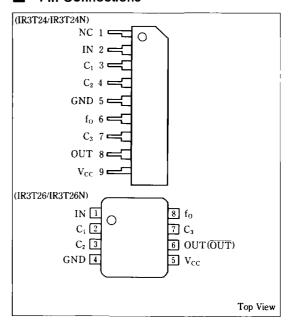
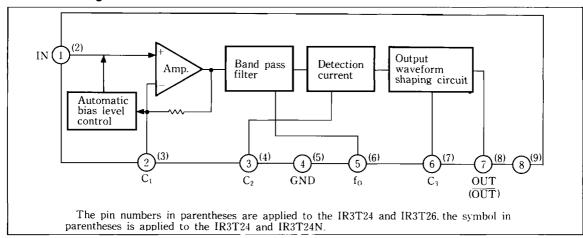
IR3T24/IR3T24N/IR3T26/IR3T26N

Remote Control Receiver Pre-Amp


Description

The IR3T24/IR3T24N/IR3T26/IR3T26N is a receiver preamplifier IC for the infrared remote control system. It consists of a head amplifier, limiter amplifier, BPF, signal waveform detection circuit, waveform shaping circuit and others.


Features

- 1. Low power consumption (8mW TYP. at $V_{CC} = 5V$)
- 2. Low supply voltage ($V_{CC} = 5V$)
- 3. Built-in filter (The center frequency can be varied by an external resistor)
- 4. No induction by a magnetic field because of no coil
- 5. Photodiode may be directly connected.
- 6. Open collector output (Active low output TTL or CMOS compatible) IR3T24/IR3T24N
- Complementary darlington output (Active high output, CMOS compatible) ··· IR3T26/IR3T26N
- 8. 9-pin single-in-line package (IR3T24/IR3T26) 8-pin small outline package (IR3T24N/IR3T26N)

Pin Connections

Block Diagram

Pin Description

Pin No.	Symbol	Description
1	IN	The IN is an input to connect a photo diode.
2	C ₁	The C_1 is used to set the head amp gain.
3	C ₂	The C_2 is used to connect a capacitor for detection.
4	GND	Ground
5	f _O	The fo is used to set the band pass filter frequency.
6	C ₃	The C_3 is used to set the integrating capacitor.
7	OUT	Output
8	V _{cc}	Power supply

■ Absolute Maximum Ratings

Parameter	Symbol	Conditions	Rating	Unit	
Supply voltage	V _{cc}	-	15	V	
Input voltage	V _{IN}	Input pin 1	5	$V_{P \cdot P}$	
Power disspation	n	IR3T24/IR3T26	600	mW	
	P _D	IR3T24N/IR3T26N	300	mvv	
Operating temperature	Topr		-20~+75	C	
Storage temperature	T _{stg}		-55~+150	°C	

■ Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	4.7~5.3	V

■ Electrical Characteristics (1)

 $(V_{CC}=5V, Ta=25^{\circ}C)$

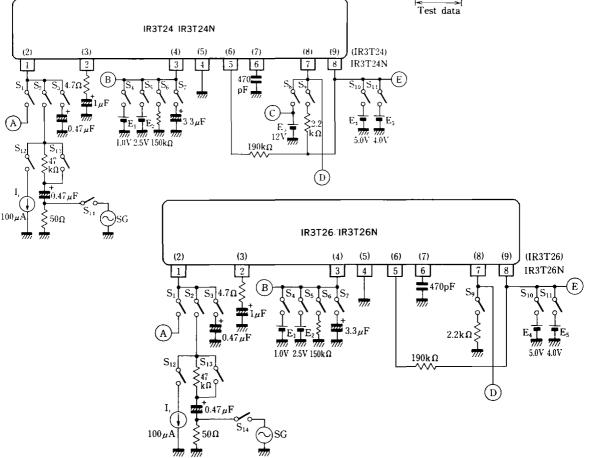
Parameter	Symbol	Conditions			Remarks	Test	MIN.	TYP.	MAX.	Unit
rarameter		Signal	Level	ON—SW	Kemarks	point	MILN.	I YP.	WIAA.	Oint
Input voltage (1)	V _{IN1}			1,7,10		Α	2.4	2.6	2.8	v
Input voltage (2)	V_{IN2}			1,2,7,10,12		Α	0.8	1.1	1.5	V
Output "Low" voltage	V _{OL}			3,4,9,10	IR3T24/ IR3T24N	D	_	0.22	0.44	v
				3,4,10	IR3T26/			0	0.1	
Output "High" voltage	V _{OH}			3,5,9,10	IR3T26N	D	3.6			V
Output leakage current	I _{OH}		•	3,5,8,10	IR3T24/ IR3T24N	С	_	0	2.2	μΑ
Voltage gain	A _v	40kHz CW	50 μ V _{P-P}	2,6,10,13,14		В	74	80	84	dB
BPF characteristics	A _v Q	30kHz 37kHz 43kHz 50kHz CW		2,6,10,13,14	Note1	В	4	9	_	dВ
Input impedance	r _{in}	40kHz CW	0.2V _{P-P}	1,2,7,10,12,14	Note2	A	20	27	44	kΩ
Detection capability (1)	RI ₁	Burst waveform	50 μ V _{P-P}	2,7,9,10,13,14	Note3	D	300		700	μs
Detection capability (2)	RI ₂	Burst waveform	50mV _{P-P}	2,7,9,11,13,14	Note3	D	300		700	μs
Circuit current	i _{cc}			3,7,10		E	1.0	1.6	2.4	mA

■ Electrical Characteristics (2)

