA3501 has the following features:
- capacitive coupling of the input signals
- linear saturation control
- \((G-Y)\) and RGB matrix
- insertion possibility of linear RGB signals, e.g. video text, video games, picture-in-picture, camera or slide-scanner
- equal black level for inserted and matrixed signals by clamping
- 3 identical channels for the RGB signals
- linear contrast and brightness control, operating on both the inserted and matrixed RGB signals
- horizontal and vertical blanking (black and ultra-black respectively) and black-level clamping obtained via a 3-level sandcastle pulse
- differential amplifiers with feedback-inputs for stabilization of the RGB output stages
- 2 d.c. gain controls for the green and blue output signals (white point adjustment)
- beam current limiting possibility

QUICK REFERENCE DATA

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>(V_{6-24})</th>
<th>typ.</th>
<th>12 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply current</td>
<td>(I_6)</td>
<td>typ.</td>
<td>100 mA</td>
</tr>
<tr>
<td>Luminance input signal (peak-to-peak value)</td>
<td>(V_{15-24}(p-p))</td>
<td>typ.</td>
<td>0.45 V</td>
</tr>
<tr>
<td>Luminance input resistance</td>
<td>(R_{15-24})</td>
<td>typ.</td>
<td>12 k(\Omega)</td>
</tr>
<tr>
<td>Colour difference input signals (peak-to-peak values)</td>
<td>(V_{18-24}(p-p))</td>
<td>typ.</td>
<td>1.33 V</td>
</tr>
<tr>
<td></td>
<td>(V_{17-24}(p-p))</td>
<td>typ.</td>
<td>1.05 V</td>
</tr>
<tr>
<td>Inserted RGB signals (peak-to-peak values)</td>
<td>(V_{12,13,14-24}(p-p))</td>
<td>typ.</td>
<td>1 V</td>
</tr>
<tr>
<td>Three-level sandcastle pulse detector</td>
<td>(V_{10-24})</td>
<td>typ.</td>
<td>2.5/4,5/8,0 V</td>
</tr>
<tr>
<td>Control voltage ranges</td>
<td>(V_{20-24})</td>
<td>-</td>
<td>1 to 3 V</td>
</tr>
<tr>
<td></td>
<td>(V_{19-24})</td>
<td>-</td>
<td>2 to 4 V</td>
</tr>
<tr>
<td></td>
<td>(V_{16-24})</td>
<td>-</td>
<td>2.1 to 4 V</td>
</tr>
</tbody>
</table>

PACKAGE OUTLINE

28-lead DIL; plastic (SOT117).
Fig. 1 Block diagram.
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)

<table>
<thead>
<tr>
<th>Supply voltage</th>
<th>(V_{P} = V_{6-24})</th>
<th>min.</th>
<th>max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1,4,26</td>
<td>(\frac{1}{2} V_{P})</td>
<td>V(_{P} + 1) V</td>
<td></td>
</tr>
<tr>
<td>V2,5,27,24</td>
<td>0</td>
<td>(V_{P}) V</td>
<td></td>
</tr>
<tr>
<td>V10-24</td>
<td>0</td>
<td>(V_{P}) V</td>
<td></td>
</tr>
<tr>
<td>V11-24</td>
<td>-0.5</td>
<td>3 V</td>
<td></td>
</tr>
<tr>
<td>V16,19,20-24</td>
<td>0</td>
<td>(\frac{1}{2} V_{P}) V</td>
<td></td>
</tr>
<tr>
<td>V21,22-24</td>
<td>0</td>
<td>(V_{P}) V</td>
<td></td>
</tr>
<tr>
<td>V23-24</td>
<td>0</td>
<td>(V_{P}) V</td>
<td></td>
</tr>
<tr>
<td>pins 3,25,28; 7,8,9; 12,13,14; 15,17,18</td>
<td>no external d.c. voltage</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Current at pin 20
- \(I_{20} \) max. 5 mA
- \(P_{tot} \) max. 1.7 W

Total power dissipation
- \(T_{stg} \) -25 to +125 °C

Operating ambient temperature
- \(T_{amb} \) 0 to +70 °C

CHARACTERISTICS

Supply voltage range
- \(V_{P} \) 10.8 to 13.2 V

The following characteristics are measured in Fig. 2; \(V_{P} = 12 \) V; \(T_{amb} = 25 \) °C;

- \(V_{18-24(p-p)} = 1.33 \) V; \(V_{17-24(p-p)} = 1.05 \) V; \(V_{15-24(p-p)} = 0.45 \) V; \(V_{12,13,14-24(p-p)} = 1 \) V; unless otherwise specified

Current consumption
- \(I_{6} \) typ. 100 mA

Colour difference inputs
- \(-(B-Y) \) input signal (peak-to-peak value)* \(V_{18-24(p-p)} \) 1.33 V
- \(-(R-Y) \) input signal (peak-to-peak value)* \(V_{17-24(p-p)} \) 1.05 V

Internal resistance of colour difference sources
- \(R_{17,18-24} \) \(<\) 200 \(\Omega \)

Input resistance
- \(R_{17,18-24} \) \(>\) 100 kΩ

Internal d.c. voltage due to clamping
- \(V_{17,18-24} \) typ. 4.2 V

Saturation control
- control voltage range for a change of saturation from \(-20 \) dB to \(+6 \) dB \(V_{16-24} \) 2.1 to 4 V
- control voltage for attenuation \(>40 \) dB \(V_{16-24} \) \(<\) 1.8 V
- nominal saturation (6 dB below max.) \(V_{16-24} \) typ. 3 V
- input current \(I_{16} \) \(<\) 20 \(\mu\)A