D	Symbol	Conditions			D	Test	MINI	TVD	MAN	TT. 14
Parameter		Signal	Level	ON-SW	Remarks	point	MIN.	TYP.	MAX.	Unit
Input voltage (1)	V _{IN1}			1,7,10		A	1.9	2.6	3.2	V
Input voltage (2)	V_{IN2}			1,2,7,10,12		A	0.5	1.1	1.8	V
Output "Low" voltage	V _{OL}			3,4,9,10	IR3T24/	D		0.22	0.6	v
				3,4,9,10	IR3T24N	N D				v
				3,4,10	IR3T26/		i	0	0.2	
Output "High" voltage	V _{OH}			3,5,9,10	IR3T26N	D	$V_{\rm cc}$ = 1.5			V
Output leakage current	Іон			3,5,8,10	IR3T24/	С		0	0.5	μΑ
				3,3,6,10	IR3T24N		_			
Voltage gain	A_{V}	40kHz CW	50 μ V _{P P}	2,6,10,13,14		В	68	80		dB
Current consumption	I_{CC}			3,7,10		Е	0.8	1.6	2.6	mA

Note1 Ratio of the AC level at 37kHz to that at 30kHz

20 log Test data (f=37kHz) Test data (f=30kHz)


Ratio of the AC level at 43kHz to that at 50kHz

20 log Test date (f=43kHz) Test date (f=50kHz)

Note2 Assume that the input level is V_t and the test data is $V_x, \; r_m \!=\! 47/(V_t/V_x \!=\! 1)k\,\Omega$

Input burst wave Output pulse IR3T24/N IR3T26/N A0kHz 40kHz 600µs 600µs 600µs 600µs

Test Circuit

Pin Function

(1) IN (Input pin, photo diode connection pin)

Directly connect a PIN photo diode between this pin and GND. The internal impedance is $27k\Omega$ TYP. To prevent the input level from saturating due to incoming light, the ABLC (Automatic Bias Level Control) circuit is provided in the input section. With strong incoming light, this circuit is actuated to fix the bias level of the input pin.

(2) C₁ (Head amplifier gain setting pin)

Connect a resistor and capacitor in series between this pin and GND, and set the frequency characteristic and gain of the head amplifier. The gain is decreased as the resistor is made larger or the capacitor is made smaller. Since an excessively small resistor may cause oscillation, use the resistor of $4.7\,\Omega$ or more.

(3) C₂ (Pin to connect the capacitor for detection)

Connect the capacitor for detection between this pin and GND. The larger is the capacitor, the nearer to the mean value detection is the result, the smaller is the capacitor, the nearer to the peak detection is the result. Select the capacitor in the range from 1 to $10\,\mu\mathrm{F}$ so that the output pulse width fluctuation and noise filter characteristics may become optimal.

(4) GND (GND pin)

This is the GND pin of the IC. External parts should be grounded at a single point as near to this

pin as possible.

(5) fo (Band pass filter frequency setting pin)

Connect a resistor between this pin and $V_{\rm CC}$. This resistor determines the center frequency of the built-in BPF.

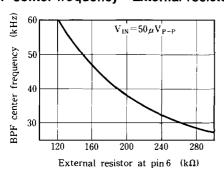
(6) C₃ (Pin to connect the capacitor for integration)

Connect the capacitor for integration between this pin and GND. The larger is the capacitor, the less disturbance noise occurs, but the longer is the LOW level time (IR3T24/IR3T24N) and HIGH level time (IR3T26/IR3T26N) of the output pulse. Select the capacitor in the range from 220 to 680 pF.

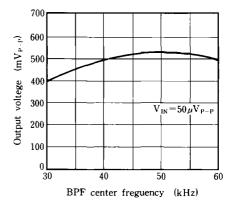
(7) OUT (Output pin)

This is the output pin for active "LOW' and is the NPN transistor open collector. Connect a load resistor between this pin and the V_{CC} pin or another power supply. For the output voltage, 15V is assured. (IR3T24/IR3T24N)

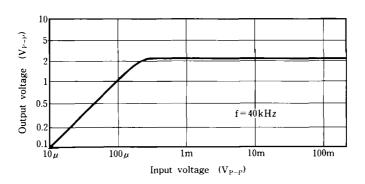
This is the output pin for active "High" and is the complementary darlington output. Connect a load resistor between this pin and GND to shorten the fall time of output pulse. (IR3T26/IR3T26N)

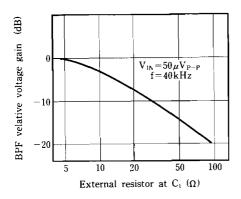


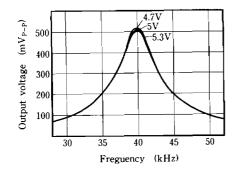
(8) V_{CC} (Power supply pin) 5V±0.3V of power is applied to this pin.

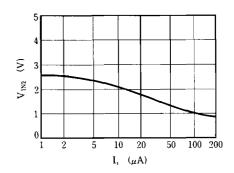


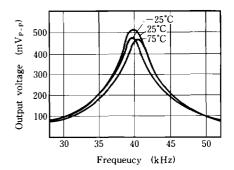
■ Electrical Characteristic Curves (Unless otherwise specified: Ta=25°C, V_{CC}=5V)

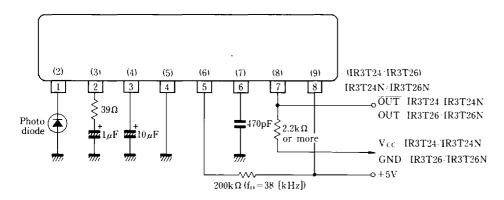

BPF center frequency-External resistor at pin 6


Output voltage-BPF center frequency


BPF input/output characteristics (IN input and C₂ output)


Avi-External resistor at C₁ (IN input C₂ output)


BPF supply voltage characteristics


V_{IN2}-Input current

BPF temperature characteristics

Application Circuit Example