* For saturated colour bar with 75% of maximum amplitude.
CHARACTERISTICS (continued)

(G-Y) matrix
Matrixed according the equation
\[V_{(G-Y)} = -0.51 \cdot V_{(R-Y)} - 0.19 \cdot V_{(B-Y)} \]

Luminance amplifier
Input signal (peak-to-peak) \(V_{15-24}(p-p) \) 0.45 V
Input resistance \(R_{15-24} \) typ. 12 kΩ
Internal d.c. voltage \(V_{15-24} \) typ. 2.7 V

RGB channels
Signal switching input voltage for insertion
 on level \(V_{11-24} \) 0.9 to 1.5 V
 off level \(V_{11-24} \) -0.5 to +0.3 V
Input current \(I_{11} \) -100 to +200 μA
Signal insertion
 external RGB input signal (peak-to-peak value)* \(V_{12,13,14-24}(p-p) \) 1 V
 internal d.c. voltage due to clamping \(V_{12,13,14-24} \) typ. 3.5 V
 input current \(I_{12,13,14} \) \(<\) 5 μA
Contrast control
 control voltage range for a change of contrast from -17 dB to +3 dB \(V_{19-24} \) 2 to 4 V
 nominal contrast (3 dB below max.) \(V_{19-24} \) typ. 3.4 V
 control voltage for -6 dB \(V_{19-24} \) typ. 2.7 V
 input current at \(V_{23-24} \geq 6 \) V \(I_{19} \) \(<\) 2.5 μA
Beam current limiting
 internal d.c. voltage \(V_{23-24} \) typ. 6 V
 input resistance \(R_{23-24} \) typ. 10 kΩ
 input current contrast control \(V_{23-24} = 5.8 \) V \(I_{19} \) typ. 0.7 mA
 \(V_{23-24} = 5.7 \) V \(I_{19} \) typ. 10 mA
 \(V_{23-24} = 5.6 \) V \(I_{19} \) typ. 16 mA
Brightness control
 control voltage range \(V_{20-24} \) 1 to 3 V
 nominal brightness voltage \(V_{20-24} \) 2 V
 input current \(I_{20} \) \(<\) 10 μA
 control voltage for nominal black level which equals the inserted artificial black level \(V_{20-24} \) typ. 2 V
 change of black level in the control range related to the nominal luminance signal (black-white) typ. ± 50 %

* During the clamping time (see sandcastle detector Fig. 1), the inserted RGB signals are clamped to the same black level as the internal RGB signals. For proper clamping, the internal resistance of the external signal sources should be \(<\) 200 Ω.
Internal signal limiting*
 signal limiting for nominal luminance
 (black to white = 100%)
 black
 white
 typ. -25 %
 typ. 125 %

White point adjustment
A.C. voltage gain **

at V21,22-24 = 6 V

at V21,22-24 = 0 V

at V21,22-24 = 12 V

Input resistance
R21,22-24

typ. 20 kΩ

Differential output amplifier
Feedback inputs (pins 2,5,27)
 d.c. voltage during clamping
V2,5,27-24

5.79 to 5.95 V

voltage difference between
the feedback inputs

ΔV

< 80 mV

input resistance
R2,5,27-24

> 100 kΩ

Output amplifiers (pins 1,4,26)
transconductance

ΔI1
ΔV2-24 = ΔI4
ΔV5-24 = ΔI26
ΔV27-24

typ. 20 mA/V

integrated load resistance
R1,4,26-24

typ. 610 Ω

output current (peak value)
at V1,4,26-24 = 8.2 V

± I1,4,26 m

typ. 5 mA

Gain data
At nominal contrast, saturation and
white point adjustment

Voltage gain between Y-input (pin 15) and
feedback inputs (pins 2,5,27)
G2,5,27-15

typ. 10 dB

Frequency response (0 to 5 MHz)
d2,5,27-15

< 3 dB

Voltage gain between colour difference
inputs (pins 17 and 18) and feedback
inputs (pin 5 and 27)
G5-18 = G27-17

typ. 0 dB

Frequency response (0 to 2 MHz)
d5-18 = d27-17

< 3 dB

Voltage gain between signal display inputs
(pins 12,13,14) and feedback inputs
(pins 2,5,27)
G2-13 = G5-12 = G27-14

typ. 0 dB

Frequency response (0 to 5 MHz)
d2-13 = d5-12 = d27-14

< 3 dB

* Brightness, contrast and saturation control in nominal position.
** With input pins 21 and 22 not connected an internal bias voltage of 6 V is supplied.
CHARACTERISTICS (continued)

Sandcastle detector

There are 3 internal thresholds (proportional to Vp) the following amplitudes are required for separating the various pulses:
- horizontal and vertical blanking pulses (note 1)
 \[V_{10-24} \leq 3 \text{ V} \]
 \[V_{10-24} \geq 4 \text{ V} \]

- horizontal pulse (note 2)
 \[V_{10-24} \leq 5 \text{ V} \]

- clamping pulse (note 3)
 \[V_{10-24} \geq 7.5 \text{ V} \]

- d.c. voltage for artificial black level (note 4)
 (scan and flyback)
 \[V_{10-24} \geq 7.5 \text{ V} \]
 \[V_{10-24} \leq 1 \text{ V} \]

- no keying

Input current

- \(I_{10} \leq 100 \text{ \mu A} \)

Notes
1. Blank to ultra-black (\(-20\%\)).
2. Insertion of artificial black level.
3. Pulse duration \(\geq 3.5 \text{ \mu s} \).
4. This function will also be obtained by leaving pin 10 open.
Fig. 2 Application circuit diagram.